LOCKHEED MARTIN ENERGY RESEARCH LIBH

JEH

I




This report was prepared as an account of work sponsored by the United
States Governmeni, Neither the United States nor the United States Atamic
Energy Commission, nor any of their employees, nor any of their contractors,
subcontractars, or their employees, makes any warranly, axpress or implied, or
assumas . any legal liability or responsibility for the accuracy, completeness or
usefulness of any information, apparatus, pmdgucl or process disclosed, or
represents that its use would not infringe privately owned rights,




CKHEED MARTIN ENERGY RESEARCH LIERARIES

AT

3 4ysht 0514495 &
ORNL-TM-3405

Contract No. W-~T7LOS5-eng-26

COMPUTER CAICULATIONS OF EILECTRON CYCLOTRON HEATING

IN A NON-UNIFORM MAGNETIC FIELD

J. C. Sprott and P. H. Edmonds

THERMONUCIEAR DIVISION

MAY 1971

[This paper is being submitted for publication
in The Physics of Fluids.]

OAK RIDGE NATIONAL LABORATORY
Oak Ridge, Tennessee
operated by
UNION CARBIDE CORPORATTION
for the
U.S5., ATOMIC ENERGY COMMISSION



T  TNTRODITOTTON



COMPUTER CALCULATIONS OF ELECTRON CYCLOTRON HEATING

IN A NON-UNIFORM MAGNETIC FIELD®

J. C. Sprott and P, H. Edmonds

Oak Ridge National Laboratory
Oak Ridge, Tennessee 37830

ABSTRACT

A computer is used to caleculate the trajectories of a
collection of non~interacting, non-relativistic electrons
near the axis of a spatially sinusoidal, dc magnetic field in
the presence of a spatially homogeneous, perpendicular rf
electric field. The computed heating rate is in good agree-
ment with the prediction of various equivalent stochastic
models for a wide variation of parameters. The distribution
ié approximately maxwellian, and the particles tend to turn
at the resonance surface. Departure from the stochastic
theory is observed for high energy particles that turn near
the resonance surface, and a condition for stochasticity is

derived.
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I. INTRODUCTION

Blectron cyclotron resonance heating in non-uniform magnetic fields
has been the subject of a great deal of theoretical and experimental study
over the past decade. Detailed quantitative comparisons of the predicted
and observed heating rates have not been made, however, and so the issue
cannot be considered closed. Experiments by Dandl et al.! at Oak Ridge
using simultaneous resonant and off-resonant microwave heating in the
EIMO device, for example, have revealed the presence of interesting and
useful heating mechanisms that have not yet been adequately explained
theoretically.

In this paper we present the results of a series of computer calcu-
lations of the trajectories of a collection of non-interacting, non-
relativistic electrons in an external rf electric field and in a non-
uniform de magnetic field. By this method, we are able not only to de-
termine heating rates, but to follow the time evolution of the distribu~
tion function. This work is similar to that of Lichtenberg gz_g;,,z and
of Kawamura et al.,” except that we follow a large collection of parti-
cles and emphasize the macroscopic behavior of the system, rather than

the detailed mechanism of the resonant interaction.

IT. REVIEW OF THEORETICAL WORK
The usual method for calculating resonance heating rates begins by
determining the change in energy of a particle moving along a magnetic
field line that passes through a region in which the local cyclotron fre-
quency W, is equal to the frequency of the external rf electric field, w.
Tne energy change depends on the phase of the particle's velocity as it

crosses the resonance surface., TIf the phase is random at successive



crossings of the resonance, the particle executes a2 random walk in veloc-
ity space, and the mean energy of a collection of such particles increases
in time. The average energy gained by an electron during one transit

through the resonance is

AW=-%—mA—v£:= o g2 (1)

where El is the magnitude of the perpendicular component of the rf elec~
o

tric field at the resonance, and T is the effective time during which the

electron is in resonance. Kawamura and Terashima? used this expression

to calculate the heating rate in the TP-M mirror machine at Nagoya.

Lichtenberg et al.? have proposed a similar expression. The transit time

of an electron through the resonance can be approximated by a method sug-

gested by Guest® and by Arg®:

T - mIV“OB' T .
f <wc(t)~w> at —— f IV“o't a = =,

o] e} (¢]

iR

where B is the dc magnetic field strength and v is the component of the
._..)
particle's velocity parallel to B. The subscript o refers to the value

of the gquantity at the resonance. Solving for T gives
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and substituting into Eq. (1) gives
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Kuckes” and Eldridge8 have derived this same result by solving explicitly



the equation of motion of an electron that moves through the resonance

with constant v in a field with a constant V“B. A particle trapped in
a magnetic mirror field crosses the resomance four times in a longitudi-
nal bounce period, and so the heating rate can be expressed in terms of

the bounce frequency w, as

p

o eEi Wy
Y L &)
at " Z'Vu vy B'
o o

For a parabolic mirror, the heating rate is
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where RO is the mirror ratio at the resonance surface, and RT is the
mirror ratio at the turning point. This result closely resembles the
resonant, non-relativistic limit of a calculation by Grawe.”

In an arbitrary magnetic field, the bounce freguency is a compli-
cated function of RT. Furthermore, in a real experiment the particles
would have a distribution of turning points, and this distribution would
change during the heating. It is at this point that the single particle
heating calculations become inadequate, The heating rate can be expressed
in terms of the density distribution by considering a collection of parti-

cles that turn at the same RT but at random times. The density distribu-

tion is
|
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and the bounce frequency is
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where £ 1s the distance along the field line. OSubstitution into Eq. (3)

gives a heating rate
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When written in this form, the result is valid for a distribution of
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turning points, and includes untrapped particles as well. This same
result was obtained by Sprottlo by treating the plasma as a resistive
dielectric medium and integrating the local heating rate along the mag-
netic field. Eqguation (h) will be used to compare with heating rates

obtained by computer calculation.

I1T. FORMULATION OF COMPUTER PROBIEM

Consider an electron in a dc magnetic field
-2 1 2~
B = -é-B(o) 21(L +R) + (1~ R) cos(kz/L) ,

where R is the mirror ratio and k = w/c, and in en rf electric field

g Fal
E = EL X sin wt .

The magnetic field represents the field on the axis of an infinite set of
connected mirrors. If the electric field is not too strong (eEL < mva)’
the electron will gyrate in a circular orblt, and the non-relativistic

equations of motion can be written in the two-dimensional form
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where u is the magnetic moment:

m(%z + mgxe)

14 = o8 .

The use of the guiding center approximation is justified since neither B
nor B have gradients in the perpendicular direction and since the parallel
gradlents are necessarily small for the cases considered (V” <ec, L>1).
This approximation reduces the computation time and computer storage re-
gquired while still retaining the 3-dimensional character of the problem.
This relatively simple geometry was chosen because exact comparisons with
the analytical theory are possible.

An IBM 360/91 computer was used to calculate by successive iteration
of the equations of motion the trajectories of a large (typically 100)
collection of electrons which were started at t = 0 with various initial
conditions. The time interval of the iteration step At and the duration
of the computer run tmax are typically related to the other characteristic
times according to

-3
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The accuracy of the computation was verified by varying At and by setting

E =0.

For this geometry, the heating rate from BEq. (%) becomes
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where N is the total number of particles, %g is the number of particles
o)

within dz of the resonance, and GL is the normalized electric field:

G, = ek /mwc .

For w = 2n X 10 GHz, GL is in units of 1.07 X 10°® volts/cm. The computer
is programmed to calculate %g o as well as the average perpendicular and
parallel energies of the particles at time intervals of l/m.

A particle can permanently’change its energy only if in the parti-
cle's frame of reference, the electric field has a fourier component at
zero frequency. This can happen 1f collisions are present to broaden the
frequency spectrum or if the particle crosses a resonance surface. Other-
wise the energy must beélperiodid, although complicated, function of time.
A gingle particle that repeatedly crosses a resonance executes a random
walk in velocity space, since it may either gain or lose energy during
each rescnance crossing. The most probable energy of a single particle
that executes a random walk in velocity space is its initial energy no
matter how long one waits, and so a heating rate cannot be determined by
observing the energy of a single particle as a function of time. This
fact is demonstrated in Fig. 1 where the average energy of 1, 10, and 100
particles is shown as a function of time. The single particle energy
merely fluctuates, but the average energy of a large collection of

particles increases monotonically.

IV, COMPUTER CALCULATIONS
There are two distinct classes of particles: (l) those that are
always reflected before they reach a resonance (RT < RO), and (2) those
that are never reflected before they reach a resonance (RT > Ro)' The

second class contains both trapped (RT < R) and untrapped (R,11 > R)



particles. The average energy of the particles in class (l) fluctuates
slightly but does not grow, while the average energy of those in class

(2) increases in a relatively smooth way. A particle in class (1) will
forever remain in that class since the variation in its turning point is
small and periodic, A particle in class (2) has a finite v, as it crosses
the resonance, and so it will necessarily cross the resonance on the suc-
ceeding bounce, regardless of how large the change in its perpendicular
energy. Since only class (2) particles are heated, optimum use of the
computer is achieved by choosing initial conditions such that most of the

particles have R > RO. In most cases, the particles were started at

T

z = 0 and x = 0 with velocity Vi (monoenergetic) and a uniform distribu-
tion of pitch angles (éin"l(v“/vi)> in the interval v, /1-1/R, < v, <.
Other initial conditions were tried, but the statistics are generally
worse and the heating rate is unaffected apart from its dependence on
dN/dz,o.
About 50 different sets of conditions were chosen over the range
0.001 S,GL <0.1, 25 ev< wi <1 MeV, 1<L<I100, 0.01 <R=-1<100, and
0.02 <R —1% 0.98 (for R = 2). The scaling with each parameter was
thus independently confirmed. Figure 2 summarizes the results by showing
the computed and the theoretical heating rates for each set of conditions.
For large electric fields, 1t was often noted that the energy would
rise, in good agreement with the theory, up to some value, and then satu-
rate. Figure 3 shows such a case. The turning point distribution for
this case at wt = 500 is shown in Fig. 4. WNote that nearly all the parti-
cles turn very near the resonance. When an appreciable number of energtic
particles turn near the resonance, the theory is inadeguate for two rea-

sons: (1) The density at the resonance is not well defined because the



axial density gradient is less than the resonance width, or, equivalently,
the parallel velocity of a particle is not constant across the resonance.
(2) When the energy is sufficiently high, the electric field does not
appreciably perturb the particle's trajectory, and the phase of the elec-
tric field at successive resonance crossings is periodic rather than sto-
chastic. We will derive a modified heating rate appropriate for (1), and
a criterion of stochasticity for (2).

The heating rate for particles that turn exactly at resonance can
be obtained from Eq. (1) assuming T is given by
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The heating rate for this case is
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For the case in Fig. 3, the heating rate is ~60 eV/radian in this limit.

The observed heating is slower than this wvalue, and so the saturation
apparently represents a failure of stochasticity.

In the frame of reference of the particle, the phase of the electric
field is given by

o(t) = L/140 <§ - wc(t')> dt' = RT - ;iz i wt .

o}

it
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For R, = R and t = ﬂ/wB R

o = b {1 RJ[RO(R—l)J_Q .

For the case in Fig. 3, the phase change per bounce is ~6n. The resonance

{land

interaction causes this phase change to fluctuate an amount

Ad

1
JAC I 3 ¢ W s

where AW is given by Eq. (1) with a T appropriate to the case where all
particles turn at the resonance. If we require that Ad exceed Bﬂ/bounce,

the condition for stochasticity becomes
2
13/ L(R -1) @ 3nL°R 5
v < ° L
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This result is similar to a criterion derived by Nekrasov.'l TFor the case

in Fig. 3, we calculate a failure of stochasticity when the energy exceeds
about 40 keV, in good agreement with the computed saturation. TFor low
energy particles that turn well beyond the resonance, the fluctuation in
energy and turning point cause ¢ to change by more than 2n per bounce, but
as the energy rises and RT approaches RO, the phase change is relatively
constant and the energy of a particle is nearly periodic in time.

Figure 5 shows the energy distribution for this same case. The dis-
tribution is approximately maxwellian, as expected for a velocity inde-
pendent stochastic heating process.

Since electrons tend to turn at the resonance surface in this model,
it would appear that electron cyclotron heating could be used to inhibit

attering into the loss cone in mirror devices., To investigate this
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effect, the case in Fig. 3 was modified so that all 100 particles were
started at the midplane with a uniform distribution of pitch angles in the
loss cone. The fraction of particles trapped in the firgt mirror and the
average axial position of the distribution <% <22>%/P> at wt = 200 1s
shown’in Fig. 6 as a function of the rf electric field strength. Signifi-
cant trapping should occur when the energy change for one crossing of the

resonance is comparable to the initial energy, or

5 1
@ = 2N {RO <% + R~ Rq> - 3}2 )
IR > L
O

For the case in Fig. 6, we calculate G_L = 6.5 X 1O~3 in agreement with
observations.

A number of cases were also run with a more realistic electric field
of the form |

- . ~ P
E =E X sinwt sin{kz + ¢,) + E 7 sin wt sin(kz + 65) .

Such a field should simulate a multimode cavity. The computed resonance
heating rates were not significantly different, however, and the theoret-
ical calculation is more difficult because the position of the resonances
is a function of the energy because of Doppler shifts.

For Ro > R or for RO < 1, no fundamental, cold plasma resonance
occurs, and the computed heating rate is zero. Off-resonance heating was
observed, however, by modifying the calculation to include any one of the
following effects: (l) relativity [mass increase causes w = wc for
R > R], (2) finite k, [Doppler shifts a particle into resonance from
either above or below], (3) finite kL [causes absorption at harmonics of
wc], (4) finite Vv B [also causes harmonic absorption]. These phenomena
are being studied using a more realistic 3-dimensional model and will be

the subject of a later publication.
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V. CONCLUSIONS

It has been shown by computer calculation of the trajectories of a
collection of particlies in a non-uniform dc magnetic field and in a uni-
form, homogeneous, rf electric field, that the average energy of the
particles increases at a rate that agrees with that calculated by various
theoretical models. The distribution approaches a maxwellian, and the
particles tend to turn at the resonance surface, as expected. Although
the computer model is somewhat oversimplified, the good agreement en-
courages us to extend the calculations to more realistic situations that
include relativity, cavity modes, parallel electric fields, and perpen-

dicular magnetic field gradients.
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Fig. 1. Average energy vs time for one particle (a),
10 particles (b), and 100 particles (ec).
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