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PERFORMANCE CAPABILITY OF ADVANCED FUELS FOR FAST BRIZEDER REACTORS 

T. N. Washburn J. L. Scot t  

AESTRFLCT 

The boundary l i m i t s  of f u e l  performance a r e  shown on p l o t s  of 

spec i f i c  power (W/g) against  l i n e a r  power (kW/ft ) . For (U, Pu) 02 fue l s ,  

these  boundaries form 8 t r i a n g l e  with borders of about 100 W/g minimum 

s p e c i f i c  power, about 0.200 in .  l ?? inhm f u e l  diarneter, and a maximum 

l i n e a r  power of abouk 12 kW/ft Coz zke core average or  about 19 kW/ft 

for t h e  highest  r a t ed  fue l  p in .  

minimum spec i f i c  power and minimum f u e l  diameter are the same as fox 

t h e  oxides. However, t h e  higher thermal conductivity of these advanced 

fue l s  permits l i n e a r  powers t o  about 30 kW/f't core a.verage and about 

45 kW/ft f o r  t h e  highest  r a t ed  pin,  when a sodium bond i s ;  used between 

the  f u e l  and cladding t o  prevent excessive f u e l  temperatures and t o  

provide space t o  accommodate f'uel swelling. There i s  subs t an t i a l  

economic advantage i n  operating f u e l  a t  these  highly ra ted  conditions,  

but a la rge  amount of development work and i r r a d i a t i o n  t e s t i n g  must 

be performed with both t h e  carbides and n i t r i d e s  t o  permit an a b s o h t e  

comparison of t h e i r  worth r e l a t i v e  to oxides. 

For (U,Pu)C and (U,Pu)N fue ls ,  t h e  



L 

INTROllUC T ION 

The goal  of t he  Fast  Breeder Reactor (FBR) Program i s  Lo develop 

a source  of both economic e l e c t r i c  energy and addi t iona l  fuel. ( i .  e . ,  

bred plutonium) fo r  expanding bhe supply of energy. Achievement of t h i s  

goal. i.s enhanced. i f  Lhe F13R f u e l  i s  capable of achieving extended burnup 

while operating a t  high l i nea r  and spec i f ic  powers. 

burnup of t h e  f u e l  reduces t h e  requirements f o r  reprocessing and refab- 

r i ca t ion ,  while increasing t h e  l i nea r  heat r a t e  reduces t h e  length of 

f u e l  t ha t  must be fabr ica ted  and as well permits design of e i t h e r  smaller 

o r  shor te r  cores.  Increasing t h e  spec i f i c  power reduces t h e  inventory 

of f u e l  required t o  produce a given amount of energy and thereby reduces 

t h e  time required t o  d-ouble the  f u e l  inventory. 

ceramic f u e l s  a r e  t h e  carbides and n i t r i d e s  of uranium-plutonium which 

have a. thermal condiictivity about f i v e  times t h a t  of t he  oxide."' 

high thermal conductivity permits operatton of f u e l  pins  a t  higher 

l i n e a r  and spec i f i c  powers and enables design f l e x i b i l i t y  f o r  optimiza- 

t i o n  of both t h e  cost  of energy and f i s s i l e  doubling time. 

Increasing the  

The p r inc ipa l  advanced 

This 

Fuel performance i s  a re la t j -ve fac tor ,  and t o  i l l . i i s t ra te  t h e  poten- 

t i a l  advantage oP carbides and n i t r ides ,  we have f i r s t  smmarized t h e  

l imi ta t ions  oI" t he  oxide fue l .  T'ne technology of t he  oxide f u e l  system 

i s  much more deveI.oped than that, of e i the r  t h e  carbide or n i t r i d e .  

Therefore, it i s  obvious that t he  oxlde i.s t h e  only f eas ib l e  candidate 

f u e l  f o r  use i n  the  Fast Test Reactor ( F T R ) ,  the. demonstration p lan ts ,  

and probably t h e  i n i t i a l  commercial IJMFBR's. !lowever, once the techni- 

c a l  f e a s i b i l i t y  of L,MFBR operation i s  denions%rated, the major c r i t e r i o n  

fo r  u t i l i z a t i o n  of these reac tors  i s  economics, which i s  s t rongly 

influenced by fueJ- performance. 
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PERFOWICE LIIaTATIONS OF OXIDE FUEL 

The performance boundaries or l imi ta t ions  of  the  oxide f u e l  a r e  

i l l u s t r a t e d  i n  Fig. 1 i n  terms of t h e  r e l a t ionsh ip  between spec i f i c  

power, l i nea r  power, and f u e l  p i n  diameter. The spec i f i c  power boundary 

i s  shown a t  100 W/g, 

power, doubling time becomes excessively long because of t h e  la rge  

amount of f u e l  required i n  the  f i s s i l e  inventory. Due t o  i t s  low ther-  

m a l  conductivity,  t h e  oxide f i e 1  reaches its melting temperature a t  a 

l i n e a r  power of about 19 kW/ft, t h e  exact value depending upon t h e  f u e l  

density,  stoichiometry, and surface temperature. This es tab l i shes  a 

l i n e a r  power boundary, with the  assumrption t h a t  operation with molten 

f u e l  i s  unacceptable. The cladding diameter boundary i s  set by t h e  

excessive f u e l  f ab r i ca t ion  cos ts  general ly  encountered i n  making p ins  

with a very small  diameter. '+ 

diameter as t h e  minimum s i z e  p i n  p r a c t i c a l  to f ab r i ca t e .  

i s  a l so  not an absolute  value; and though each r eac to r  designer may 

select a s l i g h t l y  d i f f e ren t  minimum s ize ,  0.200 i n .  i s  a reasonable 

value, and t h e  spec i f i c  value se lec ted  does not change our basic  illus- 

t r a t i o n .  The cladding diameter i s  expressed as the i n s ide  dimension 

s ince  a t  a given f i e 1  smear density,  t h e  re la t ionship  between l inear  

and spec i f i c  power can be p l o t t e d  without specifying p e l l e t  dimensions 

or dens i t i e s ,  fuel-cladding diametral  gaps, o r  cladding wal l  thickness .  

* s ince  below t h i s  approximate l e v e l  of  spec i f i c  

We have se lec ted  0.200-in. cla&ding ins ide  

This boundary 

Thus, for  our assumptions regarding l imi t a t ions  on t h e  f u e l  p in  

diameter and f u e l  cen ter - l ine  temperature, a maximum l i n e a r  power of 

*Specific power i n  t h i s  paper i s  expressed as W/g of (U+Pu) . 
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19 kW/ft would produce spec i f i c  powers of 100 t o  about 375 W/g. 

ever, t h i s  i s  f o r  t he  maximum operating condition of any p i n  i n  t h e  

reac tor  core, and t h e  average power conditions w i l l  be somewhat l e s s .  

The r a t i o  of peak t o  average power i n  a reac tor  core w i l l  be approxi- 

mately 7 . 3 .  Thus, if the  peak l i nea r  power r a t i n g  i s  l imi ted  t o  about 

19 kW/ft t o  prevent f u e l  melting, t h e  core average w i l l  have a maximum 

of about l2. kW/ft. 

p in  diameter between 0.200 and 0.300 in . ,  with a maximum achievable 

average spec i f i c  power of about 225 W/g. 

How- 

Thus, t h e  oxide f i e 1  core must be designed with a 

With oxide f u e l ,  t h e  reac tor  core designer i s  l e f t  with L i t t l e  

design f l e x i b i l i t y .  The average l i nea r  heat r a t e  cannot be increased 

s ign i f i can t ly  above 12 kW/ft without fue l  melting i n  t h e  highest  r a t ed  

f u e l  p in .  

t h e  f u e l  p in  diameter; and, as the  f ' u e l p i n  diameter i s  decreased, t h e  

f i e 1  fabr ica t ion  cos ts  increase subs t an t i a l ly .  The reduction i n  doubling 

The average spec i f i c  power can be increased only by reducing 

time t h a t  can be achieved by increasing t h e  spec i f i c  power i s  counter- 

balanced by increased f u e l  fabr ica t ion  cos ts  and, thus,  higher f u e l  

cycle cos ts .  

t h e  design boundary t r i a n g l e  i n  Fig. 1 leaves l i t t l e  opportunity t o  

optimize the  design f o r  e i t h e r  economical power costs ,  shor t  doubling 

time, or  some compromise so lu t ion  between these  two. 

The r e l a t i v e l y  small s i z e  of  t h e  core average region of 

We have p lo t t ed  i n  Fig. 1 t h e  loca t ion  of t he  three  oxide-fuel 

reac tor  designs from t h e  D F B R  follow-on studies. The General 

E lec t r i c  (GE) design had t h e  smallest  f u e l  p i n  diameter of 0.230-in.-TD, 

operated a t  an average l i n e a r  power of 9.6 kW/ft, had the  kzighest speci- 

f i c  power or" 157 Tly/g, and had t h e  sho r t e s t  doubling time of seven years.  
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The Babcock & Wilcox (BW) design had a cladding ins ide  diameter of 

0.260 i n . ,  opcra,ted a t  an average l i nea r  power of 7.8 kW/ft and a 

spec i f i c  power of 102 W / g J  and had a doubling time of  10.4 years.  

of these  two design stud-ies assumed an average f u e l  bunup  of 

lO0,OOO MWd/metric ton  w i t h  vented fie]- p ins .  

( A I )  design had a la rger  Riel p in  diameter and operated a t  a higher 

l i nea r  power and an intermediate spec i f i c  powel-. However, A I  assumed 

a lower f u e l  bwnup, 67,000 MWd/metric ton, which resu l ted  i n  a doubling 

t F m e  of 13 years.  

Each 

The AtomLcs In te rna t iona l  

PEWORPIANCE LIMITATIONS OF CWBIDES AND MITRIDES 

In Fig.. 2 w e  have p l o t t e d  fo r  Lhe uranium-plutonium carbide -t'uel 

t h e  same type of boundary conditions as previously discussed fo r  t he  

oxides. The plot for  the  n i t r i d e  i s  e s sen t i a l ly  i d e n t i c a l  t o  khat of 

t h e  carbide.  We have assumed t h e  same mi.nimux fuel cladding ins ide  

diameter of 0.200 in .  and the same minimim spec i f i c  power boundary 

l imi t a t ion  of 100 W/g. The l i nea r  power boundary has been extended t o  

45 kW/ft f o r  t h e  maximum ra ted  f u e l  p in .  

has not been wel l  es tabl ished f o r  either the  carbide or  t he  n i t r i d e  f u e l  

and was selected because the  corresponding f u e l  center- l ine temperature 

of the  sodium-bonded carbide f u e l  would reach I300 t o  1400°C. Current 

data suggest t h a t  the  f u e l  swelling becomes excessive a t  about t h i s  

t e q e r a t i m e .  ' 7  

establ ishes  a Pour t i i  boundary condition. I n  this case we have assimed 

2 X 10' Btu hr-l ft12 as t h e  maximum cladding heat f lux .  This l imita-  

t i o n  i n  a spec i f i c  reactor design will. be determined by the  cl-adding 

This l i n e a r  power boundary 

For the  carbides and n i t r i d e s  the cladding heat flxx 
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temperatures achieved, t h e  thermal s t resses  i n  the cladding, and t h e  

sodium punping requirements for  removing heat a-t a high r a t e .  These 

boundary conditions f o r  I-inear power and eladdring heat f1.u a r e  peak 

p i n  operating conditions, and t h e  reactor  power gradients require  s ign i f -  

i can t  reductfon 3.n t h e  average core d.esign parameters. 

We have used the same r a t i o  of peak t o  average power of 1.5 as 

used f o r  the oxides, and t h i s  es tabl ishes  the maximm average l i n e a r  

heat  r a t e  a t  30 kW/ft. 

the  f u e l  cladding ins ide  diameter could be varied between 0.200 and 

0.400 i n .  and average s p e c i f i c  powers of LOO t o  425 W/g could be 

achieved. Thus, with t h e  higher therinal conductivity materials a much 

wider range of design parameters can be manipulated t o  achieve the  

desired compromise between short  doubling time and economical e l e c t r i c  

Therefore, for t h e  carbides and t h e  n i t r i d e s ,  

power generat ion.  

In  Fig. 2 we have also plo t ted  t h e  sod-ium-bonded mi-xed. carbid2 

designs f r o m t h e  LMF’BR F o l l ~ - O n  Studies.5J”o,11 

designed wit‘n the  smallest  diameter p i n  (0.202 i n .  ID) and operated at 

16 kW/ft average t o  achieve a spec i f ic  power of 235 W/g. 

assumed burnup of 110,000 MWd/metri.c ton,  a doubling time of 4.4 years 

was  predicted.  The Combustion Engineering (CEPE)) design, on the  other 

hand, used the  l a r g e s t  diameter p i n  (0.378 i n .  I D ) ,  operated a t  

28.5 kW/ft2 average, had a spec i f ic  power of 118 W/g, and with an 

assumed burnup of 100,000 MWd/metric ton, achieved a doublins tiine of 

8 years.  

designs . 

The GE core w a s  

With an 

‘The Westinghouse ( W )  - design. was intermediate t o  these t~wo 



In  Fig. 3 we have p lo t t ed  the  r e l a t i v e  performance boundaries of 

Both these  p l o t s  represent  t h e  

While t h i s  graph i s  a dramatic comparison 

t h e  oxide and t h e  carbide or n i t r i d e .  

core average design boundaries. 

of t he  performance p o t e n t i a l  of t h e  carbides and n i t r i d e s  r e h t i v e  t o  

the  oxide, we would point  out t h a t  t h e  design l imi ta t ions  for t he  oxide 

a r e  qu i t e  we l l  es tabl ished.  

been done on e i t h e r  the  carbide or the  n i t r i d e  t o  firmly es t ab l i sh  t h e i r  

design boundary limits. For exanple, t h e  e f f e c t  of f u e l  temperature 

on fbe1  swelling may be found t o  s i g n i f i c a n t l y  increase or decrease t h e  

maximum permissible l i nea r  power of these  advanced fuels from our 

assumed limits. 

On t h e  other  hand, i n su f f i c i en t  work has 

PRESENT STATUS OF CARBIDES RND NITRIDES 

In s p i t e  of t he  obvious design p o t e n t i a l  of carbides and n i t r i d e s  

as discussed previously, there  i s  not yet  enough information on these 

fue ls  t o  allow an i n t e l l i g e n t  choice between these f'uels and oxides. 

Important aspects  of these  fbe l s  a r e  compared with oxides i n  Table I. 

The need f o r  a g r e a t l y  increased l e v e l  of e f f o r t  on advanced fuels i s  

indicated.  

Most of t h e  present  techniques fo r  fabr ica t ing  both carbide and 

n i t r i d e  fue l s  a r e  prohib i t ive ly  expensive, even i f  the  economies of 

large-scale  operations a r e  considered. To form the  s toichiometr ic  com- 

pounds, expensive U-Pu a l loy  i s  reacted with carbon o r  ni t rogen.  The 

compounds a r e  general ly  ground to form a s in t e rab le  powder, a f t e r  which 

p e l l e t s  a r e  fabricated and s in te red  by conventional methods. 12, l3 

Another major reason for t he  high f ab r i ca t ion  costs of advanced fue l s  
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Table I. Important Aspects of W B B  Fuel 

Characteristics Relative Rating 
Oxide Carbide Nitride 

F'abrica.tion Costs LOW High Me d i m  

Control of Stoichiometry Moderate Difficult Easy 

Sodium Bonding Not acceptable Acceptable Acceptable 

Performance 

Accept ab le a Accept ab Le Fuel swelling and gas release Acceptable 

Fuel-cladding compatibility React s Reacts 

Fuel-cladding mechanical Probable Possible Pos s ibLe 

Minor reac- 
tion 

interactions 

Transient behavior 

Loss of sodium bond 
Acceptable Acceptable Unknown 

Eot applicable Problem Problem 

Fission product redistribution Occurs Slight Unknown 

Burnup limitations Acceptable Unknown unknown 

~~ - 

a Provided fue l  is stoichiometric or hyperstoiehiome'cric. 
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i s  t h e i r  chemical r e a c t i v i t y  with a i r .  Very high-quality glove boxes 

and i n e r t  gases a r e  required t o  produce these  mater ia ls  i n  pixe form. 

These fea tures  lead t o  more r i g i d  spec i f ica t ions  f o r  fabr ica t ion  l i n e s  

and higher i n s t a l l a t i o n  cos ts .  

costs  a r e  probably not much g rea t e r  f o r  advanced fue l s  than f o r  conven- 

t i o n a l  oxide fue l s .  Fabrication methods involving uranium-plutonium 

a l l o y  a r e  not l i k e l y  t o  be used f o r  comiercial  production of advanced 

f u e l s .  Extensive work has been reported on the  carbothermic reduction 

of mixed oxides t o  produce t h e  carbidel 4~ l5 and some work has been done 

on the  n i t r i d e .  These processes look a t t r a c t i v e  economically, but 

i r r a d i a t i o n  r e s u l t s  a r e  l imited fo r  t h i s  type of carbide17 and a r e  non- 

existent, for t h e  n i t r i d e s .  

However, once tile l i n e  i s  b u i l t  operating 

Control of stoichiometry i s  a ser ious problem during fabr ica t ion  

and for t h e  performance of t h e  carbide. If t h e  carbon content of t h e  

carbide f u e l  i s  below 4-8 w t  %, f r e e  metal w i l l  be present ,  resu-lting 

i n  excessive f u e l  swelling rates under i r r ad ia t ion .  Conversely, i f  t h e  

carbon content i s  above A.8  w t  $, then higher carbides w i l l -  be present  

and carbon may be t ransfer red  *om t h e  f u e l  t o  t h e  cladding, degrading 

proper t ies  of t h e  cladding. The presence of dicarbide appears t o  be 

more deleter ious than the  sesquicarbi.de, and - th i s  carbon t r ans fe r  i s  

enhanced when sodium bonding i s  used." 

The addi t ion of buffering agents has been considered as  a so lu t ion  

t o  the  problem of  performance of nonstoichiometric (U,Pu)C. 

agents include i ron  or  C r 2 3 C 6  for hypostoichiometric (U,Pu)C and chromium 

f o r  hyperstoichiometric (U,Pu)C. 

t ions  were not borne out i n  i r r a d i a t i o n  t e s t s .  l9 

These 

The gains hoped f o r  with these addi-  
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It i s  r e l a t i v e l y  easy t o  produce single-phase (U,Pu)N.  Since t h e  

ni t rogen pressure i n  equilibrium with (U,Pu)N p lus  metal  i s  about t e n  

orders of magnitude lower than t h a t  i n  equilibrium with UN p lus  U2N3, 

single-phase mononitride i s  s t a b l e  over a wide range of pressures .  

g l o w  l 5 O O ' C  t h e  mononitride w i l l  d i s soc ia t e  only a t  a ni t rogen pressure 

l e s s  than low5 t o r r .  

t i o n  and are not l i k e l y  t o  occur during i r r ad ia t ion .  Formahion of t h e  

U2N3 phase can be avoided by alwrays maintaining t h e  nitrogen pressure 

below t h a t  defined by the  mononitride-sesquinitride phase boundary. 

Sodium bonding i s  needed t o  assure  good heat t r a n s f e r  between 

Such pressures are e a s i l y  avoided during fabrica-  

carbide or  n i t r i d e  f u e l  and cladding and a l s o  accommodates fuel swelling. 

The s o d i m  bond leads t o  inherent ly  more expensive f ab r i ca t ion  and t h e  

need fo r  c a r e f u l  inspect ion of t h e  bond qual i ty .  

sodium-bonded pins  i n  t h e  event of loss of bond i s  unknown a t  present 

and can be answered only by i r r a d i a t i o n  t e s t s .  

with both sodium-bonded carbides and n i t r ides  has been t h e  breakup of 

The performance o f  

h e  poss ib le  problem 

fue l  p e l l e t s  and an apparent mechanical i n t e rac t ion  producing ova l i ty  

i n  t h e  cladding.19J2" 

CONCLUSIONS 

In  conclusion, advanced fue l s  f o r  t h e  LWBR promise marked design 

advantages, which should r e s u l t  i n  both c a p i t a l  and fuel cycle cos t  

reductions as wel l  as reduced doubling time for t h e  f i s s i l e  mater ia l .  

A r  extensive development program, including i r r a d i a t i o n  t e s t i n g  of la rge  

numbers of pins,  w i l l  be required before these advantages can be 

rea l ized .  The economic p o t e n t i a l  of the advanced fue l s  ce r t a in ly  
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j u s t i f i e s  these  research and development e f f o r t s .  The marked advantages 

of advanced fue l s  were i l l u s t r a t e d  i.n t h e  recent  1000 ?4W(e> 1,MFBR follow- 

on s tudtes .  O f  t h e  th ree  oxide-fueled designs the  lowest doubling time 

was seven years,  w i t h  a 0.38-mill/kwhr f u e l  cycle cos t .  

bonded carbide-fueled replacement core f o r  t h i s  design5 reduced -the 

doubling time t o  4.4 years and the  fie]. cycle cos t  t o  0 .11 m i l l / k W h r .  

This f u e l  cycle cost  reduction of 0.27 rnill/kWhr i s  equivalent t o  a 

$2 mi l l ion  annual saving for  each 1000 MW(e) W 3 R  p l an t  fueled with an 

advanced f u e l  ins tead  of oxide. 

l a rger  f i e 1  cycle cost  atlvantages for carbide over oxide fue l .  Another 

study23 has indicated t h a t  the economic potent ia l .  of t h e  n i t r i d e s  would 

be sfmilar t o  t he  carbides.  

The sodiun- 

Other s tud ies21J22  have shown even 
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