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I. PURPOSE OF THE NEW WINDING DESIGN

For very large facilities, especially for fusion reactors, the use

of superconducting windings seems to be mandatory. However, for machines

of intermediate size it is difficult to make decisions between pulsed

cryogenic and superconducting torus windings, considering expenses for

the magnetic system including power supply and auxiliary parts, and

taking into account the necessary development work.

For nonsuperconducting magnet systems, it is obviously important to

design windings with minimum resistance and, therefore, reduced power

demand. One possibility is to employ, instead of coils with the usual

rectangular cross sections (Fig. la), wedge-shaped coils (Fig. lb) which

provide larger winding cross section. An example is the MIT "Alcator"

1 2
machine, designed by D. B. Montgomery. ' A detailed discussion of torus

2
windings with wedge-shaped coils has been presented by B. Oswald. A

disadvantage of such windings is the poor accessibility for particle

injection and diagnostics. For tokamak experiments the free space inside

the torus windings should be as large as possible in order to provide a

sufficiently large flux area for ohmic heating. Therefore, the winding

depth next to the torus axis should be as small as possible.

This paper discusses the idea of using asymmetric windings, which

can be made relatively very thin at the inner side of the torus (toward

the vertical torus axis), and of reducing the power demand by providing

ample thickness toward the outside of the torus. Figure 2 shows three

different examples of asymmetric coil shapes: (a) eccentric circular

coils, (b) circular coils with flat ends (which use more effectively the

winding space without interfering with the inside space of the torus),



and (c) coils with rectangular outside boundaries. It is possible to

wind coils of Type (a) and (b) employing conductors of appropriate shape;

o

however, also the Bitter-type design (helixes made up of plates) can be

used.

In order to provide sufficient space for plasma diagnostics and

particle injection, these asymmetric coils must not occupy the entire

space around the torus. In the following, asymmetric coils with rec

tangular cross sections in the torus midplane are assumed (Fig. 3a). How

ever, still smaller coil resistances could be achieved if toward the torus

periphery the circumferential width of the coils is moderately increased;

i.e., to such an extent that sufficiently free space is still available

(Fig. 3b).

II. WIRE-WOUND ASYMMETRICAL COILS (GENERAL EQUATION)

We restrict our discussion here to asymmetrical coils with rectangular

cross sections (i.e., with constant axial lengths) (Fig. 3a). In the case

of a wire-wound coil, any distribution of the current density can be

achieved by choosing appropriate variations in the wire cross sections.

Figure h shows the cross section of an asymmetric coil winding. We

assume a constant axial thickness h (perpendicular to the cross section

plane) . The winding boundaries are characterized by the radii r (cp) and

*v(cp) • By dividing the distances r, (cp) - r (cp) into a large number, n,
b Da

of equal parts, we obtain n thin, nested coils with axial thickness h

and with radial thicknesses varying from a/n to ka/n. We consider strip

number p. The radial distance from the center 0 to the middle of the

strip is



rp(cp) rjcp) + (,P " 2
rb(cp) - rjcp)

:i)

A short piece of strip number p, characterized by the differential dcp of

the angle cp, is shown in Fig. 5- The angle \|f between the axis of the

wire element and the perpendicular to the radius vector r is determined

by

tan \|r
dr

r dcp
P

The resistance of the wire element is

r dcp
P n p

p Xh (rb - r&) cos i|r cos 4

(2)

(3)

where p stands for the resistivity of the conductor and X for the packing

factor of the winding. Combining Eqs. (2) and (3), we obtain

dR

* Xh rb " ra
1 +

dr x 2

r ' dcp
P

The resistance of strip number p is

TT

/R = 2 dR ,
P J P

cp=0

and the total resistance is

P=i

r dcp .
P

W

!5)

(6)



It should be emphasized that the prescription used above is, of

course, arbitrary. It seems to be the simplest way to define the conductor

boundaries. However, with this very simple winding geometry, the magnitude

and the direction of the current density j vary with both r and cp. As is

well known, a coil can be either wound in layers or in "pancakes." In

the first case, helixes connected in series must be considered. In the

second case, spirals are connected in series. However, the error caused

by using simply the sum of the individual resistances of the strips, as

considered by Eq. (6), is very small when n is the large number. Finally,

we assumed for each strip an axial thickness h; i.e., the axial thicknesss

of the wire. If the total axial thickness of the coil is

i. = rah , (7)

Eq. (k) must be multiplied by m.

III. ASYMMETRIC WIRE-WOUND CIRCULAR COILS

We assume for the inner winding boundary

ra(cp) = ri = const. (8)

For the outer winding boundary we consider either eccentric circles

(Fig. 2a) or circular coils with flat ends (Fig. 2b).

A. Eccentric Circular Coils

In Fig. 6 the distance 00' between the centers of the two eccentric

circles is b; the radius of the outer circle is rp. Thus,



and

rb

k - 1
—~— a (9)

- b cos cp +r y 1 - (b/r2j sin cp . (10)

Equations (8) and (10) can be used to evaluate Eqs. (l) to (6). For a

concentric circular coil winding (where k = 1, b = 0, and r^ = r^ = r^ + a),

the resistance is obviously

np(2rn + a)
R = 1 . (11)

o Aha

For the eccentric circular coil windings, the ratio R /R depends on the

values of k and r /a. In order to calculate the R /r values shown in

Fig. 7, Eqs. (h) and (5) were integrated numerically with 50 radial

increments and 100 increments in the azimuthal angle cp. It can be proved

by means of an analytical integration that

R

limT (12)

B. Circular Coils with Flat Ends

The winding configuration is shown in Fig. 8. The shape is an

annular ring of radial winding thickness ka, cut off on one side by a

vertical cut ABC at a distance r + a from the center 0. The angle cpQ

is determined by
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r + a

cos cp = —— . (13)
To r. + ka

2
For small k (say k < 5) > the cos \|i term in Eq. (3) can be neglected and

k
the integration over the area ABCDEA can be performed analytically. The

calculation of the resistance contribution over the concentric ring sector

ACDEA is trivial.

2
The general case, where the cos i|r factor must be considered, has

been solved using the previously described "strip method" with n = 100

and also with 100 steps in the azimuthal angle cp for the numerical integra

tion of Eqs. (k) and (5). It is easy to prove that in the case of circular

coils with flat ends.

R

= k (11+)limT

ri
—± — 00

The numerical results for various (r /a)-values are represented in Fig. 9-

As can be seen, for the lower values of r /a, the resistance ratio reaches

a maximum in the k range shown in Fig. 9- It can be easily shown that,

in the limit k -*oo, for any constant value of r /a, R /r approaches zero.

This means that for any r,/a value, R /r must reach a maximum for some k

and then decrease as k increases.

C. Circular Coils with Two Flat Ends

In order to provide space for neutral beam injection, it may be

necessary to use coils that are cut off on both ends. The second cut is

made on the side of the coil opposite to the first cut at a distance

r + k'a from the center.
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The resistance ratio R /r was calculated for coils with r, /a = 3-^8
o 1

and with K values of 3 and k, for K' values ranging from zero to K. The

results of this calculation and the coil configuration itself are shown

in Fig. 10.

IV. ASYMMETRIC BITTER COILS

In the following we restrict ourselves to the calculation of the ohmic

resistance of eccentrical, circular Bitter coils. From conformal mapping,

the case of bipolar circles (Fig. 11) corresponding to the complex function

- = (e +1) (15)
w '

e - 1

is well known. Two families of circles which intersect each other with

an angle of rr/2 can be considered as equipotential and flow lines,

respectively. The scalar potential V satisfies Laplace's equation

v2v = o . (16)

If we restrict ourselves to the upper half plane (in order to make the

potential single valued), the current density J of a current flowing

through a plate of uniform thickness h and uniform resistivity p can be

written as

J = - - W . (17)
P

The boundaries of an eccentrically circular Bitter plate are two circular

flow lines C., and C„; the equipotential lines are circles with the centers
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0' located on the straight line G (Fig. 12). We use a bipolar coordinate

system (with |00 | = |00 | = m), so that the location of any point P is

determined by the angle a and the ratio

^ = 0 . (18)
2

In Cartesian coordinates

tan a. = —2— (19)
1 x - m v '

tan an = ¥ . (20)
2 x + m

Therefore, the angle (0, - P - 0p) is equal to

a = a± - a2 = tan"1 (-g-^ $) • (21)
x + y - m

Figure 13 shows the intersections x and x' of the 3 = constant flow line

with the abscissa axis and the corresponding points x? and x' for f3p

= constant. From Eq. (18) it follows that

x - m m - x

(22)

A similar equation also holds for x and x'. We introduce

x - x'

r = 1Q 1 , (23)

a = x^ - x^ , (2k)
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and

ka = x2 - x1 . (25)

We designate the resistance of the upper half of the eccentrical, circular

Bitter coil with R/2; and we assume on the surface with the cross section

area (x - x )h, the potential V = V , and on the surface with the cross

section area (x' - x') h, the potential V = 0. The current I flowing

through the upper half of the Bitter coil is

X2

I = h

x :y=°Xl

I J| dx , (26)

and because of Eq. (17)

JI
!y=0

1 dV

P dy
y=0

(27)

For V = V , the bipolar coordinate a is

for V = 0,

Thus,

<*0 = o , (28)

a' = tt . (29)
o '

v = v .1 --) • (30)
O \ TT/

From Eq. (8) it follows that

, -1 2 my foi,O! = tan -g ^ g > ^l)
x + y - m



Ik

from Eqs. (2) and (19)

and, finally,

o 2 m

= m ' ~2 2 '
y=0 x - m

V h\ (x. + m)(x_ - m)

rrp (X;L - mj {x2 + mj

Therefore the resistance of a circular, eccentric Bitter coil is

2V

R =
2 TTp

^x + m) (x2 - m)
hX Jto (X;L - m) (x2 + m)

Considering Eq. (11),

!o 2r +a (X1 +m) (X2 ~m)
R 2a to (x -m) (x2 +m)

Introducting normalized coordinates

we obtain

_1
m

and

x,.

m

R ~ 2a ^ (§x -1)(?2 +1)

Finally, it can be shown that

2 - + 1
a

2(-V+k

1/2

:32)

(33)

(3*0

(35)

:36)

(37)

(38)
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and

_k_

L
a / + 1

1/2

(39)

Using Eqs. (37), (38), and (39) the resistances of eccentrical, circular

Bitter coils can be calculated.

Example:

m = 3; xx = 4.5; x2 = 6; §1 = 1.5; §2 = 2

r = 1.25; a = 0.5; r/a = 2.5; k = 3; RQ/R = 1-533

From L'Hopital's rule it follows that in the limit r/a -» go (e.g., the

winding depth approaches zero while the inner radius of the windings remains

constant) , the ratio R /R approaches the value Vk . This limit is the

same as that derived from eccentric circular wire-wound coils [Eq. (12) ],

as one would expect. It is clear that significant differences in resistance

ratio between wire-wound and Bitter eccentric circular coils will become

apparent only for small values of r/a. For this reason, a short computer

program was written to evaluate Eq. (37) over a matrix of values of k and

r/a.

The results of the comparison are shown in Fig. ik, where the ratio

of the resistance ratios for Bitter-type and wire-wound coils is plotted

vs k.

V. DISCUSSION

As far as we know, no detailed calculation concerning the reduction

of the resistance of torus windings by providing asymmetric coils has
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yet been made. For another purpose, namely to change the shape of the

magnetic field, asymmetric coils have been designed and the technology

of manufacturing such coils has been carefully investigated for the ORNL

"Bumpy Torus" Project by J. N. Luton. However, these two mentioned

purposes require very different approaches.

•7

For the ORNL "ORMAK" Project' (Fig. la), r =13-1 in., rg = l4.7 in.,

and r = 31-6 in.; 6 = 31.6/13.I = 2.1*1, a = 14.7/13-1 = 1-12, and the

resistance R of the rectangular coils to the resistance R of the wedge-
o

shaped coils is (compared appendix; to Ref. 2, pages I and II)

fe -(H*j0 ' N * '— = 1.6 . (ko)TT a

The family of curves in Fig. 9 shows that much higher resistance ratios

could be easily achieved using concentric circular coils with flat ends.

For instance, if we assume a winding thickness of ka = k x 1.6 in. = 6.4 in.

at the outside periphery of the torus, the resistance ratio R /R =2.5

could be achieved. If the winding thickness at the outside of the torus

could be made still larger than 6.4 in., even better resistance ratios

could be obtained. However, it should be emphasized that the main

advantage of the asymmetric coils is the better accessibility to the

interior of the torus.

We acknowledge discussions with several of our colleagues, especially

with H. M. Long and J. N. Luton, Jr.
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FIGURE CAPTIONS

Figure 1 Torus windings.

Figure 2 Asymmetric coil shapes.

Figure 3 Tori with asymmetric coils.

Figure 4 Asymmetric coil winding.

Figure 5 Winding element.

Figure 6 Circular eccentric coil.

Figure 7 Resistance ratios of circular eccentric coils.

Figure 8 Circular coil with flat end.

Figure 9 Resistance ratios of circular flat end coils.

Figure 10 Resistance ratios for double flat end coils.

Figure 11 Families of orthogonally intersecting circles.

Figure 12 Bipolar coordinate system.

Figure 13 Coordinates used for resistance calculation of eccentric

circular Bitter coil.

Figure l4 Comparison of resistance ratios of eccentric circular

Bitter-type and wire-wound coils.
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