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ABSTRACT

Results are presented from studies of microinstabilities in a

model mirror plasma. The model has a Gaussian density distribution of

ions and electrons along a varying magnetic field, and a radial density

gradient perpendicular to this field. Particles are contained self-

consistently by a fictitious confining potential modeling mirror

confinement. The ion velocity-space distribution is the finite-plasma

equivalent of a Guest-Dory loss-cone distribution, and the electron

distribution allows for finite temperature effects, including Landau

damping. Resonant and non-resonant loss-cone instabilities are

discussed. It is found that resonant instabilities are stabilized when

the plasma length is less than a critical length which is dependent upon

electron temperature, but modes corresponding to flute modes in homo

geneous plasmas (Dory-Guest-Harris and drift-cone) are found to remain

unstable at all plasma lengths.
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I. INTRODUCTION

In an earlier paper, hereafter referred to as (I), a formalism

was developed for the investigation of microinstabilities in a model

mirror plasma with a Gaussian density variation along the magnetic field

[B = zB(z)]. In (I), we used a model confining potential for both ions

and electrons; we were able to solve the linearized Vlasov equation for

the perturbed charge density. We then used Poisson's equations with

appropriate boundary conditions to form an eigenvalue problem.

In the present paper, we first describe improvements in the model

which allow for various physical effects not included in the earlier

work. In the ions, we allow for lowest-order effects from a varying

2 2 2
magnetic field B(z) = B (1 + z /L ); these result in a cyclotron fre

quency Q. = Q.(z). A separable velocity-space distribution of the

Guest-Dory form [as also used in (I)] is used to include loss-cone,

cyclotron damping, and ion thermal effects along the magnetic field. Ion

bounce effects are not included, as seems to be justified when a magnetic-

k
field variation exists.

In the original model, electron bounce resonances resulting from

the assumed parabolic confining potential for electrons result in re

generation effects which obviate electron Landau damping. To circumvent

this, we have included in the theory a slight distortion of the parabolic

confining potential. This distortion results in an energy-dependent

bounce frequency, and therefore electron Landau damping. This model is

5
described elsewhere, and application to the present problem is described

in this paper. The electron term also contains a radial density gradient

to allow for the study of the drift-cone instability.



In sufficiently short plasmas, modes corresponding to various dis

tinct instability mechanisms do not appear as separate entities; rather

we find only one unstable mode whose characteristics can be made up of

a composite of several instabilities. Nevertheless, it is possible to

pick certain combinations of the plasma parameters, such as density, shape

of the perpendicular loss-cone, perpendicular density gradient, and

electron temperature, for which one or the other instability mechanism

clearly dominates, and for which, if the plasma length is allowed to

become very long, one can recover the corresponding infinite-plasma

mode. In this sense, we identify two different categories of modes

studied: 1) those which in an infinite-length plasma occur with k|| = 0

(infinite wavelength along the magnetic field) and whose frequency is not

resonant with the ion gyroharmonics (here are included the Dory-Guest-

7 6
Harris and drift-cone instabilities); 2) the resonant loss-cone in-

Q

stabilities (here are included the absolute loss-cone instability and

the unstable negative-energy modes first studied by Berk et al ). In

studying the behavior of these modes very near threshold, we find that

as the confining potential of the electrons approaches a purely parabolic

potential, we see a coupling of the unstable ion wave with stable electron

plasma oscillations. We also study and discuss these threshold effects.

If we choose our ion distribution function so as to preclude the

Dory-Guest-Harris mode, and if we eliminate the drift-cone mode by mak

ing the radial density gradient sufficiently small, we find at relatively

short lengths a composite resonant instability which is a combination of



the absolute mode and the longest wavelength negative-energy mode. This
/"T M~

unstable mode eventually stabilizes below some length Lp/8^2* 2J — — .
1 e 10

This length is thus dependent on electron temperature. In previous work

this mode was studied in the absence of electron thermal effects.

While our numerical results are model dependent, they also show that for

the purposes of calculating threshold densities and stabilizing lengths,

such effects cannot be neglected.

By contrast, if the drift-cone, or Dory-Guest-Harris instability, or

both are present, the residual mode cannot be stabilized by finite-length

2 11
effects, as has been found previously. ' That is, no matter what the

plasma length, the mode continues to appear in the plasma density range

(corresponding to a line-averaged density) over which the infinite-

plasma k|| = 0 mode can exist. Since the flute-like modes generally

require much higher densities than the resonant modes, the threshold

characteristics for this residual mode will vary widely as to both

density and frequency depending on whether or not the plasma length

permits the existence of a resonant mode. In other words, as the

density is lowered, the mode characteristics become similar to those

of the resonant mode if it can exist at that plasma length. Otherwise,

the threshold density remains high corresponding to the absence of a

resonant mode.



In section II of this paper, we discuss the formulation of the

Fourier-analyzed perturbed charge density (the R matrix in I). Part

II A deals with the electron term, and part II B with the ion term. In

section III we present and discuss results. We first discuss the

resonant modes in the absence of Dory-Guest-Harris and drift-cone

(flute-like) modes. Included in this discussion is the role of the

electrons, including the part played by Landau damping. Finally we

discuss the flute-like modes. In the final section (IV), we make some

comments relevant to the impact of these results on the mirror confine

ment program in general, and future calculations in particular.



II. THE NEW R-MATRIX

In generalizing the work reported in(l)we wish to incorporate a

magnetic field variation, since in the absence of electron thermal

effects, this, in combination with ion thermal effects, has been shown

to be stabilizing to resonant instabilities. In addition, we wish to

take account of radial as well as axial gradients in order to allow study

of the drift-cone mode in addition to the resonant and non-resonant in

stabilities which do not depend on cross-field gradient effects. In

general, this requires simultaneous treatment of both a radial as well

as an axial eigenvalue problem. The situation is greatly simplified,

however, by the fact that the radial part of the problem can be treated in the

12
"local"approximation; in this case the properties of the wave depend

parametrically on conditions at each given flux surface, and on each

such surface a purely axial eigenvalue problem can be defined.

In a spatially confined system the perturbation potential, ^(z),

satisfies an integral equation. Alternatively, as explained in(I) we

can form a matrix eigenvalue problem by Fourier analyzing \|i(z) over a

length extending from the center of the machine to points on either

side where the equilibrium density has fallen sufficiently so that

k, \ » 1. At these ends we require Ji = ik'fz) = 0. Thus
x Debye electron ^ Y T K '

in this work the problem is actually treated in terms of a periodic

system with the period sufficiently long so that each plasma "period"

becomes a separate entity physically.

The contributions to the R-matrix can be derived by determining the

electron and ion density perturbations using orbit-integral solutions

to the Vlasov-equations. The results, for the electron and ion contributions



are detailed in the next two sections.

A. The Electrons

The periodic "bounce" motion of the electrons in their confining

potential $(z) plays an important role in establishing the properties of

the instabilities which can occur in mirror devices at realistic machine

lengths and electron temperatures. In turn, the nature of this role

depends crucially on the extent to which Landau damping occurs, that is

to say, on the extent to which the bounce frequency is energy dependent.

In any but an exactly parabolic potential well the energy dependence of

the bounce frequency allows wave-particle resonance only for particles

of specific discrete energies, and Landau damping appears. The case

of an exactly parabolic well is degenerate: u), = constant and no Landau

damping occurs.

Despite its degeneracy, it is frequently convenient to assume, as

in(I), parabolic-well confinement, particularly in the description of the

plasma equilibrium. The most important effect of departure from quadratic

behavior of the confining potential is in the particle-wave resonances.

For this reason we use a model of the electron dynamics, developed in

reference 5, appropriate for "almost parabolic" confining potentials. A

feature of this approach is that it allows us to retain the assumptions

of parabolic well confinement except where treating particle-bounce

resonance.

We assume an equilibrium distribution for the electrons of the form

2

7^

E f0(E,vj(l +e(x +/)

e tt ' a a a e



where

E =
m 2

e

2
vx =

2 2
= v + v ;

x y

x is the local "radial" coordinate, measured from the flux surface of

interest locally normal to y and z•

—•

The distribution function f (v.x) is normalized so that the equi-
oe v '

—»

librium electron density along B is

n(z,x) =n(o,o) \dV fQ(E,vx, x+^)
J e

=no(o,o)(l+ ex) ^dv Fq(E)

r 2where F (E) = d Vj_ f (E,vx). (This formula is intended to hold only

locally around the flux surface x = o, generally taken to be at the posi

tion of maximum radial density gradient.)

Correspondingly the electron density perturbation is obtained from

the perturbation of the electron distribution function:

n(z,t,k )= n(o,o) \ d v fg(v, k ,z,t)

We introduce the Fourier analysis of the perturbation potential

appropriate to the local approximation:

^(y,z.,t)= exp(ikyy) $(k ,z,t)

(2)

$(ky,z,t) =^ 9Mj(t)exp(iij,z/Lp)



where L = ot/vx is the plasma length and u>. is the bounce frequency
2

for thermal particles (ul(E) at E = a /2). Then the solution to the

linearized Vlasov equation obtained from the standard orbit integral can

be written

f (v, k, z,t) =-^Y \>t' r_2£iL,I- +-^L_y °£+^f
ev ' y' ' ' m L J L 3E r L vx dvx Q_ _ oJ

"e ~ " ~ ~ p • x - x --e
(J, o

X

Xexp[iky(/-y)] Xexp[iLiz7Lp] cp (f) (3)

where the primed quantities are orbit variables satisfying, for example,

dz' i, .1 ,s. dv' 1 d$ ,.x
——r = v (v,z,t -t); — / = — -3—/ (4)
dt v ;' dt m dz v y

e

with the "initial" conditions

v'(t'=t) = v , z'(t'=t) = z

In Eq.(3) we have neglected the contribution to f at t = o since we are

interested in growing solutions (instabilities).

We now assume kxa = kx ^- « 1. In this limit the Larmor motion is

unimportant and we may put exp[ik (/-y)] = 1- Then> u^on integration over

v,, the terms in v average to zero. This small Larmor radius limit could,
x> y

of course, also be obtained directly from the drift kinetic equation.

Integrating over v in (3) and taking the Laplace transform then yields

(at x = o)

00 O ^n l
qn or- n r* ,-//NdF kee e -__-_-

eQ j.-- _ r. „ - .-e
,1 -00 -co -^

(Vz,w) =v L V"0 \dv r exp(_ ±m)i±li l^ ar+ i 07 Fo>
(5)

Xexp(iy,z7Lp)
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2 I* 2 -♦
where tu is the plasma frequency at z = 0, and F (E) = d vx f (E,vx).

We may Fourier analyze this result in the form

ne (ky,z,cu) =/, N^ exp(i JL z/Lp)
t

ttL
P

NJL =2^T S dz njz) exp(-i ẑ/Lp) (6)
P-ttL

P

yielding

ttL

%\ 2 ^ " r> P ,„ ° r- „'/_n SF„ ik„e
e n^e•V I S* S'sa- $* ^ [> ^ sr +-iS*" FJ *o y p ^ p

Li, -oo -ttL r -oo r
P

X exp(iLtZ'/Lp -i£z/L ) (7)

This result, when substituted into the Fourier expansion of Poisson's

equation yields the electron contribution to the R-matrix. Further

reduction of ( 7 ) requires knowledge of the parallel (bouncing) motion

of the electrons and hence specification of $(z).

A method was developed in ref. 5 f°r treating the dynamics of

particles confined in nearly parabolic potentials. We introduce the

orbit phase angle 8(t) through

^^ =̂ "cose(T) ;^ =̂ sine(T) (i

and note that

dT v dz^ V m {y)

We restrict our attention to potentials §(z ) which are symmetric about
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z = 0 and have only a single minimum. For such cases z' is a periodic

function of 9 and hence of t. If §(z') were purely parabolic, $/m = ui z' /2,

we would have simply

/ /TE . d9z = __ cose, _ = . ^

/ / 2E
z =

^o

^o

For nearly periodic potentials we write

(cos9 -2£ B2n+1 cos(2n+l)e) (10)
n=0

where the coefficients B are functions of E alone and can be determined
n

for specified §(z') by the method of ref. 5- The B , are very small
n s

for nearly parabolic potentials.

It is shown in ref. 5 that

CO

Tb<E> sdry • ir (x -2 I (2°+1>WE>) <u>
n=0

whereas

with

Then

m=l

u)u(E) v
a (E) = — } h (2n+l) B0 4.1
mv ; ux i-j K ' 2n+l

n=m

CO

a

^(e) (T -to) =e-§-£ ^ sin 2me (13)
m=l

where t is the value of t at 6 = tt/2, where z' = 0.
o '
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In the orbit integral (8) we must distinguish between

z'(z,v,t) = z (E, t - tq)

and

z'(z,v,0) = z = z (E, - T0);

Then, consistent with the periodicity of z' and z with respect to t and

t , we write
o

exp(iLi z'/L ) = £ SjE,Li) exp[imtob(E)(T - TQ)]
m= -oo ) (iM

exp(U z/L ) = £ Sm(E,ji) exp[lmcub(-To)]
m= -oo

Note that the coefficients S are independent of the phase angles:

i rTbSm(E,u.) =—\ d(T-TQ) exp[- imo>b(T-To)+ V z'/Lp]

5rr/2

fe A d9 (X "I "P C°S *PtV
-tt/2 p=l

. V a2pe) exp{-im[9+ | -^ ^ sin 2q9]}
q=l

X exp{i £- ^/^(cose -2£ B2n+icos(2n +l)e)} (15!
n=o

where we have used eqns. (10), (11), (lM •

The integral in (7) involves integration over v and z. But we can

replace these integrations by integrals over E and t , using

dv dz = dE dT ;i6)
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since the Jacobian of the transformation from (z,v) to (E,t ) is unity from

Eqn.(8). Then, with the help of( 1^) the orbit integral in (7)can be written

<% 2 ^ ^ <• '• ^ .r SFo ik,re
I f SdE \ dT I ^'^ S^l)[^ ST +QX FoJ ><
M- •" o -co m= -oo

e
U).

pe u L J J ZL irr ^' irr L dE L2 ox
o il P e i3

X exp[-i(tu-mux)T]

" v«2V™ j %<E» ^*" ^E'-• L%*-F v O LL,m= -oo

where u)^ = ek a. /2Q •
* y e

The integral over t in(17)is defined in the sense of a Laplace trans

form, Im( uj) > 0, and the singular denominators in the subsequent energy

integral are to be understood in this light. The behavior of the energy

integral is crucially dependent on the behavior of ji as a function of E.

Indeed, if uu, = ua = const., the integral does not exist for uj = mux • By

constrast, if uv = ux(E) the resonances at the particular energies for

which a) = mux(E) simply contribute a finite imaginary part to the in

tegral over E, as in classical Landau damping.

On the other hand, the departure from parabolic-well behavior of the

quantities appearing in the S (E,la) is not so essential and useful approxi

mations to the S can be obtained when $(z) is almost parabolic. In
m v

particular, suppose that we can neglect the terms involving a and Bm in

(15). Then

5n/2

S(E,m,) --i \ d9 exp[-im(e+Tr/2) +i|i. ^]= J>x) (18)
m 2tt J am

- tt/2
where J is the Bessel function, and we have introduced the dimensionless

m

2 2
energy variable x = 2E/a .
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In what follows we assume that the departure from quadratic well

confinement is slight enough that we can adopt the approximation (18) for

the S 's, but we keep the essential energy dependence of olv. Then,

2

—"--^— y cp r^ (19)

with

e

e /— 2 /_, > !b^
v zi

T . , ' p v J (M-x)J (j&x) r -, ui

Ri - if ^ '*»<-' ).y. ^(x) K<*> --3 ^) <2°>
o m=-°°

where the ion-electron temperature ratio T ./T appears because of the

normalization of the R-matrix with respect to the ion plasma density

22
u) ., and the ion parallel thermal speed a .• When ulv(x) = ua = const.

e e
and uh, = 0, R. reduces to the electron contribution to the R-matrix

* ip,

used in (I), in the small Larmor radius limit \ -* 0. When ul = uifx),

however, the x-integral must be carried out numerically in general, and

depends crucially on uv(x).

As a model of almost parabolic-well confinement we consider a con

fining potential of the form

-•- = 0 ; z < zm 5ii 0

4(lz| -z/(l+M)2; |z|

\

> (21)

When z « L , and L » L this potential is almost parabolic in the
op P

sense that particles with thermal energy will experience very nearly a

quadratic potential.

The bounce frequency associated with(21)has the form
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_V___ _x(l + ax)
ui x + b

k Lp . 2 Zo
a = nL ' b = nr '

p

Note that ulv(x) = oiv when x = Jbjk so that if we choose b = a as in our

actual computations.>thermal particles will experience a bounce frequency

equal to uv - When a and b are both very small, U)h(x) is very like a step

function, increasing very rapidly to u) for small x and increasing only

very slowly thereafter.

The quantities a and b are given above directly in terms of the shape

of the model confining potential; an alternative interpretation of a is

that it represents the fractional departure from quadratic-well confine

ment experienced by a thermal particle.

e

in ref. 5, practical means of computing the x-integral in R both

directly and approximately are discussed. In the following we restrict

ourselves to a discussion of only the salient features.

As a) approaches real values, lm(uj) -* 0 , imaginary contributions to

the x-integral will arise from the residues at the points at which

mui (x) = (jj. These contributions lead to Landau damping. It is clear from

the form of the integrals in(20)that the maximum Landau damping from the

m-th term in the sum occurs when uj = mu>, . For resonant, non-flute-like

instabilities, for which Landau damping is most important, cu will be near

Q.(z=o). Thus, for short machines, at reasonable electron temperature,

u) = (m ± 6)uo, where m is less than 10, and 0^6^ l/2. With m in
v O '^DO O ' o

this range,maximum Landau damping occurs for 6 = 0, u) = m ui , and comes

from the resonance at x = 1 in the m-th integral in (20). For each

(22)
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m i- m in the sum in (20) the resonances occur either at small x (|m| > |m |)

or large x (|m| < |m |) and these contributions to the imaginary part of

Re are relatively small. Similarly when to is halfway between two moderate

harmonics of to, (6 = l/2) Landau damping will be small for all terms in

the sum.

For long plasma lengths, uj, -• 0 and m becomes very large. In this

case uo/muv will be near unity for a large number of the integrals in the

sum in(20)and all of these will contribute approximately equal amounts of

Landau damping. Eventually, as L -♦ 0= } m -> 0, the bounce structure is

lost altogether and the infinite medium dispersion relation is recovered

Ik
from (20) in a manner discussed by Baldwin and Rowlands.
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B. Derivation of the Ion Contribution

The response of the ion density is

^t.) =-^>'V,
a.

dvi

V|
|(V|.) [

-CO

n / ,S+S > a. />ds n(~2—) i|r(s )X
n

X exp [- i Kdt'Yco - na(t")) G(t' - t)

where DJ is the function given by Guest and Dory,^ and where we have in-
n

eluded only the loss-cone term in the ions (T = T||/Tx = 1).

In the special case of a homogeneous magnetic field the variables

s and s' would represent distances along a field line. Using

3

and

we get

where

IVV2VL- I dsexp(-iV)^Pi(s)

^ V"1

R =11V2 V R(n)

CO CO

R^y =DJ' u) Vds exp(-ik s) Vds'exp(ik s'y^-g—

S dvi

X
VI

exp i ^dt"(«j - nQ.(t/'))e(t'-t)J fn(

(23)

(2M

(25)

(26)

(27)

V|
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Substituting dt" = ± ds/|V||| and using vy as a constant, and substituting
2 2

Q.( s) = Q. (1 + s /L ), we obtain
iv ' iov ' m '

t'

-i^ dt" L-nQ.(t")) e(t'-t) - i- |s-s'| L-nQ. (l +̂ £ +̂ ^)"J V iv 'I v,|l L io\ 4 2 ^2 yj
t mm

(28)

Making the change of variables to R - (s+s )/2 and z=s-s' we obtain

ro dv.
00 CO

R(n) _ JD^u,^ dR d̂z n(R) ^ — fn(v|,) (29)
-CO -00

X exp[- i(k^-kA) R-i (k^z/2 +iM (u)-nao(l +(R2+z2/l2)/L2))_

. . exp(-R /Lp)
Using n(R) = —— -* the R integral can be done giving

X exp

CO CO

R(^ =DJa) Vdzpji n * \ uz ^ v
-co o

dv„ fl|(v||)

» / inn. IzIl'
'i+—1Q V :V T2

vii L
11 m

(30)

I I infi. Izl5 L2(k -kj2 -ii (k +k )z +xkV^. ) 1°JJ P ^ ' p!
2 ^ * VH 10 12 L2v,, inn. |z|L2"mH l^1+ i°' ^P)

VH Lm

2 , 2etting 6u> =a)-nn.o and f„(v||) =e3{^vll/Qfll) and making a change of variable from
J w a
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z to %= nQ. z/v|| one obtains
10

/ s U) D ,-,

-co

r ^ v„S i6u)|?| ivf| |5|5 J ^(Vk/i ,,-n
exp --— - i(k +k )=-^- + — ^^r - P ^0 o (51)

L 2 p £ 2nQ. nn. ,OT2 2^2 n,.i_iT2/T2 J
an M> * 10 10 22L n Q. l+i\l L /L
" m 10 '*' p' m

s dvi

7l +i|5|L 2/L 21*' p ' m

The vii integral can now be done giving

u) DJ
r(°)= — ed? 2L_ (32)
pi n J *

,2*2
1 , ,.,2^1

exPri6i
L n

51
l+il

•«2 16^ Ji ' X/,1
2

n

L2^
P1+ -

ilsl
12

3 « 2
*bi

n^ L 2
m

Vl+i| Si L2/L 2
P ' m

12

.2 2

^i Lp
2 T 2

n L
m

where 6<£ = 6u)/nio, u\)i =<vA\0> uW"io> p=k^Lp, A=k^Lp and we

have let a^= ui . L . The absolute value of %can be replaced by %

everywhere and the resulting integral can be done numerically by choos

ing appropriate paths in the complex Z-plane.
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III. PRESENTATION OF RESULTS

In presenting our results, we first remark that we have restricted

our findings to even modes, that is, modes for which ty(z) = if(-z). This

class of modes allows us to study both the flute mode and modes with

non-zero k||. It includes the instability of most interest, the one

which remains unstable at the shortest plasma length. While it eliminates

the longest-wavelength odd-parity mode, the characteristics of that mode

are essentially the same as other finite-k|| modes which are studied.

Our primary concern is the investigation of loss-cone instabilities.

We may divide these into two groups: resonant modes, and non-resonant

(flute-like) modes. The non-resonant modes generally occur at densities

2 2
U) ./n. ^ 100, and involve ion-ion interactions (Dory-Guest-Harris in-
pi' i

7
stability ) or an interaction of the ion wave with the electron drift

wave (drift-cone instability ). The resonant modes, on the other hand,

involve either the destabilization of a negative-energy ion wave by dis

sipation associated with the flow of waves outwards to the ends of the

Q
system, or else, in the case of the absolute instability, an interaction

of an ion wave (with inverse cyclotron damping) with an electron wave-
Q

particle resonance. One might expect the Dory-Guest-Harris instability

to be insensitive to electron thermal effects. This should also be true

for the flute-like drift-cone instability, since the perturbed charge

density of the electrons for ky = 0 is dominated by the electron drift

term and is therefore independent of electron temperature. In contrast,

the only contributions to the perturbed electron charge density in the

case of resonant modes comes from k|| f 0 terms, and we might expect these

modes to depend on electron temperature. In fact, we find that electron
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thermal effects dominate the behavior of the resonant modes in short

plasmas. This is discussed in the latter part of the section on resonant

instabilities.

A. Resonant Instabilities

We will discuss results for unstable modes associated with the first

gyro-harmonic, that is, u) ~ fi. . We have found that modes at higher gyro-

harmonics stabilize at longer plasma lengths than those at the first

harmonic, and are therefore not as critical. We will also restrict our

numerical calculations to a single value of kx a. = 2.k-5. This value

provides a reasonable approximation to the 'worst' case, that is the value

which yields the highest growth rate instability at a given density over

most of the range of plasma parameters investigated. Variations in this

value will at most yield small quantitative differences in numerical

results.

We first consider our results in the limit of long plasmas in order

to connect with known results in that regime, and to better understand the

connection between the two categories of results. To do this, we must

first define what is meant by 'long plasma'. Two criteria must be

satisfied:

1) The straight-line orbit approximation must be valid for all

plasma species, and

2) the mode wavelength along the magnetic field must be much less

than the plasma scale length.

We may use the straight-line orbit approximation if either y » uv or if

U)At » to where u) ~ Q. and At is the thermal spread in the electron

1 J7A %e\
bounce period: At = I ) . From our model of the electron bounce
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motion, if we use a thermal width to define Atu , we find

Auv

be - 3/2 (a + b)

So

^oe
a + bA\ « Max (y, —2~) (33)

satisfies the criteria for use of the straight-line orbit approximation.

From equation (21),(I),we may write the R-matrix in this limit

R. ={V[- -4S- DJ (X) Z(&5-)> ^|Z' (-£-)} exp [-(X-p)2Mj£P Lu> L pui^ n v Vu^/J Tg 2 Va^g/J v p/ '

where we have included only the loss-cone term in the ions. (We have

neglected the finite Larmor radius correction for the electrons and have

2
corrected a sign error in the exp[-(j2-p) /4] term.) In order to obtain

the long-plasma limit, we further assume that the cp are large only in

the neighborhood of a p =- L /\\\ such that pui « uo ~ Q. • Then we may

write the electron term as

2 .2
m. p ux . o

_ — exp [-(X-p) A]
e a;

and it follows from the conditions above that

2tt \q « X||/Lp « 1

If we further assume a 'local' approximation for the ion term and at the

same time take the asymptotic limit for the plasma dispersion function in

the ion term, we may transform Poisson's equation back to configuration

space and obtain
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kx t(z) =u^e(z/L )L^^^ -aV^r+^7^ J*(z)
i x u) dzu) dz

ii

If we now consider this equation in the vicinity of the origin and ex-

2 2 2
pand the density as m (z) =" u) (1 - z /L ), we at once recover the

9
results of Berk, et. al.

In(l)we noted that the infinite, homogeneous-plasma results did

obtain from our formalism; (this also follows from equation (3*0above).

Since any mode we find will be a standing wave with zero group velocity,

8
we would expect to be able to recover the absolute loss-cone instability

9
as well as the negative-energy modes discovered by Berk, et. al.

We note in Fig. 1 the behavior of the negative-energy modes and

the absolute instability as the magnetic field scale length is decreased.

In obtaining these results, we have used the straight-line orbit approxi

mation for electrons, neglecting bounce effects which at most would super

impose a small modulation on the curves in our model. Here we are

considering modes with small growth rates, so the behavior is similar

to threshold behavior. We have chosen j = T = 5 so as to emphasize the

loss-cone without introducing anisotropy effects. To simplify numerical

calculation, we used (in these particular results only) a bi-Lorentzian

velocity-space distribution for the ions instead of a Maxwellian distri

bution, which was used for short-plasma resonant mode results. At most

the simplified distribution introduces small quantitative differences in

results at these plasma lengths. We can identify the various modes by

comparing their frequencies, densities, and wave behaviors with those

9
predicted by Berk, et. al. For the negative-energy modes, Table 1

shows the good comparison of frequency and density with the values

»
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predicted by the WKB theory. Figure 2a shows \|i(z.) for these same modes

as obtained by our solution of the eigenvalue problem. Figure 2b shows

these same modes in the complex z-plane with the phase angle taken to be

9
^5°> so that a direct comparison may be made with the WKB results. The

dotted curve is clearly the m = 0 mode, and the solid curve the m = 2 mode;

the dashed curve, the absolute mode, behaves differently from the pre

dicted behavior of any negative-energy mode.

The absolute mode is readily identified by its frequency, density,

8
and wavelength, which compare well with infinite-plasma theory. Also we

see in Fig. 3 that the growth rate varies with density in exactly the

same manner as in the case of the infinite-plasma at low densities. We

note also the completely different behavior of the frequency and density

(as the magnetic scale length is changed, Fig. l) from that of the

negative-energy modes.

Thus at long plasma lengths and very long magnetic scale lengths,

we are able to identify both the absolute loss-cone mode and the de

stabilized negative energy waves. We now consider the behavior of these

resonant modes as the magnetic scale length is decreased.

We note from Fig. 1 that the magnetic field variation stabilizes

9
all higher-m negative energy modes as prediced by Berk, et al. We also

note that the m = 0 mode and absolute mode have a degenerate frequency/

density at a magentic scale length of about 800 a.. Below this length,

one of the roots stabilizes, but the other remains unstable to very

10
short lengths. We term this latter mode the residual mode. The

characteristics of this mode may not be the same as the characteristics

of the mode at longer scale lengths. This is one clear example of how

finite-length effects can cause a mixing of modes.
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To understand the behavior of the residual mode as the plasma

length is further decreased, we must first study the thermal effects of

electrons in our particular model. This model uses a confining potential

for the electrons which is essentially a slight distortion of a para

bolic potential. In a parabolic potential thermal effects manifest them

selves mathematically in the bounce resonance which occur because all
/ /M. T

1 eparticles bounce with the same frequency ox =JF/'j/I' /a. J — — ,andI p i me i
there is no Landau damping. As already pointed out, for a cold plasma

approximation to apply, ox must be much less than to =*= Q.. If we con

sider a plasma of a length at which the residual mode would stabilize

to be L « 20 a. , and if we assume that u), < .1 Q. would be suit-
p i oe i

able as an approximation for a 'cold' electron plasma, then we find that

T /T. must be less that .0025 in order for this approximation to be

valid. We conclude that for most experimental plasmas, we must investi

gate electron thermal effects.

In a purely parabolically confined plasma, there exists a set of

13
stable plasma oscillations studied by Watson and Harker. Because of

the symmetry of iji(z), these oscillations will occur only for even har

monics of ui . At least one of these modes is always destabilized by the

ions. Since these bounce modes occur at densities much less than

2 / 2
uj ./ Q. =1, we would expect the residual mode characteristics to become
pi' i

like those of the bounce modes as y -* 0. This indeed is the case, as

indicated in Fig. k. In fact, in the case of the purely parabolic well,

-k
below y ~ 10 Q. , the density drops sharply by several orders of

magnitude.

One other effect we might expect for a purely parabolically con

fined plasma is the absence of any (real frequency) mode at co = mm •
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Indeed, if we set y = .005 Q. (so that we are examining the mode where

it behaves essentially like a residual mode rather than a bounce mode),

we see in Fig. 5a that the frequency does remain between the bounce

harmonics, even when it has a small imaginary part.

If we now allow for a departure from purely parabolic potential

confinement, as in the model in section II, Landau damping will be present.

We first of all expect to see a stabilization of the low-growth-rate

electron bounce modes. That this is so is seen in Fig. 4, which shows

2
uo .(y) for various amounts of Landau damping. For wells in which thermal

particles experience greater than about a ten per cent departure from a

parabolic well (a = b = .1), these low-density modes have essentially

disappeared, and the threshold density becomes characteristic of the

residual mode.

Thus we see that in experiments in which the electrons are nearly

parabolically confined, the threshold density is an extremely sensi

tive function of the confining potential, and can vary by several

orders of magnitude. However, the growth rates of the low-density modes

may be too low to be of physical interest. In our remaining discussion,

we wish to focus attention on the residual mode, therefore we eliminate

the electron bounce modes by choosing sufficiently strong Landau damping

(a = Td = .1).

With Landau damping, we no longer expect the frequency to be pro

hibited from existing at the bounce harmonics. This we see from Fig. 5a.

We have chosen a y = .005 &• to make this comparison (and for sub

sequently displayed results) because it is large enough so that when

there is no Landau damping, the modes behaves essentially like a
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residual mode rather than a bounce mode, and yet it is low enough so

that when Landau damping is present, it is essentially a threshold

curve. We see that the frequency does pass smoothly through the bounce

resonance when Landau damping is present (Fig. 5a).

In Figs.5a and 5h we see that Landau damping has little effect on

either frequency or density between the second and fourth bounce har

monics (where a), is large) except when the frequency is near a bounce

harmonic, where we expect it to be the greatest (section II). As (a

becomes smaller (L becomes larger), the effects of Landau damping for

frequencies between the bounce harmonics become larger. The most

apparent effect here is the shift of the frequency away from the fre

quency which would occur without Landau damping.

Because of the strong modulation of the density by the electron

bounce resonances, we can determine whether Landau damping is stabilizing

or destabilizing only when the frequencies are the same. When the fre

quency is close to the bounce harmonic with which it would associate

itself as a, b, and y ~* 0; "the density is at a minimum, and the mode is

most like a destabilized electron bounce oscillation. Here we find

Landau damping is stabilizing. On the other hand, when to is not near

mu), , we see from the crossings of the to(L ) curves near L /a. = 52,8^,

and 113 that the density is lower when Landau damping is present, in

dicating a destabilizing effect. These results are consistent with the

behavior of the eigenfunction shown in Figs. 6a and 6b, which shows that

the perturbed electric field either increases or decreases with Landau

damping depending on whether it is destabilizing or stabilizing.

We now consider the behavior of this mode as the plasma length is

increased (see Fig. 7). From considerations mentioned earlier, we
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expect to see a transition to the straight-line orbit case when

ox / n. ^ .1, which, for T /T. = .1,corresponds to L /a. — 1^0.
^De' i e' i P i

The connections between the individual bounce harmonic modes are difficult

to follow, but they definitely do not join between the low bounce harmonics,

and they definitely do join between the tenth and twelfth harmonics. At

longer plasma lengths, the modulation of the frequency and density from

the electron bounce resonances gradually diminishes, and the straight-line

orbit results are recovered. It should be noted that this joining is in

no way a consequence of the small y present in these calculations, as y

is more than an order of magnitude smaller than ox •

Figure 8 shows the behavior of the residual mode growth rate and

frequency as a function of plasma density for different plasma lengths.

We see that the instability growth rate is largest for short plasmas,

reaching a y ~ •08 Q.• This is to be expected for the negative-energy

instability behavior, as the growth rate must go to zero as the plasma

length becomes infinite. The lengths were chosen so that the instability

occupied the same relative position between different sets of bounce

harmonics so as to eliminate bounce structure effects on these results

as much as possible.

The behavior of iji(z) at different plasma lengths and densities is

shown in Fig. 9- Although the ratio of parallel wavelength to plasma

length for waves in the ends of the plasma increases in all cases as

the plasma is shortened, in no case does the actual wavelength increase,

but rather decreases as the plasma length decreases. In the center of

the plasma near threshold, Fig. 9a, the behavior is different in the limit

of bouncing and non-bouncing electron orbits. When the electrons are
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bouncing, the parallel wavelength remains almost constant as the plasma

length is varied (cf the cases for L /a. = 200 and L /a. = 50.) In con-
P i P i

trast, in the limit of straight-line orbit electrons, the "wavelength" is

proportional to the plasma length. At higher density, Fig. 9b (and

higher growth rate), the mode is flute-like in the center of the plasma,

and the proportion of plasma length over which the wave-length remains

constant is relatively independent of plasma length. So in this limit,

the plasma behaves in a way that can be described by equation (3^)in con

trast to the behavior near threshold. Because of the wave structure near

the ends of the plasma, these pictures also lend support to the arguments

for careful treatment of the velocity-space distribution function in those

regions.

All of these results support the contention that the behavior of the

instability at short plasma lengths is dominated by the electron bounce

motion, even though there is a ten per cent departure from a parabolic

well. It would be entirely reasonable to expect that at least a fifty

per cent departure from a parabolic well would be necessary before one

could begin to break down the bounce-mode structure between the m = 2 and

m = k resonances (see Fig 7). Thus the nature of the confinement of the

electrons, as well as their thermal properties, will play important roles

in determining the frequency and density of resonant modes in short plasmas,

The most important result we find is that for plasma length such

that 2ui > w, there are no unstable resonant modes. For example if we

set L = 50 a., a length which is able to sustain an instability for

T = .1 T., and then let T = T., we find no physical (real, positive)
e 1 e 1 v

eigenvalue for any frequency near Q.• We would like to be able to
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generalize this result to apply to all finite plasmas in which the

electrons are adiabatic, that is, where ox » u> We may establish

the plausability of this result by using a model in which the electrons

are adiabatic and the perturbed charge density is

T
n Q V\ ^

p(z) =-— ipi (z) (f(z) - f)
6 ' (35)

where
TT

1=2^ \ *(S) d$'
-TT

is the average potential. This ty , a constant of integration of the

equation of motion for adiabatic electrons, assures that flute modes will

not contribute to the perturbed electron charge density. With this

p(z), we may write Poisson's equation

2A T

^4^ -2X*(S) +f(z) H(u)) i(z) -f(z) -i (J(z) -*) =0 (36)2 <_„.n^, ^pv ' lxv^; nw uu-nv ; t
dz e

where H(uj) represents the ion term, which we again take in the 'local'

approximation.

As we shall see later, flute modes can exist in a plasma with

adiabatic electrons, so we must first determine if flute-mode solutions

to (36) obtain. By flute mode, we mean that \jj(z) is essentially constant,

.2

enough that kx\ (z) ~ 1. So if we write

*2
lespite a large decrease in uV(z) as z increases, until z becomes large

iji(z) = ij, + 6 *(z)

then equation(36) becomes

* ( * \ uV \ ~T A2/A\ TT/ \ a£1,a, i6* -2^ -2X6* +^(z) H(«„) *+ip(z) H(u,)6* -ip(z) ^ =0 (37)
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We now integrate each term of equation (37) from -L to L , where we
o o

choose L such that
o

W2(L ) 6f(L )
-2—— « 1 and — « 1

Sg(0)
To lowest order, we get the dispersion relation

where

U) H( u>) = 2X
_fcr

1

L
,-. o

a20 =2L_ J 4(2) d"
— XJ

o

(38)

} (39)

/

is the average density of the plasma in the region where 6* « ijt . Thus

flute modes can exist if a homogeneous-plasma dispersion relation can be

satisfied, and the density is the line-averaged density. As we shall see

later, our flute-mode results are in agreement with this.

We wish to go to next order in equation (37) to see under what con

ditions a flute mode can exist. To do this, we use (39)to rewrite (37) as

— T

6*" +(ufrz) -ot) H(u)) 8* -^ i2(z)64,
p e y

Now if we evaluate this equation at L , we find

(i2(z) - a2) * Ao)

S*(L0)

1 +-
*? &<Lo> "

T
e 2X

1 U) (L )wpv o'

(kl)

kxX^(Lo) 2X6.

So we may satisfy our conditions for flute modes, equations (37) , if

0, u) (L )

T. 2 -2
U)
P

(42)
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2

For example, for the Dory-Guest-Harris mode, <u ~ 100, so (42) is readily

satisfied. Thus we expect to recover Dory-Guest-Harris modes in the

adiabatic-electron limit, and we expect them to have flutelike behavior.

On the other hand, near threshold, the negative energy modes, speci

fically the residual mode, cannot satisfy the condition (42) , and thus

ar<e not flute-like in behavior. In fact, under no conditions near threshold

do we ever observe a flute-like residual mode.

We must therefore examine solutions of (36) for non-flute modes. To do

this, we make use of the fact that \|t(z) must vary on a scale on the order

f.2
of UL.(z) (or faster), in which case we may expand

i2(z) - of (1 - z2) A3)
P po v ;

Poisson's equation then becomes

T T T*"(*) +[ip0 (H(U)) -^) - 2X - u)2o(h(u)) -^ )z2]ifz) =̂ ^ ^(1-z2)
(44)

For non-flutelike modes, the ion term is

H(u>) = - ) 11 DX(X) ZI— -i) - - D^(X) z(— r) A5)vu" L> nv ' \ k||CK||i / lv \ k||Q(||i/
n

As the magnitude of H( uo) is much less than 1, we may neglect it in com

parison with T./T for electron temperatures of physical interest
1 e

(T < T.). Also because the mode is non-flutelike, \ « \|t(0) = 1, and

we may neglect the inhomogeneous term to lowest order. Our differential

equation becomes

e

For z « 1, the solution (which vanishes for large z) is
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/ •"£• 2./2

{(£) =Aexp [- i yJ: (1 +k2 x2e) z] A7)
e

which is like a vacuum solution where the Debye shielding distance has

been "extended1 by the adiabatic electrons. Such a solution is consistent

^2
with the approximations of neglecting the z term and the inhomogeneous

term in AM > and this solution admits no possibility of wave propagation.

We thus conclude that a necessary condition for the existence of un

stable modes in plasmas with adiabatic electrons is that the mode exist

only at high densities and be flutelike. In earlier work, both flute modes

of the Dory-Guest-Harris type and negative-energy modes were predicted to

10,2
be unstable at short lengths. The negative-energy modes were predicted

to become stable at sufficiently short plasma lengths because of ion

thermal effects (which are properly included in our model, but which do

not seem to affect our results greatly). However, the theory used to

derive these results depended on kpa being much less than cu, and this

is not true for the residual mode in short plasmas. In fact, in our

model, we do not assume that i)r(z) is flutelike, but rather let the form

of iji(z) be determined by the eigenvalue equation. We find that the

residual mode near threshold is not flutelike, and can be stabilized at

a length dependent on electron temperature. We can therefore write down a

minimum-length criterion for stabilization of the residual mode: the

plasma is stable against these modes if

/T M.
L /a. ^2 /— — (48)
p7 i V T. m v '

l e
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B. Non-Resonant (Flute-Type) Modes

We now turn our attention to a study of two types of flute modes,

the Dory-Guest-Harris, and the drift-cone instabilities. While

the latter is the more important instability in terms of its potential

danger to mirror machines, its characteristics are very similar to those

of the Dory-Guest-Harris mode, which we study in detail. We shall first

discuss results for the Dory-Guest-Harris instability, with an emphasis

on the general characteristics of flute modes, and then we shall focus

attention on the drift-cone mode in the plasma parameter region of most

interest.

The Dory-Guest-Harris instability occurs in an infinite plasma

if the range of kx allows a coupling of ion-cyclotron wave associated with

different gyroharmonics, and with our model velocity-space distribution

function, can occur only if j 2: 3. The mode which occurs at lowest den

sity and for smallest j (corresponding to the smallest loss-cone) occurs

at cu = 0. The next highest mode occurs at u) - 1.2 Q. . We examine the
1

properties of these two modes.

It is easier to recover the long-plasma limit numerically for flute

modes than for resonant modes, since the principal contribution for flute

modes comes from the p = 0 component. That we recover this limit is seen

in Fig. 10, which shows the density (at a growth rate y = -2 Q.) for the

U) = 0 Dory-Guest-Harris mode as a function of plasma length. Results are

independent of electron temperature at longer plasma lengths, as one

expects for flute modes, and agreement with long-plasma results is good.

As the plasma length becomes shorter, electron temperature affects

results increasingly, even when ox is much less than y. For lengths
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below the point where ox ~ Y> we find the density is almost independent

of scale length, which we would expect from the adiabatic electron model

described above.

We also see changes in the character of the mode from plots of u)(z)

in Fig. 11. At long lengths, the perturbed potential (scaled to the

plasma length) is localized in the center of the plasma. As the plasma

length is shortened, the potential remains constant over an increasingly

longer proportion of plasma length, corresponding to an increase in the

ratio of ox to y, and resulting in a slight stabilization because of

the resulting 'averaging' of the density over a longer length. Finally,

in the regime yv > y, \|i(z) is constant out to where k^X-p. ~ 1. Since

\ , the electron Debye length, is not a function of plasma length, there

is no further increase in plasma density (see Fig. 11).

In contrast with the situation for very long plasmas, there is a slow

variation of density with T at short lengths, as seen in Fig. 12. This

is primarily a result of the change of the point where k^y. = 1> which

results in a variation of the line-averaged density. We may see this from

the following model:

2

then

Jf p
...

Now the average density is

~2~ 2

-0^.(0) 1 Txilll/2
/vR^^^r <^>

n„. kx a, e

o) . u) CO) L yZ„NJi =.Al-2 erf(^) (50)
n. 0. f p
11
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and is constant for constant growth rate. Combining (49)and (50),we get

V(0) V i L rV(0) i TxiT,V2

Qi ni erf(-f) fii kxai e

This scaling agrees with that shown in Fig. 12 as long as z_/L > 1.

Let us now examine the behavior of this mode at different growth

rates, particularly as y -» 0. In Fig. l4, we see a plot of density as a

function of y for various ui , corresponding to various plasma lengths.

As y is decreased, a branch point is eventually reached below which the

mode no longer occurs at oj = 0 and below which the density drops sharply

as illustrated by the dotted lines. At these low growth rates, the mode

makes a transition to a negative-energy mode, provided one can exist at

that plasma length. This is better seen in Fig. 15, which shows the

complex frequency variation as the density, the parameter along the curve,

is varied. For the mode at a plasma length of 200 a., the mode becomes,

at low growth rate, a negative-energy mode with a threshold density

'pi*— — 1. In contrast, the mode for a plasma of length 20 a., at which
,2 1

length the residual mode cannot exist, has a frequency, which while not

zero, is small, and a threshold density like that of a Dory-Guest-Harris

mode. Thus by stabilizing the residual mode (through finite-length

effects), we may change the threshold characteristics by a large amount.

The second Dory-Guest-Harris mode, which exists for j ^ 6 and which

occurs in an infinite plasma at a frequency yj ~ 1.2 Q., has the same

behavior as the uj = 0 Dory-Guest-Harris mode with one exception mentioned

below. First let us consider the variation of density with electron

temperature. We see in Fig. l6 that the behavior is exactly the same as

2
U).

CI2
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the behavior of the uj = 0 mode, namely that characterized by equation (51).

Figure 17 shows $(z) for the same plasma parameters, and almost the same

density, for the two different Dory-Guest-Harris modes, and here again

the similarity of the flute-mode behavior is apparent.

The variation of density with plasma length is apparently different

from that of the u> = 0 mode, as is seen in Fig. l8. However, this is

nothing more than a result of our having chosen a lower growth rate for

the second mode. When the growth rate is lower, the mode takes on the

characteristics of the residual mode as long as the plasma is sufficiently

long for that mode to exist. The same behavior would have obtained had

we chosen a growth rate y ^ .08 Q. for the u) = 0 mode (except that the

u) = 0 mode couples into the residual mode at <jj ~ Q., while the second

mode seems to couple into the equivalent mode at u) ~ 2Q.). Conversely,

had we chosen a higher growth rate for this second Dory-Guest-Harris mode,

the behavior would have been the same as that of the yj = 0 mode.

We now turn our attention to the drift-cone instability. This in

stability, first examined in an infinite, homogeneous plasma by Post

and Rosenbluth and by Mikhailovskii is, like the Dory-Guest-Harris mode,

a flute mode in a homogeneous plasma. In a finite plasma, it also shares

many of the properties of the Dory-Guest-Harris mode. One principal

difference in the characteristics of the two modes is that the drift-cone

mode can have much higher growth rates than the Dory-Guest-Harris mode,

in fact, greater than the ion cyclotron frequency. Because of these

high growth rates, the mode is potentially very dangerous for mirror-

contained plasmas.

In the high growth rate regime (where the mode has flutelike be

havior), the variation of density (at a constant growth rate)with plasma

length is the same as that of the Dory-Guest-Harris mode pictured in
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Fig. 10; in other words, as the plasma is shortened, the instability

becomes less unstable in the sense that a higher density is required for

a given growth rate. In the low growth rate regime, it also behaves like

the Dory-Guest-Harris instability shown in Fig. 18, that is, the density

decreases as the plasma length is decreased until a certain point where

the density rises sharply. The variation with electron temperature is

also identical with that of the Dory-Guest-Harris mode: when olv is

much less than the wave frequency, the results are essentially independ

ent of electron temperature, while in the opposite limit (ta » u)) the

flute-mode behavior of the type shown in Figs. 12 and l6 for the Dory-

Guest-Harris mode obtains.

The variation of density with growth rate for two different plasma

lengths is shown in Fig. 19a. As mentioned above, this is also similar

to the Dory-Guest-Harris mode, except for the higher growth rates of the

drift-cone mode. Notice that the drift cone mode at L /a. =50 does not
p7 i

couple into the residual mode which exists at that length at lower den

sity (see dashed curve). By contrast, the curve for a plasma length of

210 a. shows the transition of the drift-cone mode into the residual

mode as the density becomes small. This curve should be compared with

the same curve in the absence of a radial density gradient (Fig. 8);

below the transition, the mode in Fig. 19 takes on the same properties

as the mode in Fig. 8. At larger values of kx, the drift-cone mode

occurs at higher frequencies, and, although its threshold density is

higher than for lower kx, it can occur at higher growth rates than the

lower kx drift-cone mode. This is illustrated by the third curve in

Fig. 19a, which shows results for kx ax = 10. The corresponding fre

quencies for these curves are shown in Fig. 19b.
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It is also true that the most unstable kx for a Dory-Guest-Harris

mode does not coincide with the most unstable kx for either of the other

two types of residual and drift-cone modes. Nevertheless, we may find

ranges of kx in which all of the modes studies are unstable. If we now

examine one mode, say the Dory-Guest-Harris mode with such a kx, and if

we now 'turn on1 the drift-cone mode by increasing the radial density

gradient, we find that the character of the mode makes a smooth transi

tion from a Dory-Guest-Harris mode to a drift-cone mode. This is illu

strated in Fig. 20, which shows frequency as a function of density for

different values of radial density gradient. We must conclude that in a

short plasma, no instability exists as a separate entity if another un

stable mechanism can exist, and that the instability will always behave

according to whatever instability mechanism is 'strongest' with the given

plasma parameters.
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IV. SUMMARY AND CONCLUSIONS

In this paper, we have reported results from calculations employ

ing a model which is valid in short as well as long plasmas, at high as

well as low electron temperatures, and for flute modes as well as non

zero k|| modes. In regimes in which results have been calculated pre

viously using other theories, we get good agreement with the one excep

tion mentioned. Moreover, our results are internally consistent.

Of course a model is used, and any model is limited by the number

of physical effects which are included. We have, nevertheless, included

in our model the necessary effects included in previous theoretical

models, namely the ones which should answer the questions concerning the

stability of short, mirror-contained plasmas. In addition, we have

included electron temperature effects which were not included in previous

models, and we have found these effects to be important, especially in

short plasmas.

Our results consistently show that no unstable resonant mode exists

in a short, mirror-contained plasma, and that the minimum unstable length

for such a plasma is dependent on electron thermal properties. An

analytical model used to interpret these results also leads to the same

conclusion - that no real-density eigenmode can exist in a short plasma

with adiabatic electrons, that is, when the thermal electron bounce fre

quency is greater than the wave frequency.

Of course we are still left with the spectre of the existence of

the high-growth-rate flute modes in mirror plasmas, no matter how short

the plasma. However, it may be important that this flute mode must

exist as a separate entity, rather than as an instability with mixed
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properties. For instance, finite-g effects affect resonant modes very

little, while they seem to have a much larger effect on flute modes.

Thus there is some reason to look for stabilizing effects when only

one type of unstable mode exists.

One direction to pursue the matter is with finite-g effects. Indeed,

techniques using this basic model but incorporating finite-g effects

have already been reported, and more work awaits the completion of this

present study.

Whether or not some regime of complete stabilization can be attained

is still a matter very much open to question. At least we have found that

the threshold density for the onset of instabilities in short mirror

plasmas is higher than predicted by previous results, and these results

should serve as a guide for scaling experiments to test this.
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Table 1. Comparison of Long-Plasma Theory
with Numerical Results
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p7 1

? 2
Berk, et al. (l = ») ui = .802 Q. U) . A- = ^-57

v m ' 1 pi 1

L/a. =10^ u) = .797 Q. u)2 /Q2 = 5-3^
m' 1 1 pi 1

m 2 mode L /a . = 400
T)' 1

2 2
Berk, et al. (L = ») u> = -931 0, ^ M = 1'29

v m ' 1 Pi 1

l /a. = 10^ u) = .932 n a 2/o.2 =1.22
m' 1 1 pi ' 1
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