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OPSERVATIONS OF FUEL-CLKDDING CHEMICAL INTEFACTIGNS 

AS APPLIED TO GCBR FUEL RODS 

x. 0. F i t t s  E. L. Long, Jr. J. M. Leitnaker 

Chemical in te rac t ions  between f u e l  and cladding my be :1, major 

l imi t a t ion  t o  oxiae-Fueled fast  breeder reactors. This l imj t a t ion  

i s  e snec ia l ly  important for long-term gas-cooled fast breeder reac tor  

(GCE~) s ~ p l i c a t i o n s  because of a st rong economic incent ive t o  operate 

a t  liighcr crsdding temperatures. 

f'xl pisis cLad in Hastel loy X and types 304 and 316 staivlless steel 

ONTL i r r a d i a t i o n  t e s t s  of  ( U, Puj  O;! 

show tliac $:-e Hastel loy X cladding may be s u f f i c i e n t l y  compatible w i t h  

mixed oxide ?uels a t  50 t o  100 C higher.  Out-of-reactor oxidakion 

s tudies  ofi type 316 s t a i n l e s s  s t e e l ,  conducted at ORITL, along with 

published. information on oxid%tion of s t e e l s  and in-reactor  "Puel- 

cladding compatibi l i ty ,  " a r e  combined with a thermodynamic a,naLysis of  

pos tu la ted  react ions t o  y i e ld  t h e  f'ollowing conrz1.iAsion. M G S ~  observa- 

t i o n s  ol' fuel-cladding chemical i n t e rac t ion  appear t o  be the r e s u l t  of' 

s i q l e  oxidat ion of t h e  cladding followed i n  some areas  by mechanical or 

l iquid-phase t ranspor t  9f t h e  outermost oxid.e l ayer  onto the  T?,eI, where 

i t  i s  reduced. This conclusion ind ica tes  t ha t ,  aLthough t.ype 3 1 ;  s t a in -  

less s t e e l  w i l l  be s a t i s f a c t o r y  f o r  e a r l y  GCBR applica,tion, e i t h e r  a 

more de t a i l ed  understanding of t he  r eac t ion  involved i s  needed o r  a l loys  

t h a t  a r e  more oxidat ion r e s i s t a n t  must be proven as cl.ad-ding mater ia ls .  
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I1”RODUC‘I’ION 

Chemical in te rac t ions  between mixed oxide fuel., f j-ssion producbs, 

and cladding mater ia ls  may be a major f ac to r  limj-ting t h e  l i f e  ol” f i e 1  

rods i n  gas- and liquid-metal-cooled breedei- reactoys (GCBR and LMFBH) . 

Fuel rods f o r  early demonstration GCBR a r e  d-esigned‘ with type 316 

s ta i -nless  s t e e l  cladding t o  operate with a peak cladding hot-spot tem- 

pera ture  of  ‘700°C. With t h i s  design, tine ea r ly  GCBR and LMFAR fuel- pins  

a re  very s i m i l a r .  For longer  teyrn app1.icatior1.s t he re  i s  an economic 

i-ncentive t o  increase t h e  coolant tempera.tvj-e i n  the  gas-cooled sys.tern; I 

cladding performance a t  temperatures above 700” C and probably .the per- 

fornlance of  materials other  than t ype  316 sta, inless s t e e l  then become 

j.mportaiit. We have examined in- and out-of-reactor t e s t s  a t  ORNL and. 

t he  ava i lab le  l i t e r a t u r e  f o r  evidence of  fuel-cladd.ing chemical i n t e r -  

ac t ion  and oxidation a t t ack  on cladding mater ia l s .  FinaUy, some pro- 

posed mechanikms of cladding a t t ack  a r e  d-iscussed. i.n Lhe I-ight of t h e s e  

observati.ons and thermodynamic analys 3.s of -the pos tula-Led reac-tions . 

FUEL-CLADDING INTEWACE IN FUEL PINS 

Morphology of Attack 

Chemical in te rac t ions  between mixed oxide fuel and cladding mate- 

r i a l s  have been observed a t  OFSU. i n  a number of f u e l  p ins  i r r ad ia t ed  as 

p a r t  of a cooperative OHNL-GGA GCBR fue l  development program’ 

p a r t  of t he  OKNL Oxide Fuels Development program.” 

l i s t e d  i n  ‘Table I, were clad with Hastelloy X or type 3% oi” 316 s ta in-  

7-ess s’ieels - The cladding inner  sur face  temperatures ranzed from about 

600 t o  1000°C and t h e  fuel burnups f r o m  4,GOO t o  60,000 MWd/rrLetric_ ton.  

and as 

The f u e l  pins,  
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Hastelloy X eladd-ing oil (U,Pu)02 Fuel  a t  temperatures near 7OO0C, 

tihe lowest t e s t  temperat;u.re f o r  t h i s  combination, shows a 0.002-i.n.- 

l;hi.ck uniform reac t ion  layer  artier re la t j -vely high burnip and long t e s t  

durat ion (GA-1-8, -19). 

w~~i.11. 

pene t ra t ion  of .the cladding was observed as open "cracks" and, deeper 

i n  the  cladding, gra in  boundary poros i ty .  A t  temperatures above 750°C 

t h e  extent of reac t ion  increased.; more voids were observed deeper i n  

.the cladding, and cladding 'chinning became measurable I 

these react ions i s  shown i n  Fig. 1, 

There was azo measurable Lhinnihg of t h e  cl.addi.ng 

At 750°C, lower burnup, and shor te r  times (GA-16) ,  in te rgranular  

The r e s u l t  o f  

GUT data  from stain]-ess-s teel-clad f u e l  pins  a r e  l imi ted  but  gener- 

a l l y  encouraging. 

saw cladding reac t ion  we operated a pel.l.et f u e l  to 5% FIMA a t  a peak 

cladding 5nsid.e temperature o f  G30°C, and the re  was no measwa.bl.e 

thinning of .the cladding. The remainder of t'nese t e s t s  were e i t h e r  

below 600°C 0%" for shor t  times, and no a t t a c k  was observed. This i s  

mos-i; s ign i f i can t  i n  t'ne case of EBR-11 f u e l  p i n  S-1-E, which achieved 

6% FIMA a t  590°C peak cladding inside teniperature. 

In  t h e  s ing le  test; of t h i s  type ( G A - l 7 )  i n  which we 

Other inv-estigators have made numerous observations of a t t a c k  at 

5-57 the  inner  s w r a c e  of  tlie cladding on mixed oxide f u e l  p ins .  A de f t -  

n t t e  e f f e c t  of cladding iiisi.de temperatwe on t he  depth o f  cladding 

a t t a c k  and probably a d iscern ib le  effeci; of 'ownup ( o r  i r r a d i a t i o n  time) 

have been reported.  5>' i  An equation developed by Hiancheria and coworkers' 

describing t h e  avai1abl.e data  on cladding penet ra t ion  (.?t, m i l s )  5.n 

terms of cI.addi.ng surface temperature (T,  "F) and fuel.  burnup (BU, 

iWd,/metric ton  i s  
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Unfortunately, t h e  observations cannot be correla,:;ed we l l  enough with 

any of the  f u e l  rod f ab r i ca t ion  or operating cond.i.tions t o  c l e a r l y  

def ine e i t h e r  t h e  operat ive mechanisms or t'ne kimetics of the reac t ions .  

Such a r e s u l t  i s  not surpr is ing,  i n  view of t he  very complicated nature  

of these  t e s t s  and t h e i r  analysj-s. 

The ove ra l l  appearance of t he  r eac t ion  zone i s  the same f o r  both 

s-Lainless s t e e l s  and Hastelloy X. Three general  forms of chemical reac- 

t i o n  a r e  observed. They are:  

cladding in s ide  surface ( see  Fig. 1); ( 2 )  g ra in  boundary a t t a c k  i n  t he  

cladding ( see  Fig. 1); and (3)  " r ivers"  of meta l l ic  mater ia l  along 

cracks i n  t h e  f u e l  ( see  Fig. 2 ) .  

forms of a t t a c k  i s  not c l ea r .  However, t h e  reac t ion  layer  located a t  

t h e  cladding surface i s  sornetimes observed al.one, whereas t h e  penetra- 

t i o n  of g ra in  boundaries i n  t h e  cladding seems t o  o c c i x  only i n  combi- 

na t ion  w-ith a l aye r  of reac t ion  product on t h e  sur face ,  

(1) a layer  of reac t ion  product on t h e  

The re la t ionship  between these  Yflree 

Microprobe Analysis of Reaction Zones 

Information being co l lec ted  a t  s eve ra l  s i t e s  with e lec t ron  micro- 

probe analyzers appears to be of most d i r e c t  use i n  t'ne ana lys i s  and 

understanding of t he  chemical react ions a t  t h e  .f'uel-cladd,ilyS in t e r f ace  e 

Some of t he  da ta  of t h i s  type a r e  surmarized i n  Table II. As yet,  the 

only d i s t i n c t  p a t t e r n  apparent i n  these d - a t a  i s  t h a t  oxides of the major 

cons t i tuents  of t h e  cladding a r e  layered on i t s  inner  surface.  The con- 

d i t ions  under whieh in te rgranular  pene t ra t ion  and " r ivers"  of metal i n  

t h e  f u e l  appear are not wel l  defined. Temperatures above 600 t o  650°C 
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Fig. 2, Appearance of Metallic f i v e r s  Observed in ( T J , P u ) O z  E’iie1. The 

r ive r s  apparently originated at the fuel-rjL2dding iriCerfsee. As po-lished. l ! N X  
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i n  t he  s t a i n l e s s  s t e e l s  and 7130 t o  '750°C i n  Kastelloy I( seem to be 

required t o  protluce in te rgranular  penetrat ion of' t he  cl.adding. 

We have examined by e lec t ron  microprobe ana lys i s  a t  ORPSL the 

"imi€orm" reac t ion  layer  on the  Kastelloy-X-clad rod (GA- l8 ) ,  which 

operated at 710°C t o  60,000 MWd/metrie ton burnup. 

t i o n  of iron, nickel, and chromium through t h e  reac t ion  zone, as sllown 

i n  Fig.  3, i s  qu i t e  similar t o  t h a t  observed i n  t h e  surface layer  on 

oxidized s t a i n l e s s  s t e e l  (discussed below). 

represents  background l e v e l  ( t h e r e  i s  no plutonium i n  t h e  cladding).  

Microprobe ana lys i s  shows t'nat t h e  " r ivers"  i n  pins  clad with e i t h e r  

the Hastelloy X or s t a i n l e s s  s t e e l  are predominantly i ron  with a t r a c e  

o l  n icke l  and chromium sometimes present .  

We found t h a t  ~e di s t r i b u -  

The low point  on each curve 

OUT- OF-REZRCTOR STUD TES 

Cladding Compatibility with Fuel and Fiss ion Products 

Ck2Y.-of-reactor s tud ies  o€ t h e  compat ibi l i ty  of ( U,EJu)02 fue l  with 

clauding mater ia ls  have s h o ~ n ~ ~ 3 ~ ~  L i t t l e  or no f'uel-cladding in t e r -  

ac t ion  except when the  f u e l  w a s  hyperstoichiometric.  More recent ly ,  

s t a i n l e s s  s t e e l  cladding has been heated i n  t h e  presence of f i s s i o n  

product compounds, 9 (U, Pu) O2 along with such compounds, and UC2 

with such compounds.17 

Ce, Te, and other f i s s i o n  products i n  hydroxide, oxide, chloride,  and 

I n  these  experiments t h e  e f f e c t s  of C s ,  I, Sr, 

carbonate forms were studied. The only f i s s i o n  product found to 

seriousljr  a f f e c t  t h e  s t a i n l e s s  s t e e l  was cesium. It promotes in t e r -  

granular s t tack ,but  this e f f e c t  was strong only i n  t h e  presence of 

oxygen. 
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Cladding Compatibil i ty with Oxidizing Atmospheres 

Other re levant  s tud ies  over t h e  las t  decade r e l a t e  t o  t h e  oxida- 

t i o n  of candidate cladding mater ia ls .  Several  s tud ies  of  t h e  oxidation 

of s t a i n l e s s  steels and nickel-base a l loys  i n  various overpressures of 

C0217-2" and CO;? + C021,22 have shown oxidat ion phenomena very s i m i l a r  

t o  t h e  reac t ion  layers  and g ra in  boundary a t t a c k  observed i n  irradiated 

f u e l  p ins .  

I n  l i g h t  of' t h e  above oxidation s tudies  and t h e  grea t  s i m i l a r i t y  

between t h i s  form of a t t a c k  and the  in- reac tor  problem," we ca r r i ed  

out an experimental oxidat ion heat  treatment on a type 316 s t a i n l e s s  

s t e e l  tube. The inner and outer  surfaces  of  t h e  tube were exposed t o  

flowing Ar-45 H2 containing a cont ro l led  amount of moisture (-J 4000 ppm) 

t o  s h u l a t e  t he  oxidizing conditions t o  which the  in s ide  of such tubing 

i s  exposed when used f o r  cladding on mixed oxide LNF'BEI-type f u e l  p ins .  

A temperature gradient  w a s  imposed along t h e  tubing during t h e  heat 

treatment t o  provide, by appropriate  s e l ec t ion  of samples, metallographic 

observation of the oxidation layer  developed a t  various temperatures. 

The heat  treatment was  held t o  500 hr .  A sample was a l s o  teken f r o m  a 

piece of s imi l a r  tubing t h a t  had been held a t  925°C for 500 h r  with t h e  

outer  surface exposed t o  a i r  and t h e  inner  surface only t o  t h e  con- 

t r o l l e d  law-oxygen atmosphere. 

The comparative r e s u l t s  of t h e  metallographic examination are 

shown i n  Figs. 4 and 5 and Table 111. As can be seen i n  Fig. 4, t he re  

was no measurable a t t a c k  i n  t h e  low-oxygen atmosphere u n t i l  about 675'C 

was reached. The a t t a c k  was i n  t h e  form oI" in te rgranular  penetrat ion 

of the  cladding beneath an adherent oxide f i lm.  In  f ac t ,  the  appearance 
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Fig, 4. Appearance of Sec-iions Along a 'Type 316 Stainless S tee l  

Woe Oxidized i.n a Con'i,ro.l.l.ed Atmosphere for. 500 hr. 

(b) 5 5 O o C ,  ( e )  675"C, (d) ?75cC, snd ( e )  900°C. A s  pol ished.  '750~. 

( a )  460°C, 
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CONTROLLED ATMOSPHERE 

R-5489 

t I 
IN AIR 

Fig” :. ,rl-opea,ranee of Oxide Scale  and Tntergranular Attack on 

me 31C Stainless  S t e e l  Oxidized at c1250C for ’]GO hr. 
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Table 111. Data from 500 hi- Oxidation of Tvpe 316 Stainl-ess Steel. 

Tempemture --.-.. Reaction -^ Depth-Max - . (pn) 
Atmosphere 1 n-t ergranul.a,r Oxide Film 

..... _.._- ~._._I_ Pe ne trrat i o n  ( ”@> 
I_ 

0 
3. 

550 Lot? 0 2  

a 
675 LOW 02 1. ‘7 L,? 

775 Low 0 p  3 , 4  8.5 

20 
a 92 5 Low 02 

925 A i r  75 25 



of the a t t a c k  a t  t h e  higher temperatures bears a strong resemblance 

t o  a t t a c k  a t  fuel-cl.adding in t e r f aces .  

The sec t ion  from t h e  tubing t h a t  w a s  exposed t o  air  i s  shown i n  

Fig. S ( a ) ;  t h i s  sec t ion  c l e a r l y  demonstrates t h e  f a c t  that  i n t e r g r a n u h r  

a t t a c k  progresses ahead of t h e  oxide. Note t h a t ,  as shown i n  'Table 111, 

f o r  the 906 t o  925'C range t h e  depth of in te rgranular  a t t a c k  apparent ly  

does not depend on e i t h e r  t h e  oxygen p o t e n t i a l  i n  the atmosphere or  t h e  

thickness  of oxide s c a l e  formed. 

Some of t h e  r e s u l t s  Prom elecixon microprobe analyses oi' t he  oxid-e 

sca l e  and adjacent base metal  a r e  sho-Fm. i n  Figs. 6, 7, and 8. Pnspec- 

t i o n  of t h e  chromium, n icke l ,  and i ron  x-ray displays shows an  enhance- 

ment of chromium i n  t he  t h i n  cxide scale  formed i n  t h e  coi i t rol led 

atmosphere a t  925°C. PVJO d i f f e r e n t  types of oxide s c a l e  were found on 

the heavi ly  oxidized s m p l e  that  w a s  a t  t he  same temperature but i n  a i r .  

As can be seen i n  Figs .  C and 7 ,  a, zone adjacent t o  the  base metal was 

r i c h  i n  chromium, followed by a layer  containing all t'riree metals, and 

occasjonal ly  t h e  second oxide l aye r  was follawed by a t h i r d  layer  t h a t  

was r i ch  i n  i ron  (Fig. 8 ) .  The r e l a t i v e  i ron,  ehrornium, and n i cke l  

contents of two oxide sca l e s  are given i n  Table TV. 

Oxide Lavers 

The sequence of component d i s t r i b u t i o n  i n  t h e  oxicle layers  on 

at tacked cladding i s  not constant.  Electron microprobe examination of 

t h e  cladding revea ls  i n  some samples ( s e e  Fig. 3 )  a ehroiiiil-m-rich oxide 

adjacent  t o  t h e  cladding, with a n icke l - r ich  oxide nearest  t he  f u e l  and 
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PHOTOMICROGRAPH B A C K  SCATTERED ELECTRON IMAGE 

Cr K W  X-RAY DISPLAY Ni KOit X -RAY DISPLAY Fs KW X-RAY QlSPLAY 

Fig. 6. D5-stribution of Chromium, Nickel, and I ron  in an Oxride 

Tay~?r Formed on 31.6 S t a i n l e n s  S t e e l  i.n a Contro l led  A-Lrmspheve at 925°C 

f u r .  500 hr. 
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17-54902 

NI KDc X RAY DISPLAY Fe K C X  X-RAY DISPLAY C, K W  X-RAY DISPLAY 

Fig .  7. Distribution of Chromium, Nickel, and Iron i.n Cxide b,yers 

Formed on 316 Stainless Stee l  in Air at '325°C For 500 hr. 
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R-54903 

G KO( X-RAY DISPLAY 

Fig. 8. D i s t r i b u t i o n  o f  Chrom’Lum, Nickel, and I ron  i.n Oxide Iayers 

Formed on 316 S ta in l e s s  S”iee1 i n  a i r  a t  925°C:: f o r  500 br. 

t h ree  d i s t i n c t  oxride l aye r s .  

Region showing 
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Table TV. Electron Picroprobe Analysis of‘ Oxide Scaies 
Formed on Tine 316 Stainless Steel During OrjdaLion 

Thin 187yer adjacent  
t o  cht-icling’ 7.3 ‘79.1, 13.3 

Middle oxide layerb 3[). 3 42.2 .Le * 5 

0.3 

aThin oxide scale formed in 103~ oxidizirag atmosphere at 

bhyereil oxide scale formed i n  air at  about 925°C for. 

about 925°C f o r  500 hr. 

500 hr .  
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a n  i ron- r ich  phase between t h e  two, I n  t h i s  case, t h e  mater ia l  behaves 

as i f  an oxygen l a t t i c e  served as a chromatographic column with t h e  l e a s t  

s t a b l e  oxide moving t h e  f a r t h e s t  and the  most stable 0xLd.c moving t h e  

l e a s t .  In  other  samples ( s e e  Table 11) one f inds  exac t ly  t h e  reverse  

s i t ua t ion ;  chromiwti i s  more concentrated near t he  f u e l  whi le  n i cke l  i s  

r i c h e s t  near t h e  base metal. In  s t l . 1 1  [other samples t h e  chromf.um i s  

nearest  t he  cladding but, t he  i ron  has moved t o  a pos i t i on  neares t  -tine 

f’uel, with n i cke l  j i i  aii in-bermedi-ate pos i t ion .  Clearl-y, t hese  differ- 

ences i n  behav-ior i nd ica t e  va r i a t ions  i n  the l o c a l  znvirolvnent i n  the 

experiment . 
The c l add i~ -Cr -Fe -Ni - fue l  and cla.d.di.ng-Cr-Ni-E’e-fue~ sequences 

are not u:ncharacterist ic of oxidat ion i n  a high-oxygen eiivironment,. I n  

-the laboratory- tes - t s  descri-bed above i n  wMch type 3I.b s t a i n l e s s  s t e e l  

w a s  heated a t  925°C f o r  500 lw i n  a i r i  t h e  Sam? two sequences were seen 

( s e e  Ftg.  8 and Table 1V). The reason f o r  t he  d i f fe rence  i.s not known, 

‘The sequence i n  i r r a d i a t e d  f u e l  p tns  i n  which the chroniutn i s  near 

t h e  Lie1 i s  more d i f f i c u l t  Lo explaiii. A d i f f e r e n t  mechanism of oxida- 

t i o n  from t h a t  a t  high oxygen pressure  seems ind.icated. Si.ich a mechailism 

m.i.ght involve f i s s i o n  prod.ucts, such as  cesium i n  some form. An a l t e r -  

na te  eLxplanatj-on could involve the  f a c t  t h a t  t h e  chromium-rich I-ayer 

formed al; l o w  oxygen p o t e n t i a l s  i s  not s t a b l e  and can niove by vaporjza- 

t i o n  a f t e r  long times a t  high tempera-buye. 1 9 J 2 2  

mechanical spa]-ling of the chromium-rich 1-ayer, would lead t o  oxidat ion 

of t h e  newly exposed surface of the  cladding. This siirface has been 

depleted i n  chromium, and t h e  format,ion of an i ron-n icke l  oxide next t o  

-the cla.dding would r e s u l t .  

This mechanj.sm, or 



Grain Boundary Attack and In-Fuel Rivers 

The depth of uniform and g ra in  boundary a t t a c k  observed i n  OUT out- 

of-reactor  oxidat ion s tudies  i s  general ly  cons is ten t  with t h a t  predicted 

f o r  in-reactor  f i e 1  p ins .""*  The 500-hr t e s t  duratiofi i s  roughly eqiaiv- 

a l en t  to 5000 MWd/metric ton 'burnup i n  a GCBR o r  U@'Ep fue l  p in .  

Tt~o main €actors have led t o  pos tu la t ion  of f i s s i o n  products as t h e  

primary c u l p r i t s  i n  f'uel-cladding chemical in te rac t ions .  One i s  t h e  

observation o f  fission products i n  t h e  reac t ion  layers  and i n  the 

at tacked gra in  boundaries of t h e  cladding. Since those fissi-on products 

so located normally move toward t h e  cladding whether t he re  i s  a t t ack  or 

not, t h e i r  presence i n  the  reac t ion  zone i s  not proof tha.t they a r e  the  

a t tack ing  agent.  

attack i s  t h e  presence and composition of the meta l l ic  "rivers" in the  

f u e l  near t h e  surface.  

The second f ac to r  taken t o  ind ica t e  fission product 

Speculation t h a t  t h e  cladding i s  t ransported by  an j.odine mechanism 

sinl i lar  t o  t h e  Van Arkel-de Boer2' process has resulted'>'' from evi- 

dence such as t h a t  described above. Calculations from avai lab le  thermo- 

djMaXiC da ta  plus reasonable estjmates skiow t h a t  such t ranspor t  i s  

impossible unless t h e  pa,r t ic ipat ion of a s t a b l e  cesium wanate i s  postu- 

l a t e d  I Moreover, even with this postulated mechanism, t ranspor t  can 

only o c c w  a t  re l -a t ively high oxygen po ten t i a l s .  More l i k e l y  mechanism 

a r e  oxide t ranspor t  through a l i q u i d  phase or mechasica.1 t ranspor t .  

Calculations to demonstrate t he  above statements have 'been made as  

follows. 
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Todine Transport Mechanisms 
__I_____ 

The ra.t io of cesium formed t o  iodine formed 7.n two years i n  a ty-pi.- 

c a l  fas t  reac tor  i s  approximately s i x . 2 6  

t o  be t i e d  up by t h e  cesium as CsZ as rap id ly  as t h e  -i.odine i s  formed, 

so  it would not be ava i lab le  i n  s ign i f i can t  q u a a t i t i e s  t o  p a r t i c i p a t e  

i n  t ranspor t  of cladding components. 

Thus, t'0.e iodine would .tend 

A s  a demonstration of' t he  nonavai lab i l i ty  of iod-ine, consider the 

react ion:  

From data  i n  Kubaschwski, Evans, and A1cockZ7 plus  an est imate  of 

30.0 e.u.  f o r  t he  entropy of vaporizat ion of FeI2, one ca lcu la tes  -I;'ne 

of Reaction (1) as +167.7 kc%l/rnole and AC between 298°K and. 
98  P 

t h e  temperature of i n t e r e s t ,  can be Laken as zero f o r  t he  purposes of 

t h i s  ca lcu la t ion .  

t h e  pressure of FeE2 a t  equilibriu-fl would be about a t m .  Any 

s ign i f i can t  t r a m p o r t  of i ron  under Ynese conditions i s  inconceivable. 

Thus &"/T i s  +146.5 c a l  mole-'l ("C)-" at 900°K, and 

However, other  things are occurring i n  an oxide f u e l  p in .  Specif- 

i c a l l y ,  the  oxygen p o t e n t i a l  i s  changing. One mighl; assixne t h a t  the 

oxygen would t i e  up the cesium af'ter a per iod of time, and then t h e  

pressure of iod.ine would. begin t o  r i s e .  

To examine t h i s  p o s s i b i l i t y ,  consid-es the  reac t ion  

2CsT(s) + Fe(s) +- 1/2 02(g) + FeI2(g)  -t CszO(s). 

In  t h i s  case m,",, f o r  t h e  reac t ion  i s  ~91.6 kcaL/m.ol.e and LAS&e i s  

i 4  2.u.  A t  900"KX"/T i s  37.8 and log K i s  -21.37. Since fo r  
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I ._ 

iieaction ( 2 )  K = P 

estimate t h e  FeIz pressures .  

/P:2, one must know the  pressure of oxygen to 
FeIz 

To f ind  t h e  influence of  oxygen i n  Reaction (2), take t h e  case of 

If oxygen a t  t h i s  tem- 900*K and an oxygen pressure of 4, X 10-'5 atm. 

pera ture  and pressure were i n  equilibrium with fue l ,  t h e  oxygen-to- 

n e t a l  r a t i o  would be 2.002 for a 20% Pu Under these  conditions,  

the  pressure of FeI2 can be computed t o  be about 3 X lQm2' a t m .  

seems e,.rtremely unl ike ly  that t h i s  mechanism could pr0vid.e a s ign i f i can t  

t ranspor t ,  even allowing for any reasonable e r ro r  i n  ous basic  

assimptions. 

It 

Since t h e  iron and sometimes other  elements i n  t h e  cladding a r e  

t ransported i n t o  t h e  f u e l  and a r e  observed as "r ivers , "  some mechanism 

must be operable. Transport across t h e  gap between the  cladding sca l e  

and t h e  f u e l  might occur  e i t h e r  as a, c y c l i c a l  process or  as 8, o n e t i m e  

t ranspor t .  One must recognize t h a t  i ron  occurs almost pure ( i n  some 

cases)  and randomly located i n  the  fie1 pin, apparently as  a " r iver"  

i n t o  the f'uel from the  fuel-cladding gap region. 

mechanism must: (1) be thermodynamically possible ,  ( 2 )  e,uplarln why t h e  

Pa' acceptable ove ra l l  

i ron  occixs at  only a few places ,  and (3) e q l a i n  why the iron i s  

separated from t h e  other  elements of t he  cladding. 

If gas t ranspor t  2s poss ib le  within a fuel element then t h e  pa r t i e -  

Several  cesium 

The compound Cs2TJOl has a reported29 heat of forma- 

i pa t ion  of  a cesium uranate might permit i ron  t ranspor t .  

w a n a t e s  a r e  known. 

t i on ,  

i 5 1  e.u. The appropriate  reac t ion  i s  then 

of -(<78 kcal/mole, and we estimate an entropy, S;9R of  

2CsI(s) + Fe(s)  t UOz(s) + O z ( g )  t CszUO~(s) + Fei;?(g)  . (3 1 
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For Reaction (3) AH;98 i s  -51.5 kcal. A t  90o0K, AGo/T i s  deO.23 and 

log K i s  +8.791. 

To see t h e  e f f ec t  of oxygen potent5.a.l on Reaction ( 3 ) ,  we chose 

t h e  example used above (4 .  X 

pressime of FeI2 would be about 3 X 

a tr-ansport  mechanism. On t h e  other hand., a t  an oxygen-to-metal r a t i o  

of 2.00 the  oxygen pressure i s  red.uced so  great3.y tha t  a Fei2 pressure 

o f  about a t r n  i s  calcu.lated. 

atm 02 at  900°K). In  Liiis case the  

atin, c l e a r l y  enough t o  provide 

Liquid Phase Transport 

Another p o s s i b i l i t y  involving a cycl.ica1 process i s  f o r m t i o n  anc3 

t ranspor t  of a cesiurfl f e r r a t e  across a l i qu id  phase (such as cesium or 

Cs20) between fuel. and cladding. If one assumes t h a t  i ron  i n  Yne iron- 

r i c h  phase near t h e  f’u.el i s  i n  the  +3 oxidation s t a t e ,  one can writx, 

For CsFe02, &Yo 

estimated a:; 30.0 e.u. Data f o r  Fez03 and- cesium are taken Prom 

i s  estimated t o  be --l37.8 kcal/mole and So i s  
f, 2 95 2 98  

Kubaschwski, Evans, and Al.cock.”” The most favorable case i s  when 

To examine t h i s  case a range of a c t i v i t i e s  across a ter@eratiire 

grad-ient should be examined. Table V shows t h e  cornpuked range of 

a c t i v i t i e s  of CsFeO2 from 1000 t o  1500°K. To make t h e  calcu1at;iu.n YOY 

khree of  t h e  cases, we assumed t h a t  P was f ixed by a, CO2-CO mole 

r a t i o  of  1-0; Cor t‘ne four th  case the  P 

o v e ~  Fe-FeO. The acti.vj.kies a r e  such that t ranspor t  i s  conceiv-ab1.e b y  

0 2  

w a s  assumed t h a t  i n  eqii.i.I.ibriurm 
0 2  

t h i s  mechanism. One must assume that t h e  a c t i v i t i e s  are 1inearl.y 



r e l a t e d  t o  the  concentration and, thus,  t h a t  t h e  a c t i v i t y  a t  t h e  high- 

tempera,ture end requires  p r e c i p i t a t i o n  of the CsFeOz from the  super- 

sa tura ted  so lu t ion  i n  cesium. In  t h e  f irst  examples of T'able V, t he  

P i s  above t h e  P'e-FeO equ i l - ib r im and F'eO would be t ransported.  Ln 

t h e  l a s t  case t h e  Fe-FeO equilibrium oxygen p r e s s w e  i s  used. Enough 

a c t i v i t y  i s  s t i l l  present  st 1500°K t o  j u s t i f y  t h e  general  argument. 
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Additional a l k a l i  metal-iron-oxygen compounds are known, such as  

NahFeO3, i n  which t h e  i r o n  valence i s  1-2. Such var ia t ions  i n  compound 

type o r  valence should not change these  conclusions. It i s  qu i t e  

l i k e l y  t h a t  i ron  exists not i n  t h e  t3 s t a t e  but i n  some lower valence. 

Conceptually, t h i s  s i t u a t i o n  can be v isua l ized  as  having Fez(& a.t a 

lower a c t i v i t y .  The a c t i v i t i e s  of t h e  cesium f e r r a t e  would then be 

reduced by just t h e  amount o f  t he  reduction of t h e  i r o n  oxide's acti .vity.  

The mechanism depends only on having an a c t i v i t y  a t  t h e  hot s ide  appre- 

c iab ly  less than t h a t  a t  t h e  cold aide.  

There are enough uncer ta in t ies  i n  t h e  estimates t h a t  t ranspor t  by 

t h i s  mechanism represents  a p o s s i b i l i t y .  Separation of i r o n  from 

n icke l  and chromium indicates  a pa r t i t i on ing .  One m u s t  pos tu la te  

p r e f e r e n t i a l  a t t a c k  of t h e  cladding, an a c t i v i t y  at the hot s ide  grea te r  

than a t  t h e  cold s ide,  o r  d i sso lu t ion  OS t h e  n i cke l  and chromium i n t o  

t h e  f u e l .  

If such a t ranspor t  i s  assumed, one niwt fu r the r  assume a. mechanism 

Surface d i f fus ion  i s  a p o s s i b i l i t y  t o  concentrate t h e  i ron  i n t o  r i v e r s .  

for such a mechanism. Further,  i r o n  i s  sometimes seen deposited on t h e  

surface of t he  fuel ,  a s  i s  chromium, and not agglomerated i n t o  r i v e r s .  
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Table V. Calcida,ted Ac t iv i t i e s  of CsFe02 a t  Various Oxygen Pressures 
and T e r n p e r a t i x e ~ ~  

1.000 -1.16 

1200 -13.5 -1.58 

1500 - 8.7 -1.94 

1500 -11.54 -2.65 

I- 

Reaction considered is P’e203(s) + 2Cs(lt) + 1/2 02(g)  a 

=+ C S F ~ O ~ (  so lu t ion ) .  

bThe f i r s t  three  examples correspond t o  pressures of oxygen 
f ixed  b y  a C02-CO mole r a t i o  of lo. 



Mechanical Transport 

A f i n a l  p o s s i b i l i t y  i s  t h e  mechanical t ranspor t  of i ron  oxide 

across t h e  gap by abrasion during shutdown and s ta r tup ,  for example. 

Since i ron  occurs i n  conjunction with t h e  fuel, t h e  conclusion follows 

t h a t  t h e  oxygen p o t e n t i a l  i s  below t h a t  i n  t h e  Fe-P'eO equilibrium 

region. 

t i o n  seems as probable as t h e  other  mechanisms. 

Such a simple mechanical t ranspor t  of  oxide followed by reduc- 

I. Three general  forms of r eac t ion  a r e  manifested i n  t h e  cladding 

of (U,Pu)O2 Ifuels: (I.) surface oxide layer, ( 2 )  in te rgranular  penetra- 

tSon of t h e  cladding, and (3) "rivers" of cladding components i n  the  

fue l .  

2.  The locat ion,  frequency, and charac te r iza t ion  of these reac- 

t i ons  m u s t  be b e t t e r  described by inves t iga tors  i n  t h i s  f i e l d  f o r  t h e i r  

results t o  be relevant  t o  t h e  ea r ly  understanding and cont ro l  of these  

phenomena. 

3. The equation developed by Biancheria and coworkers t o  descr ibe 

cladding a t t a c k  appears t o  provide a reasonable fit t o  t h e  widely 

sca t t e red  ava i lab le  da ta  for stoichiometr ic  and hypostoichiometric f u e l .  

4.  The limited ava i l ab le  in-reactor  da ta  are i n  agreement w i t h  

out-of-reactor s tud ies  i n  ind ica t ing  t h a t  HastelLoy X can operate 50 t o  

100°C higher than can types 304 and 316 s t a i n l e s s  s t e e l ,  without exces- 

s i v e  fuel-cladding chernical i n t e rac t ion .  

5. A Van A r k e l d e  Boer type mechanism for iodine t ranspor t  of 

cladding components toward t h e  f l i e l  i n  operating f u e l  pins  i s  thermo- 

dynamically very unl ikely.  
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6. 

cesiiim, CXA a t t ack  cladding mater ia ls  under t'ne conditions prevai l ing 

i n  an operating (U,YU)O~ f a s t  reac tor  fie]. pin, the  major f o r m  of 

cladding a t t ack  i s  probably oxidation. 

t he  same morphology of c1addin.g reac t ion  i n  both out-of-reactor oxida- 

t i o n  and in-reactor  f u e l  p i n  -bests. 

Although f i s s i o n  product corrpoimds, p a r t i c u l a r l y  those of 

We have observed e s s e n t i a l l y  

7. It appears t h a t  t h e  most l i k e l y  sequence o f  events i n  cladding 

a t t ack  i s  (1) movement of cI.adding const i tuents  i n t o  suri"ace oxide 

phases by i1oYn%l oxidation with the  concurrent formation of gra in  bound- 

a r y  voids a t  .the higher temperatures, ( 2 )  movement of t h e  outer oxide 

laye.1-s to fie1 sur-faces o r  cracks by e i t h e r  mechanical- or  liquid-phase 

t ranspor t ,  and (3) subsequent reduction of  -the t ransported material. t o  

t he  meta l l ie  s t a t e  at, t h e  f'uel. 

8 .  Type 316 s t a i n l e s s  s teel .  appears adequate f o r  ear ly  GCBR app1.f- 

cat ion.  Kmever, f o r  the  higher temperatures and higher burnups required 

f o r  the commercial CCBR, e i t h e r  b e t t e r  understanding and. resultant;  con- 

trol of cladding a t t ack  o r  a l loys  more r e s i s t a n t  t o  a t t ack  will be 

required.  
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