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THE BEHAVIOR OF G W H I T E  UNDER BIAXIAL TENSION 

W. L .  Greenstreet 
G ,  T. Yahr 
R .  S e  Valachovic 

A small-deformation e l a s t i c - p l a s t i c  continuum theory f o r  
describing the s t r e s s - s t r a in  behavior of graphite i s  examined 
f o r  specimens under b i a x i a l  loading a t  room temperature. The 
continuum theory takes  i n t o  account the anisotropy and p l a s t i c  
compressibil i ty of graphite as wel l  as the  continuous nonlin- 
e a r i t y  of the s t r e s s - s t r a i n  response. The measured s t r a i n s  
for thin-walled cy l indr ica l  s h e l l s  loaded by in t e rna l  pressure 
are shown t o  agree very closely with the  predictions of the  
theory f o r  both loading and unloading. 

Keywords: graphite,  cons t i tu t ive  equations, s t r e s s ,  
s t r a in ,  mater ia ls  t e s t ing ,  mechanical propert ies ,  p l a s t i c i t y ,  
b i a x i a l  t e s t s ,  Graphitite-G e 

This report  describes the  exminat ion of an e l a s t i c - p l a s t i c  contin- 

uum theory, which w a s  developed t o  describe the  nonlinear mechanicalbe- 

havior of a r t i f i c i a l  graphite.  The basis of t h i s  examination i s  a com- 

parison between calculated and experimental r e s u l t s  for combined stress 

conditions. Thin-walled cylinders mde from extruded graphite were in- 

t e r n a l l y  pressurized t o  provide data  on loading and unloading response, 

and the  experimentally obtained s t r e s s - s t r a in  curves were compared with 

calculated r e s u l t s  

I n  the  main, the  c i r cu la r  cy l indr ica l  specimens were made from ex- 

truded Graphitite-G tubing. Five specimens of t h i s  mater ia l  were t e s t ed ,  

while a single specimen, which w a s  made from a spec ia l ty  graphite,  w a s  

a l s o  used. I n  each case, the  mater ia l  exhibited t ransversely i so t ropic  

behavior, with the  ax i s  of i so t ropic  symmetry being i n  the  d i rec t ion  of 

the  longi tudinal  a x i s  of the specimen e 
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The theory examined i s  b r i e f l y  described i n  t h e  next sect ion,  The 

equations employed in  t h i s  study were based on approximate, but  mathe- 

mat ical ly  the  simplest, analogs t o  the  physical behavior postulated i n  

the development of the  theory , 

The second sect ion describes the  t e s t s  performed using specimens made 

from Graphitite-G material. 

ated with t h i s  material, special  procedures f o r  da ta  co l lec t ion  were used 

t o  overcome masking e f f e c t s  caused by var ia t ions  i n  propert ies .  

of these procedures allowed parameters in  the  cons t i tu t ive  equations t o  

Because of var ia t ions  i n  propert ies  associ-  

The use 

be determined from a combination of un iax ia l  t e s t  r e s u l t s  and r e s u l t s  ob- 

ta ined d i r e c t l y  from the specimens after the  combined stress tes ts  were 

completed 

The t h i r d  sect ion describes the Graphitite-G t e s t  r e s u l t s ,  Further 

discussion of t he  e l a s t i c - p l a s t i c  continuum theory i s  a l s o  given i n  t h i s  

sect ion.  The four th  sect ion gives comparisons between calculated and ex- 

perimental r e s u l t s  f o r  the Graphitite-G and the  spec ia l ty  graphite speci-  

mens e 

MATEEMATICAL TEBQRY 

The small-deformation e l a s t i c - p l a s t i c  continuum theory,1’2,3 which 

w a s  developed t o  describe a r t i f i c i a l  graphi te  behavior, is  summarized, 

and the  s t r e s s - s t r a in  r e l a t ions  f o r  pressurized thin-walled cyl inders  a r e  

given in  t h i s  sect ion,  

theory of p l a s t i c i t y ,  it i s  postulated tha t  the  t o t a l  symmetric s t r a i n  

tensor,  E can be decomposed i n t o  e l a s t i c  and p l a s t i c  components, t h a t  KL’ 
i s ,  

I n  the  theory, as i n  the  c l a s s i c a l  mathematical 

e P a re  the  e l a s t i c  components and E 
KL a where E 

The e l a s t i c  s t r a i n s  a re  given by the  generalized Hooke’s l a w  

are the  p l a s t i c  components. 
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- represents  the  e l a s t i c  compliances and 0 KL = om i s  

Equation c2)  can be wr i t ten  in  incremental form as 
m-sMJ%sL where s 

the s t r e s s  tensor ,  

Pr ior  t o  discussing the  s t r e s s -p l a s t i c  s t r a i n  re la t ions ,  loading, or 

po ten t ia l ,  surface behavior must be considered. 

graphite,  a y ie ld  surface i n  the  c l a s s i ca l  sense does not ex i s t ;  t h a t  i s ,  

there  e x i s t s  no surface which encloses a region of purely e l a s t i c  response. 

However, the concept of a loading surface, d i s t i n c t  from a y ie ld  surface,  

can be introduced. As  shown i n  Refs. 1 and 2, t h e  loading surface,  or 

p l a s t i c  po ten t i a l  surface, f o r  a r t i f i c i a l  graphite may be expressed by 

In  the  case of a r t i f i c i a l  

where the  constants 

s ca l a r  function which depends on the  h is tory  of loading. 

represents  the  simplest mathematical form f o r  describing loading surfaces 

appropriate t o  the  behavior of graphite.  For a more general expression 

f o r  f ,  which allows for t r ans l a t ion  and growth of t he  loading surfaces,  

t h e  reader i s  re fer red  t o  Refs, 1 and 2.  

s a t i s f y  the  r e l a t ions  bN = and IC i s  a 

Equation (4) 

Equation (4 )  describes the  surface associated with i n i t i a l  or f i r s t  

loading from the s t ress - f ree  state of a v i rg in  material, Loading rever- 

sal  occurs when the  s t r e s s  point,  which represents the  s t r e s s  s t a t e  i n  

s t r e s s  space, moves toward the  i n t e r i o r  of the current loading surface.  

A s  a r e s u l t  of loading reversal ,  a new surface i s  generated. 

Consider the  case i n  which the  s t r e s s  point has moved along an i n i -  

t i a l  loading path i n  s t r e s s  space u n t i l  a s t r e s s  state denoted by o - KL - 
o* is  reached. A reversa l  of loading a t  o - * w i l l  s tart  generating KL KL - OKL 
a loading surface given by 

where 
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3c Here oKL represents a pseudovirgin s t a t e ,  and the  stress during loading 

reversa l  i s  measured from O* 

zero state during the  f i rs t  loading of the  v i rg in  body. 

i n  the  same way as it i s  measured from the  KL 

A new reversa l  of loading a t  o* w i l l  again start generating a 
1) 

new loading surface, which i s  given i n  t h i s  case by 

where 

- (3* KL (3 

2 )  ( 1) 

This process i s  repeated fo r  every loading reversa l .  

Before proceeding with the discussion of the e l a s t i c - p l a s t i c  theory, 

we s h a l l  consider un iax ia l  loading. I n  h i s  s tudies  of un iax ia l  loading 

of graphite,  Jenkins4 t a c i t l y  assumed the  v a l i d i t y  of t he  postulate  ex- 

pressed by Eq.  (1) and establ ished equations of t he  following forms for 
describing stress versus longi tudinal  s t r a i n  diagrams from uniaxia l  tests:  

E = AO -!- Bo2 ; ( 91 

f o r  i n i t i a l  loading, 

f o r  unloading from a maximum s t r e s s  CJ with the  corresponding s t r a i n  E m m' 
and* 

E - E 0 = A(o - o0) + &(o - ( 11) 

f o r  reloading from o0 with the  corresponding s t r a i n  E 

E q s .  (9) 
r i a l  constant which character izes  the  p l a s t i c  deformation, and c i s  a 

constant.  E is  the  e l a s t i c  modulus 

when o I (3 . In 
0 m 

(101, and (ll), A( =1/E) i s  t h e  e l a s t i c  compliance, B i s  a mate- 

*In h i s  first paper,4 Jenkins took t h e  spec i f i c  case O~ = 0. I n  a 
la ter  paper,' i l l u s t r a t i o n s  of s t r e s s - s t r a in  curves are given f o r  stresses 
both i n  tension and compression. 

r 
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Jenkins '  development4 resu l ted  i n  a value of one-half f o r  c, with 

the  value being independent of or ien ta t ion  with respect t o  t h e  grain,  t h a t  

i s ,  independent of whether t h e  specimen i s  oriented i n  the against-grain 

or  with-grain d i rec t ion .  

whether t he  specimen i s  being unloaded o r  reloaded. 

were shown 4J67798 

i t e  behavior, t he  p l a s t i c  s t r a i n s  a r e  taken as quadratic functions of the  

s t r e s ses  i n  the  mathematical analog t o  e l a s t i c - p l a s t i c  behavior used here.  

However, the  r e s u l t s  of our invest igat ions show t h a t  c does not necessar- 

i l y  take the  value of one-half as implied by Jenkins, and it i s  f o r  t h i s  

reason t h a t  we have included it as an unknown constant i n  Eqs. (10) and 

In  addition, t h i s  constant does not depend upon 

Since h i s  equations 

t o  give good t o  exceptional representations of graph- 

(11) ' 
Following the  developments i n  Refs. 1 and 2, the r e l a t ion  between 

p l a s t i c  s t r a i n  increments and stress increments on f i rs t  loading i s  given 

by 

The r e l a t ion  f o r  the  f i r s t  loading reversa l  i s  

Similar expressions apply f o r  successive loading reversals .  

c i s  the  same as the constant c i n  Eqs. (lo) and (11) 
In  Eq.  (l3), 

Further, 

D D D* 

where E'* i s  the  p l a s t i c  s t r a i n  ex is t ing  a t  the  ins tan t  of reversa l  a t  KL 
o* KL" 

The r e l a t i o n  between t o t a l  s t r a i n  increments and s t r e s s  increments 

on f i r s t  loading i s  



For the  f i rs t  loading reversa l  the  r e l a t i o n  i s  

Here , 

where dE* i s  the t o t a l  s t r a i n  a t  the  ins tan t  of loading reversa l  a t  o* KL KL' 
To simplify the ensuing discussion, w e  use contracted notation i n  

which the s t r e s s  and s t r a i n  notations have the  following equivalences: 

and 

O4 = O23 

05 = 031 

O6 = O12 

Note tha t  y ( K  L) are the engineering shear s t r a i n  components. KL 
A s  mentioned i n  the Introduction, the  mater ia l  i s  assumed t o  be 

t ransversely i so t ropic ,  and, throughout the subsequent discussions,  the 

3-axis is  the ax i s  of anisotropic  symmetry and the  1- and 2-axes l i e  

within the  plane of symmetry-* I n  contracted notation the  cons t i tu t ive  

equation, Eq. (151, becomes 

"1 and 2 are against-grain d i rec t ions ,  while 3 i s  the  with-grain 
d i rec t ion .  
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and t h e  p l a s t i c  po ten t i a l  equation, Eq .  (4) , becomes 

1 
f = axz, OKOL * 

A s  s ta ted  above, t he  compliances and t h e  coeff ic ients ,  or constants, i n  

the p l a s t i c  po ten t ia l  equation a re  symmetrical. 

t he  symmetry r e l a t ions  become 

I n  contracted notations 

= 

and 

We a re  now i n  a pos i t ion  t o  discuss  the constants and t h e i r  re la t ion-  

ships  t o  quan t i t i e s  determined from uniaxia l  tests.  

ances and the i r  re la t ionships  t o  the usual  e l a s t i c  constants f o r  a t rans-  

versely i so t ropic  mater ia l  are* 

1 

The nonzero compli- 

SI1 = s22 = - J 
E l l  

1/12 v2 1 
S12 - s21 = - - = - - 

El 1 E l l  J 
- 

1 
s33 = - f E33 

*See Love' or Hearmon .lo 
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where 

E = Young's modulus, 

G = e l a s t i c  shear modulus, 

v = Poisson's r a t i o ;  the  f i rs t  subscri-pt ind ica tes  t h e  d i r ec t ion  

of applied s t r e s s  and t h e  secoud indica tes  t he  d i r ec t ion  of 

induced s t r a i n .  

rn 

Note t h a t  the constant A i n  Eqs. (91, [lo), and (11) corresponds t o  sll 

( = s ~ ~ )  and s339 
Through the  use of Ref. 1, the  following equations can be wr i t t en  

t o  parameters t h a t  can be determined from for r e l a t i n g  t h e  nonzero 

un iax ia l  t e s t  r e s u l t s :  

Here, B,, (=B2,) i s  t h e  B value [Eq. (9) 1 for t h e  against-grain d i r ec t ion ,  

B3, i s  the  B value f o r  t h e  with-grain d i rec t ion ,  and B23 i s  determined 

a re  the  p l a s t i c  s t r a i n  r a t i o s .  

have the  same meanings as those for Y 

from a shear stress versus shear s t r a i n  diagram. The ky2, ~13, P and p31 P 
[Again, t h e  subscr ip ts  on kP (K # L) KL 

(K # L) . I  KL 
The cons t i t u t ive  equations giving the  a x i a l  and circumferential  

s t r a i n s  are wr i t t en  i n  expanded form below. 

i n  a subsequent sec t ion  f o r  making comparisons between predictions of t h i s  

theory and measured s t r a i n s  from the  thin-walled cyl inders .  

loading, 

These equations w i l l  be used 

For i n i t i a l  



+ (1 - P:~R) (1 - 2p13R P + - a:kog , ( 2 3 )  
81 1 2 

where c2 is the circumferential strain, is the axial strain, and 

R = - O3 = constant 
(32 

is the axial-to-circumferential stress ratio. The corresponding equations 

for first load reversal or unloading are 

and 

* = E2 - E2 , 
1) 

* = E3 - E3 , 
1) 

* = o2 - o2 , 
1) 

* = o3 - o3 . 
03( 1) 
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The s t r e s ses  0: and 0: are  those associated with the  load reversa l  or 
unloading point; the  s t r a i n s  c$ and E ;  a re  those t h a t  exis ted a t  the  in- 

s t an t  of load reversa l .  Note t h a t  the s ta r red  quant i t ies  were designated 

by ern and om in  E q .  (10) . 

TESTS AND TESTING PROCEDURES, G W H I T I T E - G  MA.TERIAL 

I n  t h i s  sect ion w e  degcribe the  b i a x i a l  t e s t s  conducted on the th in -  

walled cy l indr ica l  specimens as wel l  as uniax ia l  t e s t s  performed t o  ob- 

t a i n  material property da ta .  The mater ia l  property data were obtained 

from uniaxial  t e s t s  on the  cy l indr ica l  specimens following acquis i t ion  

of t he  b i a x i a l  da ta  and from standard t e n s i l e  specimens. These data were 

used t o  determine the parameters for use i n  Eqs. (23) through (26) .  

Tests were conducted on f i v e  cy l indr ica l  specimens of the  design 

shown i n  Fig. 1. A s  may be seen from t h e  f igure,  the  gage sect ions of 

the cy l indr ica l  specimens were 6- in .  long, with a 0.092-in. w a l l  thick- 

ness, and a mean radius  of 0.922 in .  The specimens were fabr ica ted  from 

tubes having a 1 1/2 i n .  inside diameter and a 2 in .  outside diameter. 

Short cy l indr ica l  sleeves were machined from 2-ine- inside diameter by 

2 3/4-in.-outside diameter tube stock and were glued over each end of 

10-in.-long cylinders,  which were machined t o  form the  gage sect ions.  

The composite s t ruc tures  were then machined t o  the f i n a l  specimen con- 

f igura t ion .  Since the  specimens were made from extruded tubing, the  longi- 

t ud ina l  axes of the specimens were p a r a l l e l  with the  with-grain d i rec t ion  

of t he  graphite; t he  mater ia l  w a s  i so t ropic  i n  planes normal t o  the  axes 

of t he  cylinders 

Each cy l ind r i ca l  specimen w a s  instrumented on the  outside surface 

with s t r a i n  gages oriented i n  the  a x i a l  and circumferential  d i rec t ions  

Type c 6 - 1 2 ~ ~  Budd Metalfilm gages with a O.125-in. gage length were used, 

and they were mounted i n  pa i r s  (one a x i a l  gage and one circumferential  

gage) a t  selected locat ions.  

180-deg apar t  a t  t h e  center of the  gage section, while t h e  remaining four  

had four  p a i r s  mounted a t  90-deg in te rva ls  around the  circumference a t  

t h e  center of t h e  gage sect ion.  In  addi t ion,  pa i r s  of gages were mounted 

One specimen (no. 1) had two s e t s  mounted 
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DIMENSIONS ARE IN INCHES 

Fig. 1. Design of thin-walled cy l ind r i ca l  specimen. 
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i n  the  t r a n s i t i o n  regions a t  the  ends of each specimen. 

t he  specimens (nos.  2 and 3 )  were extensively s t r a i n  gaged t o  obtain 

s t r a i n  d is t r ibu t ions  as functions of a x i a l  pos i t ion .  

I n  two cases, 

Figure 2 shows a cy l indr ica l  specimen mounted i n  a loading f i x t u r e  

f o r  applying in t e rna l  pressure only or an axial  t e n s i l e  force only. A 

specimen mounted i n  a loading f i x t u r e  for applying in t e rna l  pressure plus  

a compressive force s o  that no net  a x i a l  load i s  exerted on the specimen 

i s  shown in  Fig.  3. 
Each specimen was subjected t o  b i a x i a l  loading; following t h i s ,  uni- 

a x i a l  loading conditions were imposed i n  various sequences. A summary of 

the t e s t s  and tes t  conditions i s  given i n  Table 1. The loadings used and 

the sequences of appl icat ions a re  given i n  column 2 of t h e  t ab le ,  where 

the  circumferential  t o  a x i a l  s t r e s s  r a t i o  f o r  each loading i s  a l s o  l i s t e d .  

A cycle consisted of loading t o  the  maximum pressure or load and unload- 

ing t o  zero pressure or load. 

fore  being subjected t o  subsequent loadings. The s t r e s s e s  i n  the  a x i a l  

and circumferential  d i rec t ions  f o r  pressure loading were calculated using 

thin-walled cylinder equations. Mote t ha t  the  sequence of loading i s  not 

The specimens were unloaded completely be- 

the  same i n  a l l  cases. Specimen no. 1 w a s  subjected t o  a maximum i n t e r -  

n a l  pressure of 160 ps i ,  while t he  maximum i n t e r n a l  pressure w a s  200 p s i  

i n  a l l  other cases. I n  addition, specimen no. l w a s  pressurized t o  f a i l -  

ure under combined s t r e s s  conditions a s  a f i n a l  s tep .  

mens were not loaded t o  f a i l u r e ,  

The other speci-  

The s t r a i n s  measured a t  the  gage locat ions along the  lengths  and 

around the  circumference of specimen nos. 2 and 3 were carefu l ly  examined 

f o r  each of the three  types o€ loading, t h a t  is ,  i n t e rna l  pressure,  a x i a l  

load, and i n t e r n a l  pressure w i t h  no net  a x i a l  load. To f a c i l i t a t e  t h i s  

examination, s t r a i n  d i s t r ibu t ions  were p lo t ted  for various load l eve l s .  

These p lo ts  showed tha t  the  peak s t r a i n s  which occurred i n  the t r a n s i t i o n  

regions a t  the  ends of t he  gage sect ion diminished rapidly with dis tance 

toward the center of the  specimen. Thus, the  cen t r a l  regions were not 

affected by the  discont inui ty  s t r e s ses ,  There were s m a l l  d i f ferences i n  

t h e  s t r a i n  values measured around the circumferences a t  t he  centers  of 

the  specimens. A s  an example of t he  r e s u l t s  obtained, the s t r a i n s  f o r  

specimen no. 3 are shown i n  Fig.  4 f o r  the 200 p s i  i n t e rna l  pressure 
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Fig. 2. 
tension t e s t  r i g .  

Cyl indrical  specimen mounted i n  i n t e r n a l  pressure/axial  
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Fig. 3. Cyl indrical  specimen mounted i n  i n t e r n a l  pressure/axial  
compression t e s t  rig. 



Table 1. Outline of t e s t s  on Graphitite-G th in -  
walled cy l ind r i ca l  specimens 

Maximum Maximum Maximum s t r e  s s 

pres  sure load Circumferential  Axial  
Number of 

cycle s 
- Specimen Load i n t e r n a l  a x i a l  

no e type 
( p s i )  i 1b) ( p s i )  ( ps i )  

2 : 1 b i a x i a l  160 1603 802 1 
0 1689 1 

1000 0 1877 2 

200 2004 1002 1 

0 1-877 2 

1 

0 2 
0:l a x i a l  900 

2 : 1 b i a x i a l  213 2134 1067 

l:D circumferential  190 
0 : l  a x i a l  1000 

1:0 circumferential  180 1804 
0:l a x i a l  

2 : 1 b i a x i a l  
0 2 2 

1904 

2:l b i a x i a l  200 

1:0 circumferential  190 
1000 3 

0:l a x i a l  
2004 

0 
1904 

1002 2 
1877 2 

0 2 

200 2004 1002 2 
1904 0 2 

0 1877 2 

200 2004 1002 2 
1904 0 2 

0 1877 2 

2 : 1 b i a x i a l  4 
1:0 circumferential  190 
0:l a x i a l  1000 

1 : 0 circumferential  190 
0 : l  a x i a l  1000 

2 : 1 b i a x i a l  5 

- 
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loading. 

as c i r c l e s .  The s t r a i n s  fo r  other gage locat ions around the  circumference 

of the  specimen are  denoted by squares. 

The st‘rain values from gages along a s ingle  generator a re  shown 

Twenty-four t e n s i l e  specimens were used t o  obtain stress versus loa-  

g i tud ina l  s t r a i n  and stress versus l a t e r a l  s t r a i n  data .  Eight with-grain 

and eight  against-grain specimens were machined from 2-in.-diam rod stock, 

while e ight  addi t ional  against-grain specimens were machined from the  tube 

stock, which had a 2 in .  inside diameter and a 2 3/4 in .  outside diameter. 

The l a t t e r  stock w a s  a l s o  used t o  make end sleeves f o r  the  thin-walled 

cy l ind r i ca l  specimens. 

case. Figure 5 shows the  design of the with-grain specimen; t he  gage 

sect ion was 0.310 i n .  i n  diameter and 3/4 i n .  i n  length.  

the  against-grain specimen i s  shown i n  Fig. 6, where the specimen i s  shown 

superposed on the  rod stock cross sect ion.  A l l  of the against-grain 

specimens had a 0.125-in.-diam, 1/2-in.-long gage sect ion.  

of t he  specimens from tube stock, cy l indr ica l  rods and end caps, as shown 

i n  Fig.  7 ( A ) ,  were made and assembled t o  form a composite s t ruc ture .  

This s t ruc ture  was then machined t o  the  f i n a l  configuration i l l u s t r a t e d  

i n  Fig.  7 ( B )  

A modified ASTM specimen design” w a s  used i n  each 

The design of 

I n  t h e  case 

Each against-grain specimen was instrumented with four Micro-Measure- 

ment type MA-13-05OAH-120 s t r a i n  gages with a O.05O-in. gage length.  

of t he  gages were oriented i n  the a x i a l  d i rec t ion  and two were oriented 

i n  the  Circumferential direct ion.  

deg apar t .  The circumferential  gages were mounted t o  form T configura- 

t i o n s  with the  a x i a l  gages. Each with-grain specimen w a s  s imi la r ly  in-  

strumented with four  type c6-111Budd Metalfilm s t r a i n  gages having a 

0.063 -in.  gage length.  

Two 

The two a x i a l  gages were located 180- 

Since t h e  parameters, or constants,  i n  the  cons t i tu t ive  equations 

cannot be determined from monotonic loading alone, the  specimens were gen- 

e r a l l y  cycled twice between zero and a constant maximum s t r e s s  l e v e l  be- 

fore  being loaded t o  f a i l u r e .  

against-grain specimen were loaded t o  f a i l u r e  without cycling, while one 

with-grain specimen w a s  cycled between zero and 3600 p s i  p r io r  t o  being 

loaded t o  f a i l u r e .  The remaining f i v e  with-grain specimens were cycled 

Two of t h e  with-grain specimens and one 
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Fig. 7. Detai ls  of against-grain t e n s i l e  specimen from tube stock. 
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between zero and 1800 p s i  as were a l l  of t he  against-grain specimens, ex- 

cept t he  one ju s t  mentioned. 

A t yp ica l  s t r e s s  versus longi tudinal  s t r a i n  diagram i s  shown i n  Fig. 

8. 
stock and cycled twice before loading t o  f a i l u r e .  

s t r e s s - s t r a in  curves ( ignoring the unloading and reloading, or cycl ic ,  

por t ions) ,  the mean of these curves, and the  f r ac tu re  points  f o r  the  

against-grain specimens a re  shown i n  Fig. 9. The c i rc led  f rac ture  point 

i s  t h a t  for the  specimen which was f a i l e d  without cycling. 

This diagram i s  f o r  an against-grain specimen t h a t  was made from rod 
The envelope for a l l  

The corresponding s t r e s s - s t r a in  curve envelope and mean curve as wel l  

as the f r ac tu re  points  for the  e ight  with-grain specimens a re  shown i n  
I 
I Fig. 10. The c i rc led  f rac ture  points  a re  those f o r  the  two specimens 

which were loaded t o  f a i l u r e  without cycling, and the  square designates 

the  f rac ture  point f o r  the  specimen which was cycled between zero and 

. 3600 ps i .  These f igures  show tha t  the s c a t t e r  i n  da ta  is  not la rge  so ~ 

far as graphite i s  concerned and tha t  cycling had no apparent influence 

on f a i l u r e  e 

TEST RfCSULTS, GRAPHITITE-G MATERIAL 

The s t r e s s - s t r a in  curves from the  against-grain and with-grain uni- 

ax i a l  specimens were used to determine the  parameters i n  Eqs. ( 9 ) ,  (lo), 
and (11). 

character ize  the p l a s t i c  deformations, and the constant c.  Lateral-to- 

longi tudinal  s t r a i n  r a t i o ,  or t o t a l  s t r a i n  r a t i o ,  data were a l s o  obtained. 

The t o t a l  s t r a i n  r a t i o s  were then decomposed i n t o  e l a s t i c  and p l a s t i c  

components through the use of the following equation:12 

These include the  e l a s t i c  moduli, the  material constants which 

where 

p, = t o t a l ,  or apparent, s traip r a t i o ,  

E = longi tudinal  s t r a i n  ( =  + E’), 
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v = Poisson's r a t i o ,  s t r a i n  r a t i o  in  the  l imi t  of zero s t r e s s ,  or 

s t r a i n ,  

pp = p l a s t i c  s t r a i n  r a t i o .  

The e l a s t i c  modulus, E( =Ell=EZ2), and p l a s t i c  constant , B( =B,,) , as 

determined from the  i n i t i a l  loading curves, a re  l i s t e d  i n  Table 2 f o r  

each of t h e  l 5  against-grain specimens t h a t  were cyc l ica l ly  loaded, 

method used f o r  making these determinations is described in  Ref. 8. 
given a r e  averages of the  E and cB values which were determined from the  

f i r s t  unloading, f i r s t  reloading, and second unloading portions of t he  

cyc l ic  curves ( see Fig. 8) 
i n i t i a l  loading, while t h i s  value as determined f r m  the unloading and 

reloading curves i s  1.01 x lo6 p s i ,  

good agreement e 

f o r  cB i s  67 x 
s ign i f i can t ly  from t h e  value of one-half which w a s  given by Jenkins.* 

The 

Also 

The average value of E i s  1.08 x 10" p s i  f o r  

Thus, the two average values a re  i n  

The average value f o r  B i s  272 x 
psim2, giving a value f o r  c of 0.25 which d i f f e r s  

psi"2, and t h a t  

The corresponding r e s u l t s  f o r  the s i x  with-grain specimens t h a t  were 

cyc l ica l ly  loaded a re  given i n  Table 3 .  The r e s u l t s  from the  two speci-  

mens which were loaded t o  f a i l u r e  without being cycled are  not incl.uded. 

I n  the  ease of these data, t he  average value f o r  E( =E,,), as determined 

from the i n i t i a l  loading curves, i s  ~ 8 6  x lo6 ps i ,  and t h a t  from the  

unloading and reloading curves i s  ~ 9 6  x lo6  p s i .  

higher than the  former, while i n  the  case of the  against-grain specimens 

the  reverse i s  t r u e .  

again good, 

age value f o r  cB i s  26 x psi-20 

which again i s  s ign i f i can t ly  d i f f e ren t  from one-half. 

t o  be a constant t h a t  i s  independent of the or ien ta t ion  of the  specimen, 

the  average of the  two values, or 0-30,  w i l l  be used i n  the  analysis  de- 

scribed in  t h i s  r epor t ,  

The l a t t e r  i s  somewhat 

However, t h e  agreement between the  two values i s  

The average B(=BS3) value i s  73 X loe1' psi", and the  aver- 

Thus, the value f o r  c i s  0.36, 
Because c i s  assumed 

The average t o t a l  s t r a in - r a t io  curve, which i s  designated by Fs1 i n  

Fig. 11, w a s  obtained from seven with-grain specimens. Since the  e l a s t i c  

s t r a i n  r a t i o  i s  equal t o  the  t o t a l  s t r a i n  r a t i o  i n  the  l i m i t  of zero lon- 

g i tud ina l  s t r a in ,  v , ~  i s  represented by the  s t r a igh t  l i n e  p a r a l l e l  t o  the  

longi tudinal  s t r a i n  axis i n  t h i s  f igure.  

cu la te  the  curve for  the  p l a s t i c  s t r a i n  r a t i o ,  I n  t h i s  case, hl 
Equation (27) w a s  used t o  cal-  

P P 



Table 2, Graphitite-G against-grain t e n s i l e  data  

I n i t i a l  loading Unloading and reloading - 
Stock 

( ave mater ia l  ave E B E 
Specimen 

no. 
( 10" ps i )  (10-l~ psi2)  ( 10" ps i )  ( p s i - q  

R1 
R2 
R3 
R4" 
R5 
R6 
R7 
R8 

Average : 

T 1  
T2 
T3 
T4 
T5 
T6 
T7 

Average : 

1.13 

1.07 
1.02 

0.98 
0.99 
1.04 
1.14 
~ 0 5  

1.05 
1.11 
1.10 
1.14 
1.15 
1.10 
1.16 
1.11 

277 
288 
334 

364 
2 98 
284 
268 
302 

290 
281 
268 
225 
230 
220 
175 
241 

1.01 
0.96 
0.93 
0.92 
0.93 
0.95 
0.95 
1.02 
0.96 
0497 
1.02 
1.04 
~ 0 9  
1.10 
1.08 
1.13 
1.06 

71 
78 
76 
64 
85 
80 
75 
60 
74 
54 
63 
72 
61 
55 
63 
51 
60 

Rod stock: 
2 - in  -dim 

Tube stock: 
;-;:;--ID X 

- in  e -OD 

Average for combination of rod and tube specimens: 

1.08 272 1.01 67 
%he i n i t i a l  loading portion of the  curve obtained w a s  not su i t ab le  for 

evaluat ing t h e  constants. 
Fig.  9. 

The r e s u l t s  from t h i s  specimen a re  not included i n  

d 



Table 3. Graphitite-G with-grain t e n s i l e  data 

I n i t i a l  loading Unloading and reloading 

Stock 
Eave ( cB) ave material E B Spe cimen 

no. C lo6 ps i )  ( psi-2) ( lo6 ps i )  ( psi-2) 

R1 1-93 55 1.84 17 Rod stock: 
R 2  1.87 77 2.04 31 2-in.  -dim 

1.78 76 1.88 17 
R4 1.88 73 2.09 39 
R 3  

1.90 87 1*97 25 
R6 1.80 72 ~ 9 1  28 R5 

1.96 26 _--- - L- 

Average ; 1.86 73 
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i s  e s sen t i a l ly  independent of the longi tudinal  s t r a i n  and it i s  negative 

i n  the  range shown. However, the apparent s t r a i n - r a t i o  data lack pre- 

c i s ion  i n  the  s m a l l  s t r a i n  range shown, and addi t iona l  inaccuracies a re  

introduced i n  the  decomposition process. Hence, the value of 1131 can be 

assumed constant without introducing s igni f icant  e r ro r .  By giving greater  

weight t o  the  values a t  la rger  longi tudinal  s t r a ins ,  a value of -0.08 was 

selected f o r  the purposes here. 

P 

The t o t a l  s t r a i n  r a t i o s ,  p12, were determined from 'chree against-  
P grain specimens, and values f o r  v12 and p12 were obtained i n  the  same 

manner as the  v31 and pS1 values discussed above. 

Table 4 where it can be seen t h a t  there  are s igni f icant  differences be- 

tween the  numbers f o r  the  three  specimens. However, t he  p l a s t i c  s t r a i n  

r a t i o  i s  negative i n  each case. 

specimens i s  0.20, while t ha t  f o r  p12 i s  -0.15. 

P These a re  l i s ted  i n  

The average value f o r  v12 from the  three  
P 

Since the  s t r a i n  r a t i o s  needed i n  Eqs. (23) through (26) are v13 and 

IJ113 J these quan t i t i e s  were calculated from the  above values f o r  vS1 and 

pi1 . 
s t r a i n  r a t i o s  : 

Equations (21) give the  following re la t ionship  between the  e l a s t i c  

E l  1 
'31 f 

- -  
'13 - E,, 

and Eqs. (22) give the  following re la t ionship  between the  p l a s t i c  s t r a i n  

r a t i o s  : 

Table 4. Graphitite-G s t r a i n - r a t i o  da t a  from 
against-grain t e n s i l e  specimens 

Specimen 
no. v12 

P 
P12 

R7 0.20 -0.13 

R 8  0.26 -0.28 

T3 0,14 -0.05 



The values thus determined f o r  v13 and pf3 are  0.07 and -0.03, respec- 

t iv,e l y  . 
Although sa and values, as required i n  Eqs. ( 2 3 )  through (26), 

were determined f r m  the  t e n s i l e  specimens, var ia t ions  i n  material prop- 

e r t i e s  preclude t h e i r  use i n  making de f in i t i ve  comparisons between calcu- 

l a t e d  and experimental r e s u l t s  f o r  t h e  cy l indr ica l  specimens under in t e r -  

n a l  pressure loading. The s t r a i n - r a t i o  values and the  value f o r  c w i l l  

be used, however. The uniax ia l  tests conducted on each cy l ind r i ca l  speci- 

men provided means whereby the  masking e f f ec t s  due t o  material v a r i a b i l i t y  

could be overcome. But it was necessary t o  determine the needed data i n  

such a way t h a t  the  effects  of p r io r  loading h i s t o r i e s  did not influence 

the values obtained. 

After loading a specimen i n  a given d i rec t ion  i n  stress space,* the  

s t r e s s - s t r a in  response obtained upon loading i n  a d i f f e ren t  d i rec t ion  i s  

not the  same as loading a v i rg in  speciaen i n  the second d i rec t ion .  Xow- 

ever, the model of graphite behavior given i n  Refs. 1 and 2 pred ic t s  t h a t ,  

once the specimen has been loaded t o  a given s t r e s s  l e v e l  i n  t h e  new 

direct ion,  unloading and reloading curves subsequently obtained by cycling 

between 

where o* 
loading and reloading curves that  would have been obtained using a v i rg in  

specimen. Therefore, A and cB values f o r  each of the cy l ind r i ca l  speci-  

mens were obtained from cycl ic  unloading and reloading curves produced 

by the  appl icat ion and release of an axial force and by cyc l ic  pressur- 

i za t ion  w i t h  no net  end load. The B values were then calculated using 

the  value f o r  c f r o m t h e  t e n s i l e  tests.  

ta ined  in  t h i s  manner are l i s t e d  f o r  each of the  f i v e  cy l indr ica l  speci- 

mens i n  Table 5. The oveFall averages f o r  the cy l ind r i ca l  and t e n s i l e  

specimens are given a t  the  bottom of the  t ab le .  

i s  the s t r e s s  a t  t h e  unloading point ,  a re  the same as t h e  un- KLI 

The average A and B values ob- 

*In t h i s  case we a re  concerned with a two-dimensional space i n  which 
the  axes are labeled by o2 and os, t h a t  is, the  a x i a l  and circumferential  
s t r e s s  components, respect ively,  and we fu r the r  r e s t r i c t  ourselves t o  
loadings for which t h e  r a t i o  of o2 t o  o3 remains constant during a given 
loading. 



Table 5 .  Data from c y l i n s r i c a l  specimens 

Spe c imen 
no 

A, 1 A33 Bl1 B33 
(10"~ psi") (1-0"~ psi-') ( psie2) ( p s i q )  

1 
2 

5 

0.73 
0 ~ 7 8  
0.80 
0,76 
0 v77 

0.56 
0.47 
0.58 
0.46 
0.55 

42 
39 
50 
40 
5 1  

w 
!-J 



32 

A comparison of the r e s u l t s  i n  Table 5 with those of Tables 2 and 

3 shows t h a t ,  i n  general, the A and B values are l a rge r  for t he  t e n s i l e  

specimens. Also, Table 2 indicates  t h a t  t h e  B values f o r  specimens made 

from rod stock are  higher than those from the tube stock, but  t h e  value 

f o r  c i s  e s sen t i a l ly  the same f o r  the  two cases,  Final ly ,  it may be seen 

tha t  the  var ia t ions  i n  B values f o r  the  cy l ind r i ca l  specimens are less 

than those f o r  t h e  t e n s i l e  specimens. 

Since s t r a i n  r a t i o s  fo r  metals and other mater ia ls  a re  posi t ive,  a 

question na tura l ly  arises regarding the  v a l i d i t y  of the s t r e s s -p l a s t i c  

s t r a i n  r e l a t ions  for the  case where negative p l a s t i c - s t r a in  r a t i o s  e x i s t .  

The v a l i d i t y  i n  the  case a t  hand i s  determined through an examination of 
t h e  p l a s t i c  po ten t i a l  function, which i n  the mathematical theory of plas- 

t i c i t y  must represent a convex surface i n  s t r e s s  space *13>14 

a statement of t he  requirements f o r  convexity of surfaces given by Eq. 

(20) i s  necessary. 

Therefore, 

Convexity is  assured by requiring tha t  the  matrix of coef f ic ien ts ,  

be pos i t ive  d e f i n i t e ,  The nonzero coef f ic ien ts  i n  t h i s  matrix 

equivalences i n  terms of measured quan t i t i e s  are given by Eqs. 

imposing the pos i t ive  de f in i t e  requirement , the following inequa l i t i e s  

a r e  obtained :15 >l6 

These inequal i t ies  show t h a t  the  s t r a i n  r a t i o s  can be pos i t ive  or nega- 

t i v e  s o  long as they remain within t h e  bounds given. 

grea te r  than zero i n  a l l  cases ,  

The B values are 

Further,  it may be seen tha t  t he  four th  
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and f i f t h  inequal i t ies  are  satisfied. Thus, t he  surfaces described by  

Eqe (20) are  convex. 

COMPARISONS OF CALCULA’E3D AND EXPERmNTAL RESULTS 

The a x i a l  and circumferential  s t r a i n s  for cyl indr ica l  specimens nos. 

1 and 2 under the  i n i t i a l  internal, pressure loading cycles were calcu- 

l a t e d  using Eqs 
s t r a i n  r a t i o s  and c value from the  t e s t s  on t e n s i l e  specimens. The ex- 

perimentally determined curves for these specimens a re  shown i n  F igs .  12 

and. 13 where the  points  calculated from the  equations a re  indicated by 

the  open c i r c l e s .  The experimental and theo re t i ca l  r e s u l t s  shown are  in  

excel lent  agreement Similar agreement w a s  found for the  remaining spec- 

imens. 

(23) through (261, the  constants i n  Table 5, and the  

Figure 14 shows the  comparisons between theo re t i ca l  and experimental 

r e s u l t s  representing t h e  averages from specimens nos. 2 through 5 when 

the A and B values obtained from these cy l indr ica l  specimens a re  used. 

Again, the  f igure  shows t h a t  the  r e s u l t s  a re  i n  excel lent  agreement. 

The r e s u l t s  of the  s tudies  given i n  t h i s  report  demonstrate the  need 

f o r  determining uniax ia l  da ta  d i r e c t l y  from the specimens tested under 

combined s t a t e s  of s t r e s s .  However, invest igat ions using other graphi tes  

have shown t h a t  very good agreement between calculated and experimental 

r e s u l t s  for graphites exhib i t ing  s m a l l .  va r ia t ions  i n  mechanical propert ies  

are obtained when data from t e n s i l e  specimens alone are used i n  t h e  anal- 

y sesb  Thus, for some graphites,  t h e  precautions taken here i n  obtaining 

mater ia ls  propert ies  data a re  not necessary, and the  equations may be 

used with confidence for p r a c t i c a l  appl icat ions when s t r e s s - s t r a in  data 

from the  uniax ia l  specimens alone a re  obtained. 

To i l l u s t r a t e  t h i s  point,  a comparison between calculated an3 experi-  

men-tal r e s u l t s  for a specimen made from a spec ia l ty  graphite are shown i n  

Fig.  15 .  The parameters used i n  the  cons t i tu t ive  equations were: 
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where a l l  of the  values were determined d i r e c t l y  from tes ts  on uniax ia l  

specimens. 

good, 

Again, t he  agreement between theory and experiment i s  very 

CO NCLUX I O N S  

It i s  shown t h a t  nonlinear s t r e s s - s t r a in  behavior of graphite under 

combined stress conditions a t  room temperature can be accurately de- 

scribed by a small-deformation e l a s t i c - p l a s t i c  continuum theory, Results 

calculated through the use of spec ia l  cons t i tu t ive  equations appropriate 

t o  the descr ipt ion of graphite behavior were shown t o  be i n  excel lent  

agreement with experimental r e s u l t s  corresponding t o  i n i t i a l  loading and 

t o  unloading under combined s t a t e s  of s t r e s s  produced by i n t e r n a l  pres- 

sure i n  thin-walled cy l indr ica l  specimens. Further, the  calculated resid- 

u a l  s t r a i n s  upon unloading were very close t o  those determined experi-  

mentally e 

I n  the  examination of a theory, such as t h a t  described, it i s  essen- 

t i a l  t h a t  experiments be designed t o  overcome problems associated with 

the accurate determination of mater ia l  constants and t o  minimize masking 

e f f e c t s  due t o  mater ia l  v a r i a b i l i t y .  Because of the v a r i a b i l i t y  i n  

mechanical behavior of the  primary material used, parameters f o r  use i n  

the cons t i tu t ive  equations i n  t h i s  invest igat ion were determined using 

r e s u l t s  from t e n s i l e  specimens along with uniax ia l  data obtained from the  

thin-walled cy l ind r i ca l  specimens. The r e s u l t s  derived es tab l i sh ,  in  

pa r t ,  t he  v a l i d i t y  of t he  theory. Additional invest igat ions t o  examine 

t h i s  theory should be designed t o  study the  bas ic  postulates  s ince the  

v a l i d i t y  has been established, as shown here, i n  what may be considered 

a gross sense. 
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