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PREFACE

P. N. Haubenreich

The formulations that are presented here were worked out by Blynn

Prince in 1968 in connection with his analysis of the kinetics of the

Molten-Salt Reactor Experiment with 233U fuel. Although he made some

significant progress toward an improved mathematical description of

circulating-fuel reactor kinetics, the work was suspended and these re

sults were not previously reported because of a contraction of reactor

analysis effort in the Molten-Salt Reactor Program that involved the

assignment of the author to a different program. Whether or not molten

salt reactor development work is continued in the future, the results

contained here may be of interest from the standpoint of theoretical

reactor kinetics analyses. They also indicate a starting point that

could lead to improved, practical computations of molten-salt reactor

kinetics. As such they are recorded here for possible future use.





IMPROVED REPRESENTATION OF SOME ASPECTS

OF CIRCULATING-FUEL REACTOR KINETICS

B. E. Prince

Abstract

The general space-energy dependent reactor kinetic equations for a
circulating-fuel reactor were studied to help determine the type of mathe
matical representation most appropriate for analysis and computation of
reactor transient behavior. It is shown that, with inclusion of fluid
transport terms in these equations, the application of the usual adjoint-
weighting and integration techniques used to derive "global" kinetic equa
tions from the general equations do not result in the usual set of time-
dependent ordinary differential equations associated with stationary-fuel
reactor-kinetics. However, a time-dependent integro-differential equation
describing the kinetics of the neutron population can still be obtained.
General formulas for calculating the weighted delayed-neutron precursor
kernels in this equation are given, and a numerical example is included
which illustrates the nature of the solution. Directions are also sug
gested for calculating the analogous weighted temperature-distribution
kernels for analysis of power-temperature kinetics. The qualitative in
fluence of fluid mixing on the kernels is described, and the connections
between the distributed parameter and lumped-parameter representations
of the system kinetics are also discussed.



INTRODUCTION

A complete mathematical description of the nuclear fission chain re

action in any power reactor is a formidable task, which is further compli

cated by circulation of the fuel. Fortunately, for many purposes greatly

simplified descriptions are sufficient — as Weinberg and Wigner point out,

the first full-scale reactors (Hanford) were designed with desk calcu

lators and slide rules.1 More detailed analyses are increasingly desira

ble, however, as reactor designs are refined to obtain higher performance

without compromising reliability and safety. As part of the vast growth

in reactor technology, analysis of stationary-fuel reactors has evolved

to a high level. Representation of the unique aspects of the kinetics of

circulating-fuel reactors has naturally received much less attention and

so has advanced to a lesser degree. Methods were developed for repre

senting the latest circulating-fuel reactor, the Molten-Salt Reactor Ex

periment, that proved to be quite adequate for that purpose. But design

of large-scale, high-performance MSR power plants would undoubtedly lead

to demands for improved kinetics calculations. The work described in this

report is intended to help lay the groundwork for these calculations.

BACKGROUND

In the analysis of reactor dynamics, wide use has always been made

of the so-called "point" kinetics model. The great utility of this space-

independent model is largely a result of the ability to decompose the prob

lem of calculating the gross details of the time dependence of a system

from the multi-dimensional problem of calculating the neutron distribution.

Although the early reactor physics literature contains some discussion of

the relation between the point kinetics model and the complete mathematical

description of the time-dependent neutron population,2'3 to the writer's

knowledge, the first rigorous exposition of the relation, showing its deri

vation from the time-dependent Boltzman equation, and describing the cri

teria for the point-kinetics equations to provide a precise description of

the system motion, was given in 1958 by A. F. Henry.''



The derivation of the point kinetics equations is ordinarily carried

out for the case of a stationary-fueled reactor. Although the point ki

netics approximation has been applied to circulating-fuel reactors, if one

begins at the most basic level to describe a circulating fluid-fueled re

actor, it is somewhat more natural to consider an Eulerian type of descrip

tion of the basic mathematical relations between the important variables

such as flux, precursor densities, and temperatures. One is then led to

inquire what differences in mathematical formalism from the standard point-

kinetics equations are suggested for the practical analysis of circulating-

fuel-reactor kinetics problems.

The reactor physics literature describes many different investigations

of the unusual aspects of circulating-fuel-reactor-kinetics, of which ref

erences 5—10 are significant examples. These unusual aspects are especi

ally well identified in a 1962 article by B. Wolfe9 in which he considers,

inter alia, the direct effects of motion imparted to the entire neutron

population by the moving fluid. Wolfe concludes that, except in very se

vere reactor accident conditions, the special reactivity effects so intro

duced are quite small. On the other hand, in the calculation of the de

layed neutron precursor distributions and effectiveness in a circulating-

fuel reactor, he reemphasizes the importance of an accurate mathematical

description of the fluid motion effects in kinetics analysis.

Of the variety of mathematical models which have been used in studies

of the kinetic behavior of circulating fuel reactors, most can be desig

nated as "special purpose approximations," useful for the analysis of par

ticular characteristics or regimes of the system motion, but each neglecting

certain features of the physical system which would be required for other

applications. For example, analyses focusing mainly on determining the

conditions for ultimate dynamic stability of the reactor core will often

neglect the effects of the delayed neutrons. In another case, studies of

reactor transients under abnormal, or accident conditions, which occur on

a time scale less than, or comparable to, the transit time of a fluid par

ticle through the core, can often neglect the description of the system

external to the core, together with any transients in the temperature or

precursor concentrations in the fluid re-entering the core. As an example,

the ZORCH program, developed for studies of the nuclear safety of the



MSRE,11 is based on this approach. ZORCH uses a simplified treatment of

the delayed neutron precursor dynamics based on an "effective" delayed

fraction, which gives the correct initial normalization for the reactivity

margin between delayed and prompt critical. The main effort is then given

to a numerical treatment of the distributed parameter problem of heat con

vection and temperature feedback during the transient.

Other investigations connected with the MSRE were aimed at describing

the reactor dynamic characteristics appropriate to a time scale comparable

to, or larger than, the core transit time.12 Here the entire circulating

system, including the heat exchanger, must be included in the description.

The general approach has been to develop a "lumped parameter" model for the

system, which provides an adequate description of the dynamics of the power,

precursor concentrations, and temperatures, for the purposes intended.

The various investigations of the kinetics of the MSRE and subsequent

MSR designs are briefly described in a recent memorandum by Haubenreich.13

All involve approximations of one kind or another that limit the general

applicability of the methods. If further development of molten-salt re

actors takes place, it seems likely that kinetics-computational models

which are of greater generality and flexibility would ultimately be re

quired for the analysis of routine nuclear operations, kinetics experi

ments, and unusual occurrences. The investigations reported here were

initiated with this general philosophy in mind. They are aimed at ana

lyzing some of the most important consequences of the fuel motion in prac

tical kinetics computations and the interpretation of kinetics experiments

for circulating-fuel reactors. Although differing in emphasis, the ap

proach has much in common with some of the past investigations mentioned

above. However, we wish to focus on certain aspects of the differences

in mathematical formulation and practical computation with the kinetics

equations which, in our opinion, previous studies have not sufficiently

developed and clarified. In this writing, we shall consider in detail

only the simplest case of interest, the case of negligible temperature

feedback effects, or the "zero-power" case. However, following the dis

cussion of this case, we will indicate some connections to the case of

temperature-dependent kinetics.



MATHEMATICAL DESCRIPTION

In the case where one is able to neglect the direct effects of fluid

motion on the neutron population, as described in the preceding section,

one can show that the main line of Henry's derivation can be carried over

to the circulating-fuel reactor, and that the form obtained for the re

sulting "global," or space-lethargy-integrated kinetic equation governing

the magnitude of the neutron population is the same as in the stationary

fuel case. This is demonstrated mathematically in the Appendix of this

report. In each case, the resulting kinetic equation for the neutron popu

lation magnitude is,

6

I
i=l

il = £-^lT +I X.c. , (1)
dt A .L. i i '

where T(t) is a time-dependent amplitude function, obtained by factoring

the general transient flux distribution, $(r_, u, t)), into a product of

T(t) and a normalized "shape" function, <j>(r_, u, t). In Eq. 1, the source

terms, X.c, associated with decay of delayed neutron precursors have the

form,

xici(t) = JTf f 1 x± ci(-' t} fdi(u) ** (r-> u) d^ du • (2)
R u

Here, C. (r, t) is the local density of precursors for the i delayed

group, f,.(u) are the lethargy spectra of delayed neutron emission (each

normalized to unity), cf> (r_, u) is the solution of the adjoint equation

for a reference reactor condition, and R is the reactor volume. As Henry's

derivation shows (see Appendix), the parameters p(t), A(t), and (3(t) are

defined quantities which intrinsically require knowledge of the time-

dependent neutron distribution for their exact calculation, but which are

useful because they can be closely approximated by simpler indirect calcu

lations, in many practical cases. The parameter, p(t), is the reactivity

change, relative to a reference, stationary state of the reactor, where

there is no circulation of the fuelo The parameter, A(t), is the prompt-

neutron generation-time, and |3(t) is the effective delayed neutron fraction,



weighted according to the lethargy spectra of delayed neutron emissions.

Mathematical definitions for all these quantities are given in the Appen

dix. The factor F(t), is a normalized rate-of-production (of prompt neu

trons plus precursors). This factor is included in the definition of p,

A, and J3, but in such a way that the ratio (p - 3)/A in Eq. (1), and the
product A F in Eq. (2) are independent of its magnitude.

The important difference introduced in the case when the fuel is cir

culating is in the equation governing C. (r, t). The latter now has the

form of a continuity equation,

3C.

j± - 3. P$- A. C. -V-VC. (3)

where P is a time-dependent linear operator on the flux distribution, such

that 3± P $ (r,t) is the total production rate of i group precursors at
position r and time t. (Here, P can be regarded a linear integral operator
in the lethargy, which may also depend on position.) The last term on the

right-hand side of Eq, 3 represents the spatial transport of precursors

by fluid motion, with V as the velocity of the fluid,

In applications to a circulating-fuel reactor such as the MSRE, where

the fuel motion was in channels parallel to the core axis, it is sufficient

to consider the one-dimensional version of the transport term, 73C./3z in

Eq. 3. Here, the velocity within an individual channel is assumed to be

uniform across the channel, equal to the average axial velocity of the

fluid; the velocity may, however, vary according to the radial position

of the channel within the reactor. For practical purposes, therefore, our

problem is one of including an adequate mathematical treatment of the re

sulting partial differential equation into the calculation of the global

quantities, c0(t), defined by (2).

As a starting point for mathematical treatment of Eq. (3), the general

time-dependent flux distribution, $(r_, u, t) may, as in the derivation of

Eq. (1), be written in form of a product, T(t)<fr(r, u, t). Then, the source
term in Eq. (3) becomes,



0± P $ = P± T(t) P$ ,

= p± T(t) G(r,t) , (4)

where G(r_, t) is a normalized, time-dependent distribution of fissions in

the reactor.

Now, in the analysis of a number of reactor kinetic experiments, we

are interested in describing situations where the core properties do not

vary markedly during the transient. For these situations, we can approximate

the production operator by its time-average values, P, during the transient.

It is then conceptually useful to represent the time-dependent normalized

flux distribution, <f> (r_, u, t) by an expansion in a set of basis functions,

appropriate to the boundary conditions on the reactor. Although there is

some flexibility in the choice of these basis functions, one possible choice

is that of the eigenfunctions of the time-independent problem (i.e., the

neutron flux equation with the neutron multiplication parameters adjusted

to obtain a stationary solution), corresponding to the average material

properties during the transient, In this approach, the lead term in the

expansion can be chosen to approximate the asymptotic, or persisting neu

tron distribution which would be associated with this material configura

tion, Thus, if we write

00

<|>(r, u, t) = I iL (t) *, (r, u) , (5)
k=0 k k

00

P $ - P <j> = I A (t) P <j>, (r, u),
k=0 fc k

oo

= I A (t) G (r) , (6)
k=0 K K

then a useful approximation for the treatment of many time-dependent prob

lems may be obtained by dropping all but the lead terms in the above ex

pansions. In the physically time-separable case (i.e., the case where the

reactor flux is changing on a stable period), the single-term approximation



becomes an exact description.13 Although this approximation also implies

that we limit consideration to problems where the initial and asymptotic

flux distributions do not differ markedly, as indicated above, many sig

nificant kinetics problems are subsumed under this category. For these

cases where a single term approximation is sufficient, A0(t) may be chosen

equal to unity by appropriate normalization of the fission distribution,

Go(r), and the time-dependence of the precursor source term, Eq. (4), is

entirely contained in T(t),

Alternatively, it may be necessary in some instances to include more

than one term in the expansion representation of the flux. For example,

another possible approximate procedure would represent the flux as a linear

combination of two flux functions, appropriate to the "initial" and "final"

configurations of the reactor. The retention of more than one term, or

"mode" in the flux expansion generally leads to a system of neutron popu

lation amplitude equations, as opposed to the single kinetic equation of

the form (1). In this type of description, however, note that Eq. (3) is

linear, and superposition of solutions corresponding to individual source

terms of the form 3. T(t) G(r) can always be applied.

Stemming from the arguments given above, we will consider the mathe

matical treatment of Eq. (3) for kinetics problems where space-time separa

bility of the source term can be assumed to hold. To simplify our nota

tion, henceforth, we drop further consideration of the expansion subscript,

and rewrite Eq, (3) as,

)C sc

1+ A. C:, + V-—- = 3, T(t) G(r) . (7)
3t i i 3z pi

To complete the mathematical description of the problem, we require

the boundary conditions on Eq. (7). At a given instant of time, the de

layed precursor concentration in the fluid must be continuous around the

circulation path; moreover, in that part of the circulating system which

is "out" of the neutron flux (i.e. beyond the boundary where the neutron

flux distribution specified in Eq. (5) vanishes), the delayed emitter con

centrations are governed by the homogeneous form of Eq. (7), where the



right-hand side is set equal to zero and z is considered to be a more

general position variable, parallel to the direction of average flow. To

a close approximation, the flow velocity V_ can be assumed constant in vari

ous subregions of the circulation path, and to undergo rapid transitions

between these regions (e.g. between the core and the external piping).

As determined by Eq. 7, the delayed emitter concentrations C. are de

pendent on three space dimension variables, through the source distribution

G(r). Our present interest is in applications where channelled flow in

cylindrical geometry with near-azimuthal symmetry is appropriate such as

was the case for the MSRE. For this case, in addition to the time depen

dence, the delayed emitter concentrations will vary with axial location

along a channel and with the radial position of the channel within the

core. With the MSRE as an example, it is clear that the hydraulic design

of the circulating system has the effect of radially smoothing and aver

aging of the concentrations exiting at a given instant from the channelled

region, and of providing essentially a radially uniform concentration of

emitters entering the channels. Because of this feature, it is necessary

to carry out the integration of Eq. 7 along specified channels, radially

average the concentrations exiting from the channels, and then continue

the integration along the remainder of the path of circulation. The treat

ment of the radial dependences presents no problem in principle, although

the mechanics of the computation become more involved. Because we wish to

focus attention on certain other aspects of the mathematical treatment of

Eq. 7, we limit consideration here to the case where the flux and fission

distributions depends on only one space variable, corresponding to the

axial direction of flow.

Laplace transform theory provides a convenient and general approach

to the treatment of Eq. 7. To apply this approach, it is useful to first

separate the problem of obtaining the initial conditions in time, the dis

tributions C. (z,t=o) = C. (z), from that of solving the time-dependent

equation. In many cases of physical interest, steady-state conditions

will prevail at t=o, and the C. (z) are determined by,

3C.

V-^+X. C. = p. T(o) G(z) . (8)
3z l 10 "i / '
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Subtracting Eq. 8 from Eq. 7, we obtain a similar partial differential

equation for the change in emitter concentrations, E. = C - C . which
l l io'

has zero initial conditions on the dependent variable,

3E. 3E.

jr+XlE± + VJT = 3i (T(t) -T(o)) G(z> • o)

Although the Laplace transform technique can be applied directly to

the solution of Eq. 9, one should first observe the T(t) is not an arbi

trarily specified function of time; rather, as indicated previously, it

is determined by the "global" time-dependent equation for the neutron

population, required to complete the description of the system dynamics.

This latter equation and the delayed emitter equations are coupled through

terms of the form (2). Eliminating the dependent variables C. by solving

Eqs. 7 in terms of T(t) is equivalent to replacing the space-lethargy-

integrated, system-kinetics equations by a single Volterra integro-differ-

ential equation in the time variable. A direct route to this end is to

obtain the solution of Eq. 9 in terms of the "impulse" response,16 the

response when the source term in Eq. 9 is concentrated as a delta function

at t = £„ Thus, if we denote E. by K. for this special case,
li r '

3K. 9K.

j^- + \± K± + Yj^- = 3± 6 (t-£) G(z) in core region (10)

=0 in external piping.

The same initial and boundary conditions apply to Eqs. 9 and 10. Once the

impulse response of the system is obtained, by using linear superposition

and the properties of the delta function, we may set

t

E. (z,t) = / K.(z,t-5) [T(0 - T(o)] d? (11)
o

and from the above definition of E., together with the solution of Eq. 8,
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C. (z,t) = C.o(z) + /K. (z,t-C) [T(C) - T(o)] dS . (12)

Finally we may obtain integral expressions for the central quantities of

interest by substituting (12) in the "global" delayed neutron source terms

defined by Eq. 2. Upon interchanging the order of the time integration

and the space-lethargy integrations, these may be written in the form,

X.C. t ^

Aici = if+nl Ai Ki <*=-£> [T<?> - T<o>]d? <13>

where we define,

JL H j.

Cio = //Cio(z) fdi(u) ^o (Z'U) dZ dU ' (14)
o u

K* (t-5) = / /K^z.t-O fdi(u) ** (z,u) dz du , (15)
o u

and 0 ^_z<H represents the region of the flow path in which the neutron flux

and adjoint functions are non-zero.

The kinetic equation (1) for the flux magnitude now becomes

*

A.C. A. t

dT/dt = ^-=-£ T+I-f~+ IF? /KJ (t-5) ITU) "T(o)] d? , (16)
i i o

— t"Tv

or if we define the effective fraction, 3. of i -group delayed neutrons

emitted under conditions of steady-state circulation and stationary neutron

population,

\c - ^y • (17)



12

then the modified form of the neutron population kinetic equation is,

- 3. T(o) A. t

dT/dt = £-x^T + I -^h—+ I f? I Vt_° tT(5) "T(o)] dc • (18)
i i o

In this form, it may readily be seen that stationary conditions of the neu

tron population will prevail when the reactivity has a small positive mag

nitude equal to the net "loss" of 3 due to circulation, i.e.,

p0 - t-ihc • (19)

As a result of reformulating the kinetic equation as a single time-

dependent integro-differential equation, it is possible to regard the cal-

lation of the adjoint-weighted impulse responses, or kernel function, K.,

as a fundamental element of circulating-fuel reactor-kinetics analysis.

The remainder of this section, therefore, is devoted to obtaining explicit

mathematical expressions for these functions.

Since £ is to be regarded as a fixed time in Eq. 10, one may simplify

(10) by shifting the origin of time to this point. This is equivalent to

replacing the variable t by u = t-£, where p is the "age" between the appli

cation of the impulse and the evaluation of the response. Denoting the

unilateral Laplace transform of K. with respect to the variables u by,

00

K. (z;s) = / e~SU K.(z,y) dy , (20)
o

we may obtain the transform of Eq. 10 as,

_ _ 3K-
s K. + A. K. + V —— = 3. G(z) in core region (21a)

i i i 3z i

=0 in external piping. (21b)

Since the transformed equation can be treated as an ordinary differential

equation, its solution, obeying the conditions of continuity along the cir

culation path, is easily obtained. The integration of (21a) along the path

through the core yields,
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-(s+A.)f- -z -(s+A)(^l)
K (z;s) = K± (o;s) e c+ /b± e X c G(z') y2- , (22a)

o c

Where V is the fluid velocity in the core region. Similarly, integration

of (2Lb) between z=H and z=0 (the entrance and exit of the external piping)

results in,

-(s+A )| _ "(s+VTp
K. (o;s) = K. (H;s) e P = K. (H;s) e , (22&)

where L, V , and t are the effective length, fluid velocity, and residence

time in the region designated as external piping.

Equations 22a and 22b constitute the complete system of relations

necessary to solve for the transforms of the kernel functions K. (z;s).

For example, setting z = H in (22a) and then substituting (22&) into (22a)

results in the following relation for K. (H;s),

-(s+A.)(t+t) H -(s+A.K^-) ,
K (H;s) = K (H;s)e C P +/3± e 1 c G(z') y- , (23)

o c

where x = H/7 is the fluid residence time in the core region,
c c

We next consider the inversion of the transforms in Eqs. 22 and 23,

in order to obtain the explicit relations for K. in the time domain. To

accomplish this, while still retaining the general form for the functional

dependence of the fission distribution, G(z), it is necessary to invoke

some formal mathematical manipulations involving delta functions, whose

rigorous justification requires the theory of generalized functions, or

"distributions" (see Ref. 16, Appendix A). We will not attempt to present

rigorous proofs here. Instead, after indicating these manipulations and

the resulting formulas, we will discuss the results in terms of a specific
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example which does not require these formal manipulations. In the de

velopment given below, use is made of the following important property of

the Laplace transform:

-as

Translation Property: The inverse transform of the product e f(s)

is f(t-a), where f(t) = 0 when t<0.

To carry out the formal inversion of the transforms in Eq. 23, we

interchange the order of the spatial integration and inversion, and employ

the translation property in both terms on the right-hand side of the equa

tion. Thus

H-z'
-At H , -A (—— ) , ,

1 T j. f a */•„ _ H~z \„ ! v„ nf~'\ £2-K (H,y) = K.(H,y - t^ e +/ 3. &(v -*y~)e X c G(z')
c

(24)

V
o c c

where xm = x + x is the total circuit time. Next, performing the spatial
T c p

integration in the second term and again making use of the formal properties

of the delta function, we obtain the basic recurrence relation,

K. (H,y) =0 if y<0
(25a)

-Ax -Ay

K. (H,u) = K±(H,y-xT)e + B e G(H-7cy) if 0<jj<.xc (25b)

-A.x

K± (H,y) = Ki(H,y-xT)e X if y>Xc (25c)

Note that we have formally included the "time-lagged" first term on the

right hand side of (25b) , although, by use of (25a), this term is identi

cally zero for 0<ji<r .

Application of a similar procedure to Eq. 22 results in,

K. (z,y) =0 if y<0 , (26a)
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-A.(x + y-) -A.y
K± (z,y) = K± (H,y-x - |-) e 1 P c + 3. e XG(z-7 y) if Osji<. §- ,

c 1 c Vc

(26b)

-A . (x + f-)
K. (z,y) = K.(H,y-xp- f-) e X p "c if y> f- , (26c)

c c

where the functions K.(H,x) in the first term on the right hand of (26)

are to be determined from the recurrence relations (25) . By making use of

Eq. 26 and the defining equation (15), we may also write a formal recur-

rence relation for the space-lethargy integrated kernel function, K. (y);

K± (y) =0 if y<0 (27a)

* H -A.(x +|-)
K. (y) = //K. (H,y-x -y~) e X P Vc f (u) <j> (z,u) dz du

o u c

~Aip H ^
+ 3. e / / G (z-7 y) f .(u) <|> (z ,u) dz du if 0 <. y <. x (27Z?)

7yuCdl° c

H . „ -X,(t + fr)
K* (y) = //K±(H,y-x -j-) e x P 7c fd±(u) <|>* (z,u) dz du if y>X£

p
o u c

(27c)
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Finally, by combining Eqs. 25 with Eq. 27c, we may also obtain a recurrence

relation which is based on the total circuit time, x , and applies for arbi

trary values of y>x ;

* * ~XiTTK. (y) = K. (y - xT)e . (28)

Although this relation is reasonably obvious from an intuitive standpoint,

its formal proof may be carried out as follows. There are two cases to

distinguish:

(a)

x <y<_x +x . Rewrite Eq. 27c in the form,

K.(y) = /° /K.(H, u-xp-|-)e P vc fd.(u) ^ (z,u) dz du

(29)

p
u r c

H -A. (x + fr-) A
+ / / K.(H,y-x -f-)e X P c f (u) * <z,u) dz du

rr r \ ! P ' di o7 (y-xT) u c
c T

The first term on the right hand side of (29) may be transformed by using

Eq. 25c, i.e.,

VH^TP "T> =Ki(H^"Tp -T -V e ±Tl
r c c

if OiziF (u-O . (30)
c T

Similarly, the second term in (29) can be transformed using (25b),
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Ki(H'v-TP "7" =VH»^p -T~Ve ^ +
c r c

-A.(y-x_ - 77-)
±e X P Vc G(H-7c(y-x -^-)) if 7c (,y-xT) <. z<H. (31)

P c

Putting (30) and (31) into Eq. 29 results in

z* -A.x H -A.(x + y-) ^
K.(y) = e XT/ /K.(H,y-x -j- - t^) e X P cfd±(u) ^ (z,u) dz du

o u c

-A.y H ^
+ 3.e X / • / G(H-7c(y-x -f-)) ^.(u) 4, (z,u) dz du

^C(y-TT) u c

* ~Vt= K. (y-xT)e X , (32)

where the final result follows by applying Eq. 27b, with y replaced by

y-x , and by using the simple algebraic rearrangement,

(b)

putting Eq. 25c into Eq. 27c, with y replaced by y-TT . Thus,

H - Vn (u-t -f-) = z- 7 (u-O . (33)
c p / c T

r c

1 + x <jj<_2x . The required result follows immediately by

* "X.x_ H -MT„ + v") *K±(y) = e XT/ /K. (H,y-x -|- -xT)e P "c fd.(u) «> (z,u) dz du
o u c

= e XTK. (y-xT) . (34)

Finally, the complete proof of the recurrence relation (28) for arbitrary

values of y follows from inductive application of the preceding results„
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The system of relations expressed by Eqs. 25, 27, and 28 form a basis
*

for the calculation of the kernels, K (y). Explicitly, the problem of com-

puting K over the interval 0 <_ y <_ x is reduced to numerical integration

of expressions involving the fission neutron source function, G(z), and the
* . *

importance function <p (z,u). The function K. (y) can then be extended to
o 1

the interval y>x„ by application of the recurrence relation, Eq. 28. Such

a procedure is readily adaptable to development of a digital algorithm for

numerical calculation of these functions.

Once the kernels, K.(y), are obtained, they can be applied in the so

lution of the integro-differential equation for the neutron population,

Eq. 18, when an arbitrary variation of the reactivity is imposed. Because

this part of the analysis, in a sense, subsidiary to the main theme of this

memo (i.e., that of obtaining and interpreting expressions for the kernels),

we will not pursue it in any detail here. Use of an integro-differential

form of the neutron kinetic equation is common to some investigations of

stationary-fuel reactor kinetics, and several approaches are possible for

using the equation for numerical calculation of transients. Instead, we

will attempt to gain further insight into the preceding mathematical de

scription by considering a special case which illustrates the nature of

the solution.

EXAMPLE OF DELAYED NEUTRON KERNEL CALCULATIONS

One specific instance where analytical evaluation of the integrals

implied in the preceding formulas is possible is that of a homogeneous

slab reactor, through which fuel circulates in the direction of variation

of the neutron flux. In fact, the specialization of the preceding formulas

to this case reproduces results of some of the early studies in circulating-

fuel reactor kinetics.6 In addition to lending to simple interpretation,

the results for this special case are of interest as a reference in evalu

ating various quadrature techniques of potential use in treating the more

general inhomogeneous reactor problem (i.e., the case where the spatial de

pendences of the neutron flux and adjoint functions cannot be specified

analytically, and complete numerical treatment of the problem is necessary).
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In the special case, the flux and adjoint functions are proportional to

sin ttz/H, and for the purposes of the example, we can drop further con

sideration of the lethargy dependence. It is then possible to calculate

the kernel functions in a more direct manner than used in the preceding

derivations, by first performing the spatial integrations and then in

verting the Laplace transforms. The resulting expressions can be shown

to be identical with those obtained by application of the preceding formu-
*

las. The expressions for K.(H,y) and K.(y) which result in this case are,

K±(H,y) = 0 if y < 0

=

-A.y
n 1 . TTy
3.e sin —

1 X
c

if 0 <_ y <_ x

=

-At

K± (H,y-xT) e if xc < y ,

*

K±(y) = 0 if y < 0

5ie <

-A.y

+ 3.e

(1 _ "_) cos IE +I sin EL t if o <y <x
X X TF X — — <
c c c

if x < y < x
c — — 1

if 0 < y < x

tt(u-t ) (v_Tp) TT(y-x )
— sin ' *— cos ^~
77 X X X

c c c

> +

if x^ < y < x
p - - T

+ K.(y-xT) e if xT <_ y

(35a)

(352>)

(35c)

(36a)

(362>)

C36c)
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Inspection of Eqs. 35 and 36 reveals several qualitative features of the

impulse response functions for the precursor dynamics. As a result of im

pulse in the fission rate, occurring at y = 0, additional precursors are

produced in the distribution of the fundamental mode, throughout the core.

The exit concentration, K.(H,y) begins to rise as the fluid containing

these precursors leaves the core region, its time dependence corresponding

to a superposition of the translated "modal" concentration, with a damping

factor due to radioactive decay of the precursors. Following the comple

tion of one core transit time, the exit concentration change remains zero

until the completion of the first circulation cycle. These concentration

changes then have a periodic recurrence during further circulation cycles,

with the changes always damped by the decay factor, e i .

The same general features describe the changes in the adjoint-weighted
ft

precursor concentrations, K. (y). In this case, however, the variation in

the response function is smoothed by the integral weighting over the entire

neutron flux region, at each Instant of the circulation cycle. The time

dependence of this function during one complete circulation cycle, with

the radioactive decay factor suppressed, (i.e., the sum of the bracketed

terms in Eq, 36£>) is plotted in Fig. 1. Note that the function is sym

metric about y = x /2, regardless of the relative values of x and x .

Perhaps the most basic characteristics of the impulse response func

tions, exhibited by this example, is the (damped) periodicity in concen

trations corresponding to the circulation period, and the fact that the

only damping introduced into the response functions is that due to radio

active decay. Put in other terms, the precursor impulse response function

tends to exhibit a "memory" of the modal shape dependence of production by

fission, which is diminished only by radioactive decay. The origin of

this characteristic lies in the assumption, contained in our basic mathe

matical description, of a slug-flow regime throughout the circulation path.

This description does not account for any effects of mixing, and therefore

it gives rise to the basic characteristic of our solution — a translation

of the precursor distributions in the direction of flow, superimposed on

their radioactive decay. Now, it is apparent that the hydralic charac

teristics of any real circulating fuel system will give rise to non-

negligible fluid mixing effects. One type of effect, that of radial mixing
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which occurs as new precursors exit from the core and enter the external

piping system, has already been mentioned. This gives rise to the neces

sity of averaging the channel exit concentrations over the radial direction

before computing the concentrations subsequently reentering the core. How

ever, there will also be some degree of mixing along the direction of flow,

before the precursors produced by the "primary" impulse re-enter the core

for subsequent circulation cycles. Hence, mixing will likely have the ef

fect of attenuating the secondary peak concentrations additionally to that

resulting from radioactive decay, and also of broadening the response inter

val during these secondary cycles. Ultimately, the precursors would tend

to become uniformly mixed throughout the circulating system. The important

point to emphasize is that, as long as the flow in the core is channeled,

that portion of the weighted primary impulse response between the time of

precursor production and the first exit from the core should have a magni

tude much closer to that derived through the procedure we have described,

rather than one which assumes complete and instantaneous mixing in the

core. The specific effects of mixing external to the core might be investi

gated by introducing idealized "mixing chambers" along the path of flow ex

ternal to the core, or otherwise modeling the real system hydraulics. In

this way, the influence of mixing on the concentrations of the original im

pulse of precursors on successive re-entries to the core could be syste

matically studied.

DISCUSSION OF THE RESULTS AND FUTURE EXTENSIONS

As was specified at the outset, the mathematical description in the

preceding sections is limited in scope, and by no means constitutes a com

plete foundation for analysis of all types of circulating-fuel-reactor-

kinetics problems. Perhaps the most important of these limitations was

the assumption of negligible temperature feedback conditions. Even with

these restrictions, however, several important features emerge from an

examination of the kinetic description for this case. Their significance

is best seen in reference to the analogous description for the stationary-

fuel reactor. As Henry's derivation of the conventional global kinetic

equations for this latter case shows,A the resulting equations governing
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the changes in delayed neutron precursors: have the form of ordinary dif
ferential equations, and the complete mathematical system, including the
global equation for the amplitude of the neutron population, is a system
of coupled ordinary differential equations in the time variable.

By contrast, in attempting to obtain an analogous global kinetic

description for the circulating-fuel reactor, one must abandon efforts to

force the description (without introducing ad hoc approximations) into the

conventional ordinary differential equation format; instead, it is neces

sary to work directly with the integro-differential equation for the neutron

population amplitude. We should include the possibly obvious remark that

this latter mathematical formalism can also be used in the case of the

fixed-fuel reactor. (It is a trivial exercise to show that the kernal
ft _\

function, K±, for this case are proportional to e i .) Because the global
kinetic equations governing the precursor concentrations in a fixed-fuel re

actor have the form of linear, time-invariant ordinary differential equa
tions, the Laplace transforms of the kernel functions are simple rational

algebraic expressions. For the circulating fuel reactor, however, we have

seen that the transforms contain transcendental functions, whose inversion

yields relations exhibiting the fluid translation effects.

It may also be noted that multimode generalizations of the preceding

description of the neutron kinetic equations can be developed. This gener
alization would give rise to coupled sets of integro-differential equations
for the modal amplitudes of the neutron flux. However, for the analysis of

many kinetics experiments of interest, the single-mode description is quite
adequate, and therefore we have avoided this further complication in this
memorandum.

Another important feature arising from the preceding mathematical de

scription is the use of recurrence relations in describing the kernel func

tions for the precursor concentrations. These relations constitute a nat

ural means of expressing the particular physical attributes and boundary
conditions of this problem, i.e., the periodicity effects in the delayed

neutron source terms introduced by the steady recirculation of the fuel.

One of the reasons why some of the mathematical descriptions of this same

general problem, given in earlier studies,6'7 appear cumbersome and not

easily amenable to interpretation, is because the attempt is made to develop
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explicit formulas for the kernel functions by expansion of the functions

in infinite series involving only elementary functions. Contrawise, we

have shown that the preceding description readily admits interpretation.

Moreover, the recurrence relations are readily adaptable to the develop

ment of a digital computer algorithm for kinetics analysis.

The question arises as to what extent the general approach used in

the preceding description of the precursor kinetics can be extended to the

temperature-dependent kinetics. There are certain formal similarities in

the basic equations governing the fuel temperatures variations and the pre

cursor concentration variations (Eq. 3) along the circulation path. In

addition, the way in which the temperature field influences the global

kinetic equation for the neutron population amplitude is through a reac

tivity feedback term approximated by a functional relationship similar to

Eq. 1. In this analogy, C(r^,t) would be replaced by the temperature

T(_r,t), and the weighting function would contain products of the direct

and adjoint fluxes, rather than only the latter.17 Aside from these simi

larities, however, there are also differences. In the MSRE, for example,

a small fraction of the energy released in fission was deposited directly

in the graphite moderator. Thus, the temperature equations must include

coupling terms describing the heat transfer lags between fuel and graphite.

Also, in the precursor equations, removal from the system only occurs through

radioactive decay along the circulation path. The analogous treatment of

the temperature response kernels corresponding to secondary passes of fuel

through the reactor after the primary impulse in the power level would re

quire coupling with the temperature-kinetic equations for the heat exchanger

and secondary coolant system. Hence, several extensions of the preceding

mathematical description would be necessary before the method could be read

ily transcribed to analysis of power-temperature kinetics. However, in one

interesting example where there was need to determine the reactivity per

turbations for short periods during observed power variations in the MSRE,

the graphite heat-transfer lags and the secondary heat removal effects

could be ignored. Hence, the integro-differential Eq. 18 was used directly

to calculate these reactivity perturbations.18

In any extended investigation along these lines, we recommend that the

use of the distributed-parameter approach and its method of decomposition
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described in this memo be further explored in application to the power-

temperature kinetics of circulating-fuel reactors. This includes the de

velopment of numerical procedures to calculate the kernels for precursor

concentrations and temperatures, and systematic study of the effects of

fluid mixing on these kernels. This approach should be considered as a

parallel and complementary step to the development of approximate lumped-

parameter models for the system dynamics. We do not imply that the dis-

tributed-parameter approach should necessarily replace the use of the

lumped-parameter models in analysis and design of control systems for these

reactors. For many purposes, the lumped models are quite adequate, and

moreover, are well suited to techniques of digital and analogue computation.

They proved very useful in many of the studies of system kinetics of the

MSRE.12 However, in certain types of large transients, differences in the

treatment of spatial neutron importances and time-lag effects between these

two approaches can give rise to significant differences in kinetic responses.15

A combination of the two approaches may ultimately prove essential for studies

of the dynamics and control of this type of reactor. Perhaps the basic mes

sage of this memo is that, without close attention to the most elemental form

of the mathematical description of the physical system, together with its

"natural" mathematical decomposition, it is often difficult to determine

the precise limitations of the lumped models. Thus, it would not be sur

prising if these investigations could result in improving the resolution

of the latter models.
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APPENDIX

Derivation of the Global Kinetic Equation for the

Neutron Population Amplitude

To derive Equations 1 and 2 of this report, and hence establish the

point-of-departure for analyzing the special aspects of circulating fuel

systems, we will use a notationally abbreviated version of Henry's origi

nal derivation.'' This employs a linear operator formulation of the gen

eral time-dependent reactor equations, as opposed to the detailed develop

ment in ref, 4, describing the physical constituents of the transport

equation, The operator form of the equations describing time dependences

of the neutron flux and precursor population are,

-L* +(1-3) £^ +j X± fd. C. -v-1 f£ (Al)
r k i=l

e

P$ 8Ci
3. — - A. C. - V'VC. = -T7- , i=l, 2, 6. (A2)
i,o li — i 3t

k
e

Here, $(_r,u,t) and C. (r_,t) represent the local neutron flux and precursor

densities, respectively. (We shall assume a description of the neutron

flux in terms of space (r_) and lethargy (u) variables as a starting point;

Henry treats the more general case including directional variables, but

this inclusion is not vital for our discussion.) The operator, L, is a

time-dependent linear operator representing the net of all neutron loss

processes (which includes leakage, absorptions, and energy transfer by

scattering), and P is a time-dependent linear operator representing the

total productions from fission, In Eq, Al, therefore, P$ is the total rate

at which prompt neutrons plus delayed precursors are produced at r_; multi

plication of P$ by 1-3 = 1 - 1 3. gives the total rate of production of
i=l X



27

of prompt neutrons at r_, and multiplication by 3. gives the rate of pro-

duction of i -group precursors at r_. In Eq. A2, P$ is taken to be zero

in that part of the circulating fuel system where the neutron population

is negligible. Of the remaining symbols, A. is the decay constant for the

i precursor group, and the quantities f and f ,. are lethargy distri

butions of prompt and delayed neutron production, i.e., the fractions of

the total production which are emitted in specified lethargy ranges. The

lower case velocity, v(u), is the neutron velocity at lethargy u, and

V is the circulation velocity of the fuel.

Following Henry's derivation, the multiplication factor, k , has been

introduced to provide a correspondence with a reference state of the reac

tor, known to have stationary (critical) flux and precursor densities. In

our case, we must further qualify this to mean stationary with no circu

lation of the fuel. We will denote the physical conditions corresponding

to this stationary state by adding zero subscripts to the operators, flux,

and precursor densities. The equations describing the reference state may

then be obtained from Eqs. Al and A2 by setting the right hand sides equal

to zero and setting the fluid velocity V = 0. Then, the precursor densi-
t

ties may be eliminated from the equations, and it is easily shown that

-L0 <}>o + f ~ <f>o = 0 , (A3)
k

e

where,

6

f = (1-3) f + I 3. f,, • (A4)
p . , i di
r i=l

To convert the "local" kinetic equation for the neutron distribution

(Eq. Al) to a "global" kinetic equation for a population magnitude, Henry

multiples the former equation by an appropriate weighting function and

+We will distinguish the flux distribution for the stationary case
by use of lower case letters, with zero subscripts.
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integrates over the independent variables of the neutron distribution.

For the weighting function, it proves convenient to choose the static
ft

adjoint flux, <j> , the solution of the adjoint equation corresponding to

Eq. (A3). With asterisks indicating the adjoint operators of (A3), this is,

*
ft ft Tf Pnl ft

L0 $o + o <f>o = 0 . (A5)
k

e

We will write the integrals using a scalar product notation, e.g.,
* *

(<j>o, L$) will represent the product of <j>0 and L$, integrated over the do

mains of the lethargy and spatial variables for the neutron population.
ft

Therefore, by first forming the scalar product of (j>0 with Eq. (Al) , we

have,

6

-(<j>0, L$) + (l-3)(<t>0, f Z- *) + I A (4»o, f,, C )
p , o . , l ui l
r k i=l

e

+ |^ (<t>o, v"1 *) (A6)

Secondly, we form a similar scalar product of $, the time-dependent so

lution of Eq. Al, with the adjoint equation for the reference stationary-

state (Eq, A5),

ft

-C$, L0 4>0) + (*, l£-^J 4>o) = 0. (A7)
k

e

By using the definition (A4), we may rearrange the term associated with

prompt neutron production in Eq. A6 as follows'

(1-3) (U, f -£-*) = (**, f ^r *) - I 3.(4, fH, ^-*) • (A8)
p k° k° i x dl k°

e e e

Applying this in Eq. A6 and subtracting Eq. A7 from Eq. A6 gives,
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, * - , ft *v , ft f p Tf pi ft
C*o, L*) + (*, L0 <()o) + (<f>o, ^- ♦) - (*, L^-^-J *o)

i° i°k k

\ h (*<" fdi^$) + I \ '♦•» fdlCl>
1=1 k i=l

f^r (*!, v_1 *) • (A9)

Henry now partitions the function $(_r,u,t) into a product of a shape

function, <}>(r_,u,t) and a time function T(t), with a normalization re

quirement that

fjT (**, v~l <j>) = 0. (A10)

By doing this, it can be seen that the right hand side of Eq. (A9) may

be written,

3 . * -1 ft_i dT
— (f, v *) = <<(>o, v +) ~ . (All)

and Eq. A9 becomes, on factoring out the time-dependent amplitude, T(t),

ft ft ft ft ? p [? p.! ft
-(4>o, L<f») - (<j>, L0 (j>o) + (<fro, ^r *> ~ <*• *-7T *°> r> T^>

k k
e e

- I, h <♦*• fdif^*> T(t) +J, xi (**> fdiV
i=l k i=l

e

= (♦;. v-1 ♦>f . (M2)
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The group of terms inside the braces of this equation formally represents

the algebraic difference between weighted increments in the production

rate and weighted increments in the neutron loss rates. To put this net

expression, or coefficient, into a form which does not depend explicitly

on the normalization of the flux shapes, it is convenient to rewrite the

coefficient as a fraction of the normalized production rate. The choice

of this normalization factor is somewhat arbitrary; however, as demon

strated in ref. 4, it is useful to divide both sides of Eq. A12 by the

factor,

F(t) = (<j>*, fP <fr) (A13)

Thus, by factoring the time-dependent population magnitude, T(t), from

all quantities on the left hand side of Eq. (A9) one obtains the "global"

kinetic equation,

A i=l *
C = ^L± dt

where, by definition,

P(t)
F(t)

* ft ft ft f p
-(<j)0,L<j>) + (<j>, L0 $0) + (4>o, —- <j>)

- (<p» ^p <M
k

e

, -^ *) »*«=> • fTtT .\ h <♦*• fdi h
i=l k

(A14)

(A15)

(A16)
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A(t) = (<j>o, v"1 c}>) ,
F(t)

ci(t) " nit) <♦*• fdi V

(A17)

(A18)
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