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A COMPUTER PROGRAM FOR THE REDUCTION OF DIFFUSE X-RAY

DATA FROM SOLID SOLUTIONS

R. 0. Williams

ABSTRACT

This report documents a computer program to reduce the
diffuse x-ray scattering data from cubic alloys by a multiple
regression analysis. The solution provides information on
the short-range order and the atomic displacements. The
advantages of the present method are that it provides increased
freedom in making observations, fewer approximations are
required, and a complete error analysis is obtained.

INTRODUCTION

Over the past 25 years it has been realized that metallic solid

solutions are rather complex in that the atoms need not be randomly dis

tributed nor sit precisely on the lattice sites. These irregularities

produce diffuse diffraction of x-rays, which is quite distinct from the

sharp Bragg diffraction. A number of experimental methods are capable of

studying such effects, but the most extensive and unambiguous information

comes from this diffuse scattering. Although only a few systems have been

extensively studied, the results are very interesting in the considerable

variety of observed effects. Ultimately such studies should be very

important in developing theories of solutions concerning, for example, the

heat of mixing, size effects, flow strength, anelastic properties, ordering,

and precipitation.

The total coherent diffuse scattering is the sum of three contribu

tions: short-range order, first-order displacements, and second-order

displacements (which include thermal diffuse scattering, TDS). The

observations are to be restricted such that higher terms can be ignored.

Borie and Sparks1 showed that as a result of the different symmetries of

1B. S. Borie and C. J. Sparks, Jr., Acta Cryst. A27: 198-201 (1971).



these contributions the total intensity can be separated into components

that depend only on a single effect such that the desired parameters can

be obtained from a Fourier analysis. This treatment is a recent develop-

ment, and only a few systems have been fully analyzed.

The intensity is a linear function of parameters that describe each

contribution. It follows, therefore, that a solution can also be obtained

by a standard multiple regression analysis (also known as least-squares

fitting). This report documents the program for carrying out this analysis.

A principle advantage of this method over the separation technique is

that one obtains estimates of the parameter errors and their correlation.

The method has been applied to a reanalysis of the data on

Cu—16 at. % Al by Borie and Sparks,6 and the results are to be covered

elsewhere.

X-RAY THEORY

The intensity, in electron units, of x rays scattered from any material

is given by

ik« (R - R ) /-.n
I = I E f f e ,

where the atoms at sites u and v have atomic scattering factors of / and

f and a relative position of R - R , and k is defined below. For a cubic

lattice we may define a position in reciprocal space by the vector h as

h = hi + h2 + h3 , (2)

2W. Lin, J. E. Spruiell, and R. 0. Williams, J. Appl. Cvyst. 3:
297-305 (1970).

3W. Lin and J. E. Spruiell, Acta Met. 19: 451-61 (1971).

"j. E. Gragg, Jr., and J. B. Cohen, Acta Met. 19: 507-19 (1971).

5T. Ericsson and J. B. Cohen, Acta Cvyst. A27: 97 (1971).

6B. Borie and C. J. Sparks, Jr., Acta Cvyst. 17: 827-35 (1964).

7R. 0. Williams, "Short-Range Structure in a Copper 16 Atomic Percent
Aluminum," to be submitted for publication.



where the components are in the directions of the cube edges. This vector

is given by

hi + h2 + h3 = (S - S0)ao/2A , (3)

where So and S are the unit vectors defining the incident and diffracted

beam of wave length A and ao is the lattice parameter. Since

k = 2tt(S - S0)/A , (A)

it follows that

k = 4iT(hi + h2 + h3)/ao . (5)

The relative location of a pair of atoms in an fee or bec lattice can be

expressed as

R - R = 4-
~u ~v z

(I + 67)ai + (m + 6 )a2 + (n + 6 )a3
I ~ m ~ n ~

(6)

where I, m, and n are integers corresponding to the average lattice, the

a's are the cube edges, and the 6's are the components of the deviation

from the average lattice vector.

Since we obtain an overall average from diffraction experiments, the

double sum in Eq. (1) may be replaced by a single sum over N average sites.

We may further expand the exponential term through the quadratic term

in 6, the imaginary parts being zero because of symmetry. For a binary

alloy we have

I

Nf 2 . LJA i = 0
(A + B/B//A)2 + aAB(l - fB/fA): Y, cos 2T\(h\l + hzm + /i3n)

OO

+ 2T\AB(f„lf. - 1) £ y Z L sin lnQnl + h2m + h^n)
B A i = I J

- 2ir2AB I e I h .2 cos 2ir(hil + h2m + h3n)
i = 1

00

—4tt2/1B \ p \ h.\ cos 2nQi\l + him + hzn) ,
i = 1 ° K

(7)



where A and B are the atomic fractions and a is the Warren-Cowley order

parameter defined as

a. = 1 - P.IB ,

where P. is the probability of finding a B atom in a particular site in

the ith shell around an A atom. Necessarily ao = 1, and for a random

alloy all the a's for i i 0 are zero. The outer sums are over successive

shells (i), while the inner sums are over the cosine or sine terms corre

sponding to the permutations and combinations of I, m, and n that describe

the positions of all the sites in the particular shell. Also

Y, — + a.
B ^ AA

— + a.
A ^ /A 'BB • (8)

where the 6^. is now the average of one of the three 6's defined in Eq. (6)
AA .

for A-A pairs in the ith shell; similarly for 6^. For each kind of pair
there will be three 6's for each shell, but symmetry requires that 6^ = 0
if I = 0 and 6-, = 6 if I = m. The displacement between unlike pairs is

I m

eliminated by the requirement of volume conservation. The particular h. in

the sum is that h in the sine term multiplied by the index I, m, or n that

corresponds to the particular 5.

The quadratic term is given as

e = §+a
AA t:6ab

J A

+ 2(1 - a)
B

+ a

r
B *2iI6BB' (9)

where there will in general be a different £ for each component of a shell

and e7 = £ only if I = m. Note that 62 is in reality (62> such that
e7 4 0 even when 1=0. The e's cannot be negative since none of the terms
on the right side of Eq. (9) can be negative. The h. in the second sum is

identified as in the previous term. One sees that the displacement between

unlike pairs must be retained in this expression.

The cross term is given as

Im

A
+ a 6LC+2(1-a)776AB6AB +

J A

+ a ~F> o„„o.
/

(10)
BB BB



There will in general be three such terms for each shell', but p7 =0

if Z or m - 0. The h . and h-, in the second sum are identified as those
0 &

multiplying the index 1 and m as for the previous terms.

It is of interest to physically identify the terms in Eq. (7). The

first term is the relatively uniform Bragg intensity, which is collected

by the cosine sum into the sharp peaks. The first member of the alpha

series is the monotonic Laue intensity, which is redistributed by the

cosine series. Normally the alpha series converges such that this

intensity is not sharp. However, for perfect long-range order this inten

sity is collected into sharp superlattice peaks. The gamma terms are

called the first-order size effect. Since thermal motion has a zero

time-average displacement, it cannot contribute to these terms. One

expects that these linear terms will converge because this is a necessary

condition for the existence of an average lattice that gives sharp Bragg

peaks.

Both static and dynamic (thermal) displacements contribute to

quadratic terms, and these terms become greater with larger shells. Since

these terms do not converge, they correspond to a negative delta function

at the Bragg peaks and in effect take some of the Bragg intensity and

redistribute it in reciprocal space. If the displacements were all inde

pendent then all the e's would have the same value, so the quadratic

diffuse intensity would be uniform except for the delta function.

SOLUTION OF THE DIFFRACTION EQUATION

Borie and Sparks8 showed that the observations can be decomposed

into separate functions that depend only on a, y, £, and p as a result

of the particular h dependence of Eq. (7). These parameters are then

obtained by a Fourier transform. This method has been used by several

investigators2-5 and represents the most detailed analysis of diffuse

scattering that has been made. Alternately, since the intensity

is a linear combination of a, y, e, and p as shown in Eq. (7), then in

theory we can apply a multiple regression analysis to fit the observa

tions in terms of these series. The a and y series are well behaved

JB. S. Borie and C. J. Sparks, Jr., Acta Cvyst. A27: 198-201 (1971)



for short-range order, but unfortunately the e and p series do not converge;

hence this method is not strictly applicable. Before a sufficient number

of e and p terms can be evaluated to properly represent this component of

intensity the solution becomes so ill conditioned that useful values are

not obtained. The long-wavelength TDS, which has maxima at the Bragg

peaks, is the primary cause of this difficulty. This intensity can be

represented as follows.

Long-wavelength TDS is properly treated in terms of an elastic

continium and is defined by only three elastic constants for cubic mate

rials. A discrete lattice gives rise to dispersion such that the diffuse

intensity decreases less rapidly with decreasing wavelength than predicted

by the continium treatment. It also shows the symmetry dictated by the

lattice. The entire diffraction problem can be treated in terms of the

Born-von Karman model in which the lattice dynamics are derived in terms

of near neighbor interactions.9'10 We want our expression to approach the

long-wavelength limit, so we can use only three independent interaction

constants. For the fee lattice we may use the three parameters for the

first neighbor. A rigorous application requires the solution of the

secular equations for each position in reciprocal space, but, following

Houston,11 we are able to adequately represent the angular dependence by

simple geometric expressions.

The relation between the three first neighbor interaction parameters

and the elastic constants are given as

oti = aCn/4 , 61 = aCW2 - aCn/4 , Yi = aCi2/4 + aC\4/4 . (11)

These may be used in Eqs. 11.65—.67 in. Warren9 to describe the three

elastic waves in each of the three symmetry directions. The more general

9B. E. Warren, X-vay Diffvaotion, Addison-Wesley, Reading, Massa
chusetts, 1969.

10C. B. Walker, Phys. Rev. 103: 547 (1956).

LW. V. Houston, Rev. Mod. Phys. 20: 161 (1948).1 It



expression is now approximated as

Di =

032m

aC 11
1 + (J - 1)PL -P123 51 + (1+X+Y)PT + (l+2Z+47)Pi23

co2 m
Di = t^" = m -Pi23>51 + (1 - X - Y)Ptl + (1 - X + Y)?!

52 , (12a)

52 , d2b)

where

aC i l

Wt2m r-
D3 =

aC i i
(i - Y)Pt2 + (i -Pi23)y 51

+ (2Y- i)Pt2 + (1 -X + 7)P123 52 ,

X = C12/C11, Y = Citk/Cn ;

P, =4 cos2 4n cos2 <p2 (1 —3 cos2 cf>3) ,
T/ 1

23

P, =4 COS (j>3 (COS (j)l + COS (}>2 — 6 COS <\>\ COS <J)2) ,

PL = Pti + Pt2 > and

P123 = 27 cos2 <{)i cos2 <j>2 cos2 (j)3 ;

with angles defined in Fig. 1, and

51 = 4 sin2 -nq , 52 = sin2 2i\g

Our g vector is in the same units as our h vector, Eq. (3), g being

the largest component.

The thermal diffuse intensity is now given by Eq. (11.35) in

Warren as

I

/a
^|h|2 .£

cos (h,e.)

,7=1,3

(12c)

(13)

(14)

(15)

(16)
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Fig. 1. The Relation Between an Observation at Reciprocal Lattice Point h, Which is in a Brillouin
Zone Centered at g = 0. The longitudinal wave is taken to be parallel to g. For the two transverse
waves t\ has zero~/i3 displacement and tz is tangent to arc <J>3 at g.
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where (h,e.) is the angle between h and the displacement of the jth wave,

which is defined in Fig. 1. The value of C is to be obtained by the

regression analysis; from this result,

Cn = 167T2K27aoC , (17)

where K is the Boltzmann constant and T the temperature.

Methods for solving for nonlinear terms such as X and Y are known

but are relatively more involved than evaluating linear coefficients. The

included program uses the simpler approach of providing solutions for

various combinations of X and Y based upon initial estimates. Since one

must in general resort to several solutions to obtain a more or less

optimum combination of terms, there should be ample opportunity to estab

lish satisfactory choices for X and Y.

If this were a complete treatment, Eq. (16) would replace the e and

the p series in Eq. (7). Since it is not, one can still include low-order

terms of these two series to improve the fit where the terms are now under

stood to represent that quadratic intensity not represented in our TDS

expression. We would also include a term

2tt
^ 2

A + SV4 |h|2e0 , (18)

where Co is to be evaluated in the solution. The rationale for this term

is that if, for example, all the displacements were random, then we would

only have a single term, which increased simply as |h| . There would still

be a negative delta function at the Bragg peaks, but this region is

excluded from our observations.

We would hope that the low-order terms of e and p would compensate for

the contribution by the static displacements, for the fact that we used

only first neighbor interactions, and possibly in part for the way we

approximated the TDS.

We have intentionally left the e term out of Eq. (16). Presumably

one restricts the observations such that higher order TDS, which is not

included in Eq. (16), is unimportant, in which case e possibly may a]

be neglected. It should be included if it gives a significantly better
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fit and should also be included in the Eo term. Note that the value of m

is not independently adjustable since it must have a value such that the

intensity lost from the Bragg peaks is just that intensity in the TDS and

eo term. We would not require an e term in the a series in Eq. (7), in

contrast to the expression by Walker and Keating,12 since the e and the

p terms now represent this effect. However, when we replace the e and

p series by the TDS expression, such a term might now be in order, again

an improved fit being sufficient justification.

STATISTICS

The present solution gives the values of the parameters, an estimate

of their errors, and the correlation between the errors. Also a necessary

part of the computations is the calculated intensity and the residuals, the

differences between the observed intensity and the calculated intensity.

Although it is not included in the present program, one can readily calcu

late the error in the observed intensity, or in any of its components.

This information helps to indicate where the observations are in greater

error, but the residuals also give essentially the same information and

also indicate the probable sign of the errors. The statistics that are

used are generally known and may be found in Hamilton, for example.

Certain statistical aspects of the present problem require special consid

eration.

The magnitudes of the parameter errors are proportional to the residu

als, but further, the present calculation is based upon the assumption that

these residuals are random. Formally, there is no problem if this is not

so since then one needs only to include in the weighting matrix the off-

diagonal terms that result from the correlation between the errors in the

data. For the present problem this is of no help since in the first place

very little is known about the correlations, and in the second place a full

weighting matrix makes the size of the problem prohibitive. One could

undoubtedly reformulate the program to accommodate correlations between

1964,

C. B. Walker and D. T. Keating, J. Appl. Phys. 34: 2309 (1963).

W.C.C. Hamilton, Statistics in Physical Sciences Ronald, New York,

12

1 3
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intensity that are close in reciprocal space, but this does not solve the

first problem. A desirable solution would be the identification and reduc

tion of such nonrandom errors. Dropping the weighting factor entirely

would not seriously degrade the solution, but its inclusion does permit

certain conveniences.

The reader should realize that the parameter errors are to be taken

as random, and should the observations be biased, because of improper beam

standardization for example, then the parameters will also contain addi

tional biased errors. Gragg et al.14 have recently considered the overall

problem of errors in such measurements.

It is important to realize that there is a basic difference between

using a regression analysis and a Fourier analysis on the separated func

tions. For a given number of terms the regression analysis will give a

superior fit, but as the number of terms increases at some place the solu

tion becomes ill conditioned such that the terms in the solution will take

on large, unreal magnitudes. This means that the solution is developing

considerable small-scale structure to better fit the observations. Thus

ultimately the solution must become unsatisfactory. We have shown else

where15 how to include very powerful supplementary conditions that restrict

such behavior and permit the solution to be carried to almost any length.

A solution using a Fourier analysis cannot exhibit such improper behavior

and in that sense is superior. In a very real sense the use of supplemen

tary conditions accomplishes the same things that one may do in a Fourier

analysis, such as smoothing and filling in data at the Bragg peaks. Such

supplementary conditions degrade the degree of fit only very little and

hence do not introduce any particular uncertainty in the estimation of the

errors. They do, however, greatly reduce the magnitude of the error cor

relation, and thus constitute a very useful device. As a general rule one

would include sufficient terms in each series until the coefficients have

magnitudes similar to their errors.

lhJ. E. Gragg, Jr., M. Hayakawa, and J. B. Cohen, ACA Winter Meeting,
Albuquerque, N.M., February 1972.

15R. 0. Williams, "Short-Range Structure in a Copper 16 Atomic Percent
Aluminum," to be submitted for publication.
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A detailed examination of the residuals can prove to be of considera

ble value. Any systematic deviation between the observed and calculated

intensities over the field of measurement must be due to limitations in

the data, in the expression being fit to the data, or both. Obviously the

elimination of such problems can materially improve the final results.

Further, the residuals should show no significant correlation with any

variable; such correlations provide a clue as to the nature of the diffi

culty. The documented program provides information about the behavior of

the residuals as functions of 20.

DESCRIPTION OF THE PROGRAM

Because of the difficulties involved no attempt has been made to write

a general program that would accept data in any format. Rather, the listed

program was written to handle a specific set of observations, and this

section provides the documentation such that the user can make such changes

as required. For problems of this complexity it is important that the

user have a reasonable understanding of the program; else the chances of

major errors are great. Having gained this understanding one can readily

make the required modifications.

The listed program, given in Appendix A, was designed to evaluate the

observations16 on a Cu-16 at. % Al crystal at 77°K using monochromatic

copper radiation. It accepts 4032 observations and computes 23 values

of a, 17 values of y, 2 values of e, and one each of p, eo, and C, as

defined by Eqs. (7) and (16). Each solution is repeated nine times, using

the combinations of three different values of X and Y. The observations

consisted of the following sets:

Data Set Region

A Hi - H2 - H3 = 0, <J) = 0 at [2lT]

B Hi - H2 - H3 = 0, <J> = 0 at [2lT]

C H3 = 0, <j) = 0 at [100]

D H3 = 0, <J> = 0 at [100]

increments of 28 and (j) are 2°.

tLast trace at 45°.

Range, deg.*

28 *

20-136 0-30

50-136 1-31

20-136 0-44+

50-136 1-43

16B. Borie and C. J. Sparks, Jr., Acta Cvyst. 17: 827-35 (1964)
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We speak of the values of a, y, etc. collectively as the solution

and the terms that they multiply in Eqs. (7) and (16) as the coefficients,

which consist of two parts, the presum part and the geometric part.

The program consists of three main parts: DIFFUSE, which handles

all the input and part of the output and which calls the subroutines;

SERIES, which calculates the coefficients; and STAT, which carries out

the regression analysis. STAT uses a subroutine MATQ for a matrix

inversion, which is not included since the user can supply an equivalent

subroutine. Programming is considerably simplified by the use of six

function-type subprograms that calculate the sines and cosines as required

in the geometric coefficients. A final function IRND(X) rounds X to the

closest integer. In this section FORTRAN statements, variables, and

programs are capitalized.

Table 1 identifies the presum parts of the coefficients and gives

the variable names used in the program. Two names may be used in DIFFUSE;

the dimensioned variable contains all required values, which are calculated

in loop 6. The second name is one that occurs in COMMON/C/, which provides

access by SERIES. The final three variables locate the position of the

observation.

Table 1. Variables Transferred Between Programs by COMMON/C/

Variable

2AB\l-fB/fA

AB

k-KAB

1 - V4

V4 -1

2tt

-4ttz4B

-8tT4B

• 4
•4fA + Bf,

f*

hi, h2, hi

DIFFUSE

FB, APL

FBO, APO

FBA, GAM

EP

RHO

TDS, TD

FQ, EPO

Hi, H2, H3

SERIES

APO

F

TD

EPO

X, Y, Z
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Labeled common blocks are used to provide access to the different

variables in the different parts of the program. Extensive use is made

of the facility for breaking up a common block differently in the different

parts of the program. This simplifies the program, but the user must

understand how this works when making changes and may require professional

help. The common blocks are listed in Table 2 along with the names of
the variables they contain in different parts of the program. As a

specific example COMMON/A/ contains the observed intensity as the four
data sets listed in DIFFUSE, while in STAT these values are treated as

a singly dimensioned variable A.

We now proceed through the program, indicating what is being done

and identifying the variables.

FAL and FCU are the atomic scattering factors of aluminum and copper

in increments of 0.05 sin 8/A starting with zero and are provided by the

DATA statements. ALAM is the wavelength of the radiation; AO is the

lattice parameter. The three values of X, Eq. (12) that are used are

X12, X12+DX12, and X12+2DX12; similarily for Y, Y44 and DY44. XAB is
the product of the compositions, and BG will be used in the weighting
function. Variables LL, MM, and NN are the integers that locate the

atoms in the shells. They are of the form 100, llO, III, ImO, Imm, and

Imn and are indicated by values of 1 through 6, respectively, in INDEX.

These values are multiplied by 2tt in loop 39.

The next four loops read in the data. In loop 6 we calculate those

parts of the coefficients that are a function of 28 and $. WR is propor

tional to the area associated with each observation and will become part

of the weighting function. The factor 0.002 simply controls the size of

the numbers generated during the matrix inversion, thus reducing the

possibility of overflows, but otherwise does not affect the solution. The
term 59/(1 + 43) drops from 1 to 0 when I exceeds 16 to compensate for

the way in which the observations interlace. Loop 20 sets WA, WB, WC, and

WD to zero.

The next four loops proceed to calculate the reciprocal lattice

coordinates for each observation, HI, H2, and H3, assign the proper values

to the variables in COMMON/C/, and then call SERIES. These loops are
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Table 2. Contents of Labeled Common Blocks

Block Variable
Name of Variable in

DIFFUSE SERIES STAT

A I/NfA observed A, B, C, D A

B I/NfA calculated AI, BI, CI, DI B

F Weighting factor WA, WB, WC, WD W

D Coefficients for

ao, a AD, D

Y B

>
D

eo, e, p C

TDS A ;
G a, y, e, p, C AX AX

so arranged that the observations are considered sequencially as stored in

COMMON/A/. The weighting function WA etc. is taken to be proportional to

WR and inversely proportional to the observed intensity plus BG.

Certain observations will be missing, in particular those too close

to the Bragg peaks, and such missing values are excluded from the analysis

by the simple expediency of setting the weighting factor to zero. However,

values for the calculated intensity will be obtained for all points.

Before considering in detail how the coefficients are calculated in

SERIES, we need to consider how many terms of each kind are required for

each shell. Obviously only one a applies, but for the other variables

there may be more than one, as shown in the following:

Type of Shell

ZOO

ZZO

III

ImO

Irnm

Imn

Y

I

I

I

l3m

l,m

l3m,n

1,0

1,0

I

l,m,0

l,m

l,m,n

P

11

11

Im

lm,mrn

Im, In, rim
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Thus there is one linear term for each different nonzero component of the

shell, a quadratic term for each different component, and a cross term

for each distinct pair having nonzero components. Multiple terms for

a specific shell are calculated in the order given in the table. The

names of the variables that will contain the coefficients are listed in

Table 2. Loop 7 calculates the complete set of coefficients for the

first 11 shells. The quadratic and cross terms are temporarily stored

as variable C because more are evaluated than will be used. Loop 42

transfers the required ones into CD. Loop 27 calculates the coefficients

for the a terms for shells 12 through 22. Variables D, B, and CD must

be properly dimensioned such that each position is filled with a proper

coefficient. It is permissible to calculate more linear terms in loop 7

than required to fill B since the extra ones, which overflow into CD,

are subsequently written over with the correct coefficient. The functions

SL, SLM, and SLMN calculate a sine and cosine term as required in the

inner sums, the sine corresponding to SI, the cosine as CI, for example.

We make no distinction between the e and p terms apart from position, but

the p terms may be identified as having factors H and two reciprocal

lattice components. For loop 27 we only require the cosine terms which

are calculated by functions R, S, or T. Before any of these six functions

are called the components of the shell (times 2tt) are loaded into unlabeled

COMMON, which is then accessed in calculating the sines and cosines.

Immediately following statement 27, XX, YY, and ZZ are the components

for the closest Brillouin zone having even indices; X2, Y2, and Z2, the

closest one with odd indices. The observation belongs to that zone having

the smallest g vector; hence the comparison of Gl and G2. COSl, C0S2, and

C0S3 are equal to |h|2 cos (h, e.) for the three different waves as given

in Eq. (16). PI, P2, P3, PT1, PT2, and PL have the same meaning as

defined in Eq. (14). Loop 41 loads into A the nine different coefficients

corresponding to the combinations of X and Y.

Equation (7) applies equally well to either a bcc or fee structure;

one simply has to load the values of LL, MM, and NN that define the

positions for the desired structure. However, the TDS formulation is

specific to the fee lattice and would require modification for a bcc

lattice.
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Once loop 9 is completed in DIFFUSE, all the coefficients have been

set up and STAT is called. The dimensions of IX, AS, X, AJ, and AX

must be at least NUM, the number of unknowns. Loop 15 forms what is

known as the coefficients of the normal equations, AAA. Loop 50 is

executed nine times for the different combinations of X and Y, but a

complete solution is obtained only for the fifth pass. Loop 62 modifies

AAA for subsequent solution. Loop 61 loads AAA into AA. Loops 2, 3,

and 4 calculate the correlation between the various terms in the obser

vations. XX must be made an identity matrix; then MATQ inverts AA

leaving the inverse in XX. DET is the value of the determinant. Loops

20 and 17 calculate the correlation between the errors. The solution

is in AX, the calculated intensities in B, and the errors in AS. Variable

ER1 sums the residuals for each value of 20. Loop 31 calculates the

various components of intensity: specifically Al is due to the alpha

series, A2 the linear terms, A3 the quadratic and cross terms, and A4 the

TDS term for selected traces.

On returning to DIFFUSE, a complete printout of the observed inten

sity, the calculated intensity, and the difference is executed. Roughly

2 min of IBM 360/91 time is required for a solution of 44 values from

4032 observations.

CHANGES IN THE PROGRAM

Some care has been used in writing this program to make it reasonably

efficient in the use of computer time. Alternate methods of handling

the large numbers of sines and cosines could materially reduce the time

required to calculate the coefficients, giving perhaps a 10% overall

savings. However, a wiser expenditure of time would be to put these

coefficients on tape such that for successive runs these coefficients

are not recalculated.

The program must be modified to accept data in other formats, so

one may be tempted to redesign the program to accept many different for

mats. Offhand this would seem so difficult as to be ill advised, unless

of course one had with each observation its coordinates; in that case

the modifications are trivial.
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In general several runs must be made to ensure that more or less

optimum combinations of parameters are being calculated. In the present

program this requires making dimensional changes in common blocks and

in dimension statements, a process that is prone to error. Since one

may use variable dimensions in subroutines, one can rather easily make

the changes to simplify this problem. One simply uses a master program

to define the overall size of the common blocks and specify the variables

that define the way in which the blocks are used in the subroutines.

Subsequent changes are entirely restricted to the main program and can

be very simple.

The way in which the TDS was represented appeared to be adequate for

the copper-aluminum data. However, one might well want to use a more

rigorous representation if for no other reason than to judge the adequacy

of the present representation. Provided one retains the elastic constant

ratios, X and Y, then it appears entirely feasible to solve the secular

equations for each observation and thus reduce the approximations. One

must obtain a different solution for each combination of X and Y, and

should this represent appreciable computer time then the results could

be stored on tape for later runs. One could also use additional inter

action parameters, but this tends to complicate the solution. It is

simpler to use low-order e and p terms instead, and they should be just

as satisfactory.

There are other possible problems in trying to represent the TDS:

at reduced temperatures the different modes are not equally excited; at

higher temperatures one will have higher orders of TDS. How to best

handle these problems remains to be worked out. It would be practical

to simply use Eq. (7) and include restraints to restrict the curvature

in the e and p series in those regions where this intensity was slowly

varying, as was done for the a series for the copper-aluminum data.17

One would now have to calculate many more terms, and this could pose a

problem.

17R. 0. Williams, "Short-Range Structure in a Copper 16 Atomic
Percent Aluminum," to be sumitted for publication.
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Many alloy systems show extra intensity near the Bragg peaks, which

on precipitation leads to the so-called side bands. The present repre

sentation of the TDS is not capable of fitting this intensity. If one

were to include enough terms in the e and p series to represent this

feature, then ill conditioning will very likely result, and one must use

supplementary conditions as noted above, possibly leaving out the TDS

expression entirely.

TESTING

The program must be properly implemented to give correct results. A

fairly comprehensive initial test can be made as follows. First the

program is implemented just as listed in this report and then run after

removing the C's from the first column of the two test cards listed early

in the program. When this is done the observations are random numbers

between zero and unity. The solution should give correlation matrices

very similar to those listed in Appendix B. The first coefficient, ao,

should have a value close to 5.0, and all the other coefficients should

be zero within about 2 standard errors. The determinant should be

approximately 1.2 x 1013, and the variance should be 8.3 x 10~5. And

finally the results should be insensitive to values of X and Y.

We checked this program very carefully, and hopefully it is free of

significant errors. The author would appreciate any errors being brought

to his attention and in turn will notify other known users.

DISCUSSION

We have already indicated that certain problems can arise in a

regression analysis but do not occur in a Fourier analysis, but these

may be handled in a straightforward manner. Two minor advantages of

the present method are that the correct x-ray scattering factors are

used and weighting is used to correct for the varying precision of the

observations. These will result in only modest improvements in the

solution.
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This method is considered to have several major advantages. The

first is that the observations may be made with considerable freedom,

and all observations can be included in the analysis. And secondly we

obtain a complete error analysis. What might turn out to be the greatest

advantage is that the method necessarily computes the residuals. If from

these data one establishes the presence of systematic errors and is able

to identify and reduce them, then a significant improvement in the solu

tion may result. One could do the same thing after having obtained a

solution by separation, but it is less likely to be as complete and to

cover the same range in reciprocal space.
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PROGRAM DIFFUSE

DIMENSION RAD(60),PH1(60) ,PH2(60),WR(60),FBA(60) ,FQ(60) ,
1FCU(15),FB(60) ,FAL (15) , TDS (6 0) ,LL(40) , MM(40) ,NN(40) ,FBO(60)

COMMON/A/A(16,59) ,B (16,44) ,C(2 4,59),0(22,4 4) /B/AI(16,59) ,BI(16,
iaa),CI(24,59) ,DI(22,4 4)/F/WA(16,59) , WB (16, 44 ) , WC (24, 59) , WD(22, 44)

COMMON/C/H1,H2,H3,ISUM,APO,APL,GAM,EPO,EP,RHO,TD
COMMON /E/AL(4 0) ,AM(a0) ,AN (UO) ,INDEX(40)/EL/X12,DX12,Y44,DY4 4
COMMON/G/IR1(4032),AX(50)
DATA FAL/13.,12.46,11.32,10.20,9.30,8.58,7.97,7.41,6.87,6.34,5.82

1,5.33,4.86,4.42,4.02/
DATA FCU/26.8,26.23,25.,23.36,21.59,19.78,18., 16.27,14.66,13.16

1,11.81,10.81,9.56,8.64,7.84/
ALAM=1.54178$AO=3.643

X12=0.7$DX12=0.063$Y44=0.500$DY4 4=0.016

XAB=0.16*0.84$BG=.02$RT6=SQRT(1./6.)$RT2=SQRT (1./2.)$PI=3.1415927
EP=-4.*PI**2*XAB$RH0=2.*EP

READ 109, ((LL(I) ,MM (I) ,NN(I) ,INDEX (I) ) ,1=1,40)
DO 39 1=1,40$AL(I)=LL(I)*6.283185$AM(I)=MM(I)*6.283185

39 AN(I)=NN(I)*6.283185$D0 1 1=1,16
1 READ 100,(A(I,J),J=1,59)$DO 2 1=1,16
2 READ 100,(B(I,J),J=1,44)$D0 3 1=1,24
3 READ 100,(C(I,J),J=1,59)$DO 4 1=1,22
4 READ 100,(D(I,J),J=1,44)

C 25 A(I)=RANF(0.) TEST
C DO 25 1=1,4032 TEST

DO 6 I =1,60$X= (1-1) *.0174533$PH1 (I) =COS(X) $PH2(I)=SIN (X)
Y=SIN((I +9)*.017 45 329)/ALAM$Z=Y*20.$IZ=IFIX(Z)+1$Z=AMOD(Z,1.)
TCU=FCU(IZ) * (1.-Z) + FCU (IZ+1) *Z$TAL=FAL (IZ) *( 1.-Z) + FAL (IZ+1) *Z
HH=RAD(I)=Y*AO$Z=TDS(I) = ((.16*TAL +.84*TCU) /TCU) **2
FQ(I)=2.*PI*Z*HH**2$Z=(TAL-TCU)/TCU
FBA(I) =4.*PI*XAB*Z$YY=FB(I)=Z*Z*XAB*2.$FBO(I)=YY*.5

6 HB (I)=1/(2.-59/(1*U3))*.00 2*COS( (1+9)*.01745329)
DO20I=1,4032

20 WA (I)=0$ISUM=0
D05 J=1,59$X=RAD(J)$Y=WR(J)$APO=FBO(J) $APL =FB (J)$EPO=FQ(J)
TD=TDS(J) $GAM=FBA(J) $D0 5I= 1, 16$I 1 =2*1- 1 $ISUM = IS0.1+ 1$I Rl (ISUM)=J
Z=A(I,J) SIF(Z.GT.O) WA(I,J) =Y/(Z+BG)
XX=X*PH1(II)*RT6$YY=X*PH2(II)*RT2$H1=2.*XX$H2=XX+YY$H3=XX-YY

5 CALL SERIES

DO 7 J =1,4 4$K=J+15$X=HAD(K)$Y=WR (K)$APO=FBO(K)$APL =Fb(K)$EPO = FQ(K)
TD=TDS(K)$GAM=FBA(K)JDO 7 1=1,16$II=2*I$ISUM = ISUM+1
IRI(ISUM) =K$Z=B(I, J)$IF(Z.GT.0) WB(I,J) =Y/(Z+BG)
XX=X*PH1(II)*RT6$YY=X*PH2(II)*RT2$H1=2.*XX$H2=XX+YY$H3=XX-YY

7 CALL SERIES$H3=0.

DC 8J=1,59SX=RAD (J) $Y=WR(J)$APO=FBO(J) $APL =FB(J) $EP0=FQ(J)
TD=TDS (J) $GAM=FBA(J) $D08I=1,24$11=2*1- 1 $IF(I.EQ.24)11 =4 6
H1=PH1 (II) *X$H2=PH2(II) *X$ISUM=ISUM*1$IR1(ISUM)=J
Z =C(I.J) $IF(Z. GT.O) WC (I, J) =Y/(Z«-BG)

8 CALL SERIES

DO 9 J =1,U4$K=J+15$X=RAD(K)$Y=WR (K)$APC=FB0(K)$APL =FB(K)$EPO =FQ(K)
TD=TDS (K) $GAB=FBA(K)$D09I=1,22$11 =2*1$K1=PH1 (II)*X$H2 =PH2(II)*X
ISUM=ISaM+1$IR1 (ISDM)=K$Z=D (I, J) $IF (Z . GT.O) WD (I, J) =Y/(Z +Bf?)

9 CALL SERIESSCALL STAT
PRINT105$PRINT 102,A$PRINT 1 OS'SPRINT 102, AI$P RINT 10 5SPRINT1 02 , WA
PRINT105$PRINT 102,B$PRINT 105$PRINT102,BI$PRINT105$PRINT102,WB
ERINT105$PRINT 101,C$PRINT 105$PRINT10 1 ,CI$PRINT105$PRINT101,WC
PRINT105$PRINT 104,D$PRINT 105$PRINT104,DI$PRINT105$PRINT104,WD

100 FORMAT(26F3.3)
101 FORMAT (1H0,3P24F5.0)



102 FORMAT(1H0,20X,3P16F5.0)
104 FORMAT(1H0,5X,3P22F5.0)
105 FORMAT(1H1)
109 F0RMAT(8(I3,2I1,I2,3X))

END
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SUBROUTINE SERIES

DIMENSION C(80)

COMMON /E/AL'(aO) ,AM(aO) ,AN (40) .INDEX (aO)/EL/X12,DX12, Y44, DY44
COMM0N/D/AD(4032),D(4032,22) ,B(4032,17),CD(4032,3) ,A(4032,9)
COMMON/C/X,Y,Z.J,APO,E,F,EPO,G,H,TD
AD(J)=AP0$CD(J,1)=EP0$IZ=IY=1
DO 7 IX=1,11$AA=AL(IX) $BB=AM(IX) $AB=AN (IX)

B^IY^FM^L,^^ LOO*****
C(IZ)=G*(X*X*C1+Y*Y*C2 +Z*Z*C3)$C(IZ+1)=G*(X*X*(C2+C3)+Y*Y*(C1+C3) +

1Z*Z* (C1 +C2))$IZ=IZ+2$IY=IY+1$G0T07
2

2
C(IZ)=G*(X*X*(C1+C2+C3+C4)+Y*Y* (C1+C2+C5+C6) +Z*Z

2* C3+C4+C5+C6))$C(IZ+1)=G*(X*X*(C5+C6)+Y*Y*(C3+C4)+Z*Z*(C1+C2))
criZ+2)=H* (X*Y*(C1-C2)+Y*Z*(C5-C6)+X*Z*(C3-C4)) $IZ=IZ+3$GOT07

3 S1=SL(X+Y+Z.C1)$S2=SL(X+Y-Z,C2)$S3=SL(X-Y+Z,C3) $S4=SL (X-Y-Z,C4)
D(J.IX)=E*(C1+C2+C3+C4)$B(J,IY)=F*(X*(S1+S2+S3+S4)+Y*(S1+

1CaZ+1)S=HMxiY*"(Cltc2-C3-C4)+Y*Z*(Cl-C2-C3+C4)+X*Z*(C1-C2+C3-C4))
C(IZ)=G*(X*X+Y*Y+Z*Z)*(C1+C2+C3+C4)$IZ=IZ+2$IY=IY+1$G0T07 ,„„..**,

4 S =SLM(X Y,C1)$S2=SLM(X,-Y,C2)$S3=SLM(X,Z,C3)$S4=SLM(X,-Z,C4 LMO*****
S5=SLM Y x:C5)$S6=SLM(Y,-X,C6)$S7=SLM(Y,Z.C7)$S8=SLM(Y,-Z,C8)$S9=

1SLM(Z,X,C9)$S10=SLM(Z,-X,C10)$S11=SLM(Z,Y,C11)$S12=SLM(Z,-Y,C12)
CA=C1+C2+C3+C4$CB=C5+C6+C7+C8$CC=C9+C10+C11+C12$XX=X*X$YY=Y*Y
ZZ=Z*Z$D (J,IX) =(CA +CB+CC)*EE(J IY)=(X*(S1+S2+S3+S4)+Y*(S5+S6+S7+S8)+Z*(S9+S10+S11+S12))*F
B(J.IY+1)=F*(X*(S5-S6+S9-S10)+Y*(S1-S2+S11-S12)+Z*(S3-S4+S7-S8))
C(IZ+3)=H*(X*Y*(C1-C2+C5-C6)+X*Z*(C3-C4+C9-C10)+Y*Z*(C7-C8+C11-C12

1)) $C (IZ) =G*(XX*CA+YY*CB+ZZ*CC) $C(IZ+1) =G*(XX*(
2C5+C6+C9+C10) +YY*(C1 +C2+C11+C12)+ZZ*(C3+C4+C7+C8)) $C(IZ+2) =G*
4 (XX* (C7+C8 +C11+C12)+YY*(C3+C4 +C9+C10) +ZZ*(C1+C2+C5+C6))$IZ=IZ+4

IY=IY+2$G0T07 tmm*****5 S1=SLM(X.Y+Z,C1)$S2=SLM(X,Y-Z.C2)$S3=SLM(X,Z-Y,C3) LMM*****
S4=SLM(X,-Y-Z,C4)$S5=SLM(Y,X+Z,C5)$S6=SLM(Y,X-Z,C6)
S7=SLM(Y.-X+Z,C7)$S8=SLM(Y,-X-Z,C8)$S9 =SLM(Z,X+Y,C9)
S10=SLM(Z,X-Y,C10)$S11=SLM(Z,-X+Y,C11)$S12=SLM(Z,-X-Y,C12)
CA=C1+C2+C3+C4$CB=C5+C6+C7+C8$CC=C9+C10+C11+C12
D(J,IX)=E*(CA+CB+CC)$XX=X*X$YY=Y*Y$ZZ=Z*Z
E(J IY)=F*(X*(S1 +S2+S3 +S4)+Y*(S5 +S6+S7+S8) +Z* (S9+S10+S11 +S12))
B(J',IY+1)=F*(X*(S5+S6-S7-S8+S9+S10-S11-S12)+Y*(S1+S2-S3-S4 +S9-S10

1+S11-S12)+Z*(S1-S2+S3-S4+S5-S6+S7-S8))
CfIZ+2)=H*(X*Y*(Cl+C2-C3-ca+C5+C6-C7-C8)+Y*Z*(C5-C6+C7-C8+C9-Cl

40+Cl1-C12)+X*Z*(C1-C2+C3-C4+C9+Cl0-Cl1-Cl2))$C(IZ+3)=F*(X*Y*(C9
5~C10-C11 +C12)+Y*Z* (C1-C2-C3+C4)+X*Z*(C5-C6-C7 +C8))
C(IZ)=G*(XX*CA+YY*CB+ZZ*CC)$C(IZ +1)=G*(XX*(CB+CC)+YY*(CA+CC) +

1ZZ*(CA+CB))$IZ=IZ+4$IY=IY+2$G0T07 TMH*****
6 S1=SLMN(X,Y.Z,C1)$S2=SLMN(X.Y,-Z,C2)$S3=SLMN(X,-Y,Z,C3) LMN*****

LLO*****

LLL*****
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S4=SLMN(X,-Y,-Z,C4)$S5=SLMN(X,Z,Y,C5)$S6=SLMN(X,Z,-Y,C6)
S7=SLMN(X.-Z,Y,C7)$S8=SLMN (X,-Z,-Y,C8)$S9=SLMN(Y,X,Z,C9)
S10=SLMN(Y,X,-Z,C10)$S11=SLMN(Y.-X,Z,C11)$S12=SLMN(Y,-X,-Z,C12)
S13=SLMN(Y,Z,X.C13)$S14=SLMN (Y,Z,-X,C14)$S15 =SLMN(Y,-Z,X,C15)
S16=SLMN (Y,-Z,-X,C16)$S17=SLMN (Z,X,Y,C17)$S18=SLMN(Z,X,-Y,C18)
S19=SLMN (Z,-X,Y,C19)$S20=SLMN(Z,-X,-Y,C20) $S21 = SLMN(Z,Y,X,C21)
S22=SLMN(Z,Y,-X,C2 2)$S23=SLMN(Z,-Y,X,C23)$S24=SLMN (Z,-Y,-X,C24)
CA=C1+C2+C3+C4+C5+C6+C7+C8$CB=C9+C10+C11+C12+C13+C14+C15+C16

CC=C17+C18+C19+C20+C21+C22+C23+C24$D(J,IX)=E*(CA+CB+CC)
B(J,IY)=F* (X*(S1+S2+S3 +S4+S5+S6+S7+S8) +Y*(S9 +S10 +S11+S12+S13 +

1S14+S15+S16)+Z*(S17+S18+S19+S20+S21+S22+S23+S24))
B(J,IY +1)=F* (X*(S9+S10-S11-S12+S17+S18-S19-S20)+Y*(S1+ S2-S3-S4

2+S21+S22-S23-S24)+Z*(S5+S6-S7-S8+S13+S14-Sl5-Sl6))
E(J,IY+2)=F*(X*(S13-S14+S15-S16+S21-S2 2+S2 3-S24)+Y*(S5-S6+S7-S8

3+S17-S18+S19-S20)+Z*(S1-S2+S3-S4+S9-S10+S11-S12))$IY=IY+3
XX=X*X$YY=Y*Y$ZZ=Z*Z$C (IZ) =G* (XX*CA+YY*CB+ZZ*CC) $C (IZ +1)=G*(XX*(

5C9+C10+C11+C12+C17+C18+C19+C20)+YY*(C1+C2+C3+C4+C21+C22+C2 3+C24)
6+ZZ* (C5+C6+C7+C8+C13+C14+C15+C16))$C(IZ +2)=G* (XX*(C13+C14+C15
6+C16+C21+C22+C23+C24)♦YY*(C5+C6+C7+C8+C17+C18+C19+C20) +ZZ* (C1 +C2
7+C3+C4+C9 +C10+C11 +C12))$XY =X*Y$YZ=Y*Z$XZ=X*Z$C(IZ+3) =H*(XY*(
8C1+C2-C3-C4+C9+C10-C11-C12)+YZ*(C13+C14-C15-C16+C21+C22-C2 3-C24)+
9XZ*(C5+C6-C7-C8+C17+C18-C19-C20))$C(IZ+4)=H*(XY*(C17-C18-C19
1+C20+C21-C22-C23+C24)+YZ*(C1-C2-C3+C4+C5-C6-C7+C8)+XZ*(C9-C10-C11
2+C12 +C13-C14-C15+C16))$C (IZ+5) =H*(XY*(C5-C6+C7-C8 +C13-C14 +C15
3-Cl6)+YZ*(C9-C10+C11-C12+C17-d8+C19-C20)+XZ*(C1-C2+C3-C4 +C21-C22
4+C23-C24))$IZ=IZ+6

7 C0NTINUE$D042 1=2,3
42 CD (J,I)=C(I)$D0 27 IX=12,22$AA =AL(IX)$BB=AM(IX) $AB=AN (IX)

GOTO (21,22,23,24,2 5,26)INDEX(IX)
21 XX=R (X)+R(Y)+R(Z) $GOTO 27 LOO-
22 XX=R (X+Y)+R(X-Y)+R (X+Z)+R(X-Z)+R (Y+Z)+R(Y-Z) $GOTO 27 LLO-
23 XX=R (X+Y +Z)+R(X+Y-Z)+R(X-Y +Z)+R(X-Y-Z) $GOT0 27 LLL-
2 4 XX=S (X,Y)+S(X,-Y)+S(X,Z)+S (X,-Z) +S (Y , X)+S (Y,-X)+S (Y,Z)+S (Y,-Z) LMO-

1+S(Z,X)+S(Z,-X)+S(Z,Y)+S(Z,-Y) $GOTO 27
2 5 XX=S (X.Y +Z)+S(X,Y-Z)+S (X,-Y-Z)+S (X,-Y + Z)+S(Y,X+Z)+S(Y,X-Z LMM-

1)+S(Y,-X-Z)+S(Y,-X+Z)+S (Z,X+Y) +S (Z,X-Y)+S(Z,-X-Y) + S(Z,-X+Y)$GOT027
2 6 XX=T(X,Y,Z)+T(X,Y,-Z)+T (X,-Y,-Z)+T(X,-Y,Z)+T(X,Z,Y)+T(Z,-Y,X)+ LMN-

1T(X,Z,-Y)+T(X,-Z,-Y)+T(X,-Z,Y)+T (Y, X, Z)+T(Y, X,-Z) + T (Y,-X,-Z)
2+T(Y,-X,Z) +T (Y,Z,X)+T(Y,Z,-X)+T(Y,-Z,-X) +T(Y,-Z,X) +T(Z,X,Y) +
3T(Z, X,-Y)+T(Z,-X,-Y)+T(Z,-X,Y) +T (Z, Y, X)+T (Z, Y,-X)+T (Z ,-Y,-X)

27 D(J,IX)=E*XX
XX=X-FLOAT (IRND(X) )$YY=Y-FLOAT (IRND(Y) )$ZZ=Z-FLOAT (IRND(Z) )
X2=X-FLOAT (IFIX(X))-.5$Y2=Y-FLOAT (IFIX (Y))-.5$Z2=Z-FLOAT(IFIX(Z))

1-.5$G1=XX*XX+YY*YY+ZZ*ZZ$G2=X2*X2+Y2*Y2+Z2*Z2$IF(G2.GT.G1)GOTO4 0
XX=X2$YY=Y2$ZZ=Z2$G1=G2

40 ZB=XX*XX+YY*YY$ZA=X*XX+Y*YY$COS1=(Z*ZZ+ZA) **2/Gl
COS2 = (X*YY-Y*XX)**2/ZB$COS3= (ZA*ZZ-Z*ZB)**2/(ZB* (ZZ*ZZ +ZB))
GX=AMAX1 (ABS(XX) ,ABS(YY),ABS (ZZ))$S1=4.*SIN(3.141592*GX)**2
S2=SIN (6.283184*GX)**2$P1 =XX*XX/G1$P2 =YY*YY/G1$P3=ZZ*ZZ/G1
P12=P1*P2$PT1=4.*P12*(1.-3.*P3)$PT2=4.*P3*(P1+P2-6.*P12)
P123=P12*P3*27.$PL=PT1+PT2$P0=1.-PL-P123
DO41 I =1,9$IX= (I-1)/3$X=X12+DX12*IX$Y=Y44+DY44*(I-1-3*IX)
VP=(1.-X+Y)*P123

41 A(J,I)=(COS1/(S1*(P0+PL*Y)+S2*(PL*(1. + X+Y) +P123* (1. +2.*X+Y*4.)) ) +
1COS2/(S1*(Y*(P0+PT1)+PT2)+S2*( (1.-X-Y) *PT1 + (2.*Y-1.)*PT2 +VP) ) +
2COS3/(S1*(Y*(P0+PT2)+PT1)+S2*((1.-X-Y) *PT2+(2.*Y-1.)*PT1 +VP)) ) *TD

RETURN$END
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SUBROUTINE STAT

DIMENSIONIX(50),AA(44,44) ,XX(44,44) ,AS(50) ,AAA (44,44) ,AJ (60)

DIMENSION ER1(59)
COMMON/A/A (403 2)/B/B(4032) /F/W (4032)
COMMON/G/IR1 (4032) ,AX(50)/D/D (4032,52)

CAUTION NUM MOST AGREE WITH DIMENSION STATEMENT FOR AAA, AA AND XX
NUM=44$NX=NUM*NUM$DO 201 1=1,59

201 ER1(I)=0.$DO 15 I=1,N0M$DO15J=I,NUM$TS=0.$DO 14 K=1,4032
14 TS=TS+D(K,I)*D (K,J)*W(K)
15 AAA(I,J) =AAA (J,I)=TS

DO 50 IEL=1,9$IF(IEL.EQ.1) GOT052$J=NUM-1 +IEL$DO51 1=1,4032
51 D(I.NUM) =D (I,J)

DO 62 1=1,NUM$TS=0.$D063J=1,4032
63 TS=TS+D(J, I) *D(J,NUM) *W(J)
62 AAA(I.NUM) =AAA (NUM,I)=TS
52 D061I=1,NX
61 AA (I)=AAA(I)$IF(IEL.NE.5)GOT019

EO 2 I =1,NUM$AX(I)=Y= 1./SQRT(AA(I,I) ) $DO 2 J=1,NUM
2 XX(I,J)=AA (I,J)*Y$PRINT 111$D0 3I = 1,NUM$Y=AX(I)$D04J=1,I
4 IX(J)=IRND (XX (J,I) *Y*100.0)$IT=I-1
3 PRINT 100, I, (IX(J),J=1,IT)

19 DO 18 1=1,NX
18 XX (I)=0.$DO21 1=1,NUM
21 XX(I,I)=1.

CALLMATQ(AA,XX,NUM,NUM,DET,NUM,NUM)$IF (IEL.NE.5)G0T054
DO 20 I=1,NUM$AX(I)=Y =1./SQRT(XX(1,1) ) $D0 20 J=1,NUM

20 AA(I,J)=XX (I,J)*Y$PRINT 112
DO 16 I=1,NUM$Y=AX(I)$IT=I-1$D017J=1,I

17 IX(J)=IRND (AA(J,I) *100.*Y)
16 PRINT 100, I, (IX(J) ,J=1,IT)$PRINT103
54 DO 9 J=1,NUM$TA=0.$DO8 K=1,4032

8 TA=TA+A(K) *W (K)*D(K,J)
9 AJ(J)=TA$D07 I=1,NUM$TA=0.$D065 J=1,NUM

65 TA=TA+XX (I,J) *AJ(J)
7 AX (I)=TA$VAR=0.$DO 11 1=1,4032$TS=0.$DO 12 J = 1,NUM

12 TS=TS+AX(J)* D (I,J) $ZZ = A (I)-TS$X =ZZ*W (I)
ER1(IR1(I) )=ER1 (IR1 (I) )+X$VAR=VAR +X*ZZ
IF(IEL.EQ.9.AND.W(I) .GT.O.)W (I)=ZZ

11 E(I) =TS$VAR =VAR/(4032.-NUM)SPRINT 102,DET,VAR
DO 13 1=1,NUM

13 AS (I)=SQRT (VAR*XX(I,I) )
PRINT 101, ((I,AX (I) ,AS (I)) ,1= 1,NUM)$ IF (IEL.NE.5)GOTO50
NZ=NUM-1$PRINT105,ER1$DO 31 11 = 1,6$PRINT116,II$D03 1 J = 1,59
GOTO (41,42,43,44,45,46)II

41 K=J*16-15$GOT047

42 K=J*16- 5$GOT047

43 K=J*16$GOT047

44 K=J*24+1625$GOT047

45 K=J*24+1632$GOT047

46 K=J*24+1638

47 A1=A2=A3=0.$DO 32 1=1,23
32 A1=A1+D(K,I)*AX(I)$DO 33 1=24,40
33 A2=A2+AX(I)*D (K,I) $DO 34 1 =41,NZ
34 A3=A3+AX(I)*D(K,I) $A4= AX (NUM)*D (K,NUM) $A5=A1+A2$A6=Au+A3$A7=A5+A6
31 PRINT 109,J,A1,A2,A5,A4,A3,A6,A7,A(K)
50 CONTINUE

-.00 FORMAT (13, 1X.43I3)
101 FORMAT (/,5 (3 (110,2F10.5)/) )
103 FORMAT(1H1)
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102 FORHAT(16H0 DETERMINATE ,E10.4, 10H VARIANCE ,E12.4,31H SOL
1UTION, STANDARD ERROR ,/)

105 FORMAT(//,24H RESIDUAL DISTRIBUTION ,/10(/10F10.4) )
109 FORMAT(I20,3P3(F13.0,2F9.0))
111 FORMAT(45H1 CORRELATION BETWEEN PARAMETERS ,//)
112 FORMAT(43H1 CORRELATION BETWEEN PARAMETER ERRORS ,//)
116 FORMAT (17H1 TRACE NO.,13, 86H ALPHA GAMMA SUM

1 TDS QUAD SUM TOTAL OBS. ,/)
RETURNJEND

FUNCTION SL(X,W)

COMMON A,B,C

D=X*A$SL=SIN(D)$W=COS(D)$RETURN$END

FUNCTION SLM(X,Y,W)

CCMMON A,B,C

D=X*A+Y*B$SLM=SIN(D)$W=COS(D)$RETURN$END

FUNCTION SLMN(X,Y,Z,W)

CCMMON A,B,C
D=X*A+Y*B+Z*C$SLMN=SIN(D)$W=COS(D)$RETURN$END

FUNCTION R (X)
COMMON A,B,C

R=COS(X*A) *RETURN$END

FUNCTION S(X,Y)

COMMCN A,B,C
S=COS(A*X+B*Y) $RETURN$END

FUNCTION T(X,Y,Z)

CCMMON A,B,C

T=COS(A*X+B*Y+C*Z) $RETURN$END

FUNCTION IRND(X)

IF (X.GT.O) GOT01
IEND=IFIX(X-.5)$RETURN

1 IRND=IFIX(X+.5)$RETURN$END
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