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A PRELIMINARY STUDY OF THE STORAGE OF SOLIDIFIED 
HIGH-LEVEL RADIOACTIVE WASTES I N  CONCRETE VAULTS 

J. J. Perona J. 0. Blomeke 

ABSTRACT 

Concrete vaul ts  offer  a safe ,  r e l i a b l e  means of s tor ing 
high-level s o l i d i f i e d  wastes f o r  many decades u n t i l  a method 
for the  permanent disposal of these materials can be selected.  
A design study was made of vaul t s  which u t i l i z e d  na tura l  draft 
a i r  cooling of wastes t h a t  were packaged i n  6- and 12-in.-diam 
containers and enclosed i n  cy l indr ica l  s t e e l  sleeves. The 
optimal spacing for  t he  containers was found t o  be the  c loses t  
one considered p rac t i ca l ,  a pitch-to-diameter r a t i o  of 1.25. 
Although a close spacing increases pressure drop, energy costs  
are  t r i v i a l  if fans a re  used,, For p r a c t i c a l  purposes, minimum 
c a p i t a l  costs  are  a function of can s i ze  only, and are v i r t u a l l y  
independent of t he  heat-generation r a t e  per  can. Optimal enter-  
ing a i r  ve loc i t ies  range from 0.5 t o  2 fp s ,  increasing with can 
s i z e  and heat-generation rate. Vaults t ha t  a re  of  optimal design 
and have a t o t a l  storage volume of about 1.1 mil l ion f t 3  would be 
required t o  accommodate a l l  t h e  high-level so l id i f i ed  wastes 
expected t o  be generated i n  the  United S ta tes  through the  year 
2000, provided the  wastes were i n i t i a l l y  s tored f o r  10 years a t  
the  f u e l  reprocessing plants .  

1. INTRODUCTION 

An a l te rna t ive  t o  permanent emplacement of s o l i d i f i e d  high-level 

wastes i n  na tura l  s a l t  formations i n  the  very near fu ture  i s  storage of  

these materials on a long-term basis  i n  concrete vaul t s  near the  e a r t h ' s  

surface.  

properly designed and maintained f a c i l i t i e s  of t h i s  type could serve as 

a safe method of containment f o r  a century or so  unt i l  the  heat-generation 

r a t e s  of t h e  wastes decline t o  negl igible  leve ls .  

could be made f o r  permanent storage,  or ultimate disposal,  based on the  

more advanced technology t h a t  would presumably then be i n  existence. 

Although such storage would necessar i ly  be a temporary measure, 

A t  t h a t  time, provisions 

This report  presents the r e s u l t s  of a preliminary invest igat ion of 

the  design of a storage vaul t  t h a t  should meet the requirements for  long- 

term storage. While many d e t a i l s  of t h e  s t ruc tu ra l  design were not 
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considered, those features  affect ing heat d i ss ipa t ion  were optimized on 

the  basis  of r e l a t i v e  

mated for  s tor ing a l l  t he  high-level wastes projected for  t h e  United 

States  through the  end of t h i s  century. 

s t s ,  and the  t o t a l  space requirements were e s t i -  

2 .  CONCEPT 

In  contrast  with an e a r l i e r  s tudy, l  t h e  assumption t h a t  cooling a i r  

To prevent t he  escape of i s  c i rcu la ted  through the  vaul ts  i s  made here. 

radioact ive material  f rom a defective can in to  the  cooling a i r ,  secondary 

containment i s  provided by a cy l indr ica l  s t e e l  wall ,  or sleeve, around 

each can (Fig,  1). 

l ibe ra t ion  rates per un i t  o f  vaul t  f l oo r  area than i n  the previous study 

and reduces storage cos ts  grea t ly ;  however, a cooling system must be 
guaranteed even i n  the  event of na tu ra l  or man-made catastrophes t h a t  

might topple draft-inducing stacks or disrupt  e l e c t r i c a l  power d is t r ibu-  

t i o n  l i nes .  The f e a s i b i l i t y  of providing backup cooling systems i s  d is -  

cussed i n  Sect. 6m 

The use of cooling a i r  allows much higher heat  

The vaul t  must be designed so  t h a t  temperature l i m i t s  on t h e  concrete 

and on t h e  s o l i d i f i e d  waste are  not exceeded. For the waste, those temp- 

eratures  reached during so l id i f i ca t ion  (e.g. , 1650"~ for pot ca lc ina t ion)  

should not be g rea t ly  exceeded. Temperatures of ordinary concrete should 
not be allowed to exceed 400 t o  500"F;2 however, it i s  possible  t o  obtain 

spec ia l  concretesthat a r e  composed of a high-temperature cement and an 

aggregate of magnesium oxide ore (duni te )  and a r e  capable o f  withstanding 

temperatures of 1000°F. 

temperatures of 1650°F fo r  the waste and 500°F f o r  t h e  concrete, 

of a hard insu la t ing  mater ia l  (e .g . ,  t r a n s i t e )  a r e  used t o  p ro tec t  the  

concrete adjacent t o  t h e  top and bottom of a can. 

In t h i s  study, we have chosen m a x i m u m  allowable 

Slabs 

A sketch of t h e  conceptual plan view of a vaul t  i s  shown i n  Fig. 2. 

The a i r  en te rs  t he  vau l t  through a bank of roughing f i l t e r s  and passes 

across the rows of sleeved cylinders of waste. On leaving the  vaul tc ,  it 
i s  routed through a second s e t  of roughing f i l t e r s  and then through HEPA 
f i l t e r s  before being monitored for  r ad ioac t iv i ty  and released through a 
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stack. 

temperatures i n  the  vaul t  below maximum allowable values. 

an auxi l ia ry  fan operated by a diesel-powered generator might a l s o  be 

provided . 

The s tack i s  designed t o  provide the required d ra f t  t o  keep 

A s  a backup, 

A s  the  a i r  passes each row of cans, i t s  temperature increases,  and 

t h e  temperature of each row of cans i s  higher than t h a t  of t he  preceding 

row. A s  t h e  temperature of t h e  a i r  increases ,  i t s  physical  propert ies  

change, a f fec t ing  the  Reynolds number, f r i c t i o n  fac tor ,  and film coef- 

f i c i e n t  fo r  heat t ransfer .  The number of rows i n  a vaul t  i s  f ixed  by 

the  maximum allowable temperature of the  waste or concrete; however, t he  

number of cans per  row i s  not l imited.  

For each oase studied, the following varigbles were specif ied as 

input values : 

(1) can diameter, 

( 2  ) longi tudinal  pitch-to-diameter r a t i o ,  

( 3 )  transverse pitch-to-diameter r a t i o ,  

( 4 )  heat-generation r a t e  per can, 

( 5 )  entering a i r  ve loc i ty  and temperature, 

(6) t o t a l  number of cans i n  the  vaul t ,  

(7)  type of ( i n - l i n e  or staggered) can arrangements. 

O p t i m u m  values of pitch-to-diameter r a t i o  (PDR)  and a i r  ve loc i ty  were 

determhed for each can s i ze  and heat-generation r a t e .  

For t he  storage of wastes i n  cans made of 6- in . -dim pipe (OD = 

6.625 in .  ), t he  secondary containment pipe (s leeve)  was chosen t o  be 

8-in.  sched 20 pipe ( I D  = 8.125 i n . ,  OD = 8.625 i n q ) .  For cans made 

of 12-in. pipe (OD = 12.75 i n . ) ,  the  sleeve w a s  chosen t o  be 16-in. 

sched 10 pipe ( I D  = 15.50 in . ,  OD = 16.00 in ,  ) *  

l a t e d  from PDRs were based on the  outside diameter of t he  sleeve, For 
example, t he  center-to-center distance f o r  12-in. cans with a PDR of 

1.25 was 20 in.  ( 1 . 2 5  x 16) .  

Can spacings calcu- 
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3. JXEAT T CALCULATIONS 

The calculat ions were begun with the  f i r s t  row of cans, where the  

ve loc i ty  and the  temperature of the  entering a i r  were known. The temp- 

e ra ture  of the a i r  on passing t h e  f i r s t  row of cans w a s  calculated from 

the  mass flow r a t e  and the  heat capacity of a i r  and from the  heat-genera- 

t i o n  r a t e  of the  cans. In  subsequent calculat ions,  an ar i thmetic  average 

of the temperatures of the entering and ex i t ing  a i r  was used as  the a i r  

temperature fo r  t he  f i rs t  row. A calculat ion was then car r ied  out t o  

f ind  t h e  f i l m  coef f ic ien t  f o r  heat  t r ans fe r  between the  sleeve and a i r ,  

and t o  f ind  the temperature of t he  sleeve. Film coeff ic ients  were 

obtained from correlat ions for  heat transfer i n  tube bundles w i t h  the  3 

group (hd/k) (Pr)-1/3(p/ps)-0*14, p lo t t ed  against  t h e  Reynolds number 

f o r  PDRs of  1.25 t o  1.50.* 

Temperature differences between sleeves and waste-can surfaces 

were calculated using t h e  following equation f o r  a combined conduction 

and natural-convection t ransfer  coef f ic ien t  : 

- ux = 0.0317 G r  0.37 
k 

Transfer by rad ia t ion  was a l s o  calculated,  using an emissivity of 0.5 
fo r  both surfaces. The temperature of t he  s o l i d  waste a t  the  center of 

the  can w a s  calculated using the  following equation: 

This  sequence of calculat ions yielded the increase i n  the  tempera- 

t u re  of t he  a i r  a f t e r  it had passed t h e  f i rs t  row of cans, the  surface 

temperatures of the waste cans and t h e i r  sleeves,  and the maximum waste 

temperature. 

of cans u n t i l  a maximum allowable temperature or pressure drop (see 

Sect. 3) was reached. 

The same procedure was car r ied  out fo r  each succeeding row 

The rad ian t  interchange of heat between rows of cans was determined 

t o  be an ins igni f icant  e f f ec t ,  Loss of heat through the  concrete f loor  

and roof by conduction was a l s o  ins igni f icant ,  The i n t e r i o r  surface of 

x 

W 

I 

I 
I 

* 
For nomenclature, see Sect. 6. 
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concrete near a can w i l l  receive heat from the  sleeve by rad ia t ion  and 

conduction and w i l l  lose  heat to the  cooling a i r  by convection. 

the  concrete near the sleeve w i l l  be a t  a temperature near t ha t  of the  

sleeve, and t h i s  r e s t r i c t s  the temperature of  t he  sleeve t o  about 500°F. 

Thus 

4. PRESSURE DROP AND STACK CALCULATIONS 

A comparison was made by Boucher and Lapple5 of t h e  data and the  

methods used by many invest igators  t o  cor re la te  pressure drop across 

tube banks. Their conclusion was tha t  a graphical correlat ion of 

Grimison was the  bes t  method for  both in- l ine  and staggered arrange- 

ments over a Reynolds number range of 2000 to 40,000. 

i c a l  c o i ~ e l a t i o n ,  a f r i c t i o n  fac tor  i s  p lo t t ed  against  Reynolds number 

with trimsverse and longi tudinal  spacings as parametric curves. Empirical 

equatioiis t h a t  represent Grimison's curves f a i r l y  well were devised by 

In t h i s  graph- 

r 

b Jakob : 

For staggered-tube 

f := (Re) -0.16 

arrangements, 

f o r  in - l ine  arrangements, 

f = (Re) 

These f r i c t i o n  factors  
'7 

0.08 b 
0.43 + (1.13/b 

(a-1) 

are of the  type defined by Chilton and 
I Genereaux. Pressure drop i s  calculated by the  following equation: 

A s tack was designed to 
drop by na tura l  convectiop. 

by : 

AP 

provide the  required flow r a t e  and pressure 

The d ra f t  provided by a chimney i s  given 
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where p i s  based on the  average temperature of t he  hot a i r  i n  the  s tack,  

The assumption was made t h a t  the  temperature of the  a i r  did not decrease 

s ign i f icant ly  on passage of t he  a i r  through the stack; however, it was 

assumed tha t  f r i c t i o n  losses  gave a d r a f t  10% less than the  theo re t i ca l  

value. 

t h i s  l i m i t s  s tack heights t o  about 500 f t  f o r  e x i t  a i r  temperatures above 

300'F. 

A maximum allowable d ra f t  requirement of 2.0 in.  H20 was chosen; 

Absolute f i l t e r s  a re  designed t o  operate with pressure drops i n  the 

neighborhood of  0.5 t o  1 .0  in .  H20. 

study tha t  the  roughing and absolute f i l t e r s  caused a pressure drop of 

1 .0  in .  H20 i n  addition t o  the  pressure drop caused by t h e  flow of a i r  

through the vaul t .  

The assumption was made i n  t h i s  

Experience has shown tha t  optimal stack designs general ly  have an 

average gas ve loc i ty  of 25 t o  30 fps.8 The stack diameter i n  t h i s  study 

was calculated t o  give a ve loc i ty  of 25 fps  a t  t he  base of t he  stack. 

5. COST ESTIMATION 

An estimate of t o t a l  cos ts  was not attempted i n  t h i s  study; however, 

a simple cost  estimation procedure was employed t o  provide a measure o f  

r e l a t i v e  costs  s o  t h a t  important var iables  might be optimized. 

estimate of c a p i t a l  costs  included excavation and concrete costs  for  

t he  vault  building, costs  of piping f o r  secondary containment ba r r i e r s ,  

and stack costs .  The ins ide  dimensions of the vau l t  were calculated 

from the  number of rows of cans, the number of cans per row, t he  PDRs, 
and the  can dimensions. The thicknesses of t h e  vaul t  w a l l s ,  f l oo r ,  and 

roof were selected as 4 ft ,  4 f t ,  and 5 f t ,  respect ively.  The vaul t  i s  

buried with the top surface of  the  roof a t ,  or  s l i g h t l y  above, t he  surface 

of the  ground. 

i n  place a t  $140/yd3. 

Tne 

Excavation costs  were calculated a t  $5.75/yd 3 , and concrete 

The cost  of t he  mild-steel  pipe used fo r  secondary containment, 8-in. 

sched 20 and 16-in. sched 10, was about $5/ft  i n  each case. 

segments were 2 f t  longer than the height of t he  waste can. 

f o r  a waste can height of 10 f t ,  the cost  of t h e  sleeve was $&O/can. 

The pipe 

Therefore, 

b 



Stacks made of br ick,  s t e e l ,  and concrete were considered. Stack 

costs  were estimated by the  method of Stankiewicz,’ i n  which curves fo r  

the  costs  of the column, foundation, and l i n ing  are  given for  s tack 

heights of 100 t o  500 f t  and diameters of 10 t o  25 f t ,  S tee l  stacks 

were s l i g h t l y  cheaper than those of br ick or concrete f o r  stack heights 

l e s s  than about 150 ft ;  however, for  heights of 300 t o  500 f t ,  concrete 

stacks cost  much l e s s  than the others.  Accordingly, concrete stacks 

were chosen f o r  t h i s  study, and costs  were escalated by 20% t o  account 

f o r  in f la t ion .  

6. RESULTS 

d 

The ef fec ts  of increasing the  PDR a re  t o  increase the  s i ze  of the 

vaul t  required f o r  a given number of cans (and hence the cap i t a l  costs  

of the  vau l t )  and t o  decrease the  pressure drop i n  the  cooling a i r  per  

row of cans. Also, fo r  a given entering a i r  ve loc i ty  the  mass flow r a t e  

of  a i r  per can i s  increased (by increasing the  PDR),  causing the  a i r  

temperature increase t o  be l e s s  for  each row of cans. If the  PDR i s  

f ixed and the entering a i r  ve loc i ty  i s  varied,  the  r a t e  of temperature 

increase f o r  t he  a i r  var ies .  

approximately the same as  t h a t  of t h e  concrete, t he  maximum permissible 

number of rows i s  given when the sleeve temperature reaches approximately 

500°F (unless the maximum allowable waste temperature or pressure drop i s  

exceeded f i r s t )  ~ 

Since the temperature o f  the sleeve i s  

Effects  of  Pitch-to-Diameter Ratio and Entering A i r  Velocity. - An 

example of the e f f ec t s  of PDR and entering a i r  ve loc i ty  on cap i t a l  cos ts  

i s  shown i n  Fig. 3 fo r  storage of 6-in0-diam cans having heat-generation 

r a t e s  of 0.625 kW each. 

i n  Table 1. 

and the  optimal entering a i r  ve loc i ty  i s  0.5 f p s  for  a l l  spacings. 

the  costs  a re  not very sens i t i ve  t o  these var iables .  

ing the PDR t o  1 .33  or the  entering a i r  veloci ty  t o  1 .0  fps  increases t h e  

costs  by only a few percent. 

by a switch i n  the  l imit ing condition from the  maximum allowable concrete 

(or sleeve)  temperature, which controls a t  the  lower air ve loc i t i e s ,  t o  

Additional information f o r  t h i s  case i s  given 

The optimal spacing i s  the  closest  considered feas ib le ,  1 . 2 5 ,  

However, 

For example, increas- 

The breaks i n  t h e  curves of Fig. 3 a re  caused 
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Table 1, Effects of Pitch-to-Diameter Ratio and Entering A i r  Velocity 
on Capital  Costs fo r  Storage of 6-in.-diam Cans of Sol id i f i ed  Wastea 

P i t  ch-t o- Entering A i r  Maximum Pressure 
Diameter Velocity Nub e r  Drop 

Ratio (fPS 1 of Rows ( in .  H 2 0 )  A i r  Sleeve Waste ($4 

cost  
per  C a n  

Temperatures i n  
Last Row ( O F )  

1.25 

1.33 

1.50 

0.1 10 1.00 399 500 72 5 
0.5 53 1.07 450 500 72 5 
1.0 110 1.49 468 500 726 
1 .5  106 2.00 326 353 628 
2.0 70 2.00 196 220 555 
3.0 36 2.00 113 13 3 498 

139.5 
116.8 
121.7  
129.4 
130.4 
140.3 

t-' 0.1 9 1.00 344 500 72 5 152.7 P 

1.0 116 1 . 2 2  464 500 726 122.5 
1 .5  177 1.80 472 500 726 132.8 

3.0 74 2.00 153 176 521 135.5 

0.5 56 1.04 447 500 72 5 119.7 

2.0 136 2.00 301. 327 612 133.1 

0.1 9 1.00 313 500 72 5 163.4 

457 725 127.5 
0.5 61 1.01 
1.0 1 2 8  1.10 
1- 5 196 1.30 466 500 72 5 
3.0 184 2,oo 2 56 281 586 142.6 

500 72 5 124.5 

132.4 
435 500 

a Each can i s  10 f t  high and has a heat generation r a t e  of 0.625 kW. 
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the  m a x i m u m  allowable pressure drop of 2 .0  in .  HZO, which controls a t  

the  higher ve loc i t ies .  Temperature r o f i l e s  along the  vaul t  a r e  pre- 

sented for  t h i s  case i n  Fig. 4. They a re  very near ly  l i nea r .  

In-Line vs Staggered Arrangement of Cans. - Although a l l  the  r e s u l t s  

given above a re  f o r  t h e  in- l ine  arrangement of cans, those f o r  a staggered 

arrangement did not d i f f e r  s ign i f i can t ly  i n  any way. 

i n - l i ne  and staggered arrangements for  6-in.-diam cans with a heat-  

generation r a t e  of 2 .5  kW/can i s  presented i n  Table 2 .  

A comparison of 

Effect  of Radioactive Decay. - A s  the heat generation r a t e  i n  a 

f i l l e d  vaul t  diminishes with time, the  a i r  flow r a t e  required t o  main- 

t a i n  permissible temperatures a l s o  decreases. In  the  case of na tura l  

d r a f t  cooling w i t h  a s tack,  the s i t ua t ion  i s  self-regulat ing.  A reduced 

d ra f t  r e s u l t s  from a lower a i r  temperature i n  the  stack. These e f f ec t s  

are  i l l u s t r a t e d  i n  Table 3. When the  heat-generation r a t e s  i n  f i l l e d  

vaul t s  were decreased by f ac to r s  of 2 and 4,  lower sleeve and e x i t  a i r  

temperatures resul ted.  

Costs of Mechanical Cooling. - The p o s s i b i l i t y  of providing the  

vaul t  with a fan instead of (or i n  addition t o )  a stack i s  of some 

in t e re s t .  

designed t o  survive an earthquake more readi ly  than could a s tack several  

hundred f e e t  i n  height. 

l a t ed  f o r  fans i n  l i e u  of stacks. 

energy costs  were found t o  be 56 t o  lo{ per can per  year a t  ve loc i t i e s  of 

0.5 t o  1 .0  fps f o r  t h e  cases given i n  Table 1. 

are  r e l a t i v e l y  inconsequential i f  fans a re  used. 

A diesel-driven generator supplying power t o  a fan could be 

As a matter of i n t e r e s t ,  energy costs  were calcu- 

Using a cost  of e l e c t r i c i t y  of ly!/kWhr, 

Therefore, energy costs  

Summmy and Conclusions. - Optimal designs for  6- and 12-in. -diam 

cans and a number of heat-generation r a t e s  a re  presented i n  Table 4. 
each of these cases,  the  pitch-to-diameter r a t i o  i s  1 . 2 5  and the  condition 

tha t  l i m i t s  t he  number of rows i s  the  concrete temperature of 500°F. 

a given can s i z e ,  the  influence of heat-generation r a t e  on costs  i s  very 
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Fig. 4. Temperature P ro f i l e s  Along t h e  Vault. 



Table 2. 
6-in. Cans with a Heat-Generation Rate of 2.5 kW (PDR = 1.25) 

Comparison of In-Line and Staggered Arrangements f o r  

In-Line 
Staggered - 

Velocity = 1 fps 

22 24 Maximum number of rows 
Pressure drop, i n .  M20 
Exit a i r  temp., "F 

1.06 1.08 
377 406 

Capital  cost  per can, $ 126.5 125.6 

Velocity = 2 fps 

49 51 

421 435 

Maximum number of rows 
Pressure drop, in.  K2Q 
Exit a i r  temp., "F 

Capital cost  per  can, $ 130.7 130.9 

1.79 1.85 

Velocity = 3 fps  

58 Maximum number of rows 
Pressure drop, in .  H20 2.91 
Exit a i r  temp., "F 348 
Capital  cost  per can, $ 171.2 

57 
2.91 
343 
171.2 

d 

b 

Y 

S' 
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Table 3. Effect of  Radioactive Decay on Natural Draft Cooling 

* 

Can Stack Stack Heat-Generation Entering A i r  Exit  A i r  M a x i m u m  Sleeve 
Diameter Height Diameter Rate per Can Ve l o  c it y Temperature Temperature 

( in .  ) (ft)  (ft) (kW) (fPS) ( O F )  ( O F )  

6 227 8.7 1.25 
6 227 8.7 0.625 
12 32 5 18.1 5.0 
12 325 1 8 ~  2.5 
12 325 18.1 1.25 

1.0 

0.6 

2.0 

1.4 
0.8 

435 
380 
385 
301 
2 72 



Table 4. Optimal Designs of Storage Vaults for Different Can Diameters 
and Heat-Generation Rates (Pitch-to-Diameter Ratio: 1.25) 

Cost per Can Can Heat-Generation Total Number Maximum Entering Air Pressure Exit Air Stack Stack 
Case Diameter Rate per Can of Cans in Number of Velocity Drop Temperature Height Diameter Electricity Capital 
NO. (in. ) (kW) Vault Rows (rps) (in. '+o) (OF) (ft) (ft) ($/year ) ($'  

1 6 0.625 5,000 53 0.5 1.07 450 190 6.1 0.05 117 
2 6 1.25 5,000 51 1.0 1.20 435 226 8.7 0.13 119 
3 6 2.5 5 9 000 22 1.0 1.10 377 2 31 12.8 0.27 126 
4 12 2.5 5,000 45 1.0 1.15 417 224 12.5 0.26 225 

5 12 2.5 10,000 45 1.0 1.15 417 224 17.7 0.26 2 17 
6 12 5.0 5 2 000 41 2.0 1.55 385 320 18.1 0.78 2 36 
7 12 5.0 10,000 41 2.0 1.55 385 320 25.6 0.78 227 



small; fo r  example, costs  vary only a few percent a s  the heat-generation 

r a t e  i s  increased by a fac tor  of 4. 
from 5000 t o  10,000 cans decreases cos ts  only a few percent. 

Changing t h e  capacity of  t he  vaul t  

The following conclusions can be drawn: 

1. The optimal pitch-to-diameter r a t i o  i s  about 1.25.  

2 .  For prac t i ca l  purposes, c a p i t a l  cos ts  are a function of can 

s i ze  only. 

3. Optimal entering a i r  ve loc i t i e s  range from 0.5 t o  2 fps ,  

increasing with can s i z e  and heat-generation r a t e .  

4. I f  stacks a r e  used, s tack heights range from about 200 t o  

300 f t .  

5. If fans a r e  used, t he  energy cos ts  are  t r i v i a l .  

6. The choice between an in - l ine  and a staggered arrangement does 

not s ign i f i can t ly  a f f ec t  cap i t a l  or energy costs.  

7. PROJECTED STORAGE VAULT REQUIREMENTS 

Projections of t h e  volume of storage space required t o  accommodate 

a l l  the  high-level s o l i d i f i e d  wastes expected t o  be generated i n  the 

United States  through the  end of t h i s  century a re  given i n  Table 5. 
These projections a re  based on the  existence of i n s t a l l ed  nuclear 

e l e c t r i c  capaci t ies  of l5O,OOO, 5OO,OOO, and 1,100,000 MV by the  end 

of calendar years 1980, 1990, and 2000, respect ively,  The waste i s  

assumed t o  be packaged i n  containers 1 2  in.  i n  diameter by 10 f t  high, 

and t o  have been s tored a t  the  reprocessing p lan ts  fo r  10 years before 

emplacement i n  the  vaul t s .  

each package has a thermal power of 2 .5  kW. 

these circumstances, vaul ts  having a t o t a l  volume of about 1.1 mil l ion 

f t  w i l l  be required by the  end of t he  year 2000. The vaul ts  would be 

of modular construction, with each module s ized t o  contain e i the r  5000 

o r  10,000 packages of waste. Inside dimensions of the  5000-package 

vaul ts  would be 185 f t  wide x 75 f t  long x 10.5 f t  high, while the  

10,000-package modules would be 370 f t  wide x 75 f t  long x 10.5 f t  high 

A t  t he  time of emplacement i n  the  vaul t s ,  

We estimate t h a t ,  under 

3 
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Table 5. Projected Storage Vault Requirements" for t h e  United S ta tes  

~ ~~ 

Number of Vault Storage Volume 
Calendar Waste Packagesb Required ( f t 3 )  

Year Annually Cumulative Annually CumulativeC 

1980 
1981 
1982 
1983 

1985 
1986 
1987 
1988 
1989 

1984 

1-990 
1-991. 
1992 
1993 
1994 
1995 
1-996 
1997 
1998 
1-999 

2000 

29 
42 
70 

129 
235 
388 
589 
804 

1000 
1230 

1480 
1740 
2oJ-0 
2330 
2610 
2990 
3380 
3770 
4190 
4680 

5180 

29 
71 

141 
2 70 
505 
893 

L480 
2 290 
3290 
4520 

6000 
7740 
9750 

12,100 
14,700 
17,700 
21,100 
24,800 
29, ooo 
33,700 

38,900 

845 
1225 

6850 

2 040 
3760 

11,300 
17,200 
23,400 
29,200 
35 , 900 

43,100 
50 y 700 
58,600 
67 , 900 
76,100 
87,200 
98,500 

110,000 
122,000 
136,000 

151, ooo 

845 

7870 

26 , 000 

66,600 
95,800 

2070 
4110 

14,700 

43,200 

132,000 

175,000 
226,000 
285 ooo 

516, ooo 
615,000 

847 , 000 
983 > 000 

353,000 
429,000 

725 9 000 

1,130,000 

Based on i n s t a l l e d  capaci t ies  a t  l5O,OOO, 500,000, and 1,100,000 MW(e) 
a t  the end of calendar years 1980, 1990, and 2000, respect ively.  
Wastes a r e  assumed t o  be 10 years old a t  the time of  t h e i r  s torage 
i n  vaul ts .  

bAssumes waste i s  packaged i n  containers 1 2  in .  i n  diameter by 10 f t  

a 

high, and tha t  each package has a thermal power of 2.5 kW a t  t he  
time of rece ip t  e 

Vaults a re  modular i n  construction, with each module s ized t o  contain 
e i the r  5000 or 10,000 packages of waste. 
smaller vaults a re  185 f t  wide x 75 f t  long x 10.5 f t  high; the Larger 
vaul t s  a re  370 f t  wide x 75 f t  long x 10.5 f t  high (see Table 4, 
Cases 4 and 5).  

C 

Inside dimensions of the 

f 



8. NOMBTCLATURE 

a = transverse pitch-to-diameter ratio 

b = longitudinal pitch-to-diameter ratio (in the direction of flow) 

d = cylinder diameter , ft 
f = friction factor, dimensionless 
G = fluid mass velocity based on minimum net free area, lbm/sec-ft 2 
g = local acceleration due to gravity, ft/sec 2 

gc = conversion factor, 32.17 lbm*ft/lbf*sec 2 

Gr = Grashof number, dimensionless 
h = film coefficient for heat transfer, Btu/hreft2e "F 
H = stack height, ft 
k = thermal conductivity of air, Btu/hr* ft* "F 
k = thermal conductivity of solid waste, Btu/hr.ft*"F 
W 

lb = pounds mass 

lbf = pounds force 
m 

N = number of tubes in the direction of flow 
P = air pressure, lbf/ft 2 

Pr = Prandtl number, dimensionless 
Q = heat-generation rate, Btu/hr- ft 3 
R = can radius, ft 
Re = Reynolds number, dimensionless 
T = temperature at center of can, "F 
T = temperature at surface of can, "F 
C 

S 
U = overall heat transfer coefficient, Btu/hr*ftZn "F 

x = thickness of gap, ft 
p = density of air, lbm/ft 3 

= ambient air density (0.075 lbm/ft 3 at 70°F) 
PO 

% 

1-1 = viscosity of air, centipoises 
= viscosity of air at cylinder temperature, centipoises 
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