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ABSTRACT

A nonlinear theory is developed which describes the éarly
behavior of a particularly simple unstable mode in’a magnetized
plasma. The mode is a single electrostatic traveling wave propa-
gating directly across the magnetic field, with the energy for
the growth of the wave furnished by an inverted population in velocity
space, while the wave propagation is primarily supported by a cold
isotropic plasma component. The nonlinear theory is constructed
from particle orbits; it predicts a fast stabilization of the wave
by the heating of the cold component. The theory agrees qualitatively
and quantitatively with the results of a recent computer simulation,
predicting the temperature of the cold component and the energy in
the electric field. The general conclusion is that these modes are
self-stabilizing, with final fluctuating field levels that are not

particularly dangerous to.- plasma confinement.,
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I. INTRODUCTION

A computer simulation of plasma dynamics is most useful when
it can be compared to an analytie theory. Since in the simulation many
parameters can be varied independently the regions of validity of
analytic approximations can be explored. The masses of data produced
in the simulation can be used to check the minute details of the theory,
and when successful the theory can be generalized and used to predict
the behavior of real plasma systems. The early time evolution of plasma
instabilities can be easily followed in a simulation, while in a laboratory
experiment only the final state of the system can usually be observed,
The theory presented here has been developed by close comparison with
the details of the simulation of such a plasma instability. - These
details afe being published separatelyl; a short summary of the theoretical
results has also appeared.2

The particular instability studied here is a version of the loss~
cone flute mode. It is an electrostatic mode, propagating directly across
the magnetic field. The energy needed for the growth of the instability
is furnished by an inverted population in velocity space3s produced by
the loss cone in open ended mirror traps and also occurring in many
other containment devices. In addition to the hot plasma contained by
the static magnetic field the mode requires a cold plasma component which
appears naturally in many ways. The mode is basically the lower hybrid
mode, supported by the cold plasma component. It becomes unstable when
it can couple to the negative energy Bernstein modes of the hot plasma,
near one of the cyclotron harmonics., The linear theory was first.

discussed by Hall, Heckrotte, and Kammash49 and has been explored more



completely by Guest, Farr and Doryo5

The nonlinear evolution of the mode has been previously studied
by Aamodt and Bodner69 with emphasis on the regime with a small proportion
of hot plasma. They found the system to be stabilized by a nonlinear
smearing of the cyclotron harmonics. In the plasma simulation of Crume,
Meier, and Eldridgel, the amounts of hot and cold plasma were roughly
comparable, and the system was stabilized by heating of the cold component.
The saturation level of the electric field energy was found to be sub=-
stantially lower then that predicted by Aamodt and Bodner or by the
empirical formula of Byers and Grewala7

This instability is important as a prototype of a class of instabi-
lities which appear as a necessary result of containment in an open ended
mirror, although it can appear in a variety of containment devices. Since
a component k”of the wave vector along field lines allows Landau damping
to occur and decreases growth rates, the flute modes with %0= 0 are
particularly dangerous. Maximum growth rates of a tenth of the real
frequency are predicted. The finite length of open ended devices does
not change the characteristics appreciably., The large growth rates
which are possible, and more to the point, the large amount of free
energy which can appear in the fluctuating electric field, make the
study of the nonlinear develépment of these modes particularly important.
The amount of energy in the electric field spectrum has a direct bearing
on.the feasibility of open ended mirrors as containment devices, The-
simulation studies are limited to a number of special cases, but with
an analytic theory, the effects of parameter variation can be predicted.

In the computer simulation a single unstable traveling wave is

dirven to an amplitude above the noise level and then allowed to evolve



in a self consistent way. The magnetic field is constant and the plasma
initially uniform in space, Particle trajectories are followed in two
velocity dimensions and one spatial dimension perpendicular to the
magnetic field., These approximations are also used for the linear
analysis., The simulation plasma has a finite spatial extent so that
wavelengths are limited to submultiples of the basic length. As a
consequence only one unstable wave appears in the simulation; it is
chosen to be the wave with maximum growth rate for the plasma parameters,
Actually in a large plasma a fairly broad spectrum of waves are unstable,
but the fastest growing mode dominates the spectrum after a short while.

The result of the computer experiment is an efficient and rapid
stabilization, in association with a rapid heating of the cold plasma.
component. The typical time dependence of the electric field amplitude
is shown in Fig. 1 for a case with frequency nearly twice the cyclotron
frequency. The amplitude increases exponentially, as predicted by linear
theory; then it saturates and develops a slow nonlinear oscillation. The
simulation amplitude is always positive, but a jump in phase by 7 at the
first minimum indicates that an equally valid interpretation is that the
second peak is negative. Later in time a backward wave with the same
wavelength appears as an additive component at twice the wave frequency.
Spatial harmonics also are seen. As shown in feference 1 the temperéture
of the cold plasma component increases coherently with the field amplitude,
reaching a maximum as the amplitude goes to zero. The cyclotron heating
at the second gyroharmonic changes the particle distribution and stabilizes »
the system,

The nonlinear theory is based on a calculation of orbits, with a

general representation of the electric field, and the construction of



the distribution function from the orbits., The dominant interaction is
taken to be resonant; the frequency is assumed to be nearly a multiple

of the cyclotron frequency. This is shown to be quite a good approxi-
mation for this class of modes. These orbit solutions show a strong
coherent heating of cold particles. From the Poisson equation a nonlinear
differential equation is derived for the wave amplitude. Solutions of
this equation exhibit a behavior quite similar to the early time behavior
of the simulation. The quantitative predictions of cold component
temperature and maximum field amplitude agree with the simulation over

a range of plasma parameters,

The detailed calculations of this paper apply only to the special
case of an instability near the second gyroharmonic.  The analysis is
carried as far as possible for this case, and critical comparisons with
the results of the computer simulation are made. The success of the
analysis shows that the approximations of the theory are valid, but it
does not prove that instabilities at other harmonics are stabilized so
quickly and easily. The instabilities at higher frequencies will be
analyzed in a future paper, there are reasons to believe that they too
‘are stabilizied by heating of the cold plasma,

In section II the linear stability criteria and details of the
model are presented., Orbits are calculated in section III, and the
charge density and temperature are calculated in section IV, In section V
the differential equation for the field amplitude is derived and solved,

and the generation of spatial harmonics predicted.



II., LINEAR BEHAVIOR

The model system is a uniform plasma in a uniform magnetic field.
For flute modes there is no variation in the direction of the magnetic
field so that the system is essentially two dimensional; velocity distri-
butions are considered to be integrated over the axial velocityg‘ Only
one species of particle is considered with a neutralizing background of
opposite charge. The particles are taken to be ioms, although it turns
out that the equations apply equally well to electrons. The equilibrium

distribution function is taken to be

F(v) = nc/[ZﬂVez]exp[—vz/ZVez] + nh/[ﬂocb‘]vzexp[-vz/az], (1)

where the cold component with density n is Maxwellian, and the hot

component distribution with density n_ is designed to approximate a loss

h

cone distribution near the midplane of a mirror trap with mirror ratio
of two-to~one. The average energy per particle is given in terms of

the thermal velocities v 2 for the cold component and

o and o by Wq = mv

]

W,

h ma? for the hot component.

The dispersion relations for a small amplitude electrostatic wave

with frequency w and wave number k is

w c2 - nIn(kzacz) _
e(kyw) = 1 - 5@%‘“; ) ) exp (~k a, )
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where In is the Bessel function of imaginary argument, O is the cyclotron

frequency and the cyclotron radii are a, = ve/Q and a = a/V2 Q,



There are no simple expressions for the frequencies of these modes
that are generally valid; raots are usually found numerically, There are
an infinite number of solutions with real frequency close to the cyclotron
harmonics. Whenever one of these frequencies coincides with the lower
hybrid frequency an instability is possible. For the case of an
instability near the N'th cyclotron harmonic, with a growth rate y large
enough so that Q>>y>>w=N{, an approximate expression’for the growth rate
is |
N[w ,2(I ~-I ”)exp(-kzahz) -lw 2(k%a 2/Z)N_l/N!]

ph "N "N pc c

Y= [R9e/0dw] (3)

Here the argument of the Bessel functions is kzah2 and the Bessel

functions with argument kzac2 have been approximated by the small
argument expansion. The dielectric functiom of Eq. 2 has the terms
with n=N missing in this approximation.

The denominator of Eq. 3 is positive since the basic mode is a
positive energy wave.. Formally the stability of the mode depends upon
a balance between the contributions of the hot and cold plasma componentsu8
When the cold component cyclotron radius a, is large enough the mode is
stable, and an initially unstable mode is stabilized by heating of the
cold component. The stabilization by heating is hard to explain in a
more physical way. The lower hybrid mode and the negative energy Bernstein.
mode are not decoupled in the sense that two separate oscillations develop,
but energy is no longer fed into the growing wave. There is no such
mystery about the heating mechanism; it is simply cyclotron harmonic
heating.

Most of the following analysis will be developed primarily for

the special case of an instability at the second gyroharmonic. Representative
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One finds in this moderate density regime and in the high density regime

parameters are w_, 2/Q% ¥ 20, w 4, kzah2 s 10, and kzac2 2 0.1,

that the real frequency is always close to a gyroharmonic for unstable

modes.,



ITII, - ION ORBITS

The orbit equations cannot be solved exactly, so the real problem
is that of finding a valid approximation for each region of interest.
For the cold population the ion cyclotron radius is smaller than the
wavelength and a small radius expansion is valid. For the hot population
the ion cyclotron radius is neither largé nor small, but changes in
orbit parameters are slow. The discussion here depends somewhat on
the analysis of Aamodt and Bodner,6 but the development owes more to
the continued testing of approximations in the course of the computer
experiment.,

A, Equations of Motion
The equations of motion of an ion in an constant magnetic field

A N

B = Bz and an electric field E = E(x,t)x are

e .
— = ] Vy 'f'’I-n-':f‘:(xgt.“.)9

and

(4)

where @ = eB/mc is the cyclotron frequency, The form of the electric

field is taken to be
E(x,t) = El(t)cos(kx-wt)5 (5)

representing a single plane wave of real frequency w and wave vector
k= kx, with an arbitrary time dependent amplitude El(t)o When later

it is found that spatial harmonics are generated, these amplitudes will

be added as perturbations.
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The guiding center of an ion orbit moves in the y direction, so
that this motion is ignorable. The x component of the guiding center
positidn £ =x+ vy/Q is a constant. The velocity v(t) and phase Y(t)
are introduced with the transformation Ve = vcos (Y~0t) and Vy=V sin(y-0t).
In terms of the dimensionless velocity u = kv/Q and the dimensionless

amplitude A(t) = ekEl/ZmQ2 the orbit equations are

%% = 20Acos (y=-0Qt)cos[kE-wt-u sin(y-Qt)] = - %”%E {204 sin[kE-wt-usin(y-0t) ]} (6)
and

.%E = = E%é sin (Y=ot)cos[kE-wt-u sin(y-Qt)]

=12 (204 sinlké-wt - u sin(y=0t)] . )
u Ju
By the use of the generating function for Bessel functions Jn(u) the time

dependence of the field at the position of an ion is made explicit, taking

the form of a Fourier series with discrete frequencies w - n{:

du _ 20A ¢
rrialere an(u) cos ¢n’ (8)
and
dy _ 20A - .
Feie z Jn(U> sin (bng )]
n-‘—‘_m .

with the wave phase ¢n = k& =~ wttnfit-ny for each term.,
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B. The Resonant Approximation
During the early stages of the growth of an unstable wave with
small amplitude increasing like A(t) = Aoexpyt a perturbation solution

is valid with u and Y almost constant. By iteration one finds

w0 nJ (u)
20A n ;
u u + =2 v [ycosé - (w-n)sing ] (10)
n:-oo

where u, is the initial vaiueo For a wave with large growth rate that
is almost resonant with the N'th cyclotron harmonic, the quantity A=w-NQ
is small and y>A., The time dependence of the velocity is dominated by
the‘near resonant N'th term but the actual value of the frequency is not
very important since the resonance is very broad. A fourth frequency,
the rate of change of the ion phase dy/dt X QA, initially is very small,
Early in time the ordering of the relevant frequencies is taken to be.
Q>v>A>QA,

As the wave grow the amplitude can become so large that the ordering
is changed to Q>QA>y>A where y = 1/A(dA/dt). Still the value of A is
relatively unimportant. The fundamental approximation of this theory

is to take only resonant contributions to the ion orbits and to set A = 0,

A new time wvariable

= [T acta(e”) (11)

is introduced and the orbit equaticns become

du _ 20

I " NJN(u) cos (k& = Ny), (12)
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- 2 g1 ()stn (kE-Ny). (13)

As was pointed out by Aamodt and Bodner6 these equations are in

Hamiltonian form with momentum u?/2, coordinate ¥ and constant Hamiltonian
H = ZQJN(u) sin(kg - Ny), (14)
so that a single ordinary differential equation determines the orbits.,

C. Solutions for Cold Ions

The heating of cold ions stabilizes the system. For this plasma
component the cyclotron radii are small and u = kv/<<l even late in time.
With this approximation JN(u) ] (u/2)N/N! and

g? (W) = [Ny 2N sin (kg - N¢o>]1/24Nﬂ/[2NNx] (15)

where ug and wo are initial values. Solutions in terms of elementary
functions are possible for N = 1 and 2 and in terms of elliptic functions
for N= 3, 4, 5, 6, and 8,

For N=1, the fundamental resonance, the solution is
2 = u? + 20 -y ) + 0212
u ug 2 Tuocos(ka wo) T

and
[uocos(kg-wo) + Q1]

2 - 2427172
[u0+291uocos(k£ wo)+ﬂ 121/

[

cos (kg=y) =

Initially the energy can either increase or decrease but eventually it
increases as 14, The ion phase becomes synchronized with the wave phase
so that cos(kf -~ ¢) ~ 1 as T » », Each harmonic must be treated separately,

but it may be shown that the synchronization of phases occurs for each

N so that in the long time limit cos(kf ~ Ny) = 1, The velocity also
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increases with time, linearly for N = 1, exponentially for N = 2, and
even faster for larger N. Stabilization of the mode seems to occur
because each cold ion has its phase synchronized so that its energy is
increasing at the fastest possible rate.

The case with N = 1 is not useful here since the instability
cannot occur near the first gyroharmonic for the densities of interest.
To compare with the simulation results the case with N = 2 is needed.

The solution is
u? = ug [cosh QT + cos(kE - 2w0) sinh Q1]

and

cos (kg - ZwO)cosh QT + sinh Qt

cos (kg = 2y) = ooy cos (KE =~ 2wo) sinh Q1

(17)

Again the remarkable synchronization of phases is seen and in this

case an exponential increase in energy.
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D. Solutions for Hot Ions,

The region of particular interest for the hot plasma component
is near kah ¥ 3. where neither an asymptotic expansion nor a series
expansion of the Bessel functions of Egs. 12 and 13 is wvalid. The
orbits in the asymptotic regime haﬁe been found approximately by Aamodt
and Bodner‘,6 The solutions show that the ions oscillate in the pseudo
potential well given by the Hamiltonian of Eq. l4. The relative changes
in ion velocity are small and the periods of oscillation are long
compared to the time scale for changes in the electric field amplitude.
Since the time scale is long the orbits may be calculated by taking
the velocity and phase to be constant to first approximation.

To estimate the period of oscillation consider large velocity,

u>>1, where the asymptotic expansion of the Bessel function is valid,

JN(u) ¥ (2/'1Tu)1/2 cos(u -~ Nw/2 - w/4) .
The orbit equation has the form

_(_1_3 n ZNQ E_ 2
P * —Ej-[ﬂu cos® (u - Nw/2 = w/4)

~ 2 Los2 2 (hE - 1/2
TS cos (uo Nn/2 =w/4)sin® (kg Nwo)] .
As is implicit in the derivation of the asympotic expansion, the

functional dependence on the velocity u is primarily an oscillation,
so that the velocity may be replaced by its initial value u except

within the oscillating term. With this substitution the solution is

sin(u - Nn/2 - 7/4) =xsn{F(xk) +at], (19)
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where F(yx,k) is the elliptic‘intégral of the first kind9 of argument
X and modulus X, sn is the Jacobi elliptic function, sin x = sin (u0 =N7/2
- 1/4) [k, k2 =1 - gin?(kg - Nwo)cosz(uO - Nn/2 = w/4), and o = 2NQ(2/ﬂuo3)1/20
The period of oscillation of the velocity is 4K(k)/a where K(x) is the
complete elliptic integral 6f the first kind. The shortest period occurs
for the particular combination of initial conditions for which x=0; it
is 4K(0)/o = (n/Na)(mud/2)}/2 which for u_ = 3 and N = 2 is 10.5/2, All
other initial conditions lead to oscillations with longer periods.

Most of the hot ions will have completed an oscillation in the
pseudo~-potential well when Q1 = 10.5. However, by referring to Eq. 17
one sees that the velocity of the cold ions has changed enormously by
this time. The relative changes in hot ion velocity are small during
the initial stages of evolution of the‘wave« Of course, the energy
acquired by the cold distribution does come from the hot distribution.
Conceivably one could use conservation of energy to calculate the
saturation values of field energy, but it is much easier to calculate
the charge density and use Poisson's equation.

The appropriate resonant solﬁtion for the hot components is,

from these arguments,

vy 2NQT

u o + == JN(u) cos(kE - Ny), (20)

obtained by holding u and ¢ constant during integration.

E., Nonresonant Solutions
The nonresonant contribution to the ion orbits is calculated
with perturbation theory. The amplitude of the electric field is

expanded in a Taylor series
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Ar) ¥ A+ A't, (21)

For these terms the time dependence of the wave phase is fast enough
so that the ion velocity and phase may be held constant, From Eq. 8
a Veldcity increment is found which is to be added to the resonant

solutions of Eqs. 17 and 20:

ou 20A an(u)sincbn
u w=-nfl
n#N
(22)
N 20A" an(u)coscbn
u (w=nf)2
n#N

The Taylor expansion is valid for only a short while, but this is
sufficient since the orbits are to be used to find a differential

equation in the variables A(t), dA/dt, and T = fAdt.
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IV, Distribution and Charge Density

A solution of the Vlasov equation is generated from the orbits
without further approximation. The orbit variables have been given as
functions of time with initial values A and woa The orbits are inverted
to express the initial values as functions vo(v,w,i,t) and wo(v,w,i,t)o

A solution of the Vlasov equation islo
f(v,¥,8,t) = F[VO(V,U),Est); lPO(V,kU,Fast);E],
where F is normalizable and non negative, but otherwise arbitrary.

A, The Cold Component

The initial cold distribution of Eq. 1 depends only on velocity.

From Eqs. 17 and 22 one finds for N=2,
fc(v,w,g,t) = nc/(2ﬁv§)exp{—[v—6v]2[cosh Qt = cos(k&-2¥)sinh QT]/ZVS}D (23)

with v = Q8u/k.

By a Taylor expansion one finds
f = fco - Sv cho/av (24)

where

= 2 _2 2‘°‘ 2" 2
fCo nc/(2ﬂve)exp[ v4 cosh QT/ZVé] {Io(v sinh QT/ZVG)

+2 3 Ip(vzsinhar/zvg) cos[pkxtpusin(V-Qt) - 2py] .
p=1

By using the generating function for Bessel functions Jn one finds the

explicit form

fco(vgw,xgt) = nc/(Zﬂv%)eXp[nv2 cosh Qr/2vg]
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{I_(v2sinh Qt/2v2)+2 ) )} I (v2sinh Q1/2v2) J_(pu)
o ¢ = P 8 n
p..-_-.l n.....oo
cos[pkx + n(y-Qt) - 2py] - ‘ (26)

To be consistent with the cold orbits the series expansion of
Jn must be used again. The integrals needed to find macroscopic quanti=-

ties have the formll

f7 dt t9 expl-t cosh a] I (¢ sinh o) = (a=p) (PP (cosha) 27)

which is valid for ¢>p>0. The functionsopz(cosh o) are the associated
Legendre functions, defined for arguments greater than unity.
By direct integration the temperature of the cold component is
© 2m L

=L 26 =
e(t) = N vdv dy | dx mv fco = OO cosh Qt, (28)

¢} 0
0

where L is the length of the plasma, Nc is the number of cold ions, and

0 = mv2

o 6 is the initial temperature.

The charge density calculated from the resonant part of the

distribution is

2p
(2,t) = en {142 V 1 PkV? @P(coshm)cos (pkx~-2pQt) }
po " ? c pil (2p)t (2472 P
= [pkvg|®P
= enc{l +2 ) o7 D sinhPor cos (pkx-2pQit) },
p=1 "

The term with p=l acts to stabilize the wave while the terms with p>1
generate harmonics which do not propagate.

The nonresonant contribution to the charge density is



19

o 2m afco
Spc = —-e ( vdv J dy dSv S
0 o
with év given in Eq. 22, The calculation is rather lengthy, and only
partial results are given here. The part of the charge density that

has the wave phase kx-wt is

n-1
n - k2V2 1 [¢]
§p ¥ en ) 6 = (cosh Q1) (30)
c c n! n-1
=1 \ 202 )
n#2
~2An%q2 dA n?Q%w cos (kx-wt)

V2ol 51n(kx—wt)+4-az-—az:gzﬂz 2 .

Only the term with n=1 is large enough to contribute to stabilization
or dispersion, even though the terms with n>3 are increasing rapidly

with increasing 1. The part neglected here generates harmonics.

B, The Hot Component.
From Egs. 20 and 22 the initial velocity of the hot component is

3
vo(v,w,agt) = v - %%;1 Jo (kv/Q2) cos(kg-2y) - Sv

where changes in velocity are small, The distribution is approximately

4031 th
fh = Fh - *E'z’; Jz(kV/Q)COS (kE—Z'(P) - 8v __8—-\-7— s (31)

where Fh is the equilibrium distribution of Eq. 1. The charge density

is found by direct integration to be

o= - - 7 - 2 2 o -
ph enh{l 4QT[12 Iz]exp( k ay ) ¢ cos(kx-20t)
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- li_Ai_ — - T “1lq2y , _
zdt ) (o) 2 [In In]eXP( k ah) cos (kx-wt) (32)
n#2
nil _ g 12,2 . s _
+24 ngz song 1T, = I3]exp(-k2%a?) - sin(kx-wt).} ,

where the argument of the Bessel functions is kzaﬁ°
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V. STABILIZATION

The fields must now be made self consistent by using Poisson's

equation, 9E/3x=4mp, which with the field representation of Eq, 5 is

2mQ?

A(t) sin (kx~wt) = 4mp (31)

The charge density is the sum of partial densities from Eqs. 29, 30 and
32, . Consistency is obtained by matching the coefficients of sin(kx-wt)

and cos (kx-wt) in this equation, with w ¥ 2Q. One result is the dispersion
relation of Eq. 2, in the small cyclotron radius limit for the cold
component, with the n=2 terms missing, and with real frequency. The

second result is an equation linking the time dependent quantities dA/dt,
and T = fAdte This may be written as a second order differential

equation in the dimensionless variable Z(t) = Qt:

d?z 5 .7~-K sinh %

- 1-K

dt2 (32)

, - 2.2 g 12,2
where v is the growth rate of Eq. 3, and K [nck ac]/[8nh(I2 Iz)exp( k ah)]o

The Bessel functions have the argument kzaﬁo By examining the approximate
growth rate an alternative definition of the stability parameter K is
found to be K=@O/®S, where OO is the initial temperature of the cold -
componenﬁ and @S is the temperature necessary to stabilize the mode
according to the linear criterion. During the nonlinear evolution the

temperature increases past @Sa

A first integral of Eq. 32 is

42)2 . 2 _ 2o
L(ié} = q2a% = y2(lm Z(cosh BoD) ) (33)
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with the condition that dZ/dt = 0 when Z = 0. A typical numerical
soluticn of this equation is shown in Fig, 2, for the plasma parameters
of the simulation resultsl shown in Fig. 1. The amplitude QA = dZ/dt
rises exponentially, is stabilized, oscillates once, and then damps
away. The early stages of evolution are qualitatively the same as the
simulation, but the simulation amplitude continues to oscillate, and
the oscillation soon becomes noisy. Actually any mechanism which leads
to a small decrease in wave energy will produce a continued oscillation.
Numerical results may be obtained without solving the differential
equation, The wave amplitude reaches a maximum when Z = K sinh Z;
the amplitude is found directly from Eq. 33 and the temperature of
the cold component from Eq. 28. A numerical comparison of the predicted
and measured values of field energy and component temperature O is given
in Table I. The ratio of field energy in the fundamental mode to the

kinetic energy of the hot plasma is
= 2 21 = 2 212, 2
e [fdx E /81]/[N, ma*] = (dz/dt) /[ZwPh k%a *1. (34)

The values given are at the first maximum. For each of the three cases

shown nC/n = 0.2884 and wphz/Q2 = 20. Also the predicted and measured

h
values of the oscillation period T of the fundamental wave amplitude
are given, In each case the predictions are correct to within a factor
of about 2.

Aamodt and Bodner6 have developed a nonlinear theory describing
the case where the desnity of hot plasma is small coﬁpared to the cold
density. The theory is based upon a nonlinear smearing of the cyclotron

resonances and is not directly applicable to the present cases. Byers

and Grewal7 report a modification of this theory by Bodner which predicts
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a field energy—hot ion energy ratio of 81 = Q”[Zkzahz]l/z/[Swwzwphz] in
the notation used here, This formula predicts €, ¥ 0.002 for all the

cases of Table 1, while €, actually varies by a factor of 85,

1
The dependence of the field energy on the plasma parameters in
the present theory is rather complicated. The growth rate is not the
dominant factor, as can be seen by examining Table 1, The growth rate
varies by a factor of 2, but the field energy changés by a factor of
85. The most important parameter is the stability parameter K = @o/eSs
which is a measure of how much heating is needed for stabilization,

but of course K is a function of the other plasma\parameters° A parameter

survey is in progress and will be reported later,

B. Harmonic Generation
Since spatial and temporal harmonics of the unstable mode have
appeared in the charge density they must be included in the calculation

of orbits, A general form for the electric field of these harmonics is

[--]

SE(x,t) = ] Ep(t)cos[pkx—pwt + ¢p], (35)
p=2

with amplitudes Ep(t) and phases ¢p° The terms are treated as small
perturbations in the analysis. The result of the calculation is a compli-
cated set of coupled transcenental equations in which the phases ¢p must
be time dependent. The largest terms in these equations are the
contribution from the fundamental resonance (pw=Q) of the cold ions., A
rough estimate of the harmonic amplitudes is found by using only these
terms and the source terms from the charge density of Eq. 29.

This estimate is
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3 o o1 PRV o
Y [6E(x,t)][1 - 'Zﬁ‘)‘z_ﬂg] = 8,1Tenc 2 F!— (—2—5—) PSinhPZ cos (pkx-2pQt).
p=2

The primitive result is that the electric field is modified by the
inclusion of the dielectric function of the cold plasma, which is not
changed by the heating. Now by defining the dimensionless amplitudes
Ap = ekEP/ZmQZ, setting ¢p = -1/2, w = 202, and matching phases, the

harmonic amplitudes are found to be

e S B ] R
A (e) = F7 1- -(-2—1)-572:92 o7 {8 sinh*Z. (36)

In Fig. 3 are plotted the field energies in the fundamental mode and
the first two harmonics for the simulation of case 2 in Table 1. The
numerical values at peak amplitude are shown in Table 1. Qualitatively
the estimate is not very good, It pfedicts that the harmonic amplitudes

continue to grow until A goes to zero, while in the simulation Al’AZ’

1

and A3 reach peak values at the same time. The simulation results also

show that the phases ¢P are time dependent. However, the time dependence

during the exponential growth phase is correctly predicted.
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IV. DISCUSSION

The results summarized in Table I allow a critical examination
of the approximations used in the theory. The first approximation of
a single dominant wave is seen to be good for case 1 and 2, but not for
case 3, where approximately a third of the field energy is in the harmonics
at saturation. For this case the theoretical calculation of € is too
large by a factor of three, Also the predicted energy in the third
harmonic €, is larger than the energy in the second harmonic sz, while
this order is reverséd in the simulation.

The resonant approximation, in which the frequency is set equal
to twice the cyclotron frequency, is the worst for case 1, in which
A= w-20 = 0,031Q., The numerical agreement is not as good in this case
as in case 2, with the smallest A. The overall agreement shows that
this approximation, which is really basic to the theory, is sound.

The approximation used for hot ion orbits, that the velocity
and phase are changing very slowly compared to the changes in wave amplitude,
may be checked by comparing the period of the oscillations in velocity
with the elapsed time for stabilization. According to the calculation
in section III the shortest period, for the variable T = fAdt, is
approximately 10,5/Q. In the simulation, saturation occurs at T = 7,33/Q
for case 3, and in a shorter time for the other cases. Clearly for this
case the changes in the hot ion distribution should be taken into account.
However, for this case the harmonic amplitudes have grown so large that
the idealization of a single large wave is also invalid. This case
represents a limit for the quantitative validity of the theory., It
also represents a practical limit, in the sense that a hot-cold temperature

ratio of 10,000 is unlikely to appear in a laboratory plasma.
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The stabilization by the heating of the cold component seems to be
well established by the theory and the simulation results. The results
are generally encouraging, indicating that the energy in the electric
field at saturation is smaller than previously predicted. The most
important result of this analysis is the development and verification
of methods useful in nonlinear plasma problems. A computer simulation
can seldom be applied directly to describe a laboratory plasma, but
analytic methods, such as those developed here, may be generalized when
their utility has been established. Two such generalizations are being
pursued. One is the development of the loss~cone instability with
oblique propagation, which seems to be a straightforward extension of
the analysis. The second is an application to ion cyclotron heating

with external fields.
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TABLE 1

Case 1 Case 2 Case 3
Theoretical Simulation Theoretical Simulation Theoretical Simulation
w/9 1.969 1.97 2.005 2.01 2.025 2.03
v/9 0.098 0.103 0.202 0.208 0.232 0,236
k2ah2 7.50 8.55 9.20
k?a ? 0.075 0.0214 0.00092 |
K 0.855 0.242 0.0105
z 0.986 3.31 7.22
o/e, 1.53 1.9 13,7 15 684 570
A 0.0724 0.523 1.46
QT/21 5.52 4,4 2,02 3.4 1.10 1.0
£, 1.75(L0)~° 3.0(10)~5 8.01(10)™% 5.7(10)7* 5.77(10)~3 1.9(10)~3
€, 1.02(10)~¢ 1.5(10)~¢ 1.17(10)~" 903{10)“5 2.31(10)73 5.9(10)™"
€q 2.67(10)"8 3.3(10)"8 3.50(10)75 2,0(10)73 3.18(10)73 1.4(10)™"

6¢
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Caption for Table 1.

Comparison of Theoretical and Simulation Results, The frequencies
w/Q, wavelength parameters kzah2 and kzacz, and the stability parameters
K are initial values. The other quantities are measured at saturation.
The dimensionless time parameter is Z; O/@o is the ratio of cold component

temperature at saturation to its initial value; €, is the ratio of field

1

energy in the fundamental mode to the hot ion energy; €, and €, are
the energy ratios of the first two spatial harmonics; A is the amplitude
of the fundamental and T is the period of the slow modulation of the

fundamental mode.



Figure 1.

Figure 2,

Figure 3.
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FIGURE CAPTIONS

A linear plot of the amplitude of the fundamental unstable
mode for case 2 of Table I. The amplitude plotted is

292A/wp2 = A/12.88. The time plotted is Qt/2I,

A linear plot of the theoretical amplitude A of the

fundamental mode for case 3.

A logarithmic plot of the ratio of field energy to hot
ion energy for three harmonics. The top curve is for €1
the fundamental mode., = The middle curve is for €, the second

harmonic. The bottom curve is for €5 the third harmonic.,
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