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DETERMINATION OF THE FAST NEUTRON FLUX AND SPECTRUM

IN THE OAK RIDGE BULK SHIELDING REACTOR WITH

APPLICATION TO RADIATION DAMAGE EXPERIMENTS"

J. D. Jenkins

Abstract

The fast neutron flux level and energy spectrum in the
liquid nitrogen cryostat facility located at the north face of
the Oak Ridge Bulk Shielding Reactor have been determined by
the multiple foil activation technique and by calculation.
Good agreement is obtained between the calculated and experi
mentally determined flux. The ratio of the integral fluxes
above energy E given by calculation and experiment differ by
less than 10$ over the energy range from 1.86 eV to 10 MeV.
In the course of the calculations a method was developed to
utilize two-dimensional multigroup-transport calculations in
a restricted area of the reactor core and simulate the rest of

the reactor with appropriate boundary conditions. Calculated
results using this technique gave better agreement with ex
periment than was obtained using one-dimensional transport
calculations.

The spectrum so deduced was used to calculate relative
radiation damage rates to beryllium. In addition, the calcu-
lational techniques verified by the detailed dosimetry experi
ment were used with confidence for the design of an alternate
experimental facility and for the interpretation of data ac
cumulated in it.

Keywords: radiation doses, spectra, radiation effects,
beryllium, graphite.

INTRODUCTION

A series of irradiation experiments on selected NERVA materials is

in progress in the Oak Ridge Bulk Shielding Reactor. The purpose of these

experiments is to examine the behavior of the materials during and after

irradiations by fast neutrons. The experimental apparatus is designed to

permit irradiation of the materials at cryogenic temperatures (~80°K) and

at room temperature, and to allow measurements to be made on the radiation

induced changes to the electrical and thermal conductivities of the

materials in situ at both the reduced temperature and after annealing.



The work described in this report was done in support of this ir

radiation program. It involves both a calculational and experimental

effort directed at the accurate characterization of the neutron environ

ment at the sample position and the use of these spectra to establish

relative radiation damage rates to beryllium and carbon. Additional

information on other aspects of the program is given in internal quarterly

progress reports1-3 and will be documented in final reports when the

program is completed.

In any radiation damage experiment, two features of the neutron flux

must be known in order to interpret the experimental results correctly.

The first of these is the level of the neutron flux, that is, total number

of neutrons per cm2 per second passing through the target. In addition,

since the ability of a neutron to cause damage depends to a large extent

on its energy, one must know the spectrum or energy distribution of the

neutron population.

Neither the neutron spectrum nor the total integrated flux is a

readily measurable quantity in the environment near the core of an

operating nuclear reactor. Hence a combination of calculations and

dosimetry experiments is needed to determine the energy-dependence dose

to the experimental sample. In addition, one would also like to be able

to predict the sample dose independently by calculational techniques alone,

both to gain added confidence in the dosimetry results and to verify the

calculational methods which are involved in reducing the raw experimental

data.

Both experimental and analytical techniques were employed in the

determination of the neutron flux and spectrum at the face of the Bulk

Shielding Reactor. A description of these two approaches and a comparison

between the experimental and calculated results are given below.

DESCRIPTION OF THE REACTOR AND EXPERIMENTAL FACILITY

The Bulk Shielding Reactor (BSR) is a venerable swimming pool reactor

constructed of MTR type4 fuel elements suspended in a light-water re

flector. A schematic of the reactor and its associated experimental fa

cilities is given in Fig. 1. For the purpose of nuclear calculations
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Fig. 1. Schematic of the Oak Ridge Bulk Shielding Reactor and
experimental facilities.
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it suffices to describe the facility as a light-water-moderated reactor

with aluminum-clad enriched-uranium fuel arranged in plate-type elements

with a metal-to-water ratio of about 0.72. A plan view of the reactor

and its homogenized atom densities are given in Fig. 3 and Table 1 in

the following section of this report. Additional details on the reactor

design are available from a number of sources.5'6

The facility of particular interest in this work is the one labeled

'Liquid Nitrogen Facility' in Fig. 1. This facility consists of a hollow

aluminum tube suspended from a movable bridge and held down by a tri

angular aluminum block which also serves as a mating plate when the

facility is positioned adjacent to the reactor face.

The irradiation samples are centered in the tube at the reactor mid-

plane. Figure 2 is a schematic of the sample holder and sample. Again,

for this work, it is sufficient to note that the sample is located at the

center of an essentially hollow tube and that the tube is separated from

the reactor during irradiation by l/2 in. of aluminum.

Figure 2 also indicates the location of a dosimeter well. Some of

the data obtained in the preliminary dosimetry work described in this

report were obtained from dosimeters irradiated in the dosimeter well.

During the actual sample irradiations a few dosimeter materials are in

cluded in the well, which is accessible from outside, to provide con

sistency checks on the detailed dosimetry measurements described below.

CALCULATIONS

The objective of the calculational programs was to determine the

neutron flux level and spectrum at the sample location solely by analysis.

The program involved a detailed spatial calculation with a few energy

groups to determine the flux level, and multigroup calculations, with re

latively little spatial detail to establish the neutron energy distri

bution. In the course of the analysis questions arose as to the ability

of the one-dimensional multigroup transport-theory calculations to cor

rectly predict the neutron spectrum. A method was developed which per

mitted the use of more elaborate two-dimensional transport-theory multi-

group calculations within the confines of computer capacity and running
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times. This technique gave improved agreement between the calculated

and measured spectra as will be described later.

Diffusion-Theory Calculation

As a first step in the analysis, a calculation was done to determine

the neutron flux level at the sample position. Such a calculation re

quires a detailed representation of the spatial flux distribution. Com

puter storage limitations and running times dictate that such a calcu

lation must be done using diffusion theory, the simplest representation

for neutron transport. In addition, the energy description must be

restricted to a small number of energy groups. A detailed two-dimensional

diffusion-theory calculation was done with the computer code CITATION7

using a seven-energy group (six fast and one thermal group) model. Group-

averaged cross sections were obtained from the GAM8 and THERMOS9 programs.

A sketch of the calculational model is shown in Fig. 3- Thirty

mesh increments were used in the horizontal direction and fifty in the

vertical direction. Each fuel cell was represented explicity and fuel

concentrations were calculated based on the then-current loading of the

BSR. Control rods were represented explicitly and a poison search problem

was run to adjust boron concentrations in the rod regions to yield a crit

ical reactor. The model represents one-half of the actual system. A

symmetry boundary condition was applied along the core centerline. Zero

flux boundary conditions were applied at the outer three boundaries.

Table 1 lists the energy group structure and the homogenized atom

densities input to the calculation.

The CITATION program will normalize calculated flux distributions to

an arbitrary input reactor power level. In these calculations this factor

was chosen based on an assumed reactor operating power level of 2 MW (the

nominal power during sample irradiations). Thus the calculated fluxes

represented absolute predicted flux levels. All subsequent calculated

flux energy distributions and their comparison with experimental results

are based on the absolute flux levels predicted by the CITATION calcu

lation.

An independent experimental check was available for the diffusion-

theory calculation and the normalization factor. The average thermal
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Table 1. Energy Group Structure and Atom Densities
Used in Diffusion-Theory Calculation

Group No.

Energy Group Structure

Upper Energy
(eV)

Lower Energy

(eV)

1

2

3
4

5
6

7

1.49 x 107
1.05 x 106
1.11 x 105
1.17 x 104
1.23 x 103
1.01 x 10

1.86

1.05 x 106
1.11 x 105
1.17 x 104
1.23 x 103
1.01 x 10

1.86
0.0

Material Atom Densities, atoms/barn

Fuel
Control

Rod

Blank H Q
Element 2

D2O Aluminum
Experiment

Tube

235u

238u
Fe

Al

B

H

0

D

0.779 x 10"4
to a

1.31 x 10"4
8.03 x 10-6

2.52 x io~2

3.84 x 10"2
I.92 x 10"2

3.18 x 10"
1.50 x 10"
I.98 X 10"
2.48 X 10"
1.24 X 10"

-2

•2

•4b

•2

•2

2.01 x 10"2

2.20 X 10"2 6.6l X 10~2
1.10 x 10"2 3.30 x 10"2

6.03 X 10"

3.30 x 10"2
6.61 x 10"2

6.03 X 10"3

1.06 x 10"2
5.33 X 10"3

Varies for each fuel assembly.

Boron density was search parameter in eigenvalue calculation.

00



flux in each fuel cell has been measured in the BSR core for this core

loading.10 These data, originally reported as 2200 m/sec fluxes were

converted to integrated fluxes from 0 to 1.86 eV and are compared with

the results of the diffusion calculation in Fig. 4. This comparison pro

vides an independent check on the diffusion theory results and the ab

solute normalization of the calculation. Agreement is quite good and

gives support to the calculated fast flux values at the experiment

position.

One particular failing of the model is that the rectangular mesh

forces one to represent the cylindrical experiment tube as a square region

in the calculation. Unfortunately, this is the region of primary interest.

It is difficult to assess the absolute effect of this misrepresentation,

but experience with similar problems in other calculations leads one to

believe that gross flux profiles and flux levels are insensitive to such

an approximation as long as there are no strong absorbers in the dis

torted region.

One-Dimensional Transport-Theory Calculations

Detailed information on the neutron spectrum was initially obtained

from a one-dimensional transport calculation. The model first chosen to

represent the system is shown at the bottom of Fig. 3» It represents a

traverse along the reactor north-south centerline. The calculation was

run with the ANISN11 program using S8 quadrature, the GAM P3 cross

sections, and 100 energy groups.

The sample container and tube are not represented in the model,, It

was hoped that the spectrum would remain fairly constant across the

aluminum plate region and that the average spectrum in the aluminum would

be a good approximation to the actual spectrum in the capsule. The

results of the calculation indicated that this was not a good assumption,,

Figure 5 shows the variation across the plate of the effective cross

sections for the 58Ni(n,p) and 54Fe(n,p) reactions as calculated with

this model. These effective reaction cross sections, when defined as
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15 MeV

f a(E) <KE,x) dE
/ x 1.86 eV

°effW ~ 15 MeV '
7 </>(E,x) dE

1.86 eV

are sensitive indicators of changes in the epithermal and high energy

neutron distributions. Figure 5 indicates that the calculated effective

cross sections vary by approximately 25% across the plate, implying a

strong spectrum variation in this region and a resulting uncertainty as

to which calculated spectrum one should chose as representative of that

existing at the sample position.

For this reason, a second calculation was done using the model shown

in Fig. 6. Here the experiment tube was represented by a void region.

This removed the uncertainty introduced by the spatial variation of the

spectrum (the spectrum is constant across the void) but left a lingering

unease due to the possibility of two-dimensional spectrum effects not

accounted for in the one-dimensional model.

Two-Dimensional Transport-Theory Calculation

The strong spatial variation of the spectrum observed in the one-

dimensional transport calculations provided impetus to carry the calcu

lational programs one step further. The most straightforward approach

would have been to return to the diffusion-theory two-dimensional model,

increase the number of energy groups to give additional detail in the

high energy region, and run the problem with the two-dimensional transport

program, DOT.12 However this approach would have involved a prohib

itively large amount of computer time. In addition, problems of this

general type arise frequently enough in the analysis of irradiation ex

periments13 to warrant the expenditure of some effort to develop a method

particularly suited to their solution.

The approach taken was to represent the region of interest and its

immediate surroundings in detail in two dimensions and approximate the

remainder of the reactor by suitable boundary conditions around the out

side of the extracted region. The approach is feasible for two reasons.
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First, the boundary conditions are easily constructed from gross neutron

balance considerations obtained from a more approximate calculation of

the whole reactor system. Second, the solution in a localized region away

from the boundaries is more sensitive to local effects than to detailed

variations in sources located several mean free paths away, provided, of

course, that the overall source strengths and gross distributions are

correct.

For the BSR problem a gross solution for the whole reactor system

was available from the diffusion-theory calculation. A subregion,

pictured schematically in Fig. 7, was modeled for a 45-group DOT calcu

lation with S4 quadrature using the same spatial mesh as in the diffusion

case and a somewhat broader group structure than was used for the one-

dimensional case. The energy group structure for the one- and two-

dimensional calculations is given in Table 2. The problem was run as a

fixed source calculation with internal and boundary sources.

The boundary conditions and source can be constructed if one observes

that the neutron population within any region of the reactor is composed

of two classes: natives, who were born in the region and have never left,

and visitors, who have crossed the region boundary from the outside.

Under these definitions, a native venturing outside of the region is re

classified a visitor should he return. The neutron population in the

region can then be simulated by providing a suitably distributed birth

rate of natives within and visitors along the region boundary, together

with a vacuum boundary condition on the outside.

The native birth rate is due entirely to neutron-producing reactions

within the region. This is available from the fission distribution calcu

lated in the diffusion-theory problem. Proper distribution in energy is

achieved by assuming a fission spectrum for the internal distributed

source.

The visitor source is also constructed from the diffusion problem.

One observes that the number of neutrons per cm2 flowing across a boundary

can be expressed as a partial current. For example, across a boundary at

y parallel to the x axis
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<p(x,y ) D 8</)(x,y .
J+(x,yJ = 2_+_ o

° 4 2 3x

or, in terms of the point value fluxes along the boundary, from the

diffusion problem

j+ =^ogk +^igk +_gk_ rogk igk\
§k 8 2 V Ax /

6 , = the flux at the mesh interval outside the boundary,
ogk

<A. . = theflux at the mesh interval inside the boundary,
igk
Ax = the mesh spacing,

D = the diffusion coefficient,
g
g = a subscript denoting the diffusion theory broad-group number,

k = indicates position along the boundary.

It still remains to translate the partial incoming current into a

suitable distributed source term and allocate the neutrons from the

broad diffusion theory energy groups appropriately among the smaller

groups of the transport problem.

The first objective was achieved by constructing a 0.1-cm-wide

vacuum region around the outside of the transport model and assigning

a distributed source of strength 20XJ neutrons/cm3 within it. This

choice provides J neutrons crossing the boundary in an inward direction

and a similar number escaping to the vacuum. The division of neutrons

among the fine groups was accomplished by taking the average spectrum

for the water, aluminum and fuel regions as calculated in the one-

dimensional transport problem and using these spectra, where appropriate

along the boundary, to distribute the source neutrons among the 45 trans

port theory groups. That is,

M

i
i=N
t *i

S. = J_

i=N
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where

S. = the boundary source in the jth group of the two-dimensional

transport problem,

S = the source calculated from the inward-directed current in
g

diffusion group g,

<j>. = the flux in group i of the one-dimensional transport problem

in the appropriate medium,

N.,M. = the upper and lower groups from the one-dimensional problem
J J

contained within group j,

N ,M = the upper and lower groups of the one-dimensional problem
g g

contained within group g.

The DOT problem was then run using the sources generated as described

above. Results from this calculation are compared to those from the one-

dimensional case and the multiple foil unfolding technique in the follow

ing section of this report.

EXPERIMENT

Experimental Procedures

Three separate dosimeter irradiations were carried out in the course,

of this study. In the first two, flux wires and quantz-encapsulated

fissionable materials were used. The third irradiation used dime-sized

foils of a number of different detector materials enclosed in a cadmium

container.

In the first foil irradiation a dummy capsule similar to that

pictured in Fig. 2 with a hollow sample was employed as a foil holder.

In addition, foils were positioned on the near and far sides of the

sample, relative to the reactor, to obtain a measure of the flux gradient

in the vicinity of the capsule. The irradiation consisted of a two-hour

run at 2-MW reactor power.

The second irradiation was conducted over a period of several days

and a fairly complicated power history. In this run foils were located

in a dummy sample at the capsule center and also in the dosimeter well

to check for flux variations between sample and well positions.
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The third irradiation was made using a special holder. The foils

were stacked in a cadmium bucket with 100 mill walls. The holder was

positioned at the reactor midplane at the center of the experiment tube

and irradiated for 20 min at a reactor power of 209 kW.

Table 3 summarizes the materials included in each of the three foil

irradiations.

Data Analysis

There are two basic approaches for the reduction of raw dosimeter

data in the form of measured disintegrations per second per milligram of

foil material to neutron flux data. Both require that the measured

disintegration rates be reduced to saturated activities or reactions per

detector atom per second during irradiation. This is achieved by the

solution of the time-dependent chain equations governing the buildup and

decay of radioactive nuclides using standard techniques.14'15 At this

point, two options are available.

First, one can assume that the neutron spectrum, </>(E), is known at

the irradiation position from calculations. This spectrum, together with

the energy-dependent reaction cross sections and saturated activities are

used to obtain a flux level above energy E in the form
°u c

/, n _ Saturated Activity /,\
« 00 « 00

/ 4(E) <r(E)// 0(E)
c

for each of the measured activations. If the resulting fluxes from a

number of different detectors fall inside a band whose width is reason

able when compared to uncertainties in the reaction cross sections and

in the measured disintegration rates, then one concludes that the calcu

lated spectrum is acceptable and the derived flux level can be obtained

from an average of the various detector results. Inconsistencies among

a number of different detectors signals a poor representation for the

neutron spectrum. Isolated inconsistencies point out possible counting

errors or poorly known reaction cross sections.
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Table 3. Foil Reactions Used in Dosimeter Irradiations

Foil

Reaction
Run 1 Run 2 Run 3

58Ni(n,p) •x-

54Fe(n,p) -x-

23SU(n,f) -x-

237Np(n,f) •x-

2YAl(n,cc)

115In(n,n')

56Fe(n,p)

63Cu(n,/)

23Na(n,/)

35Cl(n,a)

46Ti(n,p)

47Ti(n,p)

48Ti(n,p)

197Au(n,7)

32S(n,p)

12Yl(n,2n)

59Co(n,7)

-X- *

-X-

•X-

#

-X-

•X-

-X

•X-

-X

-X

•X

*

*

-X-



21

The second approach relies more heavily on the experimental

activities and reaction cross sections. The implicit assumption is made

that these are known more accurately than the spectrum can be calculated.

Hence the experimental results are used to determine both the spectrum

shape and level by adjusting both together to achieve agreement between

the different detector results. That is, the integral fluxes defined by

Eq. (l), above, as measured by different detectors, are forced into

agreement by changes to the shape and level of </>(E). A number of tech

niques are available for performing this operation.16'17 One danger in

the application of the method is that a bad detector result can cause

spurious adjustments to the spectrum if it is not spotted and eliminated

before the fitting process.

Both of these techniques were used in the reduction of the BSR

dosimeter data. The adjustment of the flux spectrum was done using the

SAND-II program and detector cross-section library.16 The same cross

sections and the spectrum calculated with the two-dimensional transport-

theory model were used to obtain flux levels by the first technique.

In both cases the SAND-II cross sections used to reduce the data

from the third dosimeter irradiation were corrected to account for flux

attenuation by the cadmium cover and, in the case of the resonance de

tectors, for resonance self-shielding within the individual foils. The

self-shielding effect resulted in a reduction in the calculated Effective

cross sections for the resonance detectors of from 5 to 35$>-

COMPARISON OF CALCULATION AND EXPERIMENT

A comparison between the fast flux obtained from the diffusion-

theory calculation and from the dosimeters irradiated in the first two

runs is shown in Fig. 8. The experimental activations were converted to

fast flux values using cross sections averaged over the two-dimensional

transport-theory spectrum. The figure shows the fast flux above 0.1 MeV.

Good agreement is noted between the calculated flux level, which is based

on an input power level, and the experimental flux at the capsule position.

In addition, the calculation reproduces the measured gradient across the

capsule fairly well.



1.8 —

1.6 —

1.4

O 1.2

>

2

6 i.o
A

X

o

0.8
2
O
tr
H
3
UJ

z

0.6

0.4

0.2

22

CALCULATED FLUX

o 238U MONITOR
• 237Np MONITOR
* Fe MONITOR
A Ni MONITOR

(1) SECOND RUN,
SAMPLE POSITION

(2) SECOND RUN,
DOSIMETER WELL

ORNL-DWG 70-589

0 12 3 4

DISTANCE FROM REACTOR FACE (in.)

Fig. 8. Fluxes as determined from monitors and from diffusion
theory.
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It is particularly gratifying to note that the foils from the

dosimeter well (labeled 2) and those from the sample position (labeled l)

gave similar results. This indicates that the foils in the dosimeter

well will directly monitor the sample exposure during actual irradiations.

Figure 9 shows the results from all the dosimeters irradiated at

the sample position in runs 1, 2 and 3- Again, these data have been re

presented as integrated fast flux above 0.1 MeV and the two-dimensional

transport spectrum was used in the data reduction process. This same

information is presented in Table 4 together with the measured saturated

activities and the effective cross sections used in the data reduction.

Table 4 also shows the effective cross sections obtained when the spectrum

from the one-dimensional transport calculation was used for averaging,

and the fluxes above 0.1 MeV resulting from their use in the data re

duction process. For cases where more than one dosimeter of the same

material was irradiated, Table 4 gives the average value.

The two-dimensional transport calculation yields a somewhat softer

spectrum than the one-dimensional case with more neutrons in the l/E tail.

This difference is reflected in the effective cross sections listed in

Table 4, the two-dimensional calculation giving somewhat lower effective

cross sections for the high energy threshold reactions and higher cross

sections for the resonance reactions.

A statistical analysis of the predicted fluxes using the two calc

ulated spectra yields a derived one standard deviation of 13.4$ for the

results using the one-dimensional transport calculation and 11.6$ using

the more elaborate analysis. The implication is that the two-dimensional

calculation yields a more accurate representation of the spectrum and

this is reflected by the smaller variance in the independent results from

the different dosimeter measurements.

As a second step in the analysis of the experimental data, the

measured activities of the dosimeters were used, together with the energy-

dependent cross sections, to generate a spectrum which reduced the de

viations in the total fluxes predicted by the different dosimeters to a

minimum. The SAND-II cross-section library and the SAND-II program were

used in this analysis.
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dimensional transport theory calculated spectrum for cross section
averaging.



Table 4. Flux Above 0.1 MeV and Effective Cross Sections Calculated

Using One- and Two-Dimensional Transport Theory
Models and Unfolded Spectrum

a for <j> > 0.1 MeV Predicted </> > 0.1 MeV X 1012 Using a Predicted

Saturated Using Spectrum From with Spectrum at 2 MW

Reaction Activity
(dps/atom) 1-D

Calculation

2-D

Calculation
Unfolding

1-D

Calculation <

2-D

Calculation
Unfolding

58Ni(n,p) 4.01-13a 6.87-2 7.23-2 6.78-2 5-83 5.54 5.91
54Fe(n,p) 3.11-13 4.65-2 4.91-2 4.97-2 6.4o 6.04 6.25
238U(n,f) 1-33-12 2.01-1 2.07-1 2.01-1 6.64 6.42 6.6l
237Np(n,f) 6.96-12 1.05 1.06 1.06 6.61 6-55 6.55
2TAl(n,a) 2.52-15 4.14-4 4.08-4 3.87-4 6.07 6.15 6.51
115In(n,n') 7.30-13 1.32-1 1-35-1 1.37-1 5-53^ 5.38 5.32 rv>

56Fe(n,p) 7.95-16 6.75-4b -- — 11.78b
\T\

63Cu(n,7) 1.85-12 3.91-1 3-75-1 2.96-1 4.73 4.93 6.25
23Na(n,7) 9.82-14 2.07-2 2.04-2 1.57-2 4.73 4.80 6.25
35Cl(n,a) 1.15-14 8.04-3b — __ l4.31b _M _ _

46Ti(n,p) 4.68-14 8.51-3 9.10-3 7.15-3 5.50 5.14 6.54-
47Ti(n,p) 7-51-14 I.56-2 1.62-2 1.16-2 4.8l 4.62 6.47
48Ti(n,p) 7.99-16 1.34-4 1.30-4 1.34-4 5.94 6.09 5.96
197Au(n,7) 2.33-10 47.0 46.2 37-4 4.96 5.86 6.22
32S(n,p) 2.65-13 3.82-2 4.01-2 4.00-2 6.95 5-04 6.62
127l(n,2n) 4.27-16 3.88-4b — _ _ _ 11.01b
59Co(n,7) 1.60-12 4.76b

— — 3.36b
— —

Average flux x 1013 + 1 standard deviation 5-75± 5-58± 6.27±
0.77 O.65 0.37

For 4.01-13 read 4.01 X 10-13, etc.

These reactions excluded from averages and unfolding calculations,
b
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The spectrum-adjusting program requires an initial guess for the

spectrum to be supplied at the start of the calculation. In this analysis

the spectrum calculated with the one-dimensional transport model was used

as a starting point for the spectrum adjustment. Figure 10 shows the

initial spectrum guess and the final adjusted spectrum which minimized

the deviations between the different detector results. The calculated

spectrum in Fig. 10 is normalized to the total fast flux predicted by the

diffusion calculation and the adjusted curve is normalized to the experi

mental dosimeter results. The ratio of the calculated integral flux

above energy E to the unfolded or experimental integral flux above the

same energy is also shown at the top of Fig. 10. That is, the figure

shows

/bo

^ 'calculated
R(E) 3 -E .

'experimental

It must be emphasized that the unfolded or experimental spectrum is

not entirely independent of the initial guess supplied to the program.

Thus the fine structure which appears in Fig. 10 is a reflection of

similar structure present in the input spectrum. It has been demon

strated,18 however, that gross spectrum shifts, in this case the visible

softening of the adjusted spectrum, are consistently reproduced for any

"reasonable" input guess and that the final unfolded spectrum can be

reproduced to ±5$ despite variations in the starting point. In this

regard, it is worth pointing out that an "unreasonable" guess can some

times lead to nonphysical solutions due to instabilities in the fitting

program.

A final comparison between the computed integral spectra and the

unfolded spectra is given in Fig. 11. Here the ratio of the integral

spectrum above energy E as calculated by the one- and two-dimensional

transport calculations to the unfolded spectrum is shown. It is seen

that the two-dimensional calculation gives better agreement with the un

folded spectrum over the entire energy range. Table 5 displays the same

information from the two-dimensional calculation and the unfolding method

in numerical form.
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Table 5- Final Integral Flux Values Above Energy E from
Calculation and Experiment at 2 MW Reactor Power

Energy

(eV)
Flux Above Energy
E from Calculation

Flux Above Energy
E from Unfolding

1.10 X 107 0.160 X 1010 0.162 X 1010

5^ X 106 0.148 X 1012 O.I67 X 1012

1.0 X 106 0.305 X 1013 0.317 X 1013

8.2 X 105 0.342 X 1013 0.357 X 1013

5-5 X 106 0.4l6 X 1013 0.444 X 1013

1.8 X 105 O.585 X 1013 O.585 X 1013

1.1 X 105 O.592 X 1013 0.620 X 1013

2.5 X 104 0.686 X 1013 O.696 X 1013

9-1 X 103 0.738 X 1013 0.741 X 1013

5.8 X 10 O.869 X 1013 O.852 X 1013

0.414 1.202 X 1013 1.125 X 1013
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A standard deviation has been estimated from the flux monitor

results reduced with the spectra calculated with the one- and two-

dimensional models. The standard deviation was estimated from the

expression

n

E (fr-v
^-^ ,

(n-l)

n

where $ - ]_j </>./n aXi^L 0 Is the flux above 0.1 MeV.
i=l X

The results from this calculation are given in Table 4. The flux

monitor results indicate that the flux level above 0.1 MeV has been

measured to better than ±6$ using the spectrum unfolding technique and

the comparison between the calculated and unfolded spectra, Fig. 11,

indicates that the spectrum shape is also known to ±10$ over the entire

energy range.

CALCULATION OF RADIATION DAMAGE TO BERYLLIUM AND GRAPHITE

The flux spectrum measurements and calculations described above can

be combined with a damage cross section for beryllium or graphite to

determine the damaging ability of the Bulk Shielding Reactor spectrum

relative to the spectrum in the NERVA engine reflector.

Energy transfer kernels, cr (E) K(E,T), were constructed for use in
s

calculating radiation damage in beryllium and graphite.19 The kernels

describe the probability that a neutron with energy E will produce a

primary recoil atom with energy T. The kernels are based on scattering

cross section and angular distribution information contained in the

Evaluated Nuclear Data Files (ENDF/B).20

Possession of the kernels makes it a simple matter to calculate

primary recoil atom spectra in varying neutron spectra. In addition,

the kernels plus a suitable secondary displacement model, v(T), allows

calculation of damage cross sections in the form
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/oo

a (E) K(E,T) v(T) dT

Here D(E) is the number of displacements per atom and unit flux of

neutrons with energy E, and v(T) is the secondary displacement model

which gives the total number of displacements caused by a primary re

coil with energy T. The calculated damage cross section for beryllium

using the Lindhard model21"23 to describe secondary displacements is

shown in Fig. 12.

The relative damaging ability of a given flux spectrum, 0(E), can

now be calculated by evaluating the expression:

/oo

0(E) D(E) dE

Relative damage per unit flux = .
/oo

0(E) dE
0

The relative damage per unit fast flux above a given energy, E , can be

calculated from the expression

/CO

0(E) D(E) dE

Relative damage per unit flux above E
n. 00

J 0(E) dE
E

This second definition is necessary when one wants to compare radiation

damage in different spectra and the total exposures are reported in terms

of "fast flux greater than E MeV." It is a stratagem contrived to con

form to current practices in reporting fast neutron exposures.

A value of 1 MeV has been chosen as the cutoff for reporting fast

neutron dose in the current series of beryllium damage experiments in

the BSR. Calculations have been run to evaluate the relative damaging

ability of the spectrum in the BSR experimental facility and the spectrum

in the reflector of the system of interest. The present best representa

tion of the experimental facility spectrum, shown in Fig. 10, and a

coarse mesh spectrum supplied by Westinghouse for the NERVA reflector,

shown in Fig. 13, were used in the calculation. The results for beryllium
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and graphite are presented in Table 6 below. These results indicate

that the reflector spectrum is 1.4 times more damaging than the experi

ment spectrum for beryllium and 1.3 times more damaging for graphite if

the dose is measured in terms of flux of energy greater than 1 MeV. In

more practical terms this means that to simulate a dose of 1.0 x 1019

neutrons/cm2 (E > 1.0 MeV) in the actual system one must irradiate

beryllium to a dose of 1.4 X 1019 neutrons/cm2 in the BSR, and graphite

to a dose of 1.3 X 1019 neutrons/cm2 (E > 1.0 MeV).

Table 6. Relative Damaging Ability of BSR and
Reflector Spectra Per Unit Flux Above 1 MeV

Reactor spectrum Relative damage per atom
unit flux > 1 MeV x 10"24

Be C

BSR experiment 1650 1240
NERVA system
reflector 2310 1590

ANALYSIS OF ALTERNATE, LEAD-SHIELDED FACILITY

Subsequent to the calculations and experiment described above, it

was decided that the gamma heat load to the cryostat facility could be

substantially reduced by surrounding the tube with approximately 1 in.

of lead shielding. It was necessary to determine if such a shield

would have a detrimental effect on the fast neutron dose at the sample

position, thus offsetting any gains in cryostat cooling capabilities

by requiring longer irradiations to achieve the same equivalent damage

to the samples. With the confidence inspired by the preceding calcu

lational and experimental program, it was felt that this question, and

the resulting beryllium damage rates in the altered facility, could be

determined primarily with calculational methods.
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Spectrum Changes in the Altered Facility

One-dimensional, 99-gr°up transport calculations similar to those

described earlier were done to determine the fast neutron spectrum

shifts in the lead shielded facility. The spectrum resulting from the

presence of the lead is compared to the unshielded facility spectrum

in Fig. 14. Note that the spectrum in the shielded facility is con

siderably softer than that obtained previously. This can be explained

by the effect of the inelastic scattering in the lead shield. The

calculations also indicated only a small reduction in the integral flux

above 0.1 MeV due to the presence of the shield.

Beryllium Damage Rates and Foil Activities
in the Altered Facility

The spectrum calculated for the altered facility was used to

estimate the damage rate to beryllium in the manner described above.

In addition, two dosimeters, an iron wire and a nickel wire, were

irradiated in the lead shielded configuration, and these data were

converted to flux above 0.1 MeV, using the new calculated spectrum.

The results of these calculations are shown in Tables 7 and 8.

The effect of the spectrum shift is to reduce the effective activation

cross sections of the dosimeters and increase the effective damage

cross section to the beryllium. The sparse dosimeter data indicate

a reduction in the flux above 0.1 MeV by about 15$ and the spectrum

shift causes an increase to the beryllium damage rate of about 5$ with

a net decrease to the predicted damage accumulation rate to beryllium

of about 10$. These results have also been confirmed by the in-pile

monitoring of the beryllium property changes which indicate little or

no change to the neutron induced damage to beryllium due to the presence

of the lead shield.
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Table 7. Effective Cross Sections for Flux >0.1 MeV for

Old (Unshielded) and New (Shielded) Configurations

Cross Section

ct(0>O.1 MeV)
Unshielded

Configuration
(barns)

54Fe(n,p) 0.0492

58Ni(n,p) 0.0723

Be damage 700
(displacements/
atom x 1024)

a(0>O.l MeV)
Shielded

Configuration
(barns)

0.0326

0.0498

732

cr Shielded Configuration

<y Unshielded Configuration

0.66

O.69

1.046

Table 8. Flux Predicted by Fe and Ni Dosimeters in
Unshielded and Shielded Configurations

[Reactor power = 2 MW(t)]

Dosimeter

5SNi(n,p)

54Fe(n,p)

Flux, >0.1 MeV
Unshielded

5.54 X 1012

6.04 x 1012

Flux, >0.1 MeV
Shielded

4.58 X 1012

5.54 X 1012

0
shielded

*unshielded

0.82

0.92
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