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DISCRETE ELEMENT ANALYSIS OF THE CREEP OF

STAINLESS STEEL TUBING FOR LMFBR APPLICATION

B. R. Deweyx

ABSTRACT

As a specialized form of finite element stress analysis,
the discrete element method is developed for hollow cylindri
cal solids subjected to pressure and thermal loading. The
solution allows arbitrary radial variation of mechanical

properties and temperature, computes elastic and inelastic
stresses and displacements, and predicts time-dependent
deformation based on empirical creep laws. Particular
attention is given to the analysis of stainless steel
tubing typical of that used in the LMFBR, wherein the
creep, stress relaxation, and stress rupture predictions
are compared with experimental results.

INTRODUCTION

"Discrete element" is a general approach to stress and

displacement analysis. The basic idea has long been used in

analyses where a structure is broken down into component parts

which are treated individually. For example, Timoshenko2

describes a procedure for finding the stresses induced by

shrink-fitting elastic cylindrical shells of different diam

eters. Recently, Derby of OREL3 applied this simplified pro

cedure to reinforced concrete shells and computed results which

-"-Consultant from the University of Tennessee.

2S. Timoshenko, Strength of Materials, Van Nostrand (1956).

3R. W. Derby, "An Approximate Analysis of a Large Prestressed
Concrete Cylindrical Section," Nucl. Engr. Design 10, 361 (l969).



compared favorably in accuracy with those from a finite-element

code. The procedure also has been used for orthotropic rings4

where good agreement was attained between experimental data and

the simple discrete element theory.

In the present analysis, LMFBR fuel pins are treated as an

assemblage of nested concentric hollow circular cylinders. The

properties and loading conditions of individual cylinders may

be specified arbitrarily so that any thermal- or radiation-

induced effects may be accounted for. The elastic solution for

the individual cylindrical elements loaded by pressure and temper

ature is the well-known Lame' problem. 5 The assemblage of elements

is effected by equating forces and displacements at the common

boundaries.

This approach differs from the popular finite element

methods which assume the form of the displacement field (usually

linear) within the element. Thus, for equivalent accuracy, far fewer

of the sophisticated "discrete" elements than "finite" elements need

to be stored and handled in the computer. In addition, the

discrete elements allow the very simple treatment of inelastic

action due to plastic strain and creep.

The discrete elements share with finite elements the ad

vantage of extension into problems involved with axial variations,

4B. R. Dewey and C. E. Knight, Jr., Experimental and Theoretical
Determination of Residual Stresses in Filament-Wound Rings, Y-1701
(January 1970j.

5S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill
(1951).



f(r, z)^ and perhaps those involved with bowing of fuel pins,

f(r, z, 9). Such extensions do not appear as tractable for

established procedures6 which treat radial variations, f(r).

The work that follows has its main applicability to

stainless steel cladding, although it is possible to treat fuel

materials that do not develop cracks. In the following

stress and displacement analysis, the thermal and metallurgi

cal conditions must be supplied externally. Plasticity is

treated through the common elastic-perfectly plastic assump

tion. In this regard, it should be remarked that cladding intended

for long service should not have much plastic yielding upon initial

loading. Hence, the lack of inclusion of a strain-hardening rule

should not impose a serious limitation for the intended purpose.

Deformation by creep is very significant; and experimental data

which may be relied upon for the thermal and nuclear conditions

encountered in the LMFBR is meager.

As it is dimensioned, a maximum of 30 elements (concentric

tubes) may be used in the program. Allowance is made for ten

different kinds of materials, with the elastic modulus, Poisson's

ratio, thermal expansion coefficient, and the flow stress being

specified as arbitrary functions of temperature. These thermally

dependent functions are derived by linear extrapolation between

6C. M. Cox and F. J. Homan, Fuels and Materials Development Program
Quart. Progr. Rept. Sept. 30, 1969, ORNL-4480, pp. 59-61.
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as many as 10 points. Stresses and displacements are printed at

selected times during the creep calculation. The computation

ends when the maximum time is reached.

A first-trial stress calculation is based on the assumption

of entirely elastic properties. If the equivalent stress in an

inner or outer layer is found to be greater than the flow stress,

the equivalent stress is set equal to the flow stress. Then,

the radial and tangential components of stress are recomputed

as a function of the flow stress; the assumption that the axial

normal stress remains elastic is used. Plasticity is allowed to

propagate one layer at a time until the equivalent stresses are

all less than or equal to the flow stress. In accordance with

the treatment of perfectly plastic solids, if the entire structure

reaches yield, it becomes unstable. In many actual situations,

however, strain hardening inhibits large plastic flow. In this

program, the solution is allowed to continue with the artifice

that one interior layer of the structure is assigned some

arbitrary stress, and the creep strains are computed from a

stress distribution which may not satisfy equilibrium. The out

put under these conditions should show a very rapid rate of creep,

and this condition should be interpreted as imminent failure.

Computing time for this program for a typical problem is

less than one minute on the IBM 360/91. Approximately 130-k of

core are required for execution. The core storage can be de

creased considerably by cutting down the "number of materials"

dimension from ten to the number actually used.



ASSIGNMENT OF MATERIAL PROPERTIES

Nonhomogeneity of materials may be handled in two ways.

First, up to ten "kinds" of materials are allowed (Number may

be increased or decreased by alteration of dimensions in the

program). Second, certain material properties may have any

arbitrary variation with temperature.

Material properties used in this program are of two types.

First, there are creep properties which fit a creep equation of

a typical form such as:

e-Aa/ exp (- jL ), (1)

where A, N, and Q may be entered as input parameters and

are not extrapolated as functions of temperature. Second, the

mechanical properties of Young's modulus, Poisson's ratio,

yield strength, and coefficient of thermal expansion may all be

tabulated functions of temperature. Other creep equations may

be used instead of Eq. (1) by altering F0RTRAN statements in the

subroutine used for calculating creep deformation.

In the operation of the program, the mean temperature of

the ith layer is computed as for steady conduction without

sources or sinks in a hollow cylinder:

mean } T 1_ __^_1
i { a V Lin (b/a) b - aj lh ' W

where a and b refer to the inner and outer radii of the elements

and where the interface temperatures are supplied externally to



the present program. For volumetric heat sources such as the

fuel region or gamma heating, the error introduced by computation of

T from Eq. (2) is very small if a sufficient number (say 5 or 10)

of layers is used. The interpolation of material properties to the

layer in question is based on the mean temperature of that layer

with a linear fit between the corresponding points of the material

property description. Typically, for the ith layer,

T mean _ T

E. =E(T )+ -i= =—5 [E(T )- E(T )] , (3)
i m T — T vn v m ' v

n m

where T ^ T. ^ T . The yield strength, Poisson's ratio,
n i m ' '

and the thermal expansion coefficient are interpolated in a

similar fashion. In the event that T. is not bracketed by

temperatures on the material properties curves, the values at

the lowest (or highest) available temperature are used.

Ordinarily, the temperature range of materials properties used

as data input should be sufficiently broad to cover actual

temperatures in the fuel element.

ELASTIC STRESS ANALYSIS

The elastic stress analysis, which is the first step in

every time increment and which is repeated until elastic and

plastic conditions are satisfied, is performed in the sub

routine DELAST. The elastic stress analysis is based on the

concept of fitting together concentric rings (hollow cylinders)
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with conditions of compatibility at their boundaries.7-9 Each

of the rings may have arbitrary elastic properties. For this

reason, the circumferential stresses are not necessarily

continuous at the interfaces between the boundaries.

For individual rings, the stress analysis is based on the

pressures at the inside and outside surfaces of the ring and on

the temperatures (specified externally) on the inside and out

side surfaces. It is assumed that the temperature distribution

in each individual layer is logarithmic with the radial

coordinate, Eq. (2). This assumption fits the solution to the

steady-state heat conduction problem with the sources or sinks

concentrated at the interfaces between layers. The pressures

at the inner and outer surfaces of the entire fuel pin are

specified; the interface pressures are computed from the

simultaneous equations formulated in the elastic stress analysis.

A thermoelastic solution for the thick-walled cylinder with

an axially symmetric temperature distribution and with internal

and external pressure loadings is found by superposing solutions

available in Timoshenko and Goodier.10

7S. Timoshenko, Strength of Materials, Van Nostrand (1956).

8R. W. Derby, "An Approximate Analysis of a Large Prestressed
Concrete Cylindrical Section," Nucl. Engr. Design 10, 361 (1969).

9B. R. Dewey and C. E. Knight, Jr., Experimental and Theoretical
Determination of Residual Stresses in Filament-Wound Rings, Y-1701
(January 1970 J. ~~ ~~

l0S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill
(1951)



The solutions for displacements due to thermal effects may

be shown to be for plane stress as:

uH(a) =a (T -T)(1 +v) a/~j4- -^f )̂o v ' Ka V v ' Vln b/a b*1 - ad )
a T (1 + v) a

(4)

UoH(b) =«(Ta-V (1+ v)b(I^_-B74^)+ (5)
a Tb (1 + v) b ,

where a and b are the inner and outer radii, respectively.

Equations (4) and (5) are modified for plane strain by re

placing the quantity (1 + v) with (1 + v)2 in each term.

If the individual rings could expand freely, the radial com-

TT

ponent of thermal stress a would be zero on the inner and outer

surfaces of the rings. The circumferential component o~ is

nonzero because of the nonuniformity of temperature in the ring.

However, the individual rings do not undergo expansion free of

radial stress because of the interaction with adjacent rings.

The restraint develops a stresses at the surface of each ring
r

XT

and u displacements which must be equilibrated in the solution.

Such stresses and displacements are designated "thermomechanical."
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The solution for the thermomechanical stresses and displacements is

accomplished through the system of equations given by:

l

1

_1 - Vl (1 - vjr;
r2 Ex Ei

(1 - v2)
r2 E2

1

l"3

1 ~ ^2
^3 ^2

- 1

(1 ~ vz)r2
T2

l

0

0

u0H (n) -uoH (r2)

^0H (r2) -UQH (r3)

A2

iA3

^2m

(6)

where m is the number of layers. The solutions for stresses are given

by the following equations with n = 2, 4, 6, , 2m.



H , . Aar (a) = _n-i + A
a2

%H (b)

"t (*) -

A +A
n-i n

An-i + A.

10

aE (T -T.)
a b' / 0.5 a

n 1 - v \ln b/a b2
/ 0-5 __aj_ \
^ln b/a b2 - a2/

H -\ . A + , + aE (T - T, ) , ,at (b) =_ n-i + An v a V / 0.5 b2
TT" 1 - v I In b/a b2 - a2

H . , _ H , , 1 /-(1 + v) Au (a) = uq (a) + - I v ' n-i A (1 - v) a

uH (b) (b) +| (~(^ v) An-1 +̂ (1 _v) b^

The stresses due to internal and external pressure are

then superposed upon the thermomechanical stresses given in

Eqs. (7) and (8). The pressure stresses are found from the

array where the left-hand side of Eq. (6) is set equal to the

internal and external pressures as shown:

L.H.S. Eq. (6)

0

0

P.
l

(7a)

(7b)

(8a)

(8b)

(9a)

(9b)

(10)
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A new set of constants, A , is obtained from Eq. (10).

The stresses o± (b) and displacements uP (a) and uH (b) are

found from the corresponding right-hand sides of Eqs. (7)

through (9).

The total elastic stresses now may be found by

superposition:

^ (a) =ar? (a) +arH ^ > etc"

When the pressures or thermal gradients are sufficiently high

to cause plasticity to commence at the inner and/or outer surfaces,

the elastic solution is used only for those layers which have not

been shown to be inelastic. In the present program, perfectly

elastic-plastic material is assumed; as a consequence, a minimum of

one layer should be elastic to prevent the condition where the

deformation increases rapidly without bound. For strain-hardening

material the elastic solutions described here could be incorporated

into the method of successive elastic approximations,11 whereby a

reduced modulus is used in the displacement equations.

The axial stress o is assumed to always be elastic. This

assumption is supported by Bland12 for the pressure and thermal

conditions expected in the present circumstances. The axial stress

depends upon the kind of restraint on the ends of the fuel elements.

11A. Mendelson, Plasticity: Theory and Application, MacMillan Company
(1968). ~~~

l2D. R. Bland, "Elastoplastic Thick-Walled Tubes of Work-Hardening
Material Subject to Internal and External Pressures and to Temperature
Gradients," J. Mech. Phys• Sci. 4, 209 (l956).
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The two extreme cases of: (1) no restraint and (2) built-in ends

are considered. It appears that case (1) is more realistic for

service conditions; while case (2) is more conservative for design

purposes.

For the case (1) of no restraint, the axial stress is given by:

a - a + a,e , (ll/
z r t '

which is a direct result of equilibrium.13 Case (l) is sometimes

erroneously called "plane stress." It actually is one case of

"generalized plane strain" (e = const).
z

With complete restraint at the ends of the elements, a state

of plane strain (e = 0) results. Thus, case (2) results13 for

a are:
z

a - v (a + a ) - E a A T . (12)
t

In the event that a and a. are not elastic, a does not enter
r t z

into the computation of the equivalent stress which affects the

creep. Hence, a is not recomputed in any case.

PLASTIC STRESS ANALYSIS

In this program the relatively simple assumption of elastic-

perfectly plastic material is used in the plastic (as distinguished

from creep) stress analysis. The accuracy of the results obtained

13S. Timoshenko and J. N. Goodier, Theory of Elasticity, McGraw-Hill
(1951).
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here may be improved by taking thinner (and more) layers. In general,

the plastic stress analysis benefits more than does the elastic stress

analysis by thinner layers; in an efficient program the plastic layers

might be made thin while the elastic ones are relatively thick.

The equivalent stress,

_ 1

e
o\ = - (a e _ „. es2(V " CTt r + (V - ^)2 + (cr e- a e)2 ? (13}

i/2

is compared with the yield stress o . The plasticity criterion is

ae > a • In the event that the layer is plastic, we may use the

following approximate solution based on the assumption that

ar <<: CTt >which improves as the ring gets thinner. From

equilibrium of a ring element with o\ « a , we have
t e

% Cb) =lcy-°r (a)] (a/b) -ffy . (u)

The pressure loading on the layer is simply the negative of a .

Since the pressure transmitted across the interfaces between layers

is equal, the corresponding radial components of stress are equal.

The new pressure is used for the solution of a new elastic problem

where the stress distribution Is recalculated for the remaining

elastic layers.

Checking of the equivalent stress occurs first at the outer

layer, and the appropriate assignment of stresses is made. The inner

layer is checked next, and the appropriate stresses are assigned to

this layer. In the event that both the inner and outer layers are

elastic (a < a on both), it is assumed that the entire structure is
e y

elastic. This assumption is justified by the examination of the form

of the solutions for the stresses. On the other hand, plastic
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conditions on the inner and/or outer layers of the structure initiate

further checking of the equivalent stresses in the outermost and

innermost remaining elastic layers. The plastic solutions [Eq. (L4)]

are propagated until the conditions on the equivalent stress are met.

One layer, however, is set at some arbitrary stress level. The

output should be examined with a cautious view toward any solutions

which show that this condition has been imposed. Such a condition

should be interpreted as indicating the possibility that the pressure

and temperature loading are sufficiently high to cause instantaneous

failure. This limitation in the procedure is not judged serious, as

any reasonable design of fuel element should not be at anywhere near

this high level of loading.

It is noted that deformation due to creep may initiate "plastic"

action. This occurs if the creep displacements are such that the

equivalent stress is increased. Since the stresses are recomputed

after each creep increment, the change of a layer from elastic to

plastic (or vice-versa) is possible.

CREEP ANALYSIS

Upon completion of the elastic and plastic stress analysis, the

deformations and corresponding changes in stress due to creep are

computed. The procedure may be visualized as taking the following

form: Each of the layers is separated from the structure, and the
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amount of radial deformation in that layer (as based on equivalent

stress) is computed from the creep equation. Next, the layers are

forced into a configuration dictated by compatibility conditions on

the mutual boundaries; creep deformations are treated in the same

manner as are deformations due to pressure and temperature. The

creep strains accumulated with time are printed out at selected

times.

The creep law is contained in subroutine DCREEP and has four

arguments which may be entered from data input. One form used for

the creep law is:

e=AaeN G"2 exp (- q/rt) , (15)
where A, N, and Q are empirical constants and G is grain size.

Another form of the creep law that has been used is:

e=Aexp (- Q/RT) [sinh (a /G)]N , (16)

where A, Q, N, and G are appropriate empirical constants.

Another form of the creep law that is recommended for stainless

steel is:

fe =Aexp (- q/rt) [sinh (G ae/T)]N . (17)

where the empirical constants A, G, N, and Q take on appropriate

values. Whatever creep law is selected may be written in F0RTRAN

and placed in the subroutine DCREEP.

Numerical values of the empirical constants need to be carefully

chosen to assure applicability for the conditions under consideration.

These experimental constants probably are the weakest link in the
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entire procedure, since there are meager experimental data for the

nuclear and thermal conditions encountered in the projected service

requirements. The solution for the creep strain increment Ae is

simply computed by replacing e by Ae/At in Eqs. (15) and (16). The

accuracy of the creep computation is improved by decreasing the time

increment, At; but this is at the expense of computer running time.

The numerical scheme used here should provide reasonable stability

(see Mendelson )in computation, since the procedure is linked to

increments in strain as the independent variable and increments in

stress as the dependent variable. A slight improvement might be

effected in the creep computation by adding an iterative scheme to

compute the stress and displacement distribution due to creep. Such

an improvement might be noticeable for long-time solutions.

TYPICAL RESULTS

Experimental data for the creep and stress rupture

behavior of stainless steel tubes have been reported by Atomics

International.15~17 Most of their tests have been with cold-

worked (as-received) type 304 stainless steel and involve

1'4A. Mendelson, Plasticity: Theory and Application, MacMillan Company
(1968).

15W. T. Lee, Biaxial Stress-Rupture Properties of Austenitic
Stainless Steels in Static Sodium, AI-AEC-12694 (June 1968).

16J. H. Shively, Thermal Gradient Effects on Stress Rupture
Behavior of Thin-Walled Tubing, AI-AEC-I2695 (June 1968).

17J. H. Shively and M. W. Mahoney, Thermal Gradient Effects on
Stress-Rupture Behavior of Thin-Walled Tubing, AI-AEC-12896
(January 1970).
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pressurization with NaK at approximately 1200°F. In a series

of stress-rupture tests with flowing sodium, there was

approximately a 50°F temperature gradient through the tube

wall which was maintained by a high flux heating element

inside the tube.

The circumferential strain reported in these references

was computed from diameter measurements, and hence, is assumed

to represent the strain on the outer fibers of the tubes. The

internal pressure was inferred from the results reported for

hoop stress. It should be noted for the cases involving thermal

stress that the thermal components of stress relaxed in a few

hours, leaving only the pressure-induced stress distribution.

All specimens in the AI tests have a nominal 0.295-in.

outside diameter and a 0.010-in. wall. Table 1 shows tabulations

for the mechanical properties with the assumed temperature

dependence.

The creep law used in the program is of the form suggested,15,17

where the creep rate is:

e=Aa® expf-Q/RT), (ig)
where

A = 5.8

N = 3.0

Q = 78,000 cal/mole

R = 2 cal/mole/0K

T = temperature (Kelvin), and

o = equivalent stress (psi).
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Table 1. Mechanical Properties Type 304
Cold-Worked Stainless Steel

Temperature

(°c)

E ,

Elastic

Modulus

(psi)

a,

Expansion
Coefficient

re-1)

Poisson's

Ratio

a

y'

Flow

Stress

(psi)

X 106 x 10"6

316 25.0 16.0 0.28 76,570

538 23.0 18.0 0.28 50,000

593 22.5 18.5 0.28 45,000

649 22.0 19.0 0.28 40,000

704 20.0 20.0 0.28 32,000

Creep of Stainless Steel Tubes

In an attempt to duplicate creep data generated by Atomics

International,l5> 17 the discrete element code was run with Eq. (l8)

for two hoop stresses in tubes of type 304 cold-worked stainless

steel.

The calculated creep rates compare favorably with the earlier

data.15 At a hoop stress of 20,000 psi, the experiments indicate

the average strain rate is from 9 x 10"5 to 1.0 x 10-3 $/hr,

while the discrete element code predicts a strain rate of

9.0 x 10"5 io/hr on the outer fibers and 1.37 x 10"3 fo/hr

on the inner fibers. For the same material and temperature, but a

hoop stress of 24,000 psi, experimental creep rates are from
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1.5 x 10-3 to 2.1 x 10-3 $/hr, while the computed rates are

1.55 x 10-3 to 2.36 x 10~3 f0/hr on the outer and inner fibers,

respectively.

In the more recent report17 which is presently also referenced

for stress rupture, creep data for what appear to be the same con

ditions show a decrease in creep rate by a factor of 5. While the

empirical constants in creep law, Eq. (18), could be changed to

match these data, the empirical constants give good agreement with

the stress-rupture data17 and the previous creep data.15 It is not

known if these differences are due to scatter in the data or some

other cause.

It should be noted that the discrete element program is

presently set up for secondary creep. In situations where

primary and tertiary creep are significant, a scheme could be

added which makes appropriate modifications.

Stress Relaxation and Stress Rupture

Tests were performed16?17 on tubular specimens which were

pressurized and heated internally and externally cooled by flowing

sodium. The internal heating produces thermal stresses in the

wall, and the internal pressurization simulates fission gas and

swelling effects.
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The time-dependent variations of the hoop and radial stress

distributions are shown in Figs. 1 and 2, respectively. For purposes

of comparison, the results from the so-called "thin-wall" theory

are also shown in Fig. 1. (The thin-wall theory does not

treat the radial stress.) The larger hoop stress gradient pre

dicted by the discrete element code is mainly due to the inclusion of

the radial variation of material properties in the code. For this

same reason, the initial values of the hoop stress are double

values. As the stress relaxes, the hoop stress values at the

interface become equal. The relaxation of the radial stress,

Fig. 2, is not as pronounced as that of the hoop stress. The

inclusion of the radial stress becomes increasingly important as

the tubing thickness and/or the temperature gradient is increased.

By computing the strain in the tubing as a function of time,

we can roughly duplicate the stress rupture tests.18 It happens

that as the tube creeps outward at constant stress, the circum

ferential component of strain at the inner radius increases more

rapidly than that at the outer radius. The values thus computed in

Table 2 bracket the experimentally determined values for peak strain

at rupture. Based on the two experimental data points at the same

loading conditions, however, the prediction of stress rupture is subject

to a great deal of scatter and depends on variables (e.g., flaws) not

considered in this analysis.

18J. H. Shively and M. W. Mahoney, Thermal Gradient Effects on
Stress-Rupture Behavior of Thin-Walled Tubing, AI-AEC-12896
(January 1970).
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Table 2. Stress Rupture of Cold-Worked Type 304
Stainless Steel Tubing with Internal Pressure

and Thermal Gradient

Experimental (8) Computed

Specimen

Number
(psi)

Rupture
Time

(hr)

Peak

Strain

do)

Outer

(1°)

e„ Inner efl

(i)
x 103

30 21 177 2.2 2.4 1.2

36 16 558 2.8 4.2 1.0

53 16 392 2.5 2.9 0.7

It is desirable to predict strain-time behavior for

pressurized tubes having a temperature gradient by means of

data from pressurized tubes at constant temperature. Apparently,

consideration of the effect of the radial variation of properties

leads to better such predictions than does the use of the over

simplified "thin-wall" treatment.

Effect of Time-Interval Size

The magnitude of the time increment, At, plays an important

role in the accuracy of incremental creep calculations.19 The

selection of At is guided largely by experience, with consideration

given to the amount of nonlinearity expected and the computing time.

19

(1968)
A. Mendelson, Plasticity: Theory and Application, MacMillan Company
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For the five-element configuration used in test problems,

approximately 18 iterations are performed per second on the ORNL

IBM/360/91. (The program was compiled on the ORNL Fortran compiler.)

Two different interval sizes were used, with other variables held

constant. The comparisons of the creep strains predicted are given

in Table 3 for a tube having the same conditions as those in Figs. 1

and 2.

It may be advantageous to improve the efficiency of the code

by causing it to run with a small At in the region of nonlinear

creep and increase the size of At automatically in regions of linear

creep. Such a procedure would be advantageous for calculations

involving very long running times.

Table 3. Effect of Time-Interval Size upon

Maximum Creep Strain in the
Circumferential Direction

Time Interval, Strain at Time
At 30 hr 60 hr

(hr) (io) (1o)

0.2 0.255 0.481

2.0 0.269 0.495
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CONCLUSIONS

The discrete element analysis, as presently constituted,

appears capable of treating the time-dependent mechanical

analysis of cladding with thermal and pressure loads for steady-

state conditions where axial symmetry exists.

It should be noted that a crude model is used for plastic

deformation; hence, the program is not recommended for calculations

where the plastic strain is large.

The main advantage of the procedure is its capability for

extension into cladding analysis where axial and bending effects

are considered. Also, it is conceivable that a cracked fuel region

could be handled by such a technique whereby the wedge-shaped pieces

of fuel are the discrete elements.
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Card No. 1. Problem identification.

0-80

Alphanumeric Information

20A4 ~~

Card No. 2. Overall geometry description

1-16 17-20 21-24 25-32 33-40

Alpha
numeric

Info.

4A4

No. of

Matl's

(* io)

14

No. of

Layers
0s 30)

14

Inside

Radius

(Ass'y)
(in.)

F8.0

Inside

Pressure

(psi)

F8.0

*Set equal to 1: Plane strain (e = 0).

41-48 49-56

Inside

Temp

(°C)

F8.0

Outside

Pressure

(psi)

F8.0

Set equal to 0: No end restraint on tube (e = constant)
* z '

57-64 65-72 73-76

End AT

Time Creep
Creep (hr)
(hr)

F8.0 F8.0

Plane

Strain

14

77-80

Print

Interval

(No. of
AT's)

14

Cards No. 3. Description of individual layers (One card for each individual layer; layer No. 1
starts at the outside).

1-5 6-10 11-20

15

21-30

Layer Material No. Outside Temp at
Number in Layer Radius Outside

of of

Layer Layer

(in.) (°c)

15 F10.0 F10.0



Cards No. 4. Identification of material properties
(One card for each kind of material; see note on Cards No. 4a).

1-5

Material

Number

15

6-10

No. of

Points,
Properties

List

(£ 10)

15

11-20

Creep'5''
Constant

A

E10.0

21-30

Creep*
Constant

N

E10.0

31-40

Creep*
Constant

E10.0

41-50

Creep''
Constant

G

E10.0

*Any creep law may be used by alteration of SUBROUTINE DCREEP.
provided here; all do not have to be used.

Four arguments are

Cards No. 4a. Piecewlse linear descriptions of material properties as functions of temperature.

(One card for each point on the properties list; an entire group of these cards
follows each No. 4 card for each kind of material).

1-10 11-20 21-30 31-40 41-50 51-60

Point Temp Elastic Thermal Poisson's Yield

Number at Modulus Expansion Ratio Stress

(* io) Point

(°C)
(psi) Coefficient

rc-1)

110 F10.0 E10.0 E10.0 F10.0 F10.0

on



APPENDIX B

Program Output Description





31

PROGRAM OUTPUT DESCRIPTION

The first section of output describes the material properties

and the mean temperature of each of the n layers.

Usually, the modulus of elasticity and the yield strength will be

in psi, the mean temperature in °C, the coefficient of thermal

expansion in °C_1, and the radius in inches. The layers are

numbered from the outside to the inside. The MATL column

identifies the material by an integer (1 £ MATL £ 10) according

to the identifying number on the output.

The main section of the output gives the stress and strain

information as a function of time. The columns, printed in pairs

for the outside and inside of each of the layers, list the radial

stress, the circumferential stress, the circumferential strain,

and the axial stress. Under the heading TOTAL ELASTIC STRESSES

AND DISPLACEMENTS are printed only the elastic stresses and the

elastic circumferential strain. All iterations are printed; the

omission of a layer indicates it is inelastic. Under the heading

TOTAL STRESSES AND CREEP DISPLACEMENTS the elastoplastic solutions

for stresses are given along with the circumferential strain due

to creep only.

The first listed output under TOTAL STRESSES AND CREEP

DISPLACEMENTS represents the stress state for zero time and

the creep strain at time = 0 + At. This is because the

numerical analysis method uses the "previous" stress to compute

the "new" creep strain. If the time increment At is reasonably

small, this is not a serious limitation.
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Certain control information also is contained in the out

put. The ELAS iterations specify the number of times subroutine

DELAST was called to generate the stress and strain field which

follows. The number of ELAS iterations increases according to

the number of plastic layers and the number of points calculated

between printouts.
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DESCRIPTION OF SUBROUTINES

The following subroutines in the program perform the functions

as follows.

DELAST

Solves for elastic stresses and displacements in the multilayer
cylinder as described in the section on Elastic Stress Analysis.

DCREEP

Contains the creep law and supplies the creep displacements of
each element.

D0BEF

Renumbers the elastic layers in preparation for using DELAST.

D0AFT

Renumbers the elastic layers to the original numbers after the

completion of DELAST.

PLAINS

Changes the elastic modulus, thermal expansion coefficient,
and Poisson ratio to the values for plane strain (ends of
cylinder restrained) when this condition is specified.

EXCEED

Prints a warning that all layers are stressed above the elastic
limit and sets the equivalent stress in the innermost layer to
some predetermined "ultimate." It is called by subroutine DCREEP.

SIMQ

Is a library subroutine for the solution of simultaneous equations
using a Gaussian elimination procedure. It is called by
subroutine DELAST.
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STAINLESS STEEL TUBE WITH INTERNAL PRESSURE AND THERMAL GRAOIEN

INSIDE PRESSURE -

LAYER MATL. NO.
1

OUTSIDE PRESSURE =

TEMP-OUT
685.0

690.6

696.1

701.7

707.2

712.8

RADIUS-RUT
0.14750
0.145 50

0.14350

0.14150

0.13950

0.13750

N

0.3000E 01

END TIME -

0.7800E 05

CREEP CONSTANTS

l-ECHANICAL PROPERTIES

0.5800E 01

MATL. NO. 1 TEMP.
316.

538.

593.

649.

704.

0.2500E C8

0.230OE 08

0.2250E C8
0.2200E 08

0.20C0E C8

ALPHA POISSON RATIO
C.1600E-04 0.2806
0.1800E-04

0.1850E-04

0.1900E-04

0.2000E-04

FLOW STRESS
0.7657E 05

0.5000E 05

0.4500E 05

0.4000E 05

0.3200E 05
ENDS NOT RESTRAINED

TEST CASE

LAYER E<LI

1 0 20 589E 08 0 28P60E CO
2 0 20387E 08 C 28060E CO
i 0 201 8 5E 08 0 28O60E 00
4 0 19083E 08 0 280 60E 00
b 0 19781E 08 0 28060E 00

0.19706E-C4

C.19806E-04

0.19907E-04

C.20008E-04

0.20109E-04

TOTAL STRESSES ANO CREEP DISPLACEMENTS

SIGR-OUT
0.0

-0.36611E 03
-0.66827E 03

-0.90361E 03
-0.10695E 04

SIGP-IN

-0.366UE 03
-0.66827E C3
-0.90361E 03

-0.10695E 04
-0.11630E 04

SIGT-OUT

C.28030E 05

0.22702E 05
0.17427E 05

C.12112E C5
0.68574E 0'

TOTAL STRESSES AND CREEP DISPLACEMENTS

SIGR-OUT
0.0

-0.29R36E 03

-0.56551E 03

-C.79978E 0?

-C.99956E 03

S IGR-IN

-0.29836E C3

-0.56551E 03

-0.79977E 03

-0.99955E C3

-0.1163CE 04

SIGT-OUT
C.23135E 05

0.20275E 05

0.17454E 05

0.14561E C5

0.11703E C5

0.34355E C5
0.33550E 05

0.32740E C5

0.31933E C5

0.31125E 05

= 0. HPS.

SIGT-IN

0.25238E 05

0.19917E 05

0.14534E 05

0.92207E 04

0.38545E 04

50. HPS.

SIGT-IN

0.20275E C5

0.17455E C5

0.14561E 05

0.117C4E 05

0.87699E C4

0.2806

0.2806

0.2806

0.2806

0.96096E 03

0.96650E 03

0.97206E 03

0.97761E 03

0.98316E 03

CP ST-OUT

0.26853E-03

C.18962E-03

0.11515E-03

0.54010E-04

0.15305E-04

0.14750E 00 1
0.14550E 00 1
0.14350E 00 1
0.14150E 00 1
0.13950E 00 1

1 ELAS ITERATIONS

CR ST-IN

0.25928E-03

0.16954E-03
0.90113E-04

0.33436E-04

0.49137E-05

SIGZ-OUT

0.28030E 05

0.22336E 05
0.16758E 05

0.11208E 05

0.57879E 04

25 ELAS ITERATIONS

CR ST-OUT

0.41975E-02
0.36609E-02
0.29992E-02

0.22267E-02

0.14440E-02

CP ST-IN

0.37828E-02

0.31214E-02
0.23479E-02

0.15647E-0 2

0.84072E-03

SIGZ-OUT

0.23135E 05

0.19976E 05

0.16889E 05

0.13761E 05

0.10703E 05

SIGZ-IN

0.24872E 05

0.19249E 05

0.13630E 05

0.81512E 04

C.26915E 04

SIGZ-IN

0.19977E 05

0.16889E 05

0.13761E 05

G.10704E 05

O.76069E 04
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»*FTN,G,L,E.
C OISCRETE ELEMENT ANALYSIS OF FUEL AND CLADDING

C0MMON/XSHIFT/XROE(30l,XRIE(30l,XTOE(30l,XTIE(30l,XIH(30l .XOHOOI
IXIC(30I,XOC(30I,XI (31I,XTEMP(31I,XE(30I.XGNU(30I.XALPHA(30I
COMMON/STRESS/SIGIOE(30I,SIGRIE(30I,SIGTOE(30),SIGTIE(30)iSIGROI30

II,SIGPI(3O),SlGTO<3OI,SIGTI(3OI,PRESSO,UIH(30l,U0H(30I,UIC(30I,UOC
2130 I,SIGZI(30 I,SIGZ0(30 I

C0MM0N/GE0MAT/R(3! I.TEMPI 311,E(301,GNU(30),ALPHA(30 I,YS(30I
COMMON/CREEPC/CAI !0 I, CNOOI , C0( 30 ) ,CG( 30) , DTI ME
CCMMON/CREEPS/SIGE(30l,SOGE(30l,DUIC(30l,DUOC(30l
DIMENSION LABEL(4|,MATL(30I,TEMPM(10,10I,EM(10,10),ALPHAM(10,10I,

1GNUM(10,10I,YSM(K .101
DIMENSION CAR(10 I,CNR I 10 I,CQR(10),CGR(10I
DIMENSION MAST (211

DIMENSION E0CI30I,EICI30I

C

C INPUT GEOMETRY AND TEMPERATURE. INPUT MATERIALS

C

10 READ 400, (MAST(I),I=1,20)
4C0 FORMAT ( 20A4)

PRINT 492,(MASTII),1=1,201

C

C FOR ISPLEP = 1, PLANE STRAIN. FOP ISPLEP = 0, NO END RESTRAINT
C

C NOTEO LAYERS ARE NUMBERED FROM OUTSIDE TO INSIDE

C
°EAD 401,(LABEL!I),1=1,41,NOMAT,NLAY,RI,PRESSI,TEMPI,PRESSO.TIMEND

l.DTIME,ISPLEP,IPPINT
PRINT 450,PRFSSI,PPESSO,TIMEND,DTIME
PRINT 451

U REAO 402,L,MATL(LI,R(L),TEMP(LI
PRINT 452,L,MATL(LI,R(Ll,TEMP(L)

12 IFIL.LT.NLAYI GO TC 11
PRINT 453,RI,TEMP1

?0 READ 40?,M,NOPTS,C5R(MI,CNRIMI,CO"(MI,CGP(M)
POINT 454,M

PRINT 45 5,CAR(M),C'R( Ml ,COR ( MI, CGR( MI
POINT 456,M

?1 READ 404,N,TFMPM(M,NI,EM(M,NI,ALPHAM(M,NI,GNUM(M,NI,YSM(M,NI
PRINT 457, TEMPM(M,NI,EM(M,NI,ALPHAM(M,NI,GNUM(M,NI,YSM(M,N)

22 IF (N.LT.NOPTSI GO TO 21
23 IF (M.IT.NCATI GO TO 20

TEMPINLAY+ll = TEM»I

RINLAYtll = RI

IP=IPRINT

TIME=-DTIME

ISTE"S =0

DO 26 I=1,N0MAT

DO 26 J=1,N0PTS

•>6 TEMPMII,JI=TEMPM(I,JI*273.15

DO 29 I =1.31

'9 TEIP(T) = TEMPdl ♦ 273.15
4C1 FORMAT!4A4,214,6F8.0,2141

402 FORMAT I2I5,2F'.0.0I
4"' FORMAT (2I5,4E10.C)
4P4 FORMAT I I10,F1C.C,2E10.0,2F10.0I
HC FOOMATI1H0,17HINSIDE PRESSURE =, F7.0, ex ,1 8H0UTSIDE PRESSURE =,F7.0
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1,8X,10HEND TIME *,F7.0,5H HRS.,8X.9HDELTA T =,F7.2,5H HPS. I
451 FORMAT(6H0LAYER,12H MATL. N0..14H RADIUS-OUT,11H TEMP-OUTI
452 FORMAT(I5,U0,F15.5,F14.1l
453 FOSMAT(15X,F15.5,F14.ll '
454 F0RMATI16HCCREEP CONSTANTS,13X,1HA,14X,1HN,14X.1H0,14X,1HG,14X, 9H

1MATL. NO.,131
455 FORMAT(20X,4E15.4I

456 FORMAT(22H0MECHANICAL PPOPEPTIES,11H MATL. NO.,13,5X,5HTEMP.,8X,
11HE,9X,5HALPHA,16H POISSON RATIO,14H FLOW STRESS!

457 FORMAT(40X,F6.0,2E1 !.4,F9.4,E18.4I
C

C ASSIGN ELASTIC PROPERTIES TO LAYERS DEPENDING ON MEAN TEMPERATURE
C

IFIISPLEP.EO.il PRINT 44C
440 FORMAT I13H PLANE STRAIN!

IF(ISPLEP.EQ.O) PRINT 441
441 FORMAT (20H ENDS NOT RESTRAINED!

PRINT 493,(LABEL!I I,1 = 1,41
PRINT 494

492 FORMAT (1H!,10X,20A4I
493 FORMAT (1H0.4A4I

494 FORMAT (6H0LAYER,5X,4HE(LI,10X,6HGNU!LI,8X,8HALPHA(LI,8X,5HYS(LI
1,10X,5HTMEAN,11X,4H0.R.,8X,4HMATL/ZI

30 DO 50 L=1,NLAY

TMEAN = ITEMPIL+ll-TEMPIL))*<1.0/ALOGIR(LIZR(L +lIl-R(L-H l/(R(LI-
1R(LH)I I + TEMPILI

Nil

M=MATL(LI

C ASSIGN CREEP PROPERTIES TO LAYERS
CAIL)=CAR(MI

CN(L!=CNP(M]

CO(LI=COR(MI

CG(LI=CGR(MI

IFINOPTS.E0.il GO TO 35

IF (TEMPM(M,N!-TMEAN! 40,35,35
35 EILI = EM(M,NI

GNUtLI = GNUM(M,NI
ALPHAILI = ALRHAMIM.NI
YSILI = YSMIM.NI

GO TO 50

40 N=N+1

IF(N.EO.NORTS) GO TO 45

IFITEMPMIM.NI-TMEANI 40,45,45

45 XT = (TMEAM-TEMPM(M,N-1II/(TEMPM(M,NI-TEMPM(M,N-1II
EILI = EM(M,N-l) * XT*!EM(M,Nl-EMIM,N-l11
GNUILI = GNUM(M,N-1I ♦ XT*(GNUMIM,Nl-GNUM(M,N-11 I
ALPHAILI = ALPHAMIM.N-ll + XT*(ALPHAMIM,N)-ALPHAM(M,N-lI I

49 YSILI = YSMIM.N-ll + XT*(YSM(M,Nl-YSM(M,N-11 I
50 PRINT 495,L,EILI,GNUILI,ALPHAILI.YSILI,TMEAN,R(LI,M

495 FORMAT!15,6E15.5,171

IFIISPLEP.EO.il CALL PLAINSINLAYI

TMED=(TEMPINLAYH)-TEMP(1||»I1.0/ALOGIRI1 I /R I NLAY+11I -R INLAY+11 /
11RI 1l-RINLAY+11 I l*TEMP( II

C

C STRESS ANALYSIS

C

DO 51 1=1,30
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UICII1=0.0

51 UOC(II=0.0

52 CALL DOBEFIl.NLAYI

CALL DELASTINLAY,PPESSI,PPESSOI
CALL DOAFTd.NLAYI
ISTEPS=ISTEPS+1

C

C CHECK EQUIVALENT STRESS IN INNERMOST LAYER THAT IS ELASTIC (ILI
C

C

C ELASTOPLASTIC ANALYSIS WORKING FROM INNER AND CUTER SURFACES
C

100 DO 105 N=1,NLAY

IF!ISPLEP.EO.il SIGZI(NI=GNU(NI*(SIGRIEINI+SIGTIEIN)I-E(NI*ALPHA(N
1)*(TEMP(N+1I-TMEDI

IF!ISPLEP.EO.lI SIGZOINI=GNU(NI*lSIGROEINl + SIGTOEIN I I-E<Nl*ALPHA(N
1I*(TEMP(NI-TMEDI

IFIISPLEP.EO.OI SIGZI(fJ|=SIGPIE(NI+SIGTIE(NI
IF(ISPLEP.EO.01 SIGZO(NI=SIGR0E(NI+SIGT0E(NI

SIGE(NI = 1./S0RT(2.I*S0PTIISIGRI ElNl-SIGTIEINI I**2+(SIGTIE(Nl-SIGZI
1INIl**2+(SIGRIE(NI-SIGZI(NI1**21

S0GE(NI=1./S0RT(2.I*SQRT(I SIGROEINl-SIGTOEINl1**2+1 SIGTOEINl-SIGZO
11Nll**2+(SIGR0E(NI-SIGZ0(NI1**21

SIGRI(NI= SIGRIEINI

SIGRO(NI= SIGROEINI

SIGTI(NI= SIGTIEINI
105 SIGTOINI= SIGTOEINI

PN=PRESSI

PO=PRESSO

!L=NLAY

L0=1

108 IFISIGEIILI.GT.YS!ILII GO TO 150

IFISOGE(LO).GT.YS(LO)I GO TO 130
110 CALL CCREEPINLAYI

TIME = TIME + DTIME

115 DO 120 N=1,NLAY
UOC(NI=U0CINI+DUnCINI

UICINI=UIC(NI+DU1C(NI

EOC(NI=UOC(NI/R(NI

120 E!C(N)=UIC(NI/R(N+1)

IF! IP.LT.IPPINTI GO TO 126

IP=0

PRINT 2100,TIME,ISTEPS
2100 FORMAT!39H0T0TAL STRESSES AND CREEP DISPLACEMENTS ,10X,6HTIME = ,

1F7.C5H HPS. ,10X,I8,16H ELAS ITERATIONS I

1000 PRINT 1001

1C01 FORMAT!5H0 N,4X,8HSIGP-OUT,8X,7HSIGP-IN,7X,8HSIGT-OUT,8X.7HSIGT-
1!N,8X,9HCR S^-OUT,5X,6HCR ST-IN,6X,8HSIGZ-OUT,8X,7HSI GZ-INl

DO 125 N=1,NLAY

125 PRINT 4,N,SIGR0(NI,SIGRKNI,SIGTOINI,SIGTI(NI,ECC(NI,EIC(NI,
1SIGZ0INI,SIGZIINI

4 FORMAT!I5.8E15.5)

ISTEPS= 0

126 IP=IP+1

IFITIME-TIMEN0I52, 52,10

!?0 SOGE(LOI=YS(LOI

SIGE(LOI=YS(LOI
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IFKLO+ll.GE.ILIGO TO 110
SIGR0(L0)=-PO
PO=R(LO)/R(LO+1I*(PO-YS(LO)l+YS(LOI
SIGRKLOI = -PO

SIGRO(LO+l)»-PO
136 TERMO=ABS(-3.*SIGRO(LOI**2-3.*SIGZO(LO)**2+6.*S1GPO(LOI*

1SIGZO(LO)+4.*SOGE(LO)**2I
TERMI=ABS(-3.*SIGPI(LOI**2-3.*SIGZI(LO)**2+6.*SIGRI(LO)*

1SIGZI(L0)+4.*SIGE(L0I**2I
SIGTO(LO)=(SIGRO(LOI+SIGZO(LOI+SORT(TERMOI1/2.
SIGTI(LO)=(SIGRI(LOI+SIGZI(L01+SORT(TERMI11/2.
LO=LO»1
NEL=NLAY+(1-L01-INLAY-ILI

C
C RENUMBER ELASTIC LAYERS

C
140 CALL DOBEFILCNELI

CALL DELAST (NEL,PN,PO!
CALL OOAFTUO.NELI
ISTEPS=ISTEPS+1

143 DO 146 N=LO,IL
IFIISPLEP.EO.il SIGZI(NI=GNU(NI*ISIGPIEINI+SIGTIE(NII-E(NI*ALPHA!N

1I*(TEMP(N+1I-TMEDI
IF(ISPLEP.EO.l! SIGZO(NI=GNU(NI*(SIGROE(N)+SIGTCE(NI)-E(NI*ALPHA(N

!I*(TEMP(N)-TMEDI
IFIISPLEP.EQ.OI SIGZI(Nl=SIGRIE(Nl+SIGTIE(Nl
IF(ISPLEP.EQ.O) SIGZO(NI=SIGROE(NI+SIGTOE(NI
SIGE(NI=1./S0RT(2.I*S0RT((SIGRIE(NI-SIGTIE(NII**2+!SIGTIEINI-SIGZI

UNI l**2+ISIGPIE|N|-S!GZI(NI 1**21
SOGEINI=1./SO,RTI2. I*SQRT( I SI GROE! Nl-SIGTOEI Nl l**2 +( SI GTOE ( Nl-SIGZO

1INII**2+(SIGR0EINI-SIGZ0(NII**2I
146 CONTINUE

GO TO 108

150 SIGE(ILI=YS(ILI
SOGE(ILI=YS(ILI

6^ SIGRI IILI = -PN
PN= (PN-YSIILIl*R(IL+1I/R(ILI+YS(ILI
SIGRI!IL-1l=-PN

65 SIGRO (ILI = -PN
166 TFRMO=ABSI-3.*S!GRO(ILI**2-3.*SIGZO( ILI**2 +6.*SIGROIILI*

1SIGZ0(ILI+4.*S0GE(ILI**2!
TERM!=ABS(-3.*SIGRIdLI**2-3.*SIGZI(ILI**2+6.*SIGRI(ILI*

1SIGZI(ILI+4.*S1GE(ILI**21
SIGTOIILI=(SIGROIILI+SIGZO(ILI-S0RT(TERMO)l/2.
SIGTI(ILI=(SIGRl(ILI+SIGZ!(ILI-S0PT(TERMIII/2.

IL=IL-1

171 NEL=1-L0+IL
IFILO.GE.ILI GO TO 110
IFISOGEILOI.GT.YS1L0I1G0 TO 130
GO TO 140
END
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SUBROUTINE DOBEF (LO,NI

C0MM0N/STRESS/SIGR0E(30),SIGRIE(30l,SIGT0E(30l,SIGTIE(30l,SIGROI3O

2!3C:!.=sro,,3or,,3o',pRE^
COMMONZGEOMAT/R(31|,TEMP(?1|,E(30),GNU(30),ALPHA(30I,YS(30I
C0MMONZXSHIFT/XROE(30l,XRIE(30l,XT0E(30l,XTIEI30l,X H(301,XOH(30 I

lXia30l,XOCI30l,XR(31l,XTEMP(31l,XE(30l,XGNU(30l,XALPHA(30l
DO 2 1=1,N

XROE(II=SIGROE(LI
XRIE(II=SIGRIE(LI
XTIE(II=SIGTIE(LI
XTOE(II=SIGTOE(LI
XIH(I|=UIH(LI
XOH(I|=UOH(L|
XIC(II=UIC(LI
XOC(II=UOC(LI
XPI11= PILI

XTEMPIII=TEMPILI
XE(II=E(LI
XGNUIII.GNUILI

XALPHAIIl=ALPHA(LI
> L=L+1

XRIN+1l=R|LI

XTEMP(N+1I=TEMP(LI
RETUPN

END
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SUBROUTINE OELAST (NOEL,PRESS!, PRESSOI
CASE WITH TWO CONSTANTS ON THERMAL CONDITIONS

COMMON/XSHIFT/SIGROE(30I,SIGRIE(30I,SIGTOE(30I,SIGTIE(30I,UIH(30I,
1UOH(30I,UIC(30I,UOC(30I,R(31I,TEMP(31I,E(30I,GNU(30I,ALPHA(30I
DIMENSION SIGROH(30I,SIGRIH(30),SIGTOH(30),S!GTIH(30I,A(60,60I,
16(601,AA(3600I.BBI60I

1 00 5 1=1,60
2 Bill = 0.0

DO 5 J=l,60
5 AII.JI = 0.0

NOEO * 2*N0EL

DO 105 1=1,30
SIGROHII}=0.0

SIGRIHII ) = 0.0

SIGTOHII)=0.0

SIGTIH(I)=0.0

UIHIII =0.0

UOHIII =0.0

105 CONTINUE

C

COMPUTE THERMAL-ONLY DISPLACEMENTS
C

109 DO 110 N=1,N0EL
C EXPRESSION FOR PLANE STRAIN

U0HINI=ALPHA(NI*(TEMP(N + 1l-TEMPINII*I 1.0+GNU(NI)*R(NI*(0.5/ALOG
1!RINI/RIN+lll-RIN+1l**2/(R(NI**2-R(N+ll**2ll+ALPHA(Nl*(1+GNU(NlI*
2TEMP(N)*R(NI

U1HINI = U0HINI*R(N+1IZPINI

UIHINI = UIHINI + UICINI
110 UOHINI = UOHINI ♦ UOCINI

C

C SET UP ARRAY FOR THERMAL-MECHANICAL STRESSES AND DISPLACEMENTS
C

All,II = l.C/Plll**2

All.2) = 1.0

DO 120 N=2,N0EL

AI2*N-2,2*N-3I = 1.0/R|NI**2
A(2*N-2,2*N-2I = 1.0
A(2*N-2,2*N-1I = -1.0/R(NI**2

A(2*N-?,2*N I = -1.0

AI2*N-1,2*N-3I =-1.0ZE(N-ll * (1.0+GNUIN-lI I/R(Nl
A(2*N-1,2*N-2I = (1.0-GNU(N-1)I*R(NI/E(N-1I
A(2*N-1,2*N-1I = 1.0/EINI * I 1.O+GNUINlIZPINI

AI2*N-1,2*N I =-!1.0-GNUINIl*R(NI/E(NI
B(2*N-1I = UOHINI - UIHIN-ll

120 CONTINUE

A(2*NOEL,2*NOEL-1I = 1.OZPINOEL+11**2

130 A(2*NOEL,2*NOEL I = 1.0

C

CONVERT FOR SIMULTANEOUS EQUATION SOLVER •SIMO'
C

K = 0

00 140 J=1,N0EQ
BB(JI = BUI

DO 140 1=1,NOEO
K= K+l
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140 AAIKI = »(I,J)
CALL SIMO (AA,BB,NOEQ,KSIGI

C

c

C THERMAL STRESSES AND DISPLACEMENTS BY SUPERPOSITION
C

DO 150 N=1,N0EL

SIGROH(N) = BB(2*N-1I/R(NI**2 ♦ BB(2*NI
SIGRIH(N) = BB(2*N-1I/R(N+1)**2 + BB(2*NI
UIH(NI = UIHINI + 1.0/E(NI*(-(1.0+GNU(NII*BB(2*N-1I/R(N+1I + BB(2*

1NI*(1.0-GNU(NIl*R(N+ll I

UOH(NI = UOHINI ♦ 1.0/E(NI*I-I1.0+GNU(NII*BB(2*N-1IZRINI + BB(2*NI
2*(1.C-GNUINII*R(NI I

SIGTOHINI = -BB(2*N-1I/R(NI**2 ♦ BB(2*NI + ALPHA(NI*E(Nl*(TEMPIN+
lll-TEMPINIl/l1.0-GNUINII * (0.5ZAL0GIRlNl/R(N+lI I - R(N+1I**2 /
2(RINI**2 - R(N+1I**2II

150 SIGTIHINI = -BB(2*N-1I/R(N+1I**2 + BB(2*NI ♦ ALPHA!Nl*EIN I*(TEMP
KN +ll-TEMPINI l/ll.C-GNUINII * (0. 5ZAL0GI Rl Nl/R IN+111 - R(NI**2 Z
2IRIN)**2 - R(N+l1**21 I

DO 180 1=1,60

178 Bill =0.0

DO 180 J=l,60

1 80 Ad.JI =0.0

C

C PRESSURE STRESSES AND DISPLACEMENTS
C

NOEO = 2*N0EL

All,II = 1.0/R(1I**2
All,21 = 1.0

Bill = -PRESSO

C EQUATE SIGMA R AND DISPLACEMENTS AT INTERFACES
DO 210 N=2,N0EL
A(2*N-2,2*N-3I = 1.0/R(NI**2
A(2*N-2,2*N-2I = 1.0

A(2*N-2,2*N-1I =-l.CZR(NI**2
A(2*N-2,2*N I —1.0

A(2*N-1,2*N-3I =-1.0/EIN-ll * I 1.O+GNU!N-lI IZRINI
A(2*N-1,2*N-2I = l.CZEIN-ll * (1.0-GNU(N-lI I*R(NI
A(2*N-1,2*N-1I = 1.0/EINI * ll.O+GNUINI IZRINI
A(2*N-1,2*N I =-l.C/EINI * (l.r-GNUINI l*R(NI

210 CONTINUE

A12*N0EL,2*N0EL-1I = 1.0/RINOEL+11**2
AI2*NOEL,2*NOEL I = 1.0
BINOEOI = -RRESS!

C

C LOAD SUBROUTINE SIMO

C

K = C

DO 220 J=1,NOEO
218 BBIJI = B(JI

DO 220 1=1,NOEO

K = K+I

270 AAIKI = All,J)

CALL SIMQ IAA,BB,NOEQ,KSIGI

c SUPERPOSE PRESSURE AN

DO 240 N=l ,NOEL
SIGROEINI = SIGROHIN)

SIGPIEINI = SIGRIHINI
SIGTOEINI = SIGTOHINI

SIGTIEINI = SIGTIHINI

240 CONTINUE

1C16 RETURN

END

BB(2*N-1I/R(NI**2 + BB(2*NI

BB(2*N-1I/R(N+1)**2 ♦ BB(2*NI
BB(2*N-1IZR(NI**2 ♦ BB(2*NI
BB(2*N-1I/R(N+1I**2 ♦ BB(2*NI



50

SUBROUTINE DCREEP INLAY I
C0MMON/GEOMAT/R(31l,TEMP(31l,E(30l,GNU(3OI,ALPHA(30l,YS(30l
CCMMON/CREEPC/CA(30l,CN(3OI,C0(30l,CG(30l,DTIME
C0MMON/CREEPS/SIGE(30l,S0GE(30l,DUIC(30l,0U0C(30l
CCMMON/STRESS/SIGROE(30I,SIGRIE(30I,SIGTOE130I,SIGTIE(30I,SIGRO(30

II,SIGRI(30l,SIGTO(30l,SIGTI(3OI,PRESSO,UIH(30l.UOHI30),UIC(30I,UOC
2(30l,SIGZI(30l,SIGZO(30l

DATA CR/2.Z

DATA US/76570./
DO 25 I=1,NLAY

IF(SOGE(II.GT.USI CALL EXCEED!SOGEII I,US,I I

IFISIGEIII.GT.USI CALL EXCEED!SIGEII I,US,I I
DEPEO=CA(II*SOGE(II**CN(Il*EXP(-CQ(II/CR/TEMPIIll*DTIME

DEPEI =CA(1I*SIGE(I)**CN(Il*EXP(-COIII/CR/TEMPI1 + 111*0TIME
DUIC(II*R(I+1I*DEPEI/(2.*SIGE(III*(2.*SIGTI(II-SIGRI(II-SIGZI(III 918-1

25 OUOC(II=R(II *DEPEO/(2.*SOGE(III*(2.*SIGTO(II-SIGRO<II-SIGZO(III 918-1
RETURN

END



SUBROUTINE EXCEED(S,US,II
S=US

PRINT 1,I

1 FORMAT (49H EQUIVALENT STRESS SET EQUAL TO ULTIMATE IN LAYER
RETUPN

END

51
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SUBROUTINE DOAFT(LO,NI

COMM0N/STRESS/SIGR0E(30l,SIGRIE(30l,SIGTOE(30l,SIGTIE(30l,SIGRO(30
1I,SIGRI(30I,SIGTO(30I,SIGTI(30I,PRESSO,UIH(30),UOH(30I,UIC(30I,UOC
2(30I,SIGZI(30I,SIGZO(30I

COMMON/GEOMAT/R(31I,TEMPI31I,EI30I,GNU(30I,ALPHAI30I,YSI30I
C0MMON/XSHIFT/XROE(30l,XRIE(30l,XTOE(30l,XTIE(30l,XIH(30l.XOH130I

IX!CI 301,XOCI30I,XR(31 I,XTEMPI31 I,XE(301,XGNU(30 I.XALPHAI30I
L = LO

00 2 1*1,N

SIGROE(LI=XROEIII

SIGRIEILI=XRIE(II

SIGT0E(LI = XTOE(I I

SIGTIE(LI=XTIEI1I

UIHILI = XIH(I I

UOH(LI = XOH(I I

2 L«L+1

RETURN

END
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SUBROUTINE PLAINS (NLI

COMMON/GEOMAT/R(31I,TEMP(31I,E(30I,GNU(30I,ALPHA(30I,YS(30I PLAINS 2
00 10 L=1,NL

E(LI=E(LI/(1.-GNU(LII PLAINS 4
ALPHA(LI=I1.+GNU(LIl*ALPHA(LI PLAINS 5

10 GNU(LI=GNU(LI/(1.-GNU(LII PLAINS 6
RETURN PLAINS 7
END PLAINS 8
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C THIS IS ORNL F04001 OF 1167 SIMOOOl
C SIMQ 002
C SIMQ 003
C SUBROUTINE SIMQ SIMQ 004

C SIMO 005
C PURPOSE SIMQ 006
C OBTAIN SOLUTION OF A SET OF SIMULTANEOUS LINEAR EOUATIONS, SIMQ 007
C AX=B SIMQ 008
C SIMO 009
C USAGE SIMO 010
C CALL S1MQ(A,B,N,KSI SIMQ Oil

C SIMQ 012
C DESCRIPTION OF PARAMETERS SIMO 013
C A - MATRIX OF COEFFICIENTS STORED COLUMNWISE. THESE ARE SIMQ 014
C DESTROYED IN THE COMPUTATION. THE SIZE OF MATRIX A IS SIMQ 015
C N BY N. SIMO 016
C B - VECTOR OF ORIGINAL CONSTANTS ILENGTH Nl. THESE ARE SIMQ 017
C REPLACED BY FINAL SOLUTION VALUES, VECTOR X. SIMQ 018
C N - NUMBER OF EOUATIONS ANO VARIABLES SIMO 019
C KS - OUTPUT DIGIT SIMQ 020

C 0 FOR A NORMAL SOLUTION SIMO 021
C 1 FOR A SINGULAR SET OF EQUATIONS SIMQ 022

C SIMQ C23
C REMARKS SIMQ 024
C MATRIX A MUST BE GENERAL. SIMQ 025
C IF MATRIX IS SINGULAR , SOLUTION VALUES ARE MEANINGLESS. SIMQ 026
C AN ALTERNATIVE SOLUTION MAY BE OBTAINEO BY USING MATRIX SIMQ 027
C INVERSION IMINVI AND MATRIX PRODUCT (GMPRDI. SIMQ 028
C SIMQ 029
C SUBROUTINES AND FUNCTION SUBPROGRAMS REQUIRED SIMQ 030
C NONE SIMO 031
C SIMQ 032
C METHOD SIMO 033

C METHOD OF SOLUTION IS BY ELIMINATION USING LARGEST PIVOTAL SIMQ 034
C DIVISOR. EACH STAGE OF ELIMINATION CONSISTS OF INTERCHANGINGSIMQ 035
C ROWS WHEN NECESSARY TO AVOID DIVISION BY ZERO OR SMALL SIMO 036
C ELEMENTS. SIMQ 037
C THE FORWARD SCLUTITN TO OBTAIN VARIABLE N IS DONE IN SIMQ 038
C CALCULATED BY SUCCESSIVE SUBSTITUTIONS. FINAL SOLUTION SIMO 040
C VALUES ARE DEVELOPED IN VECTOR B, WITH VARIABLE 1 IN Bill, SIMO 041
C VARIABLE 2 IN BI2I, , VARIABLE N IK BIN). SIMO 042

C IF NO PIVOT CAN BE FOUNC EXCEEDING A TOLERANCE OF 0.0, SIMQ 043
C THE MATRIX IS CONSIDERED SINGULAR AND KS IS SET TO 1. THIS SIMO 044
C TOLtRANCE CAN BE MODIFIED BY REPLACING THE FIRST STATEMENT. SIMQ 045

C SIMQ 046
C SIMO 047

C SIMO 048

SUBROUTINE SIMQ(A,B,N,KSI SIMQ 049
DIMENSION All),8(11 SIMQ 050

C SIMO 051
ION SIMQ 052

SIMO 053

SIMQ 054

SIMQ 055

SIMQ 056

SIMQ 057

c FORWARO

c

TOL=O.C

KS = 0

JJ = -N

DO 65 J=1,N



JY-J+l

JJ-JJ+N+1
8IGA-0

IT-JJ-J
00 30 I*J,N

SEARCH FOR MAXIMUM COEFFICIENT IN COLUMN

U-IT+I

IFIABSIBIGAI-ABSIAIIJIII 20,30,30
20 BIGA-AIIJI

IMAX«I

30 CONTINUE

TEST FOR PIVOT LESS THAN TOLERANCE (SINGULAR MATRIXI

IFI.ABSIBIGAI-TOLI 35,35,40
35 KS-l

RETURN

INTERCHANGE ROWS IF NECESSARY

40 I1"J+N*(J-21

1T-IMAX-J
DO 50 K"J, N

I1«I1+N
I2-I1+IT

SAVE-AI III

A(I1)=A(I2I

AII2I-SAVE

OIVIDE EQUATION BY LEADING COEFFICIENT

50 Adl l«AI II l/BIGA

SAVE'B!IMAXI

Bl IMAXI-BUI

BUI-SAVE/BIM

ELIMINATE NEXT VARIABLE

IFIJ-NI 55,70,55
55 IQS-N»IJ-1I

DO 65 IX-JY.N

ixj-ios+ix

IT-J-IX

DO 60 JX-JY.N

1»JX-N»(JX-ll+IX
JJX*IXJX+IT

60 A(IXJXI-A!IXJXl-IAIIXJI*A(JJXII

65 B11X»»B(IX)-(B(JI*A(IX')I

BACK SOLUTION

70 NY"N-1

IT*N*N

DO 80 J-l.NY
lA-tT-J

IB-N-J

IC-N
00 BO K-l.J
B(IBI-B(IBI-AIIAI*BIICI
1A.IA-N

80 IC*IC-1

RETURN

END
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