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NEUTRAL BEAM INJECTION INTO A TOKAMAK I:

*

FAST ION SPATIAL DISTRIBUTION FOR TANGENTIAL INJECTION

+
J. A. Rome, J. D. Callen, and J. F. Clarke

Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830

ABSTRACT

The production processes and spatial distribution of fast ions

resulting from tangential injection of a diffuse neutral beam into a

tokamak are discussed. The spatial distribution of fast ions for various

injection trajectories and absorption mean free paths are calculated and

discussed in detail. Maximum beam absorption for a parabolic density

profile is shown to occur for injection roughly halfway between the inner

wall of the torus and the magnetic axis; however, since this maximum is

near unity and only weakly dependent on the injection trajectory, this is

not the most important possible optimization. Since the drift orbit

surface area over which the fast ions are distributed is roughly propor

tional to the distance from the magnetic axis, the fast ion density is

found to be strongly peaked at the magnetic axis for present experiments

where the absorption mean free path A is comparable to the plasma radius a.

This geometric peaking effect is strong enough to overcome the exponential

beam attenuation and cause the fast ion density and consequent beam energy

deposition to be peaked at the plasma center as long as A ^ a/k. Charge
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exchange of the fast ions with neutrals in the plasma can deplete the

fast ion population, particularly near the plasma edge. When charge

exchange is an important loss mechanism, beam injection nearly tangent

to the magnetic axis is found to maximize the beam effectiveness in

heating.
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1. INTRODUCTION

The development of powerful neutral beam injectors [l] has made

possible tokamak [2] experiments [3-6] in which the neutral power absorbed

by the plasma can be comparable with the ohmic heating power and hence be

expected to cause significant heating. Neutral beams also provide a

particle source to offset the diffusion losses and can give rise to an

electric current in the plasma [7,8]. The plasma current due to injection

can supplement or decrease the ohmic current and/or act as a "seed" for

the bootstrap current [9,10]. It may even be able to replace the trans

former induced ohmic current and thereby allow operation of a steady state

tokamak.

In addition to these desirable effects, neutral injection may have

deleterious effects on plasma equilibrium and confinement in a tokamak.

Plasma perturbations arising from neutral injection are caused primarily

by the presence of a fast ion group and by the momentum imparted to the
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plasma by beam absorption. The various perturbations which occur, their

interrelationships and possible limitations on this heating method will be

discussed in a series of papers.

In this first paper we discuss the density and spatial distribution

of the fast ions produced by tangential neutral beam injection, as in ORMAK.

Injection roughly tangent to the magnetic axis (tangential injection) is

generally preferred for the present experiments [3-5] because this leads

to maximum beam absorption, minimum loss of the resulting fast ions to

the limiter, and minimum trapping of the fast ions in any ripple of the

toroidal B field. The geometry for tangential injection is illustrated

in Fig. 1. The effects of beam divergence (^ 1.2° in ORMAK) will be

neglected in this work since they appear to have no qualitative effects

on our results and their quantitative effects are very small. However,

the finite size (or diffuseness) of the neutral beam is taken into

account since it is important in determining the maximum fast ion density.

The fact that the fast ions follow drift surfaces and not just flux

surfaces, is a crucial ingredient in the analysis. In addition to being

essential for estimating the magnitude of neutral beam induced plasma

perturbations, the fast ion density distribution determines the spatial

distribution of the neutral beam heating and hence is important for

determining the effects of neutral beam heating in conjunction with

plasma transport computer codes.

The paper is organized as follows. First, in Section 2 we briefly

discuss the atomic processes which cause neutral beam absorption and give

When specific numbers are required in estimating the magnitudes of the

various effects, we will use "standard" parameters for a single injector

on the ORMAK experiment [3]. The standard (not best possible) ORMAK

parameters used are listed in Appendix A.



rise to fast ions, with emphasis on the plasma perturbations produced by

the absorption process. In the following section we discuss the absorption

of a pencil beam and consequent spatial birth distribution of fast ions.

Estimates of total beam absorption are also discussed in this section.

Next, we assign the fast ions to the appropriate drift orbits and average

over these orbits to obtain the fast ion density distribution for a pencil

beam. Then, in Section k we average over a set of pencil beams representing

the diffuse beam to obtain a fast ion density distribution. Section 5

deals with the effects of charge exchange between the fast ions and the

cold neutrals in the plasma. Finally, in Section 6, we summarize our results.

2. ATOMIC PROCESSES

The dominant collision processes of energetic neutrals with tokamak-

type plasmas are charge exchange, electron ionization, and proton ionization.

Although it is not strictly correct for charge exchange, in this paper we

will refer to these processes collectively as "ionization." The cross sections

for these processes in the energy range of interest have been reviewed by

Riviere [ll], and conveniently summarized in Figs. 10 and 11 of Ref. [12].

For the standard ORMAK parameters (cf. Appendix A) the relevant cross

sections and total mean free paths (at maximum plasma density) are tabulated

in Table 1. Note that about 75% of the "ionizations" are by charge exchange

collisions. Since only the relatively unimportant electron ionization

cross section depends on the plasma temperature (and only weakly), the

total "ionization" cross section is only very weakly dependent on the

plasma temperature and this variation will be ignored. Hence the absorption

mean free path is dependent only upon the local plasma density.



For each fast neutral "ionized" by the charge exchange process we

produce a fast ion of essentially the same momentum as the incoming

neutral and a "warm" neutral that has an energy on the order of the plasma

ion temperature. The resultant source of "warm" neutrals for ORMAK appears

to be about an order of magnitude below the natural source level in the

plasma without injection and hence we will ignore it. [For reactor-type

regimes this source may be quite significant near the magnetic axis and

probably should be investigated in some detail.] The mean free path for

reabsorption of these "warm" neutrals is about 10 - 15 cm and hence some

of them may be reabsorbed within the ORMAK plasma.

For neutral breakup by impact ionization, in addition to the fast ion

and the ionizing particle [whose energy is reduced by about the ionization

energy (^ 15 eV)], we produce a "cold" electron which has an energy of

approximately the ionization potential. The resultant electron is heated

up to the plasma electron temperature in a very short time (typically

< 1 ysec) and hence is essentially indistinguishable from a background

plasma electron. The energy required to heat these electrons up to the

plasma electron temperature is negligible compared to the heat supplied to

"cold" electrons produced by ionization of the neutrals which are in the

plasma without injection and we will ignore it.

Thus, for each fast ion produced by absorption of a fast neutral,

only a /a ^ 25% (or perhaps a bit more if reabsorption of the "warm"
ion T

neutrals is taken into account) are new, "extra" particles (an electron-

ion pair) which can offset radial particle diffusion losses; the remaining

a /a ^> 75% of the ions are simply replacements of background ions by
ex T

fast ions.



3. PENCIL BEAM CASE

In this section we consider a pencil beam with current I (in equivalent

Amperes) that is injected in the plane z = z and is tangent to the torus
n

at R = E as is shown in Figs, la and lb. From the equation of the torus,
B i

/ 2 2
we find that the beam enters (and leaves) the plasma atR=R + / a - zD .

o d

For simplicity, we assume that the beam does not intersect the inner side

-/a2 2of the plasma torus atR=R -/a -z
o

3.1. BEAM ABSORPTION

If we define I N (s)/e as the number of beam particles per second
B B

in a pencil beam at a point along the beam path, then the equation governing

N_ is given by
a

A, N

where X(s) is the mean free path of a neutral beam particle at point s.

The general solution of this equation is

N (s) = NB(-°°)exp[-D(s)] , (2)

where the absorption decrement D(s) is given by

s

ds'

K7D(s) = J ^-rr , (3;

ana where IT3NTD(-0°)/e is the particle source rate of the pencil beam.
B B

Since, as we have aiscussea in the preceeaing section, the total

absorption cross section is only very weakly dependent on the plasma

properties, we can express the mean free path as



A(s) = ,\ = . ", , (k)
n(s)am A n (s)
e T o e

where A - l/no" is the absorption mean free path at the maximum plasma

density, n.

In order to simplify the mathematics without losing any physical

effects, we shall assume that the flux surfaces in the plasma are

concentric circles. This is tantamount to assuming a large aspect ratio

expansion and accoraingly, to lowest oraer, that the flux surfaces are

contours of constant plasma aensity. (The lowest order inverse aspect

ratio correction causes the flux surfaces to nest slightly toward the

outer edge of the torus [2].) Whenever we must use a density profile,

we will assume a profile given by

2

n (r) = n [ 1 - ( ^ ) ] . (5)
e a

Other profiles and corrections due to flux surface nesting can be easily

used, but the physics does not change appreciably.

Using the facts that

r = [(R -R f + z2]1/2 , (6)
o rs

ds - sgn (s) RdR/(R2 -Rg2)1^ , (7)

and using the assumed parabolic aensity profile, we may write the

absorption aecrement in terms of the major raaius, R:



D(s) = t± < - U( -s)j - U(s)y + U(s) J
R +/a1Tz2 +/a2-2

X dR1

„ R +Va,~-z\
o B o B

R'[a2 - (R' - R )2 - z 2]
O D

a2 /r'2 - R2

In this experssion, U is the unit step function defined by

r

U(s) = (

0 s < 0

1/2 s = 0

1 s > 0 .

L

The integral in Eq. (8) can easily be shown to yield

F(R) •/

^-R2

R'[a2 - (R- - R )2 - z 2!
O D

2/2 2
a /R' - R^

£1

dR*

2 ? 1 „2-, . RoRB

R„

:s)

\9)

T— [a "ZB "Ro +RoR "I h -fR^J + 2 In [R +v^-Rg2]

Since the inverse aspect ratio a/R is small and since we expect R, R ,
o o

and R to differ by no more than'a, many parts of F(R) nearly cancel each
o

other.

It is sometimes convenient to expand F(R) in the smallness of a/R,

5R/R , and 6R_/R where
o Bo

6R = R - R ; 6R,, E R - R
o B o B
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Then, making use of the relation

, , x2 + A2 - A2 , .,-1,1 /i 72 , , .
In ( ) = sinh ( — /x - A ) sgnlxj ,

and expanding sinh- to fifth order in its argument, we obtain

El

RnRR2 RR+ A^- m ( — ) .
2 a

a

In terms of F(R), the damping decrement can be written as

D(s) = ~ { U(-s) [ F(R + A2-z 2 ) - F(R) ]
A on

o

+ U(s) [ F(R + A2-z 2 ) - 2F(Rj +F(R) ]}
o a a

The total beam absorption in the equatorial plane is given by

D(») = y~ { F(Ro + a) " F(RB) }

/2R 6R„ ,, „ 6R,, 9 ,, oP^

— A a a 5 15 a 15 a
o

Maximizing this with respect to &R~, we find that the maximum be

absorption occurs for

RR = R -f (13)
B o 2
opt

(i.e. halfway between the magnetic axis and the inner edge of the plasma)

and corresponds to a maximum damping decrement of

ft /3R~D (oo) % -fa /_°. (Ill)
max — 5A a

o

am

10

ill)

il2)
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For the typical ORMAK parameters in Appendix A, this corresponds to beam

absorptions of 93, 97, and 99% for the 25, 25/2, and 25/3 keV beam

components, respectively.

It is important to note that the beam absorption is not a very

sensitive function of R . For instance, if L = R (injection tangent to

the magnetic axis), then D(°°) is decreased by only a factor of /3/2 ^_ 1.22.

Deviations of the density profile from the assumed parabolic shape will

obviously change the beam path for optimum absorption. If, for instance,

we assume a flat density profile, we maximize the beam absorption by

maximizing the path length in the plasma, namely R = R - a. Conversely,

as the density profile becomes more peaked on the magnetic axis,, the

optimum FL approaches R . However, since the beam absorption is nearly

total anyway, maximum beam absorption may not be the most appropriate

optimization criterion.

In summary, beam absorption is estimated to be quite large (> 90%)

and not critically dependent on the precise beam trajectory or density

profile.

3.2. FAST ION BIRTH DISTRIBUTION

Since the rate of fast ion production per unit major radius,

(I /e)(dN /dR), is just the negative of the rate of beam loss per unit
B f

major radius, we have
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^f _ ^B _ ^B as,
aR aR as aR

1 [a2-(R-RQ)2-zB2] y^—-
A 2 -f= { exP A" [F*'V/a "ZB }"F(R) ]

/R2-R 2
B

+exp --=- [F(Rq+v42-zb2) -2F(RB) +F(3) ]}u(R-Rb) . (15)
o

In obtaining this expression, we have usea the fact that s(R) is bi-valuea,

ana we have aaaea the two terms together which pertain for a given value

of R. In aaaition, we have usea the relation N (-ro) = I_/e where I is
a d d

the beam current in equivalent amperes. The singularity at R = R is, of
a

course, due to the fact that the beam is tangent to the torus at this

point.

A plot of A dN_/dR appears in Fig. 2 for R_ = R„ and z„ = 0 ino 1 B Bopt B

ORMAK, with a/A as a parameter. It is seen that: (l) dN /dR goes to zero

linearly at the plasma edge due to the fact that the plasma density goes

to zero there; (2) for small mean free paths relative to the plasma

radius, after passing through the low density region, dN /dR decays

exponentially as the beam proceed into the plasma; (3) the singularity

due to the beam tangency occurs at R = R if any particles manage to reach
a

this far into the plasma; an! {h) significant amounts of the beam reach

the magnetic axis even for A as small as a/4.

3.3. FAST ION DENSITY DISTRIBUTION

Once the fast ions are born at given points in the plasma, they are

actea upon by the equilibrium electromagnetic fields in the plasma. Since the

average time for collision of the fast ion with the background plasma (^ 10 msec)
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is much greater than the time it takes for the ion to circumnavigate the

torus (^ 10 usee), it is appropriate to examine the single particle orbits

for constant particle energy and magnetic moment.

The ion orbits are composed of a fast gyromotion about the magnetic

field and a guiding center drift. The guiding center motion has been

discussed in detail by Northrop [13] and specific orbits for fast ions in

a tokamak have been derived by Stix [ik]. In this paper, we only note the

following points:

The pitch angle of the fast ion is determined by the beam geometry

and point of ionization. For R^ > /(R +a)(2a) (^ 68.7 cm in ORMAK), no
^ Bo

injected ions will be trapped by the 1/R variation of the toroidal magnetic

field. We will ignore trapped particles in this work since they occur,

if at all, only at the edge of the plasma where the ion production rate is

low and where they may be lost to the limiter.

The guiding center motion of an untrapped ion is aeterminea by its

motion along the magnetic field and by its VB and curvature drifts. Near

the magnetic axis, and in the equatorial plane, the z component of the

guiding center velocity along the magnetic field, Vy, can be exactly

balanced out by the z component of the drifts and hence an ion born at

this point (the stagnation point) will only move toroidally. For v[{ » vx,

this point is located x away from the magnetic axis where

2
1 + cos (v,,/v)

x ^ £1 [ " ] sgn (v •J . ) , (16)
s - 20, L cosTvy/v) - -plasma

q is the "safety factor," and 0 is the cyclotron frequency. We will

refer to injection in the direction of the plasma ohmic-heating current,

v • J > 0, as coinjection, and conversely to the case of v • J < 0 as

counterinjection.
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To lowest order in inverse aspect ratio, ions born away from the

stagnation point have drift orbits which are concentric with the stagnation

point proviaea that q(r) ^ constant, which is true near the center of the

plasma. Allowing q to vary with r wouia shift the center of each orbit

and appreciably increase mathematical difficulties without changing the

physics involved.

If we define the distance from the stagnation point as p (see Fig. lb),

then the ions born at a point on the beam path will spread themselves roughly

uniformly [15] over a p = constant surface of area 47T R p. This density

will be roughly uniform in the poloidal direction since we assume

v., » vM, and as we shall explicitly show in a later paper in this series

[15], the ions will spread toroidally due to toroidal drift if they

complete many guiding center orbits before they collide with the background

plasma. Thus, the density of fast ions born on a given drift surface

(p = constant) is given by

n (p) - -5- 1b Idp- '' (1T)
4TT R pe

o

Since

[2 2
R = R+x+/p-z^ ,

o s — 3

the population on a given drift surface may have contributions from two

values of R. Thus, we write

r> n
Ve dN

< dR +

dNf
dR

} U(p-n.pAP;
I ] 2D /2 2

47T R /p -z
0 rf

R = R
/ 2 2

+x +/p -z_,
D s B

/2R=R +x -/p -z„
os B
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The U(p-z ) arises because a beam at z^ can only populate drift surfaces

with p > z , and the square root singularity arises from |dR/dp|. It

should be noted that for a pencil beam in the equatorial plane, n (p) is

singular at p = 0 like 1/p because the volume of the drift surface of a

particle born on the stagnation point goes to zero. In aaaition, for

z y 0, there is a miiaer singularity aue to aR/ap becoming infinite.

Figure 3 shows n (p) for R_. = 68.5 cm in ORMAK ana for a/A = 1/2.
IB O

The singularities at p = R - R-o ana p = 0 are both eviaent here. As we
o B

shall see in the next section, however, all of these singular features

are eliminatea when we consiaer the effects of finite beam width.

4. A DIFFUSE BEAM

The actual beam used for neutral injection has a finite beam radius,

r (^ 6 cm in ORMAK) and a given current density distribution over its
B

cross section, j(R ,z ), where // j(R;B,zB)dRBdzB = 1^. In the present
Beam

subsection we will integrate the pencil beam results of the preceding

subsection over this diffuse beam cross section.

4.1. FAST ION DENSITY

It is convenient to normalize the fast ion density in the following

manner:

A_(r,0) = - 2~ H(r'0) ' (19;
1 e(2uR )Ua )

o

where H(r,0) is a shape factor which, when integrated over the plasma

volume, and divided by the volume yields the percentage of the fast ions
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which are contained in the plasma. To lowest order in inverse aspect

ratio,
a 2tt

—— / I H(r,0)ra0ar = % of fast ions contained in plasma.(20)
TTa J J

0 0

As the fast ions slow down, they remain reasonably close (namely,

within a distance ^ x ) to their birth flux surface. Thus, if we ignore

charge exchange losses, the density profile of the fast ions is quite

similar to the n profile and will grow linearly with time until the

12 3
density reaches a quasi-steady state (at n ^ 10 /cm" for the standard

ORMAK parameters) at about one slowing down time (10 - 20 msec). The

effect of charge exchange losses will be discussed in Section 5.

We now integrate the fast ion density input rate for a pencil beam,

Eq. (19), over the finite beam size, i.e. over R and z . The limits
B B

require careful treatment. For fixed z , the R^ integration will run

/ 2 2
- /r„ -1from the inner beam edge at R_ = R - /r -z to the outer beam edge at

DC n n

/""i "2
R = R + /r_ -z or to RD = R, whichever is smaller. This occurs
B c B B B

because of the step function in dN /dR and is physically due to the fact

that the beam cannot populate a value of R which it does not reach.

Then, using symmetry, the z integral runs from zero to the minimum of

p or r in accord with the step function in Eq. (19). Thus,
B



H(p) =

17

R +x +Jf-z%
. r o s r B-,

mini ±fcg—„T j
minf }

2 7b dzB

s

•RcVri'ZB
dNr

and,

^^FVp
dR

B 0 ^ B
c v B B

R +x - Jp2-z2
• r o s VH B i

c VrB *B

,- yp

dN,

J
dR

dR^

R -/Rf-zf? R=R +x +/p2-z|
o s

Rc- Vr|-z| R=Ro+xs- 7p^ J

H(r,6) = h(p;

p= ,Jr2+x2-2r x cos9

(21)

i22)

Since the beam current profile is reasonably uniform, we will henceforth

2
assume that it is given by J = I /iTr .

a a

In practice, it is easier to ao the R integral before substituting

for R. The loss of injectea ions to the limiter is taken into account

by only allowing 0 <_ p < a - x ; this is equivalent to saying that the

ions born in the innermost (outermost) 2x of the plasma are lost to the
s

limiter for coinjection (counterinjection).

It is important to note that since z is constrainea to be < p, for
n —

small values of p ana z the integrana is non-singular, except for the
is

/p -z in the aenominator, and in fact approaches a value C//p -z
B -D

where C is a constant. Thus for small values of p, the integral will

approach Ctt/2 and hence the stagnation point singularity will disappear.

Physically, this is due to the fact that, for a diffuse beam, only an

infinitesimal number of particles can be born on the stagnation point.

In adaition, since R can never be zero, the singularity at R = R is
B B

integrable ana hence there are no singularities in H(r,0).



4.2. CALCULATION OF H(p)

H(p) is given by the complicated expression, Eq. (2l). Although it

can be evaluated numerically, a good idea of the shape of H(p) can be

obtained from merely studying the expression.

In general, H(p = a - x ) will be non-zero but small due to the low

density at the edge of the plasma. A finite contribution to it will occur

only if the beam passes through the circle p = a - x at the value of R
s

which is away from the stagnation point (i.e., R = R + a - 2[x | for

counterinjection and R=R - a + 2|x I for coinjection).
o ' s'

For p > r.r,, the upper limit on the z_ integral is fixed at r„. If
n n n

we ignore the p variation of dN /dR, (i.e. the beam attenuation) H(p)

will go as sin (rB/p) ^ 1/p, provided we stay away from the low density

region near r = a. In the region p < r , H(p) will be approximately
n

constant since the integrand of the z^ integral goes as 1/p while the
n

upper limit goes as p.

The particular value H(p = 0) can be estimated fairly accurately

and is very useful in determining how the hot ions heat the center of the

plasma. To make this estimate, we assume that the beam tangency point

is well inside the magnetic axis, i.e. R - R » r . Accordingly, we

neglect the contribution to the birth density at the stagnation point

arising from the outward going half of the beam trajectory since it is

exponentially small compared to the density arising from the inward

going half. Since r_ is small, we set zD = 0 in comparison to terms of
a n

order a.



If we define

i5(R)

then, from Eq. 15,

19

F(R + a) - F(R) ,
o

r *(Ro+ xs

i23)

dN^ R
o e

dR - A
(24)

2 2
R - Rr,

where we have set R = R + x everywhere except in the square-root
o s

singularity and we have ignored x and r compared to a. From Eq. (21),

we obtain

H(p) ^

min { }
rB

2 R
a o

2 A

^B ° 0 /p--z

/ dz
B

/2 2
/p -:

R +x
r O S -i

mn { R+rR }
c B

{'
c B

aR,.

A2~:V

/i 2
R + R + x + /p -z

— o s — B

Both signs must be used in switching variables from R to p and the

results must be added.

Setting R„ ^ R in k, the R integral yields

min { P }

i25)

H(p) ^
2R a

o

2,
Trr^ A

B o

/
azT

2 2
'P - ZT,

. -1
sin

R +rT_

(-^) -
. -1 / c B v-,

sin { — jJ
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The factor of 2 is aue to the fact that we set R ^ R for both signs

when switching variables. For p very small (but greater than z^,) the
B

z integral yieias tt/2. Furthermore, we may expana the sin" terms

about the point where their argument is unity ana assume r << 6R where
B c

6R E R - R . Thus, we finally obtain
c o c

2
a / 2Ro

J 6R e

" A
0

Vb
H(p% 0) % TV l-^- e u . (27i

, . %

Since H(p) is in general approximately constant for p < r ana then falls
B

off as 1/p, if r > xg, H(p = 0) ^H(r = 0) ana hence, the flux surface

average, <H(r,0)>„ is not too aifferent from H(p). In fact, if the

exact expression for F [Eq.(9)] is used, Eq. (26) agrees with the

numerically computed (see next subsection) <H(r,0)> I „ to within a few
0 r=0

percent.

We may use Eq. (27) to estimate roughly when the fast ion density

produced by injection will be larger in the center of the plasma than

at the outside. In view of its normalization, <H(r,0)> can be no larger

than about unity at the outside of the plasma (see Fig. k). Hence, if

we are to deposit beam energy preferentially in the center, we may pick

as a criterion that H(p = 0) ^ 1. From Eq. (27) we obtain

" T

Y e ° ^ -r l^r- • (28)
o

For injection into a reactor sized device, a/A will be of order R /a
o o

while the right side of Eq. (28) will be of order (rT)/a) /a/R , which is
B o

quite small. Hence, Eq. (28) can be solved by iteration to yield the condition.

a <ll
r^ /6R

o > B
Oi

a v/ 2R
V o
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for aepositing beam energy preferentially in the center of the plasma:

, , /2R I2R
a < 1 -, ra / o _ i-a / Oni„ i i „„%r— ^ T In { —j I j— In — t—- } % 4 , (29)
o u Bunc B >• c

for typical conaitions.

4.3. COMPUTATIONAL RESULTS

The quantity of physical interest is the number of fast ions on a

given flux surface, so we will consiaer the flux surface average of

H(r,0), <H(r,0)> . A set of plots of this quantity for ORMAK are shown

in Figs. 4 ana 5.

First, we notice that for a/A 'v 1, the curves for counterinjection

ana coinjection are roughly equal. This is significant since each beam

transfers a large amount of toroiaal momentum to the plasma [l6] ana if

the spatial aensity of fast particles from opposing beams is equal, this

momentum input will be cancellea.

Labelea on each curve in Fig. 4 is the percent of the beam that is absorbea

ana containea in the plasma. More of the coinjectea beam always is

containea in the plasma since the counterinjected particles born in the

outermost 2x of the plasma will hit the limiter. This effect becomes
s

especially severe for a/A » 1 since then a large fraction of the beam

is deposited in this region even though the background plasma density is

low there. This loss is also responsible for the discontinuity in the

slope of the counterinjection curves.

Finally, as shown above it should be emphasized that the fast

particle density will have its maximum in the center of the plasma even
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with a/A as large as 4, which is in contrast to commonly used estimates [12],

This surprising fact is essentially due to the exponential beam attenuation

being compensated by the shrinkage of the drift surface area as the

stagnation point is approached and hence the particles born in this region

are spread less thinly than these born in the outer regions. This can be

graphically seen by comparing Fig. 4 to Fig. 2 which does not have this

geometric peaking effect included in it.

5. EFFECTS OF CHARGE EXCHANGE

In present tokamaks, a significant energy loss mechanism for the

background plasma ions is charge exchange with neutrals [17]. Because

of their greater speed, the injected fast ions have a slightly larger

probability of charge exchanging before they can slow down and transfer

their entire energy to the background plasma via Coulomb collisions.

We can assess the effect of charge exchange on the fast ion density

profile if we l) ignore any reionization of the resulting fast neutrals;

2) assume that the fast ions are confined to a flux surface; and 3) ignore

the fast ion slowing down process. Then, we have

-^ = -4t~ <H^,e)>0 - Y0Vf > (3o)
2tt a R e

o

where n is the cold neutral density profile and v is the speed of the

fast ions. The solution of this equation is

t

where

I T <H(r,0)>„ T
/ ;_ \ o ex 0 r _, ex t , .nf(r,t) = y? [ 1 - e ] , (3l)

2tt a R e
o

xcx(r) = [no(r)acxvf]'1 . (31)
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Computer calculations [18] and measurements [17] show that the cold

neutral profile rises monotonically with radius, has a value of from

8 9 3
2 x 10 to 2 x 10 particles/cm at the center of the plasma in ORMAK,

9 3and is about 20 times larger near r = a. For n = 10 particles/cm ,

T ^8 msec in ORMAK. Therefore, since n^(r.t) ^ <H(r,0)> /n , we see
ex f Go

that n will become more peaked on axis than <H(r,Q)>_ as time progresses (up

to about t ^ 2t ). The extra peaking arises because the fast ion lifetime
cx

against charge exchange is longest on axis. Inclusion of the reionization

of the fast neutrals before they leave the plasma, which has been ignored

here, broadens the fast ion profile back towards the <H(r,Q)>„ profiles in

Fig. 4.

Accordingly, if the neutral density at r = 0 is high, the best

strategy for injection is to place as many fast ions as possible in the

center of the plasma independent of whether the maximum number of beam

particles are absorbed by the plasma. As we saw in Section 3.1, the

value of R for optimum beam absorption is R = R - a/2, for a parabolic

density profile. However, the peak central value of the fast ion

density can be maximized by injecting so that the beams are tangent to the

torus at about the magnetic axis, R ^ R . This effect is shown graphically

in Fig. 5 where we plot <H(r,0)> versus r/a for a/A = 1/2 in ORMAK with
0 o

R as a parameter. As R is increased, the peak central value of fast ion
c c

density increases about 50% over the optimum absorption case. This point

is further reinforcea by Fig. 6 in which we plot the probability that a

fast ion will be born within a given raaius. In this case also, the net

number of fast ions within a given raaius will increase as R approaches R .
c o
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For experimental purposes, if the charge exchange problem is severe

in a hyarogenic plasma, it may be reauced by using a helium plasma. In

this case, as pointea out by J. R. McNally, Jr. [20], injection of fast

H° atoms can still be usea to heat a He plasma efficiently by taking

aavantage of the high quasi-resonance trapping cross section at the proper

relative velocities. This is important since injecting helium atoms into

a helium plasma is technologically difficult and would preclude the use

of charge exchange ion temperature diagnostics.

Finally, we note that for the ORMAK standard parameters the slowing

down time is ^ 10 msec [19]. Thus, if n (r=0) is less than about
Q Q

5 x 10 cm (as has been observed in ORMAK), most of the hot ions will

be able to give their energy to the background plasma before charge

exchanging, and this loss mechanism will be unimportant.

6. DISCUSSION AND CONCLUSIONS

In this paper we have dealt primarily with the details of injection

geometry. In particular, we showed how to calculate and optimize the

fast ion density profile arising from tangentially injected neutral

beams.

We reemphasize the importance of the decreasing radius of the ion

drift orbits as the stagnation point is approached. Because of the

accompanying shrinkage in drift surface area, the fast ion density near

the stagnation point can be higher than elsewhere even when the stagnation

point is located up to 4 times A away from the plasma edge. This has

important implications for injection into a reactor since previous estimates

limited the plasma radius to be less than only A , or perhaps twice A .
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In order to compare tangential injection with the other possibility,

perpendicular injection, we must consiaer the relevant geometrical

aistances. For parallel injection the distance from the plasma edge to

the magnetic axis is just

= AR +a)2 -R2 _/2-R2. . .. .. i32)
o c o c

If R = R - a/2 (for optimum beam absorption), this distance is only
c o

about 1.5 a (in ORMAK), so that the path lengths for perpendicular

injection (d = a) and parallel injection are not too different. On the

other hand, if we inject so that R = R (to peak the on axis fast ion
/ ^~2 C °

density), d = /2R a + a = 2.8 a (in ORMAK), which is significantly

larger than for perpendicular injection. However, the central density

may still be peaked at the axis because the beam will be tangent to the

axis at this point and hence dN /dR will be peaked there.

Since the profile of fast ions is strongly peaked at the center of

the plasma in present day experiments where a/A ^ 1, (see Fig. h), we

expect most heating as well as any deleterious effects due to injection

to occur in this region. However, due to the peaking of the plasma

density near the magnetic axis, McAlees [21] points out that even though

the fast ion aensity is peakea there, the energy aepositea per plasma

particle ana consequent plasma heating may not be peakea on axis.

From the calculatea <H(r,0)> profiles, we can see that by aajusting

the parameters of two opposing beams we can make the resulting two

profiles almost equal on a flux surface-to-flux surface basis. This will

allow approximate cancellation of any effect which aepenas upon the sign

of V|| such as the momentum and current input to the plasma from the beams

[lb]. However, because the density peaks actually occur at the two
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stagnation points and because the H(p) profile is approximately

constant for p < r-,, we see that if r„ ^ x , the equality of the fast
B B S

ion densities from opposing beams can never occur except on a flux

surface average basis.

Finally, we note that if charge exchange is an important loss

mechanism for the fast ions, the best strategy for injection is to aim

the injectors so that they are tangent near the magnetic axis in order

to maximize the fast ion density and energy deposition there (cf. Fig. 5)
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APPENDIX A

STANDARD ORMAK PARAMETERS

For the purposes of this work we define a "standard" plasma in the

ORMAK experiment [17] with the following parameters:

Major radius: R = 79.8 cm
o

Minor (limiter) radius: a = 23 cm

Toroidal magnetic field: B = 18 kG

Toroidal plasma current: I = 120 kA

Inverse rotational transform: q = rB /R B ; on axis, q(0) = 2.2

at limiter, q(a) = 5

Flat current time: 50 msec

13 3Peak plasma density: n = 3 x 10 /cm

Peak electron temperature: T (0) = 800 eV

Peak ion temperature: T.(0) = 250 eV
Q

Neutral density on axis: n (0) = 6 - 7 x 10

Average impurity content indicated by plasma resistance anomaly

relative to pure hyarogen: <Z> <_ 5 where,

E V„ E n.Z.2 E n.Z.2
eZ. .11 .11

<Z> = x x - 1
V TT E n.Z n
eH • 1 i e

1

in which E is a sum over all ion species ana the subscript H refers to

i

hyarogen.

A single "stanaara" ORMAK neutral injector is similarly aefinea by

the parameters [3]:

Neutral particles: H

Major raaius at point of beam tangency: R^ aajustable from 65 to 75 cm
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Beam aivergence: 1.2 for half-wiath at half-maximum

Beam profile: essentially constant over a circular cross section of

raaius r = 6 cm at point of beam tangency
B

Beam components

Energy (keV) Power (kW) Current

25 57 2.3

25/2 33 2.6

25/3 11 1.3

101 kW 6.2 Amps Equivalent



29

REFERENCES

[l] G. G. Kelley, 0. B. Morgan, L. D. Stewart, ana W. L. Stirling,

"Neutral-Beam-Injection Heating of Toroiaal Plasmas for Fusion

Research," Nuclear Fusion 12, l69 (1972).

[2] L. A. Artsimovich, "Tokamak Devices," Nuclear Fusion 12, 215 (1972).

[3] L. D. Stewart, R. C. Davis, J. T. Hogan, T. C. Jernigan, 0. B. Morgan,

ana W. L. Stirling, "Neutral Beam Injection Heating of ORMAK,"

Paper E12, Thira Intl. Symposium on Toroiaal Plasma Confinement,

Max-Planck-Institut fur Plasma Physik, Garching (1973). See also

Ref. [17].

[h] D. Aiacroft, J. Burcham, H. C. Cole, M. Cowlin, J. Sheffield, "The

CLEO Tokamak Neutral Injection System," Nuclear Fusion 13, 393 (1973).

[5] K. Bol et al., "Adiabatic Compression of the Tokamak Discharge,"

Phys. Rev. Letters 29, 1495 (1972).

[6] R. Dei-Cas, S. deSacy, J. Druaux, D. Marty, and P. H. Rebut, "The

Neutral Injection Heating Into the Fontenay-Aux-Roses Tokamak,"

Paper E9, Third Intl. Symposium on Toroidal Plasma Confinement,

Max-Planck-Institut fur Plasma Physik, Garching (1973).

[7] T. Ohkawa, "New Methods of Driving Plasma Current in Fusion Devices,

Nuclear Fusion 10, l85 (l970).

[8] L. D. Stewart et al., "Neutral Beam Injection Heating of Tokamaks,

Paper S8, Third Intl. Symposium on Toroidal Plasma Confinement,

Max-Planck-Institut fur Plasma Physik, Garching (1973).

[9] R. J. Bickerton, J. W. Connor, and J. B. Taylor, "Diffusion Driven

Plasma Currents and Bootstrap Tokamak," Nature, Phys. Sci. 229,

110 (1971).

[10] D. J. Sigmar, "Bootstrap Current in Tokamaks with Neutral Injection,"

Nuclear Fusion 13, 17 (1973).



30

[ll] A. C. Riviere, "Penetration of Fast Hydrogen Atoms Into a Fusion

Reactor Plasma," Nuclear Fusion 11, 363 (l97l).

[12] D. R. Sweetman, "Ignition Condition in Tokamak Experiments and Role

of Neutral Injection Heating," Nuclear Fusion 13, 157 (1973).

[13] T. G. Northrop, The Adiabatic Motion of Charged Particles John Wiley,

New York (1963).

[14] T. H. Stix, "Heating of Toroidal Plasmas by Neutral Injection,"

Plasma Physics ik, 367 (1972).

[15] J. D. Callen, J. F. Clarke, and J. A. Rome, "Neutral Beam Injection

Into a Tokamak II: Evolution of Neutral Injected Particles,"

(to be published).

[16] J. D. Callen, J. F. Clarke, and J. A. Rome, "Theory of Neutral

Beam Injection Into a Tokamak," Paper E14, Third Intl. Symposium

on Toroidal Plasma Confinement, Max-Planck-Institut fur Plasma

Physik, Garching (1973).

[17] G. G. Kelley et al., "Status of the ORMAK Experiment," Paper B3-1,

Third Intl. Symposium on Toroidal Plasma Confinement, Max-Planck-

Institut fur Plasma Physik, Garching (1973).

[18] J. T. Hogan, J. F. Clarke, and H. Postma, "Neutrals in ORMAK," in

ORNL Thermonuclear Division Annual Progress Report for Period Ending

December 31, 1970, p. 56.

[19] J. G. Cordey and M. J. Houghton, "Problems Associated with the

Injection of a High-Energy Neutral Beam Into a Plasma," Nuclear

Fusion 13, 125 (1973).

[20] J. R. McNally, Jr., "Neutral Injection Heating of Tokamaks," submitted

to Nuclear Fusion.

[21] D. G. McAlees, private communication.



31

FIGURE CAPTIONS

Fig. 1. Geometry of neutral beam injection into a torus: (a) cross

sectional view showing a diffuse neutral beam at its point of

tangency; (b) top view showing a pencil beam.

Fig. 2. The production rate of the fast ions along the beam path.

Contributions from both the ingoing (s < 0) and outgoing (s > 0]

parts of the neutral beam path have been added.

Fig. 3. The time rate of change of the fast ion density as a function

of the distance from the stagnation point for a pencil beam in

the equatorial plane. fL, = 68.5 cm, A = 46 cm, and hence

a/A = 1/2 in ORMAK.
o

Fig. 4. Spatial shape factor for the fast ion density distribution,

<H(r,0)>fi, for various values of a/A . The percentage of the

beam ions that are absorbed by, and stay in the plasma is

labeled on each curve. R = 68.5 cm, x = 2.8 cm in ORMAK.
c s

Fig. 5. Spatial shape factor for the fast ion density distribution,

<H(r.0)>^, for various values of R . a/A = 1/2, x = 2.8 cm
* 0' cos

in ORMAK.

Fig. 6. The fraction of fast ions absorbed within a given radius for

various values of R . a/A = 1/2, x = 2.8 cm in ORMAK.
c o s



E(keV)

25

25/2

25/3

TABLE I

COLLISION CROSS SECTIONS AND MEAN FREE PATHS FOR THE

THREE ENERGY COMPONENTS OF THE ORMAK INJECTOR

a , Charge a ., Electron a ., Proton
ex & ei pi Mean Free

Path (cm)Exchange

(X2)
Ionization Ionization

(82)

T

Total

az)
Fraction by

Charge Exchange A - l/na,
T

5.0 1.0 1.3 7.3 0.( he

7.5 1.5 1.0 10.0 0.75 33

9.5 2.0 0.5 12.0 0.79 28

U!
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