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CORROSION IN POLYTHERMAL LOOP SYSTEMS. 

I. MASS TRANSFER LIMITED BY SURFACE AND INTERFACE RESISTANCES 
AS COMPARED WITH SODIUM-INCONEL BEHAVIOR 

L 

R. B.  Evans 111’ Paul Nelson, Jr.’ 

ABSTRACT 

Corrosion studies of lnconel and simila nickel-base alloys in flowing sodium have shown that considerable quantities 
of nickel are removed from regions hotter than 1300°F and deposited in cooler regions. We have compared the observed 
nickel mass transfer rates with predictions based on the assumption that diffusion of nickel across the liquid boundary 
layer at the alloy surface controls the process. 

For pumped loops operating in the turbulent flow regime, it was demonstrated analytically that the time transient 
required to achieve steady-state mass-transfer conditions is relatively short compared with normal loop operating times. 
Based on a calculated film coefficient, the predicted transport of nickel from the hot zone was five times greater than that 
obtained from measurements of crystal deposits in cold zones. This and other considerations suggest that contributions of 
film resistances are only partially responsible for corrosion in polythermal loops containing liquid metals. In other words, a 
complete description of the corrosion process will require considerable modification of the mechanism discussed here. 

All results were derived from a simple partial differential equation which is first order with respect to time and 
position. The solution of the differential equation is found in closed form; accordingly, it can be readily manipulated to 
exhibit the transient and steady-state parts. The solution will accommodate a wide variety of assumed experimental 
conditions. It holds for heat- as well as mass-transfer problems. 

INTRODUCTION 

Liquid sodium has been utilized since 1928 with considerable success as a heat-transfer medium. An 
excellent review of the corrosion properties of liquid metals such as sodium was given by Epstein3 in 1955. 
Two years later Epstein contributed a paper4 which is now considered a classic in this field. It concerned 
corrosion rate equations with steel-mercury plus alloy steel-sodium (and NaK) systems for illustrative 
purposes. For stainless steels, reactions of iron and sodium with oxygen and related contaminating 
compounds were summarized in terms of four serial reactions, most products and reactants of which 
canceled out to yield 

where s and d represent, respectively, the solid and dissolved species. As compared with the 
diffusion-limited case, that is, flow limited by mass-transfer liquid-film coefficients, the reaction-rate 
correlation gave the best agreement with experimental sodium corrosion results. Thus the reaction-rate 
mechanism was favored by this comparison. 

We should note here that a liquid-film coefficient and a first-order reaction rate combined correctly 
impart the same influence on ,the final results.Therefore, if the controlling reaction cannot be definitely 
specified, the only way to separate the relative contributions of film and reaction effects in positive fashion 

‘On loan from the Reactor Chemistry Division. 
’Mathematics Division. 
3L. F. Epstein, “Corrosion by Liquid Metals,”Proc. Infern. Con5 Peaceful Uses At. Energy, Geneva 9, 311-17 (1956). 
4L. F. Epstein, “Static and Dynamic Corrosion and Mass Transfer in Liquid Metal Systems,” Chern. Eng. Progr., Symp. 

Ser. 20 53,67-81(1956). 
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is to vary the Reynolds number, holding everything else constant. Furthermore, to detect solid-state 
diffusion effects, one should study corrosion as a function of time - preferably over a series of fixed 
conditions such as constant Reynolds numbers or unaltered temperature profiles. 

T o  digress further, it should be mentioned that the liquid sodium-stainless steel programs have enjoyed 
an unusually long tenure of financial support and worldwide technical interest. This has come about 
because these materials were used as structural and fuel cladding materials in “first-generation’’ fast breeder 
reactors as envisioned (with minor variations) in several countries. Accordingly there have been numerous 
progress reports, topical reports, and publications on the corrosion behavior of sodium-stainless steel 
systems. Significant among these is a report by Mottleys wherein a special sort of liquid-diffusion film for 
FeO dissolution is introduced. This report is particularly enhanced by a special preface authored by 
Epstein, who clearly outlines the implications of Mottley’s work and mentions the unusual variety of 
available solubility data. Additional results of interest are presented by Brush: who demonstrates the 
concentration complexities within corroded alloys; T y ~ a c k , ~  who reviews sodium chemistry; Weeks et al.,’ 
who also review dissolution and rates processes; and finally a simple but thorough summary by Hopenfeld 
and Darley.’ Other pertinent references may be obtained from the literature cited thus far. 

The present report concerns the corrosion of Inconel in sodium; it is oriented primarily toward nickel 
transport in polythermal forced-convection loops. One may wonder, therefore, why so much emphasis is 
placed on stainless steel researches here. There are two reasons for this: first, a tremendous amount of 
liquid metals research has been done with stainless steels as compared with other alloys, and second, the 
major components of Inconel are also present in stainless steels. Surely, at least a foundation for building a 
workable correlation for the Inconel results can be gained from a perusal of the steel reports, since many of 
these are quite general in nature and are based on acceptable (noncontroversial) methods. Also many of the 
experimental difficulties and seemingly unusual experimental results are common to both the Inconel and 
the stainless steel systems. The basic difference between the two is the relative insensitivity of Inconel 
corrosion to oxygen contamination as compared with the rather marked oxygen sensitivity exhibited by the 
stainless steel system.’ o , l  

Corrosion tests of nickel-base alloys, particularly Inconel, were conducted at ORNL from about 1948 
to 1957. The tests were aimed toward qualifying sodium as a heat-transfer fluid in the Aircraft Reactor 

’ J. D. Mottley, Sodium Mass Transfer. VII. Corrosion of Stainless Steel in Isothermal Regions of a Flowing Sodium 
System, GEAP-4313 (February 1964). [Available from Clearinghouse for Technical Information, NBS, U.S. Dept. 
Commerce, Springfield, Va. 22151.1 

‘E. G. Brush, Sodium Mass Transfer. XVI. The Selective Corrosion, Component of Steel Exposed t o  Flowing Sodium, 
GEAP-4832 (March 1965). Availability as in ref. 5. 

’C. Tyzack, “Application of Sodium Chemistry in Fast Nuclear Reactors,” Chem. SOC. (London) Spec. Publ. 22, 

‘J. R. Weeks, C. J. Klamut, and D. H. Curinsky, “Corrosion by Alloy Metals,” IAEA Paper SM-85/40 presented at  
Alkali-Metal Coolants Symposium (Vienna, Austria, November 28 to  December 2, 1966). Also issued as BNL-10800 
(1966). Availability as in ref. 5. 

’J. Hopenfeld and D. Darley, Dynamic Mass Transfer of Stainless Steel in Sodium Under High-Heat-Flux Conditions, 
NAA-SR-12447 (July 1967). Availability as in ref. 5. 

‘ON. P. Agapova, A. G. Ioltukhovsky, and V. V. Romaneev, “Behavior of Stainless Steel in Sodium in the 600-900°C 
Temperature Region,” Pdper SM-85/15 1 in h o c .  of Symp. Alkali-Metal Coolants, 1966, pp. 85-96, IAEA Publication, 
Vienna (1967). 

“ ( a )  A. W .  Thorley and C. Tyzack, “The Corrosion Behavior of Iron and Nickel-Based Alloys in High-Temperature 
Sodium,” UKAEA Document TRG Report 1356(c) (October 1966). (Available from UKAEA installation at Culcheth, 
England.) (b )  A somewhat different version of this manuscript appears as: Paper SM-85/118 in hoc.  of Symp. on 
Alkali-Metal Coolants, 1966, pp. 97-1 18, IAEA Publication, Vienna (1967). 

236-59 (1966). 

. 
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Experiment (ARE)” and involved temperatures in the range 1300 to 1650°F. The test results were 
classified at the close of the project in 1957, and the first open literature publication13 of the results 
appeared in 1967. Treatment of the data in terms of corrosion mechanisms was limited to an internal 
document prepared by Keyed4 in 1957. 

Interest in nickel-base alloys for sodium applications has recently increased as a consequence of the 
large effort being undertaken to develop a sodium-cooled fast breeder reactor. Areas where nickel-base 
alloys may find application include (1) fuel cladding, (2) neutron reflector, and (3) the steam generator in 
the secondary sodium circuit. 

Accordingly, we have undertaken the present study to carefully review the earlier Inconel work carried 
out in support of the pioneering ARE effort. I t  should be clearly stated that this early effort involved a 
relatively short-term (-1000 hr) heat generation requirement, and the variables studied covered limited 
ranges of values; also some of the more elaborate analytical and testing techniques currently in use were not 
available or udized in these early days. The subject experiments comprised a systematic test project - as 
opposed to a well-organized program to support fundamental mechanistic studies. These limitations have 
forced us to use a deductive rather than inductive approach in analyzing the corrosion mechanisms 
underlying the experimental results. 

The present study was divided into three major phases. The first, about which this report is concerned, 
considers the rate-controlling step as being diffusion through the liquid film. The effects of a surface 
reaction associated with a dissolution-deposition equilibrium are also considered. This mechanism may be 
considered as the upper or fast limit, which is of consequence at the early stages of loop operation. 

The second limiting case assumes solid-state diffusion, with and without liquid-film diffusion, to be the 
controlling process. Solid-state diffusion is felt to  be the lower limit for nickel transport, since this is the 
slowest well-defined process one can imagine. Although it is frequently the major step (for all times) in 
certain molten-salt systems (discussed by Grimes et d.),’ it might well turn out to be the long-term limit 
for certain alloy constituents in liquid metals corrosion. Indeed it has been established by Brush‘ and 
Sessions’ that solid-state diffusion controls special cases of hot-zone mass transfer, while liquid diffusion 
sometimes (within the same loop) controls the cold-zone deposition behavior, as shown by Gill et aZ. As 
will be shown, the actual corrosion behavior in Inconel-sodium systems lies in a transition regime 
somewhere between the limiting cases to be reviewed. A detailed discussion of each case is certainly 
justified, even though the discussions, in fact, constitute reviews of well known principles. 

. 

”R. C. Briant and A. M. Weinberg, Nucl. Sci Eng. 2,799 (1957). 
13J. H. DeVan, “Corrosion of Iron- and Nickel-Base Alloys in High-Temperature Sodium and NaK,” Paper SM-85/32, 

inProc. of  Symp. on Alkali-Metal Coolants, 1966, pp. 643-61, IAEA Publication, Vienna (1967). 
I4 J. J. Keyes, Jr., Some Calculations of  Diffusion-Controlled Thermal Gradient Mass Transfer, ORNLCF-57-7-115 

(1957). (Available from USAEC, Div. Tech. Info. Ext., Box 62, Oak Ridge, Tenn. 37830.) 
” ( a )  W. R. Grimes, G. M. Watson, J. H. DeVan, and R. B. Evans, “RadieTracer Techniques in the Study of Corrosion 

by Molten Fluorides,” pp. 559-74 in Proc. o f  Symp. on Radioisotopes in Physical Sciences and Industry, 1960, IAEA 
Publication, Vienna 3 (1962). (b) R. B. Evans I l l ,  J. H. DeVan, and G. M. Watson, Self-Diffusion in Nickel-Base Alloys, 
ORNL-2982 (1961). Available as in ref. 5. ( c )  J. H. DeVan and R. B. Evans 111, “Corrosion Behavior of Materials in 
Fluoride Salt Mixtures,” pp. 557-80 in Proc. of Symp. on Corrosion of Remtor Materials, 1962, IAEA Publication, 
Vienna (1962). 

“ ( a )  J. H. DeVan and C. E. Sessions, “Mass Transfer of Niobium-Base Alloys in Flowing Non-Isothermal Lithium,” 
Nucl. Appl. 3, 102-9 (1967). (b) C. E. Sessions and J. H. DeVan, “Thermal Convection Loop Tests of Refractory Alloys 
in Lithium,” paper presented at Thermionic Conversion Conference (IEEE), Palo Alto, California, Oct. 30-Nov. 2, 1967. 
(Reprints available by request to authors, ORNL, Oak Ridge, Tenn. 37830.) 

17W. N. Gill, R. P. Vanek, R. V. Jelinek, and C. S. Grove, Jr., “Mass Transfer in Liquid-Lithium Systems,’’ (using 
304-stainlescsteel loop components), A.I.Ch.E. J .  6, 139-44 (1960). 
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As an alternative to these idealized limiting cases,' one might consider correlating the experimental 
Inconel data by an empirical approach that combines all the individual mechanisms. The results, at best, 
would be of the form of an approximate formula which allowed only short-range interpolations from the 
"base conditions" at which the majority of the Inconel experiments were conducted. 

NOMENCLATURE 

a Subscript denoting alloy. 

A Area normal to mass or heat flow, cm2 . 

A ,  Internal peripheral area of loop tubing. 
b Power factor in a geometric series, arbitrary units. 
C Subscript denoting cold point at Tmin. 

aM Activity coefficient of alloy constituent M, no units. 

A,, Cross-sectional area of loop tubing, 2.483 cm2. 

C, Heat capacity, cal g-' ("C)-'. 
C, Integration constant with respect to T, OF, OC, or OK. 
C, Integration constant with respect to  z, weight fraction. 
D Inside diameter of loop tubing, 1.778 cm. 

e The transcendental number 2.71828 ... . 
f Fraction of loop area of length, z /L ,  no units. 

fl Fraction of z/L from 0 to 0.5, no units. 
f2 Fraction of z /L  from 0.5 to 1 .O, no units. 
fm The fraction where Y = y and j M  = 0, no units. 

fl,, Diffusion coefficient of M in liquid 1, cm2 /sec. 

g Symbol denoting gram mass. 
h Film coefficient for mass transfer, cm/sec. 

h' Film coefficient for heat transfer, cal cm-2 sec-I ("C)-'. 
k Combined solution rate-film coefficient, cm/sec. 

H Subscript denoting hot point at Tmax. 
i Symbol denoting index for series expression. 

@z') Abbreviated symbol for integrals of the form,J:F(z') dz' 
j M  Mass flux of species M, g cm-' sec-I . 
JM Molecular or atomic flux of speciesM, moles cm-' sec-' . 

k Thermal conductivity, cal cm-' ("C)-' sec-' . 
k' Boltzmann constant, 1.38 X 

k l  Solution rate constant, cm/sec. 
Solution rate constant, moles cm-' sec-I . 

kz  Deposition rate constant, cmlsec. 
It: Deposition rate constant, moles cm-' sec-' . 
KO Equilibrium constant, G/g,  no units. 
K ,  Activity coefficient ratio yM(d) /yM(s) ;  units depend on standard states for M. 

gcm2 sec-2 ( O K ) - ' .  

Kexp Experimental equilibrium constant, weight fraction. 
. 

"By idealized systems we mean those with constant diameters and a simple temperature profile, and those wherein a 
given mechanism or combination of mechanisms operates in both hot and cold sections. 
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. 

I Subscript denoting liquid metal. 
L Total loop length, 905.6 cm. 
m Molecular or atomic weight, g/mole. 
M Subscript denoting metal constituent. 

M(s) Symbol denoting metal constituent in solid solution. 
M(d) Symbol denoting metal constituent in liquid solution. 

NNu Nusselt number for mass or heat transfer, respectively, hD/f lMI or h'D/k,, no units. 
N,,  Prandtl number, Cpp/k,, no units. 

N, ,  Reynolds number, Dvp/p,  no units. 
Nsc  Schmidt number, p/pDMl,  no units. 

4 Constant group a / v  or P/L, cm-' . 
Q Volumetric liquid flow rate in loop at ( T ) ,  cm3/sec. 

n Number of completed cycles, no units. 

rM Atomic radius ofM diffusing in liquid, cm. 
r Time, sec. 

Transformed time variable, t - z / v ,  sec. 
T Temperature of bulk liquid, O F ,  O C ,  or O K .  

u Arbitrary variable, no units. 
U Overall heat transfer coefficient, cal cm-* sec-' . 
v Liquid flow velocity, Q/Ax, ,  63.6 cmlsec. 
x Mole fraction o f M  in alloy, no units. 
y Weight fraction ofM in bulk liquid, no units. 

( T )  Arithmetic average temperature, ('i2)(TH + Tc) ,  units above. 

y o  Initial concentration of soluteM in liquid, no units. 
Mole fraction ofM in liquid, no units. 

y* Weight fraction o f M  in liquid at interface, no units. 
Y Weight fraction o f M  in liquid when saturated, no units. 

( Y )  Arithmetic average of Y, ('/2)( YH + Yc) ,  no units. 
Ymin Saturation value o f M  atf, (not Yc at Tc),  no units. 

z Linear flow coordinate for v or Q, cm. 

z Transformed position variable, cm. 
0: Constant group, 4h/D, sec-'. 
a Constant group, hnDL/Q, no units. 
0' Constant group, UrrDL/QplCp, no units. 
y Activity coefficient, units selected to  make aM dimensionless. 
A Symbol to denote temperature or concentration drop (e.g., A T =  T ,  - Tc) .  
I-( Viscosity coefficient, g cm-' sec-' . 
71 The transcendental number 3.1416 ... . 
p Mass density, g/cm3. 

T External temperature of loop wall, O F ,  O C ,  or O K .  

z o  Position of a fluid element at z and r at time zero, z o  = nL f z - vr, cm. - 

Ci Symbol for sum with i indices. 

@(?) An arbitrary constant of integration in the (l, 7) coordinate system, no units. 
$(r )  An alternate expression for introducingy(0, r ) ,  no units. 
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TEMPERATURE PROFILES AND LOOP CONFIGURATIONS 

Reference and Prototype Loops 

Our ultimate goal is to  develop a general solution for a variety of loops having arbitrary temperature 
profiles along z ,  which denotes some distance along the loop measured from a convenient reference point. 
The solution can be given in terms of quadratures (areas) for an arbitrary temperature profile. In order to 
evaluate these quadratures, it is frequently convenient to  approximate the temperature profile by several 
straight-line segments. A typical pump-loop configuration and profile shall be considered to inject realism; 
this will be called the reference loop. Next we shall consider very simple loops designed to  possess a fair 
degree of equivalence to the reference loop. These will be called the prototype loops. Simple, and 
sometimes symmetrical, prototypes are desirable to  ease the burden associated with the mathematics, as it 
might affect our method of presentation. 

The Reference Loop 
A schematic diagram of the reference loop is shown in Fig. 1. Some 40 forced-convection loops similar 

t o  this reference loop were operated to evaluate the corrosion resistance of Inconel to sodium. As shown by 
the diagram the overall configuration is reminiscent of a script figure eight. A heat exchanger 
(“economizer”) connected the hot leg, with surge tank attached, and the cold leg, with pump and cold trap 
arrangement. Hot liquid passed down the inner tube of the economizer; cold liquid passed up the heat 
exchanger annulus. Thus the cold liquid here was exposed to  two walls, each at a slightly different 
temperature. The primary function of the cold trap was to hold N a 2 0  concentrations at a low level; 
however, it also increased the complexity of the system by acting as a secondary cold leg. The recycle ratio 
for the cold trap was this low ratio plus the trap design, coupled with return-line heaters, mitigated 
temperature perturbations in the main stream. (By recycle ratio, we mean the ratio Qtrap/Qloop.) 

Typical test conditions for these early experiments were 1000 hr total operating time at  2.5 gpm flow 
with TH = 1500°F and T,  = 1200°C (ref. 19). 

19We shall frequently refer to temperature in terms of the Fahrenheit scale, not in seeming defiance of current edicts 
to the effect that the Centigrade scale shall be employed for all reports, but rather in deference to earlier practices that 
were in force during the time at which the experiments were performed - as well as the method of presentation in refs. 1 3  
and 14. 

ORNL-LR-DWO 151531 

COLD TRAP 

PACKED WITH INCONEL 
WIRE MESH 

NOTE DIMENSIONS IN INCHES 

Fig. 1. Schematic Diagram of ForcedConvection Loop Used for Liquid-Metal Corrosion Experiments. These devices 
are called either “figure-eight loops,” because of their configuration, or “economizer loops,” because a 75-in. heat 
exchanger is present. The reflux ratio for the cold trap is ‘/lo; flow therein attains some preheating prior to main-stream 
reentrance. Dimensions are approximate. 
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Table 1. Geometrical and Temperature Characteristics of ForcedConvection Pump Loops 
for Liquid-Metal Corrosion Experiments 

. 

Fraction Cumulative Exit Reynolds 
N u m b e f  

Wall 
Flow Section Area of Area Fraction Temperature 

(in.2) (A / A  T) / A  T) CC) 

Economizer annulusb 263.9 0.3367 0.3367 787.8= 31,500 

Hot leg loopb 222.1 0.2832 0.6197 815.6 58,500 

Economizer central tubed 108.4 0.1382 0.7581 665.6 80,900 

Cold leg loope 189.7 0.2419 1.0000 648.9 50,800 

( 145 0” F) 

(15 00” F) 

( 12 30” F) 

(1 200” F) 
TotaLf 784.1 1.0000 

OFor base conditions. 
bShell and loop tubing: ’4 in. OD X 0.065 in. wall. 
CEntrance temperature; 1200°F; see Fig. 2. 
dCentral tubing: ‘4 in. OD X 0.020 in. wall. 
elncludes pump area of 7.05 in?;  see Fig. 1. 
fTotal length: 349 in. 

Prior to the experimental operating period, the loops were operated isothermally with sodium for 
several hours at 700°C t o  remove any oxide coatings on inner surfaces. The cold trap was not in the circuit 
during this operation. Fresh sodium was introduced for the actual run, and, when the run was completed, 
sections of the loop were removed with the aid of pipe cutters and then subjected to analyses of various 
kinds. Some of these sections are still under investigation through the utilization of recently developed 
electron-microprobe techniques. Dimensional and temperature profile information for the experimental 
(reference) loops appears in Table 1. 

Prototype Loops 

A review of Table 1 clearly demonstrates that the geometrical and temperature characteristics of the 
reference loop are not too simple - particularly if the primary goal of the work involves exposition of a 
mathematical treatment of a diffusion process accompanied by numerical examples. This suggests the need 
for more simplified configurations, which shall be referred to  as prototype loops. The designation 
“prototype” is employed t o  suggest that future versions of forced-convection loops might incorporate less 
complicated flow paths and temperature profiles. Furthermore, we wish to avoid the use of the word 
“model,” for this might suggest that the final results depend on the prototype characteristics; also the term 
model has suffered so much exposure that it is rapidly degenerating t o  a technical clichk. 

All that we attempt here is to envision a simplified configuration whereby all the geometrical 
complexities engineered into early forced-convection loops will be cleared away; yet all the important 
features will be retained. In this sense we desire a maximum degree of equivalence between the reference 
and prototype loops. One need not exhibit too much originality to  acquire a suitable prototype. The 
“tent-shaped’’ profile, over a constant-diameter loop, used by Keyes,’ seems to display the utility desired, 
although there may be other situations where perhaps a “saw-tooth” function might be more appropriate. 
The notion that a tent-shaped profile composed of two straight-line segments cannot be obtained in 
practice has been dispelled by DeVan and Sessions.I6 The loop used in these studies was indeed 
tent-shaped, but it exhibited some degree of asymmetry. 
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We shall eventually establish that liquid-film diffusion did not control mass-transfer kinetics in the 
subject Inconel pump-loop experiments; thus the major consideration is acquisition of a protbtype loop 
with an area equivalent to the reference loop. In Table 1 one finds that the total area exposed to  the liquid 
is 784.1 in.2, or 1991 cm2. If the diameter is assumed to  be constant at 0.70 in. all around the loop, its 
total length will be 905.6 cm, which is not too far removed from the actual value of 349 in. (886 cm) for 
the reference loop. The average NRe weighted according to  the fractional areas involved is 5.06 X IO4 .  

It seems reasonable to inquire as to the WRe) for the prototype. Based on D, lQNi-Na, vl, PI ,  and 
values, which are, respectively, 0.89 cm, 3.3 X 
cm-’ sec-’ , one may compute the h as well as the N R e  using 

cm2/sec, 63.5 cmlsec, 0.772 glcm” and 1.80 X g 

along with definitions of the various “numbers” as given in the Nomenclature. One finds, as demonstrated 
in Appendix A, that h = 4.27 X cm/sec and(NRe)= 4.85 X IO4 for the prototype.” The latter seems 
to compare favorably with the reference loop (NRe)  cited above. An illustrative comparison of the profiles 
for the tent-shaped prototype and reference loops appears in Fig. 2. Note that the reference origin, z = 0, in 
Fig. 2 refers to the coolest spot in the loop, which is located at or near the entrance of the outer annulus of 
the heat exchanger. 

Two additional prototype loops are considered in this report. One appears somewhat trivial in that we 
assume T(z)  = ( T )  or y = ( Y )  for all z. But this particular prototype turns out to  be quite convenient for 

, 2oLiquid sodium parameters required for heat and mass-transfer computations were obtained by interpolation of 
tabulated values collected by R. R. Miller, “Physical Properties of Liquid Metals,” pp. 42-43 in Liquid Metals Handbook, 
2nd ed. rev., ed. by R. N. Lyon, USAEC-Navy Dept. Report NAVEXOS, p. 733 (rev.) (June 1952). Available as in ref. 5 .  
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Fig. 2. Temperature Profiles of a Pumped and a Tent-Shaped Prototype Loop. The prototype profile has been 
constructed to “mock up” actual profiles for simplification. Peripheral and cross-sectional areas vary in the pump. Areas in 
the prototype are constant, and fractional areas are equivalent to fractional lengths. 
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discussing transient behavior. The final prototype discussed comprises a saw-tooth function with a 
discontinuity at an origin located about the entrance of the inside tubing of the heat exchanger near the 
“hot leg” shown on Fig. 1 .  In terms of Fig. 2 ,  the saw-tooth origin would reside nearf= 0.7, We envision at 
this point a continuous and linear rise in T from T, to  T, and then a vertical drop back to  T,. A driving 
potential of this sort is invoked for reasons relating to  the high N,,  of the economizer central tube, as 
indicated in Table 1 ,  as well as the attendant sudden drop in temperature in the tube region, as illustrated in 
Fig. 2. 

Considerations Concerning the Temperature Variation of the Solubility Reaction 

Very little definitive information exists to  identify the chemical mechanism which leads to the 
dissolution of Ni (and Cr) in liquid sodium. In fact, the equilibrium or saturation values reported over the 
last ten years vary widely. Insofar as a chemical reaction is concerned, about the best we can do is to 
postulate a simple equilibrium like Eq. ( l a ) ,  namely, 

m 

where M(s) represents Ni” (and Cr”) in solid solution and M(d)  represents a particular M dissolved in liquid 
sodium. 

Part of the mysteries surrounding Eq. ( I  b) arise by virtue of the difficulty in determining values of the 
dissolved concentrations, because of their very low values. Equilibrium data from any given investigation 
show considerable scatter when plotted as a function of temperature. Most data have another common 
feature in that the variation with temperature is very small as compared with some other corrosion 
reactions. While we suffer the disadvantage of not knowing a true value of Y or y as a function of 
temperature or position, within plus or minus an order of magnitude, we can profit from the common 
observation that AY/AT is small. The selected solubility data can be forced to  fit either an Arrhenius plot 
or a linear function of temperature without introduction of errors greater than the experimental 
uncertainties associated with a given set of data. In  other words, the current status of knowledge concerning 
Eq. ( l b )  is such that considerable degrees of freedom are permissible; we are not inhibited by too much 
concrete information about the chemistry of the solution mechanism. 

In our work we shall take the values compiled by Weeks’ ’ as a good representative average of all the 
available solubility data.’ For the present report we take, as an example, the tent profile depicted on Fig. 
2: 

y = y  +--2z=Yc+2-z  ATAY AY 
L AT L 

when 0 < z < L / 2 ;  likewise 

(26)  
Y = Y ,  - 2 - ( z - L / 2 )  AY 

L 

when L / 2  Q z < L .  The subscripts C and H denote cold and hot;  AY = Y ,  - Y,. 

“John R .  Weeks (comp.), Quart. Progr. Rept. of Fuels and Materials Work for  Period Jan. I-Mar. 31, 1969, 

”In the present study, Weeks’ data have been forced to a linear solubility vs temperature plot; in the next report it 
BNL-50111 (T-494), pp. 30-32. Available as in ref. 5. 

shall be convenient to employ an Arrhenius plot for the same data. 
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Clearly a two-region solution will evolve from the tent profile. Of equal importance is the fact that we 
may take average values of the liquid parameters for computing film coefficients; thus these coefficients 
will be constant and will not vary with z because ( T )  average values will not be too far removed from TH or 
T,  values. 

MASS-TRANSFER EQUATIONS 

Once a reasonable geometry and a simple temperature profile are established for a prototype loop, 
fairly uncomplicated equations for steady-state mass transfer may be derived. These equations should 
ultimately permit computation of the net amount of alloy constituent M that might be transferred from the 
hot to  cold zones and indeed establish which sections of the loops comprise such zones. We seek 
expressions for y, the mass fraction of dissolved M, actually Ni(d), as a function of position. Our primary 
interest rests on the steady-state limit of the general solution. Although this limit can be derived without 
resorting to the general solution, acquisition of the latter is desirable to gain insight as to the nature of 
transient terms which will arise. It should be clearly stated at the beginning that the present idealized 
treatment is based on the premise that solid-state diffusion does not directly influence the mechanisms 
involved* and, further, that the results shall be derived on the basis of a mass balance carried out over the 
circulating liquid metal - not on the metal or alloy. 

Some of the final results are preempted here to  justify certain usage of symbols in the derivations. The 
constants defined according to Eq. ( lb) were determined in a nickel container that had a surface activity of 
unity, y x =  1. The same is presumed true for the prototype loop, even though the alloy under consideration 
(Inconel) is far from pure nickel. This will not alter the final results, however, as t h e y  values fall out in 
terms of Y,  which can be adjusted later to accommodate activity values other than unity. Solid-state 
diffusion effects could possibly intrude through y z  

The General Equation 

The Differential Equation 

For ease of exposition and orientation, consideration is given to either a finite increment of the loop as 
“seen” by the liquid metal, or vice versa. The loop has a constant diameter D. An incremental volume is 
A,, Az; the corresponding peripheral area is A ,  = rD Az. The amount of constituent M leaving the alloy 
and entering the liquid through a film resistance h -’ is hA,( Y - yav)pl At, where p l  is the liquid density, Y 
and y are the mass fractions of M on the metal and liquid sides of the film, and At is a short time interval. 
This quantity must equal the increase o f M  in the liquid volume increment, Ay P I A , ,  Az, where Ay = y ( z ,  t 
+ At) - y ( z ,  t )  for this term, plus the quantity moved away by the liquid flow, Ay p Q  At, where Ay = y ( z  t 
Az, t )  - y ( z ,  t )  here. The differential equation is obtained by equating the quantities as stated above, 
dividing both sides byA,,pI Az At, and finally passing to the limit whereby Ax and At approach zero while 
yav approachesy. The result is given by the neat form: 

ay 4h 
at az D 
- ay t ” - - = - ( Y  - y )  . 

For brevity we shall let OL = 4h/D, sec-’ . 

. 

(3) 

. 
231n subsequent reports we shall consider solid-state diffusion as being the controlling mechanism, then as an indirect 

part of a combined mechanism. Present ground rules excluded such effects entirely, although we know that such effects are 
important because they do occur and eventually must be accounted for. 
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. 

The distinguishing feature of this problem is the fact that the equilibrium discussed in regard to Eq. 
(Ib) shifts to favor dissolution in the hot zone and deposition .in the cold zone; thus Y varies around the 
loop. That Y varies directly with T is a most convenient assumption in view of the assumed temperature 
profiles. 

To recapitulate at this point, we are concerned about a liquid circulating in a closed loop at a constant 
velocity v. A solution for y(z, f), the concentration of M in the liquid, is sought. The dependent variables 
time t and position z are measured, respectively, from some initial time and some distance around the loop 
referenced to some conveniently selected point. The solution sought,y(z, f ) ,  must satisfy Eq. (3), where the 
constant a is known and Y(z) is presumed given. The precise meaning of the “driving” concentration Y(z) 
depends on the particular prototype selected and the mode of the mass-transfer process. Specification of 
Y(z) at this time is not required and in fact, not desired, because we desire ageneral solution. The boundary 
conditions comprise an initial condition and a point of closure for the loop. The initial concentration of 
solute is denoted by 

y(z,O)=y,(z), O < Z < L ,  (4) 

and since the loop must be closed, 

y(0, f) =y(L,  f) , f 2 0 . ( 5 )  

The problem may now be restated as follows. Find a solution for y(z, f) defined for all t 2 0 and for 0 < z 
< L ,  and satisfying Eqs. (3), (4), and (5). Because of the closed-loop feature of the problem, t and z are 
related by nL + z = vf + z o ,  where zo is the location at time zero of the liquid element at (z, t) and n is the 
number of cycles or times the element has passed the reference point z = 0. This equation can be used to 
transform the independent variables to the Lagrangian variables (zo, f). However, for present purposes it is 
more convenient to  transform independent variables to  the pseudo-Lagrangian variables (z, ?), defined by 

- 
z = z ,  

and 

- 
f =t-z/v. (7) 

Superficially the major change involves time. The variable 7 represents the last time at which a given 
volume element at z passes the reference point L;  thus z/v = f - ? is the time required for the volume 
element to  reach a particular z during h given cycle. Notice that n is related to 7 by the inequalities(n - 

The next step is to define a new set of dependent variables such that results in terms of the original 
1)L/v < ? < nL/v. 

variables are identical to those given by the tilde (transformed) variables. Thus one simply writes 

or 
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A connection between the differential equations for the two systems of variables derives from the familiar 
chain rule: 

(9) 

The definitions of ? and ? show that az/a? = 1 and atla? = v-l ; thus the simple result above follows. 
Now Eq. (4) may be written in terms of the new variables using Eqs. (9) and (Sa) with a/v (cm-’) set equal 
to  4 for the integration.process: 

-+ a: 4j7 = 4 Y ( Z ) .  
aZ 

Although Eq. (10) takes on the form of an ordinary first-order differential equation, the partial symbolism 
is retained as a reminder that? = F(?, ?) and that we are still dealing with a system of two variables. 

Integration Procedures 

Nothing unusual is involved in the integration of Eq. (IO); one simply employs an integration factor, 
exp (14 dz), in the usual way. Thus 

or, in inverted form, 

where the “constant” of integration@(?) is independent of ? but must, at this point, be allowed to  depend 
on ? (in an arbitrary way) to accommodate yo(z). Several integral terms arise due to  the cyclic nature of 
the system. I t  is of some convenience to  introduce a shorthand notation for these integrals. The symbols are 
as follows: 

b 
~:(z‘> J ~ ( z ’ )  eqz’ 4 q z ’ )  . 

The inverted form of Eq. (fi), with a transposition, becomes 

y(z, t)  = e-42 [I,Z(z’) + @(t - z/v)] . (1  1) 

Now consider a 7 before the first complete cycle (denoted the zeroth cycle), T < 0, which means t - 
z/v < 0 or t < z/v. Replace all t ’s  by 0 and all z’s by z - vt in Eq. (1  1). Then . 

y(z - vt, 0) = exp (crt - qz)  [I,Z-”‘(Z’) + @(O - z/v + t ) ]  . 
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This is an equation foryo(z - ut) according to  the initial boundary condition [Eq. (4)]. From the above we 
can find @(t - z/v)  in terms o f y o ( z  - ut) and substitute this back into Eq. (1 1) t o  obtain 

y(z, t )  = e--arf yo(z  - v t )  + e-qZ I ~ - , , ( z ‘ )  . (13) 

This applies in the time interval 0 < t < z/u. 
The expression for y(z ,  t )  for t > z / v  is found through evaluation of@(t - z / v )  by findingy(0, t - z / v )  

using Eq. (1 1) again and feeding the result, y(0, t - z/u) = @(t - z/v) ,  back into Eq. (1 1) again as before. 
Thus 

This applies in the time interval t > z/v,  and the expression can be used to build up the working equations 
for all cycles including the zeroth cycle. 

For times during the first complete pass: n = 1, recall the closure condition, 

Y ( 0 , t  - z / v )  =y(L,  t - z/v) ; 

then “key on” the values on the right. All z’s are L and all t’s are t - z/v  = 7 .  This information is plugged 
into Eq. (13) to pick up the initial boundary condition,y,, from the result 

y ( ~ ,  t - z / v )  = exp (qz - at) yo@ + z - ut) + e-9L I;+,(z’) . 

Substitution of this result back into Eq. (14), while recalling the closure condition, gives 

y ( z ,  t )  = e-a‘yo(L + z - ut) + e-qZ [ f i ( z ’ )  + e-9L /LL,z-v,(z’)] . (15) 

This equation applies for the time interval z/v  < t < (L + z)/u. When t = z/v,  it reverts to Eq. (13) at its 
upper time limit (interval); when t = (L  t z ) / v ,  it becomes an expression for t h e y  profile as “seen” by the 
volume element that resided at (z ,  t )  = (0,O) after it has passed L (but not 2L). 

An expression for the next pass is generated in the same fashion. First evaluatey(L, t - z / v )  via Eq. 
(15) and then substitute the results into Eq. (14): 

for ( L  + z) /v  < t < (2L + z)/v. Clearly (by induction), a general formula for n complete cycles will be 

n- 1 

y ( z ,  t )  = e - a f  y,(nL t z - v t )  + e-9z e- i9L f f ; ( z ’ )  -+ e-n9L f f ; L + z - u r ( z ‘ )  

for [(n - l)L + z ] / v  < t < (nL + z) /v .  It turns out that the argument ofy,  and the lower limit of the last 
term is z o .  

____ 

24By “pass” we mean a time interval L/v  occurring between cycles, that is, between (n  - 1)L/u  and nL/v .  
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For further discussion, consider the element whose Lagrangian coordinate zo  is zero, and the lower 
limit on the last integral term then becomes zero. This corresponds to singling out, as "typical," the fluid 
volume element which was at z = 0 at time zero. The sum of the series expression appearing before the 
second integral term becomes 

because 

(1  -u"'b)/(l  - U b ) ,  n ' = n  - 1 , 

is the sum2 of 

The reader may verify these results, for say n = 4, by long division. The last two integrals may be combined 
through a common denominator to yield 

Substitution of this result into Eq. (16) gives 

The steady-state limit b(z, e)] can be derived almost by inspection if one starts at Eq. (3) and sets 
a.ylat = 0: 

y ( z ,  -) = y ( z )  = e-qz  [ I i ( z ' )  + Cz] . 

When z = 0, Cz becomesy(0); since 

"The series here is a geometric progression; its sum up to the nth term appears in many handbooks and elementary 
textbooks. 
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and Eq. (1 7a) is 

y(z, t )  = e-Q'y,(nL + z - v(nL t z)/v) + y(z, -) + exp [-q(z t nL)]  y(0, m) . ( 17b) 

But q(z + nL) = cu(nL + z ) /v ,  and, according to  our choice of limits in passing from Eq. (15) to Eq. (16), 
we have (nL + z) = vt;  this gives us an argument of 0 for yo as well as the final result below: 

In Eq. (17c) the steady-state and transient parts of the solution are clearly delineated. It is easy to show 
that Eq. (17c) satisfies Eq. (3). A similar exercise with Eq. (16) requires more work. 

Transient Behavior 

Discussion of transient behavior gains proper perspective only when considered in complete context 
describing initial operation of pump loops. In this regard one should note the usual practice of filtering and 
exposing reactor-grade liquid metals through and in container materials not unlike the loop alloys. It was 
mentioned in the section covering the reference loop that the loop was flushed, and a "fresh" batch of 
liquid was transferred to  the loop proper and operated at  isothermal conditions at (7') prior to adjustment 
to the AT conditions desired. Almost instantaneous adjustments, insofar as loop fluid properties are 
concerned, could be made in principle, and this was attempted; but the complexities of the instrumentation 
and heating paraphernalia (including the trap system) made this quite difficult in practice. 

Time zero for loop operation was referred to  the time at  which adjustments were completed. It is clear 
therefore that the fluid was partially equilibrated at  some (7') with respect t o  all M(d)'s, dissolved 
components, of interest even though most of the corrosive agents were hoepfully at low levels. Although 
the time boundary condition for Eqs. (16) and (1 7) are quite general, we shall assume that y o  = 0. This is 
somewhat hypothetical in nature, but it is chosen partly for reasons of mathematical tractability and also to 
conform with earlier treatments.' 

A most reasonable transient relationship derives from the results obtained thus far, namely Eq. (1 7c), 
over which a constant ( T )  and (Y)are imposed, Thusy(z, -) =y(O, -) = Y(z) =(Y), where(Y)is '/*(YH + 
Yc). Most steady-state solutions of practical import that are encountered in this report exhibit only small 
variations in amplitude about ( Y ) ,  for which reason the assumed function for y(z, m) seems reasonable to 
us. Substitution of this information into (1 7c)  with yo(0)  produces the form: 

It is interesting to  note that our assumptions have led us to  view the loop as a well-mixed or stirred pot 
operating under isothermal conditions. Precisely the same results develop when one sets ay/az = 0 in Eq. (3) 
becausey forM(d) does not change along the stream in this case. The starting point here is 

Associated boundary conditions are y o  = 0 andy + (Y) as t + -. This leads to  Eq. (20) again. 

The usual procedure for asymptotic functions like this is to consider the argument corresponding to 
99% equilibrium, that is, exp (-cut) = 0.01, whereby at - 4.61. Based on the h value set forth in Appendix 

A, 
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CY = 4h/D = (4)(4.27 X 10-,)/1.78 = 9.6 X lo-, sec-’ , 

and clearly L/v is only 48 sec! The time for an element of volume to make a cycle around the loop is L/v = 
14 sec/cycle; thus t corresponds to  roughly 3.4 cycles. 

To close, one may appeal again to proper perspective and realize that experimental pump loops operate 
for 1000 hr on the average. This corresponds roughly to  2.5 X lo5 cycles in the prototype loop. 
Consideration of transients could not be logically extended beyond ten cycles, even when additional 
reaction rate resistances are accounted. Thus, except where solid-state diffusion is important, transient 
contributions are small in the average life of a loop, and the steady-state limit turns out to  be the most 
important feature of the general solution. 

STEADY-STATE SOLUTIONS 

The “Tent-Shaped” Y ( z )  Function 

The relationship desired is obtained by passing to the limit of very large times, Then exponential-time 
terms go to  zero; Eq. (17c) becomes Eq. (18b). Alsoy(0) can be recognized via Eq. (19). Evaluation of the 
integral terms defined by Eq. (12) using various definitions of Eqs. (2) yields for 0 < z < L/2: 

where 

, no units, p E 4 L = Q L = % = -  rDhL 
x Dv Q 

and for L/2 < z < L, 

One may obtain this result directly by setting ay/at = 0 in Eq. (3) and proceeding as in Appendix C, where 
more detail appears. 

The Combined Form 

From discussions about Eqs. (2), it will be recalled that a complete steady-state solution involving two 
half-regions of L will be encountered. The task here is to combine or couple the two regions properly so 
that no discontinuities are introduced in they  profiles and so that an overall mass balance o f M  in the fluid 
is maintained. Balance information is introduced via ay/at = 0 and imposed continuity at z = 0 = L and z = 
L/2. The fact that a mass balance is attained is somewhat obscured by the required algebra; it becomes most 
apparent when plots of expressions for y are superposed on assumed profiles for Y. 

Inspection of Eqs. (21) reveals that f = z/L is a natural change of independent variable. The equation 
can be written twice, one time for each region. Over the first half we shall havef, with AY = Y ,  - Yc and 
with Y ,  as written; over the second half, f, , with AY, = -AY,  ; this means Y ,  replaces Y ,  everywhere. 
Bothf, andf, range from 0 to 0.5; thusf=f ,  in region 1 a n d f =  0.5 +f2 in region 2. The coupling process 
is started by writing Eq. ( 2 1 ~ )  for region 2 atf, = 0.5,f= 1: 
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~ ~ ( 0 . 5 )  =y,(O) e-@/2 - AY t (Y, t 2 AY/p)(l - e-PI2) . ( 2 3 4  

For yz(0.5) on the left side, one merely writesy,(O) because at z = 0 = L ,  f, = 0 andf, = 0.5. A similar 
substitution is made on the right side, sincey,(O) =y,(O.5). However, the complete expression fory,(O.S) 
is used. Thus, with the aid of Eq. (21a), Eq. (23a) becomes 

y,(O) = b,(O) e-p12 t AY t (Yc - 2 AY/p)(l - e-p/2)]e-p/2 - AY + (YH t 2 AY/p)(l -e-pl2) .  
~. 

(23b) 

The above may be solved to yield either 

or 
. I  

(24) y l ( 0 ) = ( l  +e-pD)-l [(Yc +2AY/p)+(Yc -2AY/0)e-Pl2] . 

Substitution of Eq. (23b) into Eq. (21a), evaluated atf ,  = 0.5, givesy,(O). For numerical calculations one 
computes y,Cf) up to ~ ~ ( 0 . 5 )  and then, using they,Cf) form with they,(O.S) =y,(O) value, computes 
y,Cf) back toy,(O) again. A plot, so prepared, using the 0 value given in Appendix A is presented in Fig. 3a. 
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Fig. 3. Comparison of Potential, Profiles for a Tent-Shaped Y ( f )  Prototype Loop. At top, concentration profiles are 
presented; below, temperature profiles are presented. Differences in relative phase shifts and amplitudes arise because p and 
p’, the frequency factors for mass and heat transfer, respectively, exhibit a ratio of p/p’ = 260 (see Appendices A and B). 
For the temperature case p’ was so high and 7 - T so low that a magnified ordinate and a discontinuous abscissa were 
required for clear presentation. 
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Related Temperature Functions 

A plot pertaining to the temperature profiles is presented in Fig. 3b. Here, 7 refers to the bulk-fluid 
temperature. The heat-transfer behavior leading to  the profile in terms of 7 and T is completely analogous 
to  the mass-transfer behavior leading to the Y and y profiles of Fig. 3a. Marked differences in the 
appearance of the two profiles resulted from the selection of scales as necessitated by dramatic differences 
in respective.0 values. These are 0 = 1.368 for mass transfer (Appendix A) and 0’ = 356 for heat transfer 
(Appendix B). 

The fact that the driving force functions used to describe the profiles are related becomes very clear 
when the equations in the preceding section are compared with those in Appendix C. Also, similarity of the 
formulas used to calculate /3 and 0’ (Appendices A and B) gives additional credence to the well-known heat- 
and mass-transfer analogy. 

It is clear, with respect to the temperature plot, that external wall temperature measurements closely 
approximate the bulk-fluid temperature at a given point z or f. Akhough this statement is true mainly for 
high-velocity pump loops, it is easy to accept when it is realized that T - T is much smaller than the 
confidence level one associates with thermocouple measurements. It is also pertinent to note here that an 
extra-thick wall was assumed for the prototype loop since film resistances were practically nonexistent. 

Periodicity and Symmetry 

The plots of Fig. 3 indicate definite periodic properties of the related function and to a lesser extent 
some degrees of symmetry. All values oscillated in some fashion or other about a common mean value. Asp 
increases, the curve for the bulk fluid attenuates and shifts to the right with respect to the curve for the 
wall value. Very low 0 values tend to  impart sine or cosine features to the bulk-fluid curve. Locations of the 
so-called “hot” and “cold” zones depend on the shift. The maximum shift approaches f = 0.25 as 0 
becomes very small. Obviously the Y curve of Fig. 3u is symmetrical about f=  0.5, as originally assumed; it 
exhibits symmetry characteristic of an even function, Y [ +  - OS)] = Y r -  0.51. T h e y  curve behaves as 
an odd function about anfvalue slightly less than 0.5. 

There exists another special property with respect to  the y curve, but this is not at all apparent from 
Fig. 3a. It results, in part, from the characteristics of a difference plot, namely, Y - y vsf. Individual 
differences are directly proportional to the steady-state rate of transfer across any dA, at variousf values. 
A curve of this type can be integrated to give the positive area corresponding to the steady-state rate of 
mass transfer out of the hot zone, and this must equal the negative area for the cold zone. Notice that this 
is simply a mass-rate balance on the wall using sign conventions adopted for the liquid balance and also that 
the length of both zones i s f =  0.5 becauseo, = p 2 .  

For the reader’s convenience, another plot (Fig. 4) is presented giving the same information contained 
in Fig. 3a with the added feature of a Y - y difference curve. Consider any pair of points in regions 1 and 2 
(always defined in terms of the static Y curve, not they  curve, shifting with@. For example, eitherf= 0.1 
and 0.6 or f, = 0.1 = f 2 .  Notice that the corresponding difference curve values are -2.77 and t2 .77 ppm 
respectively. Equal difference values with opposite signs occur for all possiblef,, f2 pairs,2 and indeed this 
feature of the curve guarantees that a cbrrect mass balance exists. Thus the difference curve exhibits sort of 
a “skewed” or inverted symmetry about two points, namely,f,, f, origins a t f =  0, 1 .O and 0.5. 

26The teim “pairs” indicates particular values off, andf2 along z / L  whereyvl) = -ycfi). The distance between pairs 
is 0.50. 
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The special property of the y curve, alluded to earlier, may be demonstrated here, now that the 
importance of Y - y difference curves has been established. Consider first those values at the boundaries f = 
0 , l  .O and 0.5. It is desired to  prove that 

r i ( O ) - Y C = Y H - y z ( 0 ) = Y H - Y 1 ( 0 . 5 ) ,  

or 

One may show this by operating on the right-hand side of Eq. (25b) using Eq. (21a) and then Eq. (24) to 
eliminate the factory,(O) [ I  t exp(-fl/2)]: 

y H +  Y c = y , ( 0 ) + y , ( O ) e - P / 2 + A Y + ( Y C - 2 A Y / ~ ) ( I  

= b,(O) (1 t e-P/2)] + AY + (Yc  - 2 AY/fl)(l - e -P /2 )  

The proof may be extended to all points once Eqs. (25) are validated. One may start with a rearranged form 
of Eq. (21b), eliminate YH - y,(O) using Eq. (25a), and finally eliminate the remaining exponential terms 
with the aid of Eq. (21a): 

= - ~ , ( f 1 )  - 2 AY f - YC + 2 AY/fl] - 2 AY f + YH + 2 AY/fl 



or 

Although f =  f, up to  0.5, f = f, + 0.5 beyond this point. Numerical computations are expedited by Eq. 

(2Q).  

Computation of Mass Transfer 

The Exact Solution. - Attention is called to  points on Fig. 4 labeled fm and f,,, which constitute the 
boundaries of the hot and cold zones. These points are sometimes called “balance points” because they 
define areas under the Y - y difference curves that must be equal to ensure a complete overall mass 
balance. In terms of integrations alongz orf, to obtain the subject areas,f, and f,, represent the limits of 
integration. Notice that Y - y = 0 at f, = 0 and that the slope of t h e y  curve is also zero at f, = 0, in 
accordance with the steady-state form of Eq. (3). All this happens because they  and Y curves intersect one 
another at fm.  

Acquisition of an explicit expression for f, is most desirable since its exact location will permit a 
computation of y,. Both are required to compute or estimate the amount ofM(d) that migrates from hot 
to  cold zones over a given time interval. Note the subscripts m and m’, which represent respectively the 
minimum and maximum values of y in terms off or y. One may consider only fm in zone 1 ; one starts with 
Eq. (3), where aylat = 0, and sets dy/df = 0: 

thus Y ,  = ym . Note that Y ,  here is not Y H .  The next step involves substitution for Y ,  using Eq. (b), 
and the same fory, using Eq. (216). The result is 

- 
Y ,  t 2 AY f, = b,(O) - Y ,  t 2 AY/P] e ’’, t 2 A Y f ,  + Y ,  - 2 AY/P 

Cancellation and transposition yields 

a logarithmic form of which is 

2 AY f =-ln, “ P  

Numerical values for the computation appear in the Nomenclature, in Fig. 4, and in Appendix A. The value 
ofy,(O) may be obtained from Eq. (24); it is 2.078. One finds that 

1 + 2.078 - 1.500) 
fm = mine 1.754 

= 0.208 
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Of course, in zone 2, 

f m  1 = 0.5000 + 0.208 = 0.708 

. 

Now from Eq. (3u) 

y m  = [1.5 t (0.208)(2.4)] X - 2.0 X , 

and from Eq. (1212) 

ym' = [(IS + 2.7) - 2.01 X ~ 2 . 2  X . 

An expression for the total mass transport again requires use of Eq. (3) with aylat = 0: 

Separation of variables and multiplication of both sides by pl ,  the liquid metal density, gives the following 
integral forms for j,,,, the total mass flux: 

For the time being, we shall assume that j,,, is constant with time; thus 

r '  
AM/A = s j M  dt = j M  At 

0 

Consideration of metals other than pureM requires that both sides of Eq. (28) be multiplied by (7:). 

suggestedI4 that an approximate value of aM would be given by 
In the past and perhaps based on curve shapes similar to those for temperature in Fig. 3a, it has been 

where f; and f,' would be evaluated at f = 0.5 and f = 0, rather than f m ,  and f m  respectively. An inspection 
of either Fig. 3b or Fig. 4 clearly demonstrates that this is a poor approximation for the tent profile when p 
is low, because the position of f m  and f m t  undergoes a nearly maximum shift whereby y ,  (0) - y,(O) + 0 at 
low p. 

A most interesting feature of Eq. (28) and its application is the fact that one deals with the left rather 
than the right side of this relationship. Thus a tedious discussion of the integration procedures required to 
ob,tain an expression for AM may be avoided here, since it can be shown, after considerable algebra, that 
the results reduce to, the simple form on the left. In other words, the integration produces a somewhat 
trivial identity. There are, however, many instances where the right-hand side is useful; in fact, most cases 
encountered in this report force us to  take such an approach. 
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T o  amplify the importance of the right-hand side a calculation of the total amount of Ni(d) transferred 
from hot to cold zones shall be performed for an exposure of 1000 hr. Rather than using Eq. (28) directly, 
it is preferable to eliminateyCf,,) by the identityyv,,) +ycf , )  = z(Y), w h c h  follows from Eq. (26b). The 
result is . 

where ( Y ) =  ‘A(Yc + YH). Notice that (y?)has been introduced for the first time to be consistent with Figs. 
3a and 4 ;  for Inconel, y = 1 (assumed) and <F) = 0.738 (actual). The result, using values in cgs units, is 

AM =(0.77,25)(0.738)(2)(1.0 X 10-7)(158)(3.6 X lo6) 

= 64.86 g . 

Experimental results show2 that the total mass of nickel transported under comparable conditions could 
not be much greater than 12.36 g. This is about 84% of total deposits, which at most amount to 14.7 g. 
Thus the predicted value is roughly five times greater than measured values. 

Approximate Form for Low 0. - Based on the premise that the Y values are valid within reasonable 
limits of confidence, about the only means for “adjusting” the predicted value resides in considerations 
concerning altered values of h or 7;. T o  consider changing y? at this point is analogous to opening 
Pandora’s box. It shall be assumed, therefore, that predicted AM’s are too high because the h is too high. 
This can be rationalized by invoking an additional reaction-rate resistance, k;’ , as discussed in Appendix D. 

What is needed, then, is a good approximate form for AM when 0 is low. The exact solution becomes 
difficult to  use for accurate results at low 0, and, furthermore, iterative techniques must be employed. 
Clearly, the form desired should be explicit in h. The h and/or 0 are buried in the exact solution, s inceym 
and f, are both transcendental functions. 

At high values of 0, decreases in p values induce two effects regarding the curves of interest: first, the 
relative positions of the hot and cold zone shift, as discussed about Fig. 3, and second, the shape of the Y - 
y curve is changed from a step function [in which regime Eq. (29) is quite useful] with a minute, nearly 
constant Y - y value to  a curve that begins to reflect the Y curve shape.The y curve, on the other hand, 
closely approximates the Y curve when 0 is quite large, but y(z) approximates the (Y) line when + 0. All 
these effects are apparent through comparisons of curves on Fig. 3. 

At low values of 0, we reiterate that the Y - y curve coincides with the Y curve and that y for all 
practical purposes is practically a horizontal line along(Y). One might suspect under such circumstances that 
the approximate form sought will come from the right side of Eq. (28). 

A precise development of the form sought is gained by going back to Eq. (3) and performing a special 
integration at steady state for the case p + 0 (Le., dy/df = 0). The result is a constant. I t  is helpful, at this 
point, to recall that a very high as well as a low h, yields 0 + 0 and that negligible M is being 
transferred as we pass to  this limit. Thus a fluid circulating at very high Q has an ultimate, and constant,y 
value of (Y). The next points to  consider are the location of f, and f,,. One may recall that In, (1 t u )  - u 
as u becomes small. Inspection of Eq. (13) and the location of 0 therein permits 

. 
27See Figs. 4,5 ,  and 6 and - Table IV in ref. 13. 
28We assume here that h +kz and the latter is independent of velocity. 
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. By previous arguments, y,(O) - (Y); thus fm + '4 and fm, + '4 as 
ordinate over either the hot or the cold zone is obviously AY/4(yX), or AKexp/4.  Thus 

+ 0. The average Y - y or Y - (Y) 

aM = hnDLpl(yF)(AKexp/8)  At . (3 1) 

The factor '1, appears because only half the total area is involved. 
The first clue that a relationship like Eq. (31) might exist came from our attempts to adjust the 64.86-g 

value down to 12.36 g without too many trials. A graphical method was used for this purpose, as 
demonstrated by constructions on Fig. Sa. T o  obtain an average Y - y ,  the parallelogram 1, 2, 3, 4 was 
drawn. This was immediately recognized as being nearly equivalent t o  the rectangle l', 2', 3', 4'. The points 
u and c denote the balance points wherejM = 0. It turns out that the planimeter gives a value for the actual 
area a, b, c that is only a few percent less than the approximate l ' ,  2', 3', 4' area, which is AY/4(yF), or 
AK/4.  T o  test this finding, the high value can be recalculated using Eq. (31) and Appendix A: 

AM =(1.368)(158)(0.7725)(0.738)(1.2 X 10-6/8)(3.6 X I O 6 )  

= 66.56 g 
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If the average ordinate corresponding to the parallelogram had been used, the result would have been 64.34 

g. 
The major implication of Eq. (31) is that AM is directly proportional to h at low values ofp.  Thus an 

adjusted h value may be obtained by.multiplying the original h by the ratio of the AM‘s in question. That 
is, either 

(4.27 X IO-’) = 8.14 X cm/sec 

pneW =(0.1906)(1.368) = 0.261 . 

The complete y curve for the newp was plotted on Fig. 5b. Thef, is 0.241; thisvalue in conjunction with 
the exact solution fory yieldsy, =2.081. Thus with the ratio from Eq. (30), 

2.100 - 2.081 64.8 = 12.32 g. AM = 2.1 00 - 2.000 

Equation (31) would have given exactly 12.36 g. 

The “Saw-Tooth” Y(z )  Function 

In the previous sections, it was shown that the solution based on a tent-shaped Y(z)  function could be 
adjusted to yield a reasonable result, if an additional mass-transfer resistance (a reaction rate constant) were 
invoked. It was also shown that low values of transfer all lead to an approximate form which seems to be 
practically insensitive to  the shape of the Y(z)  function - even though adjusted estimates of total transfer 
are compatible with experimental results to a limited degree. The approximate form, however, gives no 
definite information as to the location of deposits along z .  

Suppose that the solubilities were actually lower than those adopted for this work. Then the h’s or 0’s 
would have to be increased to  match the experimental observations (the heat transfer behavior mentioned 
earlier is a good example of the point under discussion), and the location of the deposits would be more 
clearly defined under these conditions. 

During introductory remarks, we expressed concern about the high N , ,  and sudden AT in the inner 
tube of the heat exchanger. It now seems appropriate to  present Fig. 6, which demonstrates that deposition 
of Ni” (and C r O )  starts near the entrance of this tube, then exhibits a major maximum at the center or end 
of the tube, and finally shows a secondary maximum in the throat of the pump. Most of the deposits fall 
only within the short interval o f f  - 0.64 to f - 0.82 on Fig. 2. If the h and values in Appendix A were 
indeed valid (with a k 2 ) ,  deposits should appear in the first and last quarters off. Clearly they do not, and 
considerations of a saw-tooth function seem pertinent. 

The saw-tooth function given by 

T(z)  = T,  t z(AT/L) 

reflects a “driving-force’’ function 

. 
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Y o  = Y ,  + f A Y .  (32) 

Again a linear Y vs T relationship is assumed. In many respects, it is easier to handle the single-region 
saw-tooth function than the two-region tent-shaped function. About the only unusual property concerns 
the discontinutiy at  f = 0 and/or f = L ,  but this feature imparts a close approximation to the ( Y  - y)a 

deposition profile indicated by experimental observations - a desirable feature. The simplicity of form 
prompts us to go back and use some of the material presented in the section entitled General Solution. 

Of course some integral functions must be evaluated, for example, I,Z(z’) and one or two definite 
integral functions, depending on our requirements. 

Reference to Eq. (12) gives the proper form for I,Z(z.’); we have 

I,Z(z‘) =Jz [ Y ,  t (AY/L)  z ’ ]  eqZ’ dqz’ . 

Integration of the second term requires the “parts formula.” The result is, when u = qz’ ,  

The reader may differentiate the above to validate the form shown; this may be rearranged to yield 

I ~ c f ’ ) = ( Y ,  - AY/p)(ePf-  l ) + A Y f e p f ,  (33) 

- with the aid of Eq. (22). The formula corresponding tolk(z’) obtains whenf= 1. The steady-state solution 
derives from Eq. (186). Thus 

( Y ,  - AY/p)( l  - e - P ) +  AY 

(1 - e - 0 )  
ycf, m ) = ( Y c  - AY/p)( l  - e - P f ) +  A Y f + e - P f  

It is important to note thaty(0,  w) is the term withm brackets. 
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More About the Approach to Steady State 

As before, the volume element residing at the reference point, z = 0, at time zero shall be selected for 
consideration. Thus our limits and restrictions will be the same as those described about Eq. (17c), namely, 
ycf, t )  = ycf, a) - e-“‘ b(0, a) + yO(0) ] .  Conditions were yo(0) = 0 and nL + z = vt. Without too much 
effort it can be shown that at =p(n +fl. The latter was used in the calculations to expedite location of the 
proper fvalue for particular ycf, t )  values - although this change in form was not absolutely necessary. 

The results appear in Fig. 7. Each point on the curve represents the concentrations in the “reference” 
volume element (at zo = 0) from the very beginning of loop operation (at t = 0). In this sense we view the 
transient behavior from a Lagrangian point of view in that we move with an element of liquid around the 
loop and observe changes experienced therein. The reader is cautioned to avoid interpreting the curves as 
“stop-action’’ pictures following the entire “charge” at the end of particular cycles. T o  close, we note that 
the steady-state profile where such an interpretation is valid is closely approximated at the end of the third 
cycle. This is about the same result obtained from the stirred-pot approximation presented earlier. Thus the 
shape of the Y(z)  profiles does not appear to be of great significance in regard to  the time required to 
approach steady-state conditions. 

Steady-State Solution for Various Values 

Many of the symmetrical properties associated with the solution for the tent-shaped Y(z)  function are 
absent in the case of the solution for the saw-tooth function as defined by Eqs. (32) and (34). Accordingly, 
the discussions about the latter shall be comparatively brief. It should be pointed out, nonetheless, that 
many similarities remain. For example, asp + a, y(f) + Yo, and as p + 0 , y o  + ( Y ) .  
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. 

Equation (34) was solved for various fl values in order to  bring forth the properties with maximum 
clarity. Most of the interesting features occur at z = 0 = L; so we elected to  split the plots o f y m  such that 
this point would appear at the-center of the drawing denoted Fig. 8. We do not wish to infer through this 
method of presentation that a two-region solution is involved; rather we wish to stress the role of the 
discontinuities introduced by the Y(z)  function. 

The Y(0)  discontinuity is of the first kind; this leads to ay(0) discontinuity of the second kind. For the 
time being, primary interest concerning the discontinuities on Fig. 8 is the fact that they causeyCf,,,) to  
reside at f(0) = f ( L )  always. The fmax cannot be found by differentiatingym and setting the results equal 
to  zero, simply because the derivative does not exist at this point. One can, however, locatefmin using the 
usual procedure outlined above. 

One will recall that information as to the maximum and minimum values is required in order to 
compute the amount o f M  transferred from the hot to the cold zones. The latter is proportional to the areas 
under (or over) the curves presented in Fig. 9, where negative areas reflect losses by the liquid or deposition 
on wall surfaces and positive areas represent regions where corrosion takes place. The difference curves 
revert to exhibition of second-order discontinuities because Y is involved. 

We now seek equations like Eqs. (28) through (30) as presented in a previous section. To obtain these, 
one only needs to find ycf,) (rn represents minimum), sincef,J =fmax is known to exist at the origin for 
all values of fl. The form f o r y ’ m  is obtained starting with Eq. (34). Thus 

Multiplication by 1 - e-@ and performance of obvious cancellations leaves 
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Fig. 8. Predicted Bulk-Liquid Concentrations of Nickel in Sodium for a “Saw-Tooth’’ Prototype Loop. Curves apply at 
steady-state operation; they demonstrate the effect of varying p. 
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Fig. 9. Differences Between Saturation and Bulk-Liquid Concentrations of Nickel in Liquid Sodium. The curves reflect 
the shape of steady-state deposition profiles as predicted for a saw-tooth prototype loop. 

If it is desirable to find f , ,  a logarithmic form must be developed; one writes 

T o  findyv,), we rewrite Eq. (34) as follows: 

Application of Eq. (3%) to the last term in the above gives 

The result here states that all minima, at all P ' s ,  occur at the intersection of the y(/) and Y o  curves, as 
indicated on the right side of Fig. 8. This is not too surprising sincejM and thus Y - y must be zero, as this 
is a balance point. 

Computation of Mass Transfer 

. 

With the aid of the formulations above, the mass transferred under conditions comparable with the 
previous example with 0 = 1.368 can be calculated. The first step is to compute f ,  via Eq. (36~): 
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From Eq. (37) we find 

ycf,,,)= [1.5+(1.2)(0.444)] X =2.033X . 

To findy(0) we merely compute the same from its formula: 

y(0) =ycf,,) = Yc - AY/p + AY(1 - e-p)- ’  

= [( 1.5 - 0.877) t (1.2/0.7456)] X 

= 2.333 X . 

Now, in Eq. (30), 2 [ ( Y )  - ycf,,)] /yx is equivalent to  b(0) - ycf,, ,)I /yx in the present case. The value is 
2.0 X in each case; so the answer will come out exactly the same as found previously, 64.86 g. 

Of course this is much too high, and another approximate form is sought. The approach is the same as 
before; we seek the limit off, as fl + 00. We have 

1 --In (u) , 
P 

where u = (1 - e-P)/p. Application of L’Hospital’s rule once leaves 

which constitutes a new problem to which the rule may be reapplied. Thus 

One more application yields 

1 1 
P ’ 0  p+o eo t I 2 

L f,= L -+-. 

Now we know that fm = 0.50, f m 8  = 0 = L ,  a n d y o  = ( Y )  at low p. This takes us right back to  Eq. (31) 
for an approximate form. Obviously the numerical results will also be identical. Thus we join in Epstein’s 
conclusion: that the approximate form for AM/[ from any reasonably shaped Y(z)  function is the same. 
However, the shape of Y(z)  does have a marked influence on the location of the predicted deposition 
profile, even at low 0 values, as illustrated in Fig. 9. 
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DISCUSSION 

Concerning the General Solution 

The mathematical solution of the problem posed by Eqs. (3)-(S) proceeded in three steps. First, the 
independent variables were transformed to  the pseudo-Lagrangian variables (z“ , ?), in terms of which Eq. 
(3) became an ordinary differential equation in y ,  with 7 appearing only as a.parameter. Second, this 
equation was integrated, thereby introducing as the constant of integration an arbitrary (at this stage) 
function @(T). Finally, the inverse transformation to independent variables (z,  t )  was performed, and 
various algebraic manipulations were executed to find @(q in terms of the assumed given initial 
concentration yo(z). The mathematical expression of the loop closure, Eq. ( S ) ,  played a crucial role in the 
manipulations in this final stage. 

At this point it should be mentioned that the transient treatment of Keyes14 seems to be incorrect, 
because he apparently makes the unjustified assumption that the function@(?) is linear. This error does not 
have a great significance, since most of Keyes’ work is concerned with the steady state, which is treated 
correctly. 

I t  would have been just as easy, perhaps easier, to solve the problem with the initial condition (4) 
replaced by a condition. of the form 

y(0, t) = $(t) , 0 < t < L / v  , (4) 

with $(t)  known. The condition (4) corresponds to  a starting procedure in which the loop is filled at the 
reference point, z = 0, from a reservoir containing fluid with a known concentration of solute. By way of 
contrast, the condition actually used, Eq. (4), corresponds to a procedure in which the loop is already filled 
at time zero. Furthermore, the solute concentration is known throughout the loop at this time. Thus (4) 
seems more appropriate than (4), in view of the actual starting procedure as discussed in the section 
Transient Behavior. 

- 

In obtaining Eq. (1 7a) it was assumed that z o  = 0: The corresponding equation for arbitrary zo is 

where, as before, zo = nl, + z - ut,  with n the number of cycles having been undergone by the particle at z 

at time f .  In order to obtain a “stop-action” picture of the solute distribution y as a function of z for fixed 
t, one simply establishes the desired value o f t  and then computes the right-hand side for various values of z ,  

noting that zo is a function of z .  In most of the presentations of this report, the contrary option of ffiing 
zo was selected. With the particular choice zo = 0, the computations were considerably simplified, and the 
resulting Lagrangian (particle following) gives at least as good a physical picture of the solute distribution in 
the stream as would a plot of y vs z for ffied t. 

Finally, it should be mentioned that we have solved Eq. (3) by Laplace transform techniques. However, 
this only provided an alternate way of obtaining Eq. (1 l ) ,  and the really difficult part, evaluation of the 
constant of integration @(t - z /u )  in terms of the given initial distribution y o ,  still has to be performed 
laboriously, as above. 

. 

i 
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Application to Corrosion in Sodium-Inconel Systems 

The system of equations presented here should hold for all cases of heat transfer where the conditions 
stated are applicable and the assumptions made are valid. By the same token the equations should hold for 
simple and special cases of mass transfer where the effects of solubility reactions are absent. We have shown 
that such effects are present in the Inconel-sodium corrosion behavior, and, unless they appear in the simple 
fashion outlined in Appendix D, one should expect that the equations will not describe the type of 
corrosion under discussion. The viewpoint adopted from the very beginning for the present treatment was 
that this would be an idealized limiting case; it turns out to represent the fastest mode of transport one 
might envision. 

Two features of the corrosion process are clear at this point: (1) the necessity of introducing additional 
resistance in order to match computed and measured corrosion results and (2) the unusual position of the 
deposition zone, that is, its proximity to  the hot zone. We suspect that both features relate to our lack of 
knowledge about solution behavior and possible supersaturation tendencies of the solute. In any event the 
features cited induced us t o  rediscover that, for low-resistance systems, mass-transfer computations are not 
influenced by the driving-force function employed as a prot3type. In opposition to this, the positions of 
the zones are very much dependent on prototype selection. Thus the second feature was satisfactorily 
accounted for by the use of a saw-tooth Y(z)  function. In this connection we are not alarmed by the 
obvious differences in shape of the profiles shown in Fig. 6 and those suggested by Fig. 9. The latter are 
relatively dramatic. This was to  be expected, however, since the function is quite extreme in its physical 
implications even though it is easy t o  manipulate mathematically. Furthermore, the kinetics of dissolution 
might be much more complicated than set forth in Appendix D. Some work along these lines for the Ca-Na 
and Ag-Na systems (when supersaturated) appears in the l i t e r a t ~ r e . ~  A supersaturated solution with 
sluggish solute-precipitation characteristics would “smear out” the sharp curves suggested by Fig. 9 and 
would tend to produce curves like Fig. 6. 

In  order to  impress the reader with the severity of the problem, photographs of tubing sections about 
the deposition region are presented in Fig. 10. The test number appears at the top. Reference to archaic 
documents3o reveals that the test conditions were the same as those corresponding to  the numerical 
examples given earlier, with the exception of the sodium flow rate, which was 1.5 gpm rather than 2.5 gpm. 
The appearance of the photos is, nevertheless, quite similar to  the reference conditions for the examples. 
Intergranular attack in the hot zone is about 2 nuls in both cases, but the deposit thickness increased from 
12 to 22 mils as the flow rate was increased from 1.5 to 2.5 gpm. A more complete description of the 
deposits and corrosion results at various At’s are given by DeVan and West.3 We digress to point out that 
DeVan views the major long-range aspect of the problem as one of possible complete plugging rather than 
hot-zone degeneration. For the present we note from Fig. 10 that specimen 7 is near the hot-loop end of 
the tubing, specimen 8 is about halfway down, and specimen 9 is near the cold-loop end. Specimen 1 1  is in 
the cold loop about halfway between the heat exchanger exit and the return line of the cold trap. The ends 
where a pipe cutter was applied are rather obvious. One of the more interesting features of the deposits is 
that they comprise about 84 wt % Ni” and 13.9 wt 76 Cr”. The remainder, 2 wt 76, is unknown, but it is 
definitely not Fe. 

.J 

i 

29T. A. Kovacina, P. G. Johnson, and R. R. Miller, Kinetics of Excess Solute Precipitation in Liquid Sodium Solution, 

30J. H .  DeVanetal., ANP Quart. Progr. Rept. Mar. 31, 1957, ORNL-2274, p. 154. Availability asin ref. 5.  
NRL-6424 (Sept. 1 ,  1966). Availability as in ref. 5. 

* J. H.  DeVan and J. B. West, A Brief Review of Thermal Gradient Mass Transfer in Sodium and NaK Systems, 
ORNLCF-57-2-146 (Feb. 1 1 ,  1957). Availability as in ref. 14. 



The next point worthy of consideration is the possibility of additional sinks for M that would invalidate 
use of deposit weights as a means for corrosion measurements. This question arose because our predicted 
values with liquid films alone are too high. A prime suspect might be the cold trap, but the following 
observations are convincing evidence that the trap is not a sink for M: 

1. No deposits appear beyond the trap inlet line, where temperatures are lower than in the deposition 

2. Surfaces of trap entrance and exit lines are deposit free. 

region. 

I 

Fig. 10. Photographs of Wan Specimens Showing a Corrosion Zone at Top and Three Deposition Zones Below. 
Specimen locations and test conditions are described in the text. 
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I I I 
EFFECT OF OXIDE ADDITIONS 

3. Deposits tend to concentrate in regions with high NRe values. Such values are low in the trap system, 
which handles only a fraction of the total flow, and then with large A X s .  

4. Four separate 1000-hr loops without a trap gave the same deposition profile as comparable loop systems 
with traps. 

The cold trap was a carry-over from early experiments wherein sodium purity posed a great problem. 
Considerable Na2 0 was involved in these cases, and sometimes it was purposely induced by Na2 O2 
additions. Associated results appear in Fig. 11. One would not expect a trap system to remove NazO 
without also removing some Ni” (Cr’) deposits since the amount of corrosion does increase with 0’- 
content. In  other words it was not possible to  “direct” trap behavior under these conditions. To prove the 
point graphically we present in Fig. 12 a photograph of a perforated disk removed from a trap - possibly 
used as a plugging indicator3* in the initial phases of the ANP work. The results about which we are 
presently concerned, however, deal with experiments in which very pure sodium was used. Therefore, we 
may ignore the possibility that the cold trap acts as a sink for M. 

The next possible sink to be considered is the wall itself. We pointed out that Fe is absent in the 
deposits and inferred from this that selective leaching is a major aspect of the corrosion mechanism. This 
points to  the existence of solid-state diffusion effects in the wall. However, preliminary calculations suggest 
very low corrosion rates if one assumes that solid-state diffusion is the only phenomenon which controls 
the process. Thus we can eliminate diffusion into the walls as an important sink term. Wall diffusion will be 
discussed in depth in our next report, in which molten-salt coolants will also be considered. 

Two sets of diffusion profiles, one for the hot zone and one for the cold zone, are shown in Fig. 13. It 
is interesting to  note that the atom fractions for Ni” and Cr” are roughly 0.82 and 0.1 1 ,  respectively, at the 

32C. P. Coughlin et al., ANP Quart. Progr. Rept. Sept. IO, 1955, ORNL-1947, pp. 38-40, 54-57. Availability as in 
ref. 14. 
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2. Cold-Zone Metallic Deposits in an Oxygen Cleanup System (Trap). This particular system contained a 
large amount of impurities, but the photograph does demonstrate the danger of "losing" deposits to  the trap 
der certain conditions. 

wall surface. The Ni" and Cr" values in the deposits are 0.84 and 0.16 respectively. Since 
re gradient effects may be present, we view these results as indicative of the existence of near 
n between the activities of the metals in the deposits and those at comparable positions in the 

ty categorically state that the analytical results presented here fail to describe satisfactorily the 
mechanism in the sodium-Inconel system. The most damning evidence of failure stems from the 

__-_ the amount of corrosion observed experimentally is proportional to to-', whereas the present 
analytical results state that the time dependence should be linear. Nevertheless, there is a response to  
experimental changes in NRe and h which suggests that we are on the right track. Modifications of the 
approximate steady-state forms derived here and elsewhere might result in a system of equations which 
gives a reasonable description of the experimental results. Failure of the present treatment has resulted 
from the fact that the surface condition changes slowly with time as the corrosion process proceeds. This 
results from solid-state diffusion potentials which are induced around the loop by the corrosion process. 
Therefore the present equations may give an approximate description of loop behavior for, say, the first 
day of operation, before wall diffusion effects begin to  emerge. If this is true, one may neglect 
film-controlled transient effects. 

c 
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CLOSURE 

We have chosen to  present a closure rather than a summary because most of the analytical findings of 
importance have been stated as the equations were developed and then reiterated in the discussion. To 
avoid unnecessary redundancy, we have elected to restrict ourselves to a few parting comments. 

In view of the final statements in the Discussion section, the reader might justifiably inquire as to our 
reasons for such a detailed presentation of equations and assumptions that do not give a complete 
description of the corrosion process. Our motivations were manifold. Outstanding among these was a desire 
to obtain a valid solution for the conditions imposed, from which one could extract a vigorous treatment of 
the transient cases. The fact that the transient period is short-lived has been accepted intuitively by most 
corrosion engineers for many years. To  show this analytically was indeed gratifying even though the results 
came out as expected. 

We should stress in all honesty that the mathematical analysis used in this report is elementary even 
though there are a few spots where the derivation seems tricky. We do not regard it as original but rather as 
a tool to gain insights into the physical aspects of the problem. It is, after all, a sort of special case of 
Fourier's ring problem3 - the only difference being that the position derivative in the ring problem was 
second order while the position derivative in our problem was first order. In our opinion, this work has 
served as a valuable tool with respect t o  the overall study because it implies several approaches one might 
use to acquire a satisfactory solution to  the sodium-Inconel corrosion problem. For example, we might be 
able to reach our ultimate goal by taking k2 or h a s  approximation to be a function of time. 

I t  is particularly obvious that this solution is applicable in particularly simple cases. One case might be 
heat transfer in loop systems with marginal values of k ,  h', and C p .  Other cases might involve mass transfer 
in systems where the reaction rate constants are high and the solution reaction is straightforward and well 
understood. This constitutes yet another justification for a detailed presentation of this phase of our work. 
Several problems may arise which can be solved, or at least tested, using the results presented here. , 

. 33Fourier's problem of the ring was studied in theory and utilized in experiments nearly 100 years ago; see footnotes 
in the text by: H.  S. Carslaw and J. C. Jaeger, Conduction of Hear in Solids, 2nd ed., pp. 160-61, Oxford University Press, 
New York, 1959. 
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APPENDIX A 

Computation of the Constant p for Mass Transfer 

Diffusion Coefficient from the Stokes-Einstein Equation 

(A1 .O) 

Liquid-Film Coefficient, h 

As in the case of the heat transfer film coefficient, this parameter evolves from a combination of 
dimensionless groups. Notice that the formulations are quite similar, although the form of the Nusselt 
number is different. 

NNu = 0.023NoR.:N,O2 . 

1.8 x 1 0 - ~  
( 1 . 8 0 ~  (0.7725)(3.3 X 

1.7'' = 0.023 
3.3 x 1 0 - ~  

h = 4.27 X lo-'  cmlsec. 

Distance Frequency Factor, 

(A2.0) 

(A2.1) 

p=-- nDhL - (3.142)(1.78)(4.2 X 10-*)(905.6) . Q (158) 

Normally both 0 and 0' would have units of cm-' . However, the equations in the body of this report are 
based on fractional length. Thus these parameters must be dimensionless. 

APPENDIX B 

Computation of the Constant p' for Heat Transfer 

All parameters that are temperature dependent are evaluated at ( T )  = 1350°F (732"C), and most of 
these were obtained from interpolations of sodium values as tabulated in the Liquid Metals Handbook.' 
The tubing alloy was assumed to  be Inconel with a thermal conductivity of 6.28 X cal sec-' cm-' 
("C)-' at (2") and a AD (wall thickness) of 0.178 cm. Other values of interest appear in the Nomenclature. 

Liquid-Film Coefficient, h' 

This parameter is computed from an appropriate formulation which includes the Nusselt, Reynolds, and 
Prandtl numbers. 

c 

. 

(B 1 .O) 
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I t  is safe to assume that the p ratio is unity; thus by definitions in the Nomenclature, 

(1.78)(63.5)(0.772) o'8 (0.301)(1.8 X 0'33 
-- 

0.1345 
1.78 h' - 0.027 
0.1345 [ i.8ox 103 

> 

and 

h' = 155 caI cm-' sec-' ("C)-' . 

The film resistance (h')-' is so low compared with ki '  that it can be ignored. 

Overall Heat Transfer Coefficient, U 

U -  2.58 cal cm-' sec-' ("C)-' . 

Distance-Frequency Factor, 0 

p = - -  TDUL - (3.14 1 2)( 1 .78)( 2.58)(905.6) 

0' - 356. 

QPC, (158)(0.772)(0.301) ' 

(B1.l) 

(B2.0) 

(B3.0) 

APPENDIX C 

Temperature Profde Equations for the Prototype Loop 

At steady state there is no heat accumulation at any point along the loop, and one may simply state 
that the rate at which heat enters or leaves a volume element of the loop equals the rate at which it 
traverses the corresponding wall element and associated film: 

QprC,, dT = U(T - T)n dz . (C 1 .O) 

Both sides may be multiplied by L"(QpICp dz)-' and rearranged to yield 

dTfdf + 0'T = p'r , 

All symbols shown here are adequately defined in the Nomenclature section. 
As in the case of mass transfer, Eq. (C1 .l) is applied to  the f l  and f 2  regions wherein 

r1 = r C  t 2 A T f ,  

(C1.1) 

over f l  where 0 < f < 0.5 and 
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72 = T H  - 2ATf, f =O.S + f l  

over f2 where 0.5 < f < 1.0. This injects the tent-shaped temperature characteristics (Fig. 2) that were 
adopted for the prototype loop. 

Integration of Eq. (C1 . l )  is straightforward since it is a simple first-order linear differential equation if 
one assumes that 0‘ is a constant. Utilization of an exponential integration factor is the usual approach in 
such cases. Thus in region 1 ,  for example, 

e@f1 [(dTl/df 1) + P’T, ] = [PIT, + p‘(2 A7)f ] d f l  , 

where 7, is expressed as a function of f l  . Let u; = p’f, ; then the above may be written as 

Tleul = T c / 8  du, + (2 AT/O‘)luleul du, + CT1 . 

The indicated integrations produce the form 

An evaluation of C T ,  is acquired in terms of T ,  at fl = 0; thus 

T,Cf,) = T,(O) e-P’f l  + 2 Ar f l  + [T, - (2 A~/p‘) ] ( l  - e-p’fl) , (C2.0) 

also 

T2(f2) = Tl(O.S) - 2 AT f2 + [ T ~  + (2  AT//^')]( 1 - e-P’f2) . (C3.0) 

In order to use these equations either T,(O) or T2(0) must be evaluated in terms of 7 and 0. This can be 
done in a manner directly analogous to  that used to develop the expression for Y,(O) in mass transfer. One 
may evaluate Eq. (C2.0) at fl = 0.5 and plug the result into Eq. (C3.0) to obtain 

T,(O) = (1 + e-p’I2)- [T, + 2  AT/^' + ( T ~  - 2 A7/0’)e-P’/2 1 . (C4.0) 

Additional manipulations give 

T2(0.5 +fl) = T~ + - T , c ~ , )  . (C3.1) 

Equation (C2.0) with (C4.0) permits computation of Tv) over region 1. These values can be rapidly 
converted for region 2 via Eq. (C3.1). Of course, a knowledge of T ~ ,  T ~ ,  and 0’ is required. In the next 
section the details of computing 0’ are shown as a matter of record. I t  should be clear from Fig. 3b that 
computations were actually performed to estimate T~ and T~ values that would produce a AT of 300°C 
with T,  = 1200°F. 
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APPENDIX D 

Combined Solution-Rate and Film Coefficient 

The relationships in this section are quite familiar to those engaged in corrosion research; they appear, 
for example, in the recent comprehensive report issued by Hopenfeld and Darley.’ They are repeated here 
for the readers’ convenience - particularly for purposes of familiarization regarding the present 
nomenclature. 

Consider an alloy with constituent M that tends to  undergo a reversible reaction as follows: 

k 
M(s) + M(d) 

k2 

The symbols s and d are intended to denote solution in the alloy and dissolved in the loop liquid 
respectively. The overall rate of solution or deposition is controlled by reaction-rate kinetics coupled with 
fdm effects. The objective here is to develop an expression that will combine these two effects. For 
orientation it should be mentioned that three reference concentrations are involved; in descending order of 
magnitude, these are Y,y*,  a n d y .  Only two are required; so it is desirable to eliminate one, sayy*, since 
this concentration is never subject to direct measurement. 

One may start by setting forth the classical rate expression for the net amount of M that reacts 
according to the reaction indicated above. The expression, in terms of the molecular or atomic flux, is 

(D1.O) 

A positive JIM occurs if the first term on the right-hand side exceeds the second; this means that the flux 
represents a net gain by the liquid or +JM(s).  Of course, the latter is equivalent to -JM(s). Thus a plus or 
minus J,.,, implies respectively that corrosion or deposition is occurring at the point z at which the flux is 
referred. The units of ka must take on those of JM (moles cm-’ sec-I) because a,.,, must be dimensionless 
by established conventions. The units cm2 refer to a unit of the area A ,  along z. 

At  equilibrium, JIM = 0, and one obtains the correct thermodynamic expression for the equilibrium 
constant, namely, 

(D2.0) 

Although Eqs. (D1.0,-2.0) are classical expressions - in a thermodynamic sense - for first-order reactions, 
they seldom appear in corrosion practice. Mass fluxes are most frequently used, and the concentrations and 
equilibrium constants involve weight or mass fractions. Furthermore, the film coefficients have velocity 
units. These conventions require the use of mass-density terms. It is clear, therefore, that additional 
modifications of Eqs. (D 1 .O, 2.0) are in order. 

A definition of the activity is quite flexible. It is convenient for present purposes to take aM as the 
product of an activity coefficient and the mole fraction. This implies a straightforward standard state for 
M(s) and a hypothetical one for M(d). Nevertheless we may proceed without delving too deeply into this 
aspect of the theory, and simply write 

(D3.0) 
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where x and 7 represent mole fractions in the solid and liquid respectively. Measurements of K e x p  are 
carried out in a nickel pot of unit activity, but is expressed in terms of mass fraction. Thus it is wise to 
leave Falone, while modifying 7 as follows (assuming 1 cm3 liquid): 

Now if new rate constants are defined such that k ,  = k:yM(s )mM/p l  and k ,  = k;TM(dlmI/pI ,  then the 
expression for the mass flux becomes 

The superscript * appears as a reminder that the liquid concentration which governs the solution reaction is 
the value that exists between the metal and mass-transfer film. Assuming the absence of a film, h += 00, with 
j M  = 0 (equilibrium), then y*  + Y ,  and the relationship between K e x p  and K ,  may be readily found. I t  
turns out that 

(D4.0) 

Notice that the units of k ,  and k2 are cm/sec, as is the case for the coefficient of rate of transfer through 
the film, h ,  which appears in the expression 

which may be rearranged to give 

Substitution of Eq. (D5.1) in (D3.1) yields 

(D5.1) 

Further manipulations utilizing Eq. (D4.0) produce the final rate form 

where 

Equation (D6.0) is the relationship sought. It permits one to  inject a combined coefficient in the equations 
presented in the body of the text without altering their basic forms. In Appendix A, a priori calculations of 
h have been performed; values of k must be derived from the loop data, as only rough values of K e x p  
appear in the literature. The tacit assumption in the application of Eq. (D6.0) is that k ,  is essentially 
constant over L or AT, as i sh .  



41 

ORNL-4575, Volume 1 
UC-25 - Metals, Ceramics, and Materials 

INTERNAL DISTRIBUTION 

1. Biology Library 

5. ORNL - Y-I2 Technical Library 
Document Reference Section 

6-1 55. Laboratory Records Department 
156. Laboratory Records, ORNL R.C. 
157. G. M. Adamson, Jr. 
158. C. F. Baes 
159. E. G. Bohlmann 
160. H. R. Bronstein 
161. H. P. Carter 
162. F. L. Culler 
163. J. E. Cunningham 
164. H. J. de Nordwall 
165. J. H. DeVan 
166. J. R. DiStefano 

167-169. R. B. Evans I11 
170. M. Feliciano 
171. B. Fleischer 
172. M. Fontana 
173. A. P. Fraas 
174. J. H. Frye, Jr. 
175. D. A. Gardiner 
176. W. R. Grimes 
177. A. G. Grindell 
178. W. 0. Harms 
179. P. N. Haubenreich 
180. R. F..Hibbs 

184. H. W. Hoffman 
185. J. E. Inmann 
186. H. Inouye 
187. D. H. Jansen 

2-4. Central Research Library 

181-183. M. R. Hill 

188. R. J. Ked1 
189. J. J. Keyes, Jr. 
190. R. L. Klueh 
191. J. W. Koger 
192. J. A. Lane 
193. H. G. MacPherson 
194. R. E. MacPherson 
195. W. R. Martin 
196. C. J. McHargue 
197. A. J. Miller 

198-200. Paul Nelson, Jr. 
201. C. W. Nestor, Jr. 
202. 0. S.Oen 
203. R. B. Parker 
204. P. Patriarca 
205. R. B. Perez 
206. M. W. Rosenthal 
207. G. Samuels 
208. J. L. Scott 
209. M. J. Skinner 
210. G. M. Slaughter 
21 1 .  D. A. Sundberg 
212. M. L. Tobias 
213. D. B. Trauger 
214. G. M. Watson 
215. A. M. Weinberg 
216. J. R. Weir, Jr. 
217. C. M. Adams, Jr. (consultant) 
21 8. Leo Brewer (consultant) 
219. L. S. Darken (consultant) 
220. Jan Korringa (consultant) 
221. Sidney Siege1 (consultant) 

EXTERNAL DISTRIBUTION 

222. T. F. Kassner, Argonne National Laboratory 
223. J. M. McKee, LMFBR Program Office, Argonne National Laboratory 
224. L. F. Epstein, LMFBR Program Office, Argonne National Laboratory 
225. C. L. Matthews, AEC-RDT Site Representative, ORNL 
226. M. Shaw, Division of Reactor Development and Technology, U.S. Atomic Energy Commission, 

227. A. Taboada, Division of Reactor Development and Technology, U.S. Atomic Energy Commission, 

228. B. Singer, Division of Reactor Development and Technology, U.S. Atomic Energy Commission, 

Washington 

Washington 

Washington 



229. 

230. 

231. 

232. 
233. 
234. 
235. 
236. 
237. 
238. 
239. 
240. 
241. 
242. 
243. 
244. 
245. 
246. 
247. 
248. 
249. 
250. 
251. 

252-450. 

i c. 42 

K. E. Horton, Division of Reactor Development and Technology, U.S. Atomic Energy Commis- 
sion, Washington 
R. E. Anderson, Division of Space Nuclear Systems, U.S. Atomic Energy Commission, 
Washington 
A. P. Litman, Division of Space Nuclear Systems, U.S. Atomic Energy Commission, 
Washington 
E. C. Kovacic, Atomic Power Development Associates, Inc., Detroit 
A. A. Shoudy, Atomic Power Development Associates, Inc., Detroit 
H. Pearlman, Atomics International, Canoga Park 
J. Hopenfeld, Atomics International, Canoga Park 
E. M. Simons, Battelle Memorial Institute, Columbus 
D. W. Shannon, Battelle Memorial Institute, PNL, Richland 
W. Brehm, Battelle Memorial Institute, PNL, hchland 
D. H. Gurinsky, Brookhaven National Laboratory, Upton, L.I., New York 
J. R. Weeks, Brookhaven National Laboratory, Upton, L.I., New York 
E. E. Hoffman, General Electric, Nuclear Systems Programs, Cincinnati 
K. P. Cohen, General Electric, Sunnyvale 
E. L. Zebroski, General Electric, Sunnyvale 
R. L. Coats, Sanida Corporation, Albuquerque 
G. Long, UKAEA, Harwell 
C. Tyzack, UKAEA, Culcheth 
K. Goldmann, United Nuclear Corporation, Elmsford, New York 
P. Murray, Westinghouse, Advanced Reactor Division, Waltz Mill Site 
G. A. Wlutlow, Westinghouse, Advanced Reactor Division, Waltz Mill Site ' 
Laboratory and University Division, AEC, OR0  
Patent Office, AEC, O R 0  
Given distribution as shown in TID-4500 under Metals, Ceramics, and Materials category 
(25 copies - NTIS) 

c 


