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ABSTRACT

The sensitivity of the flux in deep-penetration problems to aniso

tropic scattering was studied within the framework of monoenergetic

transport theory. Several parameterized, anisotropic scattering kernels

were used to represent a general class of anisotropies. The representa

tion of these kernels in Legendre polynomial series of various orders was

explored to determine their effect on calculated discrete eigenspectra

and infinite medium fluxes. Eigenspectra for several kernels are pre

sented as a function of the kernel parameter. Conclusions were drawn

about the order of the Legendre expansion of the kernels required for

accurate deep-penetration calculations, and the possible existence of

multiple diffusion decay modes in realistic problems. In general,

rather low order Legendre expansion was found to be adequate

for problems in which the scalar flux was the primary quantity of

interest.
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I. INTRODUCTION

The study of anisotropic scattering in neutron transport theory has

had a long history, certainly going back at least to Fermi1 and other early

investigations2'3'4 and lucidly summarized in the monograph by Davison.5

More recent efforts in this field, notably by Mika6 and Jacobs,7 have

taken up the method of singular eigenfunctions developed by Case8 to

answer more general questions about the effects of anisotropy. Our

specific interest in this problem stems from an investigation of the sensi

tivity of deeply penetrating neutrons in bulk shields to microscopic cross-

section data.9 The role of scattering anisotropy in such problems, although

not as fundamental as that of the total cross section, does raise a number

of interesting questions.

Specifically, one would like to know how well fluxes can be calculated

using rather poor representations of elastic scattering anisotropies.

"Poor" is used here in the sense of low-order expansions of the scattering

kernel in Legendre polynomials. Since angular distribution data for shield

calculations are often represented in high-order Legendre polynomial series,

the effect of truncating such Legendre expansions at very low order needs

to be thoroughly investigated if adequate shields are to be designed with

a minimum of computing effort. In addition to this consideration, it would

also be advantageous to know, in a quantitative way, the behavior of the

flux at large distances from a source in highly anisotropic scattering

media. The relationship between the roles played by the scattering

anisotropy and absorption is important here, as well as the question of

their effect on the asymptotic decay of the flux far from any sources.

Due to the relative complexity of shielding design problems, extensive

use is made of numerical methods in their solution. This practice neces

sarily obscures the relationship between the basic microscopic cross-

section data and the calculated fluxes. Although more idealized problems

are by no means easy to analyze, they certainly simplify matters consider

ably. We have therefore found it to be more instructive to examine general

sensitivity questions in the rather restrictive setting of monoenergetic



transport theory. This approach has the effect of limiting the discussion

to transport in the absence of slowing down. Since the effects of aniso

tropic scattering are evident in both the transport and slowing down

processes (arising in the latter case as a result of a coupling between

scattering angle and energy loss), this appears to represent a strong

limitation of the present approach when applied to general shielding

situations. In certain important instances, however, it is felt that con

clusions drawn from monoenergetic cases will have more general applic

ability. From the viewpoint of a multigroup solution of the Boltzmann

equation, each group represents a monoenergetic problem with a distributed,

anisotropic slowing down source. If, as in the case of a deep-penetration

problem, the transport within certain energy groups is of paramount

importance and this effect overshadows the effect of the distributed

source in these groups, then an analysis of monoenergetic transport can

certainly provide useful information in these instances. Such a situation

is practically realized in shielding problems using materials where total

cross-section behavior contains deep minima or "windows" through which

most of the leakage from the shield occurs.

In light of this argument, time-independent monoenergetic transport

theory has been used as an analytical tool to answer some specific sensitiv

ity questions. Since deep penetration in bulk shields is our major con

cern, emphasis is placed on determining the discrete eigenspectrum of the

transport operator since it is these discrete modes that are dominant at

large distances from any source. As such, the discussion is restricted to

an analysis of the scalar flux from a plane isotropic source in an infinite

non-multiplying medium. The magnitude of the discrete eigenvalues for this

problem will have a direct bearing on both the relaxation length of the

flux at large distances from the source and the relative normalization of

each eigenmode and thus the amount of deep penetration.

The field of monoenergetic transport theory has been extensively

explored in the past. Case8 pioneered the modern approach of using a

complete set of eigenfunctions to describe transport with isotropic scat

tering. The method was extended by Mika6 to include the effects of linear
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anisotropy and more recently by Jacobs7 to formally include general aniso

tropy scattering kernels. Despite these theoretical developments, num

erical studies of the discrete root spectrum and answers to sensitivity

questions have only appeared in the last few years.10'11'12 Our efforts

are an extension of these latter works and will chiefly be concerned with

answering the following three questions:

(1) What is the nature of the discrete eigenspectrum and thus the

asymptotic behavior of the flux with a general anisotropic scat

tering kernel?

(2) How are these eigenvalues and the transport process affected by

differing order representations of the scattering kernel in

Legendre polynomials?

(3) What effect do such representations have on the scalar flux at

large distances from a plane isotropic source in an infinite

medium?

As a result of answering these questions we will also shed some light

on the possibility of asymptotic flux behavior represented by multiple

discrete eigenmodes. Previous work along these lines5'12 has already

given some indication as to the upper limit of the number of discrete

modes to expect in certain instances and we will add to this knowledge by

dealing with a wider class of anisotropic kernels.

With regard to numerical computations, it should be noted that a

number of different techniques for calculating discrete eigenvalues were

used to validate all numerical values reported. Intercomparisons of the

results from all the methods showed that they were all equally reliable and

better than five decimal place precision was achieved in all cases. To

maintain consistency only the results from one of the approaches (i.e.,

the P -approximation) were reported unless otherwise indicated. Extensive

use of this method of reporting results in comparison with the others was

motivated by the fact that the P method also provided us with the infinite-
L

medium fluxes needed for other parts of the present work.



II. THEORY

A. Eigenvalue Equations

The monoenergetic transport equation with arbitrary anisotropy when

written in homogeneous form in plane geometry serves as the eigenvalue

equation for our investigations. In standard form,13 as a function of the

distance in mean free paths, x = £ z, the equation can be written as:

yg- (x,y) +^(x,y) =§I(2£ +1) f£P£(y) if^(x) (l)

where

*,(x) iKx,y') P£(M') du1 (2)

All other quantities have their conventional meanings.

The characteristic equation for the discrete eigenvalues is generated

by assuming a solution Ansatz of the form ijj(x,y) = <f>(y) e subject to

the condition that |v| >_ 1. If this solution form is inserted into Eq.

(l) and a normalization condition used on the integral of 4> (y), we can

identify a function A(v) whose zeros represent the discrete eigenvalues,

as follows:

A(v) =1-f- I (2£ + 1) f^ Q£(v) . (3)

The 4> 's here are Kusfier polynomials [physically the angular moments of

<J>(x,y) in the v mode], which are functions of c and the f^'s. These

polynomials can be generated from the following recursion relationship:

vd-°V *v^2ffT*v,,+i +2TTT*v,,-i *=o.i.-..- W



The Q (v)'s are Legendre functions of the second kind defined as follows:

1Pic(v) ,,Q£(v)=|
-1

For each discrete eigenvalue in Eq. (3) there is an associated disc

rete eigenfunction, which together with the continuum eigenfunctions

(associated with the eigenvalues |v| <_ l) form a mathematically complete

set in y space in a number of practical instances. The problem of a plane

isotropic source in an infinite medium is such a case, amenable to solution

with a set of eigenfunctions complete over the full angular range -1 <_ y <_ 1.

In this instance we can write the solution for x > 0 as follows:

J -x/v

hU) = l \ K ie +
j=i j V

A(v) <(. (v) e"x/v dv x >0 (6)

where the <j> and 4>,,(v) are the angular moments of the discrete and con

tinuum eigenmodes, respectively, and the A and A(v) are the eigenmode
J

normalization coefficients, which are completely determined by a jump

boundary condition at the source plane.13

The historical approach to solving Eq. (l) has been the P method.
L

Both sides of the equation are first multiplied by P.(y) and integrated

over y from -1 to 1. The infinite set of equations (for all I values)

which results is then truncated at Z=L by setting d\p (x)3x = 0. This

gives rise to the finite P -approximation equations, a series of coupled

linear first-order differential equations which are also solvable with an

Ansatz of the form iji(x,y) = 4>(y) e V. As L approaches infinity the

procedure above results in an infinite set of equations which are an

alternate representation of Eq. (l). The P -approximation solution for L

approaching infinity thus converges to the rigorous one.5 In particular,

the continuum eigenfunctions in this limit are approximated by an infinite

set of discrete values lying in the range -1 <_ v <_ 1. This alternate ap

proach to solving the monoenergetic problem also yields results for disc

rete mode eigenvalues and normalization coefficients and is thus quite

useful for numerically approximating rigorous solutions.



B. Methods of Computing Discrete Eigenvalues

Having presented the characteristic eigenvalue equation, a brief dis

cussion of the numerical methods by which it was solved is now in order.

Since the equation is trancentental in v it is impossible to get an

explicit analytic representation of all the roots; numerical approxima

tions must be employed. In computing these values use can be made of the

fact that the eigenvalues always appear in pairs as +_ |v|.13 We will

therefore limit ourselves in what follows to a discussion of positive roots

only and flux solutions for x > 0.

In a straightforward manner, one of the methods used to evaluate the

eigenspectrum involves a direct procedure for determining the zeros of

A(v) in Eq. (3). To accomplish this, a coarse scan of a region in v

space from 0 < |v| 1 <_ 1 is made in search of points at which A(v) changes

sign. Once these values of v are located, a suitable convergence scheme is

used to get the root to any degree of precision desired. The Q.(v) func

tions in this instance are calculated by backward recursion relationships

starting at £=L so as to minimize roundoff errors. The value of Q (v)

needed to initiate this recursion is obtained from its definition in terms

of hypergeometric functions,14 uhich in turn are calculated from a polynomial

series in v 2. Calculation of the <t> 's also makes use of a recursion

relationship, specifically that given in Eq. (M.

A second approach to solving Eq. (3), due to Van de Hulst,12 was also

employed. Here use is made of the fact that the ratio of Kusfier polynom

ials of order I and i+1 is given by the following simple recursion rela

tionship :

ric(v) =(2£+l)(l-cf£)v -U+l)r£+1(v) (?)

where r (v) = <J> /<(> . For 1=1, l=™, and £=L+1 (where f = 0 for

all ic>L), the following particularly simple relationships exist:



and

r (v
L+lv '

= r (v) 1 -

ri(v) = (1 - ci

r ( v ) = v /v2

2(L+l
+ error of order

:l+d2 JJ

(8)

(9)

:io)

Using these results, the Van de Hulst approach suggests the following

root-finding scheme: (a) scan the v range and compute a value of r (v)
00

for each value of v; (b) use r (v) to get an approximate value of rT (v)

using Eq. (10); (c) use Eq. (7) and the set of f 's Jo <_ L to recurse back

wards to r2(v); and (d) compare the new value of v obtained from Eq. (8)

with the one guessed at to begin the scan. This process is continued until

the guessed value is approximately equal to the recursed value, at which

point the result can be made as precise as desired using any convenient

numerical root-finding scheme. Van de Hulst points out that the recursion

error decreases as 1/r2 in each backward step (r being less than unity),
while forward recursion errors increase as r2.

oo

As a way of checking that no roots are missed in the scan, Van de

Hulst also suggests that for a series of fixed v values, one can solve the

eigenvalue equation for L values of c. With v known, Eq. (3) is simply an

L -order polynomial equation in c with L roots. Plotting the L values of

c which solve the equation as a function of v it is quite easy to check the

exact number of v roots for any particular c value by observing how many

curves have intersections with the chosen c value. This reverse procedure

points out the fact that the number of v roots is always less than or

equal to L, the maximum order f used to represent the scattering kernel.

There are at most L curves which can produce crossings, and thus eigenvalues,

as a function of v.

A third approach to the eigenvalue problem involved the use of the

traditional P approximation.15 For very large L, as we have already
J_i
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pointed out, this method yields solutions which approach the rigorous

results. The eigenvalues obtained are thus converged to any desired

precision by increasing the order of the approximation. In practice,

approximations of order L = 39 were found to be quite satisfactory for the

types of anisotropies investigated. Since the P -method with odd L yields

[(L+l)/2] distinct pairs of eigenvalues including a discrete representa
tion of the continuum |v| <_ 1, the actual discrete eigenvalues are iden

tified as those with |v| _> 1. Although the calculation of these discrete

values cannot be separated from a determination of roots with |v| <_ 1,
there is little difficulty in calculating all the eigenvalues by QR

double iteration.17 For L not too large (about 39) the procedure, in

fact, is somewhat less time consuming than the scanning techniques used.

The accuracy of all the methods used, in any event, compared favorably

for all the problems studied. In general there was little difficulty

in obtaining five-decimal place precision for all eigenvalues with all

three methods.

III. EIGENSPECTRA FOR PARTICULAR ANISOTROPIES

In order to determine the sensitivity of the flux to anisotropic scat

tering and also to shed some light on the transport process with highly

forward peaked anisotropies, a number of functional representations of the

scattering kernel in parametric form were chosen for study. This approach

allows the calculation of eigenspectra and the identification of effects

to be made as a function of a single parameter at a time. The investigation

includes a detailed discussion of the discrete eigenspectra of several

anisotropies as a means of explaining flux sensitivity effects and determin

ing the modes of transport at deep penetration.

A. Dirac Delta Functions

Probably the most illustrative single-parameter anisotropy is one of

the form 6(y-y )/2tt. where 6(y) is a Dirac delta function. With a function
o

of this type all scattering is restricted to the surface of a cone of

angle whose cosine is y with respect to the x axis. The particular case of



y =1 is most interesting and merits some examination. In this instance

scattering is in the forward direction only, with the result that there is

no net change in the direction of the transporting particle. Under such

conditions the process can be likened to one in which particles transport

in a purely absorbing medium — scattering events having no effect on

transport. This analogy is particularly useful in that the problem of

transport in a purely absorbing medium has an analytical solution for the

flux (it is simply unscattered). Numerical calculations using this delta

function anisotropy can therefore be compared with theoretical predictions.

In addition to this fact, we can speak of such an anisotropic angular dis

tribution in a limiting sense as a "worst" kind of anisotropy. It is

approached but never reached in many real situations (for instance, as

neutron energies increase the scattering anisotropy in any nuclide becomes

increasingly forward peaked). The results for this case should therefore

provide an upper bound to the kinds of effects likely to be found in

practical situations.

With regard to the eigenspectrum arising from such an anisotropy, it

should be noted that the spectrum in a purely absorbing system consists

solely of a continuum in the range 0 <_ |v| < 1. No discrete modes exist

-v
and the plane geometry flux in all eigenmodes decays faster than e

For the delta function anisotropy we can therefore expect on theoretical

grounds that the eigenspectrum will approximate a continuum as the number

of f„'s used approaches infinity. In this instance the value of c acts as

an arbitrary scale factor (since scattering has no effect on transport)

extending the continuum range 0 <_ |v| <_ (l-c) l. The upper limit in this

case is the natural upper limit for any non-multiplying system since the

"ETZ
flux can decay no slower than e and £ z(l-c) = £ z.

j T A

Clearly then for this extreme case of anisotropy, the discrete part

of the eigenspectrum from 1 <_ |v| <_ (l-c) 1 goes over into a continuum.

Using a finite number of f 's to represent the anisotropy, however,

generates only a finite number of discrete eigenvalues. The continuum is

therefore approximated by a denumerable infinity of discrete roots as order
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of the approximation approaches infinity. Since we always deal with a

truncated series of f 's and a finite discrete eigenspectrum in any real

istic calculation, the success of the truncation in approximating the

theoretical case can only be judged by comparing fluxes in this instance.

It is meaningless to make any statement about how well discrete roots ap

proximate a continuum. For other 6(y-y ) anisotropies, where \iQ f 1,
a finite order discrete eigenspectrum was found to exist and for these

cases (specifically for y =0.8 and 0.9) the effect of truncations on the

eigenvalues can be evaluated.

The 6(y-l)/2TT anisotropy was therefore chosen to begin the study of

determining the effect of different order Legendre series representations

on the infinite medium flux from a plane isotropic source. All the f 's

in this case are unity and a value of c=0.5 was arbitrarily chosen for use

in all the runs since c appears only as a scale factor in the analytic

flux solution for this case.

Some striking conclusions about how well a forward peaked delta func

tion anisotropy can be approximated with just a relatively low-order series

of f 's, with I in the range 0 < I < I , is illustrated in Table 1 and
£ ' ° — — max

Fig. 1. The table and the figure show the eigenspectra and infinite medium

scalar fluxes, respectively, resulting from a series of 6(y-l)/2Tf aniso

tropy runs with c=0.5 using several values of I from 3 to 36 in a

P3g-approximation calculation.

The fact that the approximation of the infinite series of f 's by a

finite number of them results in a finite discrete spectrum approximation

to the continuun is clear from Table 1. As £ increases, more discrete
max

roots appear to fill up the region from |v|=1 to |v|=(l-c) l. Although

these approximate eigenspectra will never represent the continuum, they

approximate this behavior in the same way that a finite order P -

approximation with a finite number of eigenvalues represents the portion of

the continuum with |v| <_ 1. That is to say, the discrete eigenspectrum

spans the whole range of the continuum, becoming denser as the order of

approximation increases and the scalar flux for any particular problem



Table 1 Discrete Eigenspectrum for 6(y-l)2ir Anisotropy with c=0.5 as a Function
of Highest Order f Used in a P39-Approximation Calculation

Vi v2 v3 v., v5 v6 v7 ve v9 V10 Vll V12 v13

£3 1.7654 1.0263 - - - - - - - - - - -

fs 1.9077 1.5387 1.0205 - - - - - - - - - -

u 1.9313 1.7495 1.4129 1.0171 - - - - - - - - -

fl2 1.9700 1.8442 1.6268 1.3348 1.0147 - - - - - - - -

fl5 1.9797 1.8941 1.7438 1.5359 1.2818 1.0129 - - - - - - -

flB 1.9854 1.9234 1.8138 1.6601 1.4672 1.2435 1.0116 - - - -

•

-

f21 1.9889 1.9421 1.8588 1.7409 1.5914 1.4139 1.2145 1.0105 - - - - -

£2, 1.9914 1.9547 1.8893 1.7963 1.6774 1.5348 1.3714 1.1917 1.0095 - - - -

f27 1.9931 1.9636 1.9109 1.8358 1.7392 1.6226 1.4876 1.3368 1.1734 1.0085 - - -

fso 1.9943 1.9701 1.9268 1.8648 1.7849 1.6880 1.5752 1.4479 1.3080 1.1583 1.0074 1 -

f33 1.9952 1.9750 1.9333 1.8868 1.8197 1.7380 1.6425 1.5341 1.4141 1.2838 1.1457 1.0055 -

f36 1.9960 1.9788 1.9480 1.9099 1.8467 1.7770 1.6952 1.6020 1.4982 1.3848 1.2629 1.1341 1.007
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may be represented to a high degree of precision in any event. This fact

is borne out in the comparisons of approximate and rigorous fluxes shown

in Fig. 1.

From theoretical considerations, the scalar flux from a plane isotropic

source in an infinite, purely absorbing medium is known to behave as E2(£.z)

(i.e., as an exponential integral of the first kind). Figure 1 shows a

comparison of the scalar flux in a c=0.5 medium resulting from a P3g-approxi-

mation with a 6(y-l)/2iT anisotropy and rigorous E^O.S x) results for vary

ing values of £ .It is clear that even an I =3 truncation of the
max max

series is sufficient to give results within 4% of the rigorous Ej behavior

in a range from 0.1 mfp to 10 mfp. This is quite remarkable since the E^

function is singular at the x=0 source plane and behaves as x 1 e at

large values of x. With higher values of Z we see that the oscillatory
6 e max J

nature of the errors decreases, and together with this, the range over

which the approximation is satisfactory increases substantially. Thus

more discrete roots, with the largest approaching |v |=(1—c) 1 and the

smallest approaching |v|=l, result in a better approximation to the

behavior of the scalar flux at large and small distances from the source.

The fact that an Ej(x) is singular at the origin and goes as x 1 e

at very large x will, however, always result in a breakdown of the approxi

mation in these regions for any finite number of f.'s.

To all intents and purposes, however, it is safe to conclude that an

fq truncation (SL =3), yielding scalar fluxes within 4% of the rigorous
" max

values out to 10 mfp, is a reasonable approximation for this case. The

argument is further substantiated when a comparison of rigorous and ap

proximate angular fluxes is made. The representative sampling of results

shown in Table 2 illustrate the comparison of rigorous angular fluxes for

this case (given as e L for x/y>0 and zero otherwise)5 and the

results for an f3,P39-calculation. The £3 truncated angular flux is also a

good approximation to the forward peaked nature of the rigorous behavior.

Looking at the convergence of the numerical values of the discrete

roots of other delta function anisotropies gives further evidence for the



Table 2. Comparison of Infinite Medium Angular Fluxes at
Representative Angles and Space Points with Exact (E)

and f3,P39-Approximation Calculations (c) for
a S(u-1)/2tt Anisotropy and c=0.5

mfp\.
y 0.2 0.4 0.6 0.8 1.0

0.1 c 2.444(-l)* 1.66801) 1.118(-1) 8.592(-2) 8.554(-2)

E 2.41301) 1.54901) 1.123(-1) 8.779(-2) 7.200C-2)

0.5 c 2.790(-2) 5.7333(-2) 5.959(-2) 5.115(-2) 5.21802)

E 3.24702) 5.68202) 5.752C-2) 5.317(-2) 4.82302)

1.0 C 4.234(-3) 1.455(-2) 2.511(-2) 2.890(-2) 2.91202)

E 2.68103) 1.633(-2) 2.506(-2) 2.850(-2) 2.92802)

5.0 C -5.902(-7) 7.217(-7) 3.637(-5) 1.808C-4) 5.53204)

E 5.209(-12) 7.195C-7) 3.125(-5) 1.892(-4) 5.29904)

10 C 2.48408) -5.388(-8) -6.543(-8) 5.239(-7) 3.17606)

E 7.674(-23) 2.763(-12) 7.662(-9) 3.708C-7) 3.61306)

*Read: 2.444 x 10_1, etc.
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success of low-order truncations. As an illustration, the convergence of

the largest discrete eigenvalue in the spectrum of delta functions with

y =0.8 and 0.9 for a c=0.5 medium is presented in Table 3. It is clear

that using only an f3 truncation this eigenvalue is converged to better

than 0.2% in both cases. Considering the fact that the second largest

eigenvalues (v2 = 1.05049 and 1.08150 for the y = 0.8 and 0.9 cases

respectively) are well separated from the largest, the total scalar flux

at large distances from the source will be dominated by the largest eigen

value mode. A 0.2% error in the decay rate of the asymptotic mode will

therefore not appreciably effect the flux until distances greater than

20 mean free paths.

A discussion of why such low-order expansion work so well will be left

for the final section of this paper. For now, we will try to illustrate

in a bit more detail the same kinds of results for more realistic aniso

tropies seeing how they compare with the extreme cases of the delta

functions.

B. Gaussian Angular Distributions

To represent more realistic angular distributions and still retain

a parameterized functional form which will be able to cover isotropic as

well as forward peaked distributions, a gaussian of the following form was

used:

-[(y-y )/6]2
f(y) = A e -1 <_ v,uo 1 1 . (11)

In the limit as g ->• 0 the distribution approaches delta function

behavior at \i=\i , as 8 -*• °° the distribution becomes isotropic, and foi

values in between various other angular distributions can be formed.

The particular case of y =1 with various values of 3 and c offers a

convenient extension of the work with the forward peaked delta function.

This case also gives a strong indication of the type of realistic
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Table 3. Largest Discrete Eigenvalue of 6(y-yQ)/2Tr Anisotropy
with c=0.5 and Various f Truncations as a

Function of 2. and y
max o

max

0

1

2

3

1+

5

0.8

1.0U1+38

1.2885^

1.35926

1.36258

1.36088

1.36050

1.3601+6

I.360U5

0.9

1.01+1+38

1.31+086

1.1+731+8

1.50297

1.50607

1.50597

1.50590

1.50589
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anisotropy likely to yield a multiplicity of discrete roots and their ef

fects on transport. Figures 2 and 3 summarize the first part of the results

with this angular distribution in the form of plots of eigenvalues vs 8

and c variation. Figure 2 shows the eigenspectrum variation as a function

of 3 for a c=0.8 case and Fig. 3 shows the variation as a function of c for

a 3=0.1 case.

A look at Fig. 2 reveals that such gaussian anisotropies can give

rise to true multiple discrete-root spectra. The multiplicities are seen

to range from two up to eight as the angular distributions become increas

ingly forward-peaked (i.e., as 8 decreases). For this c=0.8 case, for

example, the multiplicity is three for a gaussian of width 8=0.1 and eight

with 3=0.01. These results indicate that the more forward peaked the

angular distribution the greater the multiplicity of the roots in the

discrete spectrum.

The fact that greater multiplicities are also correlated with larger

scattering probabilities (as measured by c=Z /£ ) is illustrated in Fig.

3. Here we see that for a 8=0.1 gaussian a second eigenvalue appears for

c values greater than 0.264. The values of the first and the second roots

increase monotonically with increasing values of c until a third root

appears at c=0.734. All three roots then increase in magnitude until at

c=l we get vi1=0.0, v21=0.37, and v31=0.83. Since at least two roots are

present when c=0.5 (approximately the c value for fast neutron interactions),

these results indicate that under somewhat realistic conditions two

discrete diffusion modes may be present.

As a result of further runs with y =0.0 and -1.0, and various other
o

8 and c values, we generally concluded that multiple discrete eigenvalues

do exist with highly anisotropic distributions in media with even small c

values. A high degree of scattering anisotropy, however, does appear to

be a definite prerequisite for such additional engenmodes to occur. Also,

the more forward peaked the anisotropy the larger the multiplicity will

be for any given 8 and c values.
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Further conclusions, which concur with those obtained for delta func

tion scattering, can also be drawn about truncations of the infinite f

series for this anisotropy. These results give valuable information about

how well approximate solutions to the transport equation can be expected

to agree with rigorous results. Again, the accuracy of the eigenvalues

has a major bearing on how good any approximation is. In Fig. 4, for

instance, the errors in the three roots which arise in 8=0.1, y =1, c=0.8

case show that with an f8 truncation all three roots have appeared and

are within 0.5% of their fully converged values. In fact, with only an

f5 truncation the two largest roots have already appeared and are con

verged to within 0.5% (for an f3 case the largest root is good to three

place precision). Thus for very deep penetration ( ^ 10 mfp's) where

only the largest root will be important, a third order expansion of the

angular distribution in Legendre polynomials should give the decay rate

of the flux to within 0.1%.

When the actual scalar flux is calculated and these truncation ap

proximations are compared with fully converged results, the success of

low-order expansions becomes even more apparent. The effect on the scalar

flux of truncating a gaussian anisotropy with 8=0.1, y =1.0, and c=0.5 is

shown in Fig. 5. Here, in comparison with the forward peaked delta func

tion results of Fig. 1, we see that an f5 expansion for the gaussian

yields more accurate fluxes on a point-by-point basis as a function of

distance. Note that the f5 and f6 curves produce ratios which are almost

unity from 10 mfp's onward in Fig. 5. The improvement is such that ac

curacies to within 0.4% in a region extending well out to 100 mfp's, are

achieved with an f5 expansion for the gaussian, while 1.5% accuracy, out

to only 15 mfp's is obtained with the same truncation for the delta

function. The accuracy in either case is certainly sufficient for

practical problems but the increased range of agreement for the gaussian

case indicates that even very deep penetration problems ( > 10 mfp's) will

be handled quite easily with an f5 expansion.

One of the surprising results derived from a study of this anisotropy

is related to the effect of multiple discrete roots on moderate and deep
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penetration calculations. One might at first glance assume that even

though multiple roots would be theoretically possible, the coefficients

associated with each eigenmode would be such that only the mode with the

largest eigenvalue would make a substantial contribution to the scalar

flux. This appears not to be the case, as is illustrated in one of the

previous figures, Fig. 3, and also in Fig. 6. The coefficients for each

eigenmode in the case of a gaussian anisotropy with 8=0.1, y =1.0, and

various c values are shown back in Fig. 3, while the contribution of each

mode to the total scalar flux from a plane isotropic source in an infinite

medium with c=0.8, appears in Fig. 6.

What is apparent here is that the relative strengths of each mode (as

determined by the A values) are quite comparable in all cases except as

c approaches unity. Certainly for the c=0.8 case, as illustrated in Fig.

6, one has to go at least 3 mfp away from the source before the contribu

tion of the third and weakest mode drops below 3%. A distance of 8 mfp is

needed before the contribution of the second mode drops below this value.

In a spatial region close to the source where the continuum eigenmodes are

usually very important, the three discrete modes contribute roughly in

proportion to the size of their coefficients. For x=l this results in

about 8% of the total flux being in the third mode, 23% in the second

mode, and 50% in the first mode. The effect of multiple diffusion-type

transport modes is thus significant over a wide range of space. Certainly

these modes contribute substantially to the flux at moderate distances

(1-3 mfp) and while their effect on deeper penetrations (beyond 5 mfp) is

not too large, it certainly is not negligible as one might have expected.

It is interesting to note at this point that the contributions of the

additional discrete modes is relatively large compared with the much dis

cussed "transient" component of the flux. For the case above, for instance,

less than 15% of the flux at x=1.0 is in the transient mode. This is

small in comparison with the over 30% contribution of the second and third

discrete modes combined. With increasing values of c the transient becomes

even less significant, in addition to the fact that it dies out more quickly
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the larger the value of c.13 Only in cases with c < 0.5 does the transient

play a larger role than the additional discrete modes for this case.

C. Realistic Anisotropies

As a final way of demonstrating the effects of highly anisotropic scat

tering on transport, we will consider two cases of forward peaked aniso

tropies found in the nuclides 208Pb and 338U. The angular distri

butions for 208Pb at 14.5 MeV15 and 238U at 14.1 MeV15 with f 's as given

in Table 4 were chosen for this study. In both instances, the angular

distributions have a large forward-peaked component (comparable to a gaus

sian of width 3=0.1), as well as diffraction peak structure at smaller

angles. Because of the behavior near y=1.0, however, we can expect the

eigenspectra in both cases to look very much like that of a 8=0.1 gaus

sian and indeed the results shown in Figs. 7 and 8 bear this out. Figure 7

shows the eigenvalues and eigenmode coefficients as a function of c for the

208Pb anisotropy and Fig. 8, the comparable result for the 238U case.

Here we have a clear demonstration that multiple diffusion-type models

are indeed possible for the fast neutron anisotropies found in heavy

materials. Furthermore, a comparison of Fig. 2 and Figs. 7 and 8 brings

out the fact that the most important qualitative feature of the angular

distribution for this occurrence is its behavior near y=l. Both the

208Pb and 238U differential scattering cross sections have sharply peaked

forward scattering components with half-widths around y=l of about 0.1,

the 208Pb distribution in this case being a bit narrower than that of

238U. As the figures show, the 208Pb has up to four discrete roots and

the 238U up to three for highly scattering media (c approaching unity).

These multiplicities as a function of c are qualitatively comparable to

those found with the gaussian of width 8=0.1.

For flux calculations the relative magnitudes of the A 's are important,

and here again the results are comparable to those found for the gaussian

case. The 208Pb eigenspectrum is somewhat more dominated by the largest v

mode than the 238U spectrum and for c=l the fourth root plays as important

a role as the third for the former nuclide.
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Table 4. Legendre Expansion Coefficients for 14.1-MeV 2 8U
and 14.5-MeV 208Pb Elastic Scattering Angular

Distributions in Laboratory System

Lead (14.5 MeV) Uranium (14.1 MeV)

f0 1.0 1.0

fi 0.8462 0.8937

f2 0.7074 0.7793

f3 0.5745 0.6595

f<, 0.4808 0.5425

f5 0.4045 0.4349

f6 0.3502 0.3366

f7 0.3056 0.2490

fe 0.2668 0.1735

f9 0.2273 0.1080

fio 0.1546 0.0557

fi i 0.0971 0.0137

fi2 0.0466 -0.0212

f 13 0.0129 -0.0437

fm 0.0051 -0.0517
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If we consider a shielding problem with fast neutrons, and consider

all inelastic scattering processes to act effectively as absorption near

the source energy, then we can expect an eigenspectra similar to those shown

with c=0.5, since nonelastic processes are generally less than one half the

total cross section at these energies. Thus the spectrum for2°8pb should

consist of three discrete roots with about 38% of the flux at x=l being

in other than the largest v mode. For 238U, there will be a two-root

discrete eigenspectrum with 36% of the flux at x=l in the second mode.

All in all, these results together with the knowledge obtained from the

gaussian case indicate that multiple roots should play some role in

realistic transport problems.

As a final point, the conclusions reached about truncations are again

verified in this case. The fluxes for an £3, f5, and fully converged f3g

appearing in Table 5 show that an f5 is easily sufficient for approximat

ing the largest eigenvalue to three-place precision in the cases shown for

either nuclide.

IV. CONCLUSIONS

From the results presented we can draw four conclusions:

1. The strongest and possibly most important practical result to

come out of the study is that low-order truncations of the angular distri

bution yield quite satisfactory monoenergetic scalar fluxes for shielding

purposes. In the worst case [ a 6(y-l)/2Ti scattering anisotropy] fluxes

from a plane isotropic source were found to be within a few percent of the

rigorous values over a 10 mfp range with truncation as low as f^. This

result can be extended, by noting that even for this worst anisotropy, an

order of magnitude increase in the accuracy of the scalar flux is obtained

by simply going to an f5 truncation. All other anisotropies investigated

yielded better results with even lower-order truncations and converged

faster to the final answer with the addition of higher-order f terms.
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Table 5. Discrete Eigenspectra for 238U 14.1 MeV and 208Pb 14.5 MeV
Angular Distributions as a Function of c and Highest: Order

f. used in P3 9-Approximation Calculation

208pt
C=0.5 c==0.8

f3 (P-39) Vl = 1.4819 Vi = 2.7237

v2 = 1.1641

f5 (P-39) Vi = 1.4969 Vl = 2.7276

v2 = 1.0771 v2 = 1.3995

f39(P-39) Vl = 1.4978 Vl = 2.7276

v2 = 1.1490 v2 = 1.4413

V3 = 1.0180 v3 = 1.1574

238U c=0.5 c==0.8

f3 (P-39) Vl = 1.5405 Vi - 2.9758

v2 = 1.2587

fs (P-39) Vl = 1.5590 Vl = 2.9819

v2 = 1.1044 v2 = 1.5277

f39 (P-39) Vl = 1.5598 Vl = 2.9819

v2 = 1.1527 v2 1 .5519

v3 1.1134
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2. With respect to an understanding of the transport process with

highly anisotropic scattering, we can certainly conclude that it is both

possible and likely for multiple diffusion-type modes to exist in some

shielding situations. The contribution of the additional modes and their

number increases with increased forward-peaking of the angular distribution

and c value of the medium.

3. Unexpectedly, the multiple discrete modes do make a significant

contribution to the scalar flux at relatively large distances from the

source plane in the infinite media cases studied. Contributions for these

additional modes as large as 30% of the total scalar flux for moderately

deep-penetration problems (1 to 5 mfp) were found and these results appear

to be the rule rather than an exception with highly forward-peaked angular

distributions.

4. As for a method of calculating these multiple discrete eigenvalues,

we found that a P -approximation of sufficiently high order (L ^ 39) is a

very efficient and accurate method, even in cases involving large numbers

of roots.

A convincing mathematical argument can be made to support the first of

these conclusions by examining the discrete eigenvalue equation, Eq. (3).

Upon close inspection it is easy to show that the dominant factor in each

term of the series is Qp(v), which for convenience is plotted as a function

of I and v in Fig. 9. Here, we see that for v values greater than 1.05

the higher order £ terms decrease quite rapidly in magnitude. Above 1=5,

for v not too close to unity, the Q (v)'s are not more than third or fourth

order correction terms to Q (v). Therefore, barring pathological cases

where the $ 's dominate the series of Eq. (3), [the <j> 's representing

the angular distribution of flux for each v eigenmode], we see that the

Q (v)'s will decrease rapidly and cause an early truncation of the series.

While a mathematical explanation of the success of low-order trunca

tions is relatively easy, the problem of understanding the physical meaning

behind the conclusions reached about transport in multiple diffusion modes



32

10°
ORNL-DWG 72-9815R

-1
10

10"

CF

10'

-4
10

10-5

1 23456789 10

v

Fig. 9. Legendre Functions of the Second Kind Q (v) as a Function of



33

is most difficult. The fact that they exist and contribute significantly

to transport in realistic situations is clear from the results. Why more

than one discrete mode is necessary in any particular problem and the

physical role played by such modes in transport is far less clear.

Without really resolving this dilemma, some light can be shed on the

problem by looking at these multiple modes in a somewhat novel way.

Specifically, let us deal with the quantity y defined as follows:

y = (l-c)v (12)

i J

such that |y |<1. The average quantity is identically equal to the first

angular moment, <j) , of the angular flux in v eigenmode and is thus pre-

cisely the average cosine of the angular distribution in this mode.

If the eigenmode solutions for the x>0 flux from a plane source are

recast in terms of y we get:
v .

2

J "(EAz/% }iKz.p) = I \ <J>V (M) e j +

+

-Z z/v -£.z/v
A(v) <j)(v,y) e e dv (13)

0

where 4> (y) and fo(v y) are the discrete and continuum eigenfunctions

respectively.

We see from Eq. (13) that both the continuum and discrete eigenmodes

have an unscattered flux-type behavior (both v and the y^ 's have
j

the same range of values as y), with ZA playing the role of a total cross
section. Since the only physical decay of the flux in any system comes
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from the absorption of neutrons in transport, scattering collisions merely

result in a redistribution of the neutrons with respect to angle. Thus

each y represents an average angle cosine around which neutrons in the

v discrete mode will transport with the flux decaying only as a result

of absorption. The angular redistribution effect is represented in this

interpretation by the relative decrease in the magnitude of the continuum

modes and a change in their angular distribution with increasing z [as
-Zgz/w

measured by A(v) e <fi(v,y)]. The net effect of scattering events in

transport thus appears as an increase in the proportion of neutrons in the

discrete equilibrium modes. As such, this effect is directly related to
-Z z/v

the probability of scattering in the v mode through the e term in

the continuum. The eventual asymptotic behavior of the flux can be

characterized by discrete mode equilibrium transport with average angular

cosines given by the y 's and decaying with respect to the absorption
j

cross section Z only. Multiple roots in this interpretation appear to be

the result of more complicated equilibrium angular fluxes which must be

represented by more than one average angular mode. One might speculate

that in multiple discrete mode transport a number of independent equilibrium

angular modes are set up as a result of the effect of multiple scattering

and the particular scattering anisotropy on the initial angle a particle

entered the medium. Clusters of initial angles might contribute to

particular asymptotic modes in such an interpretation.

From an overall point of view these conclusions and interpretations

lead us to speculate that in highly scattering media with highly anisotropic

scattering, diffusion theory will have great difficulties in representing

the scalar flux. The multiple mode contribution to transport can never

successfully be represented by a theory which allows for only one discrete

mode. Since transport proceeds via multiple modes out to reasonably large

distances, diffusion theory should fail in such deep-penetration problems.

To take care of just such cases, however, our results indicate that no more

than a few additional terms in the Legendre expansion of the scattering

kernel should be necessary to improve the results substantially.
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As a final point, it should be noted that it should be possible to

see multiple modes in an experimental situation if the experiment were

carefully designed. In particular, the kind of anisotropy and discrete

eigenspectrum found in 208Pb at high energies indicates that this nuclide

can be used successfully to experimentally identify such modes. One could,

for instance, imbed a high energy neutron source in a thick slab of lead

to simulate a point source in an infinite medium. The 14.1-MeV neutrons

available from the D-T reaction is suitable for this purpose. A measure

ment could then be made to determine the scalar flux at several spatial

distances from the source plane. The existence of multiple discrete

transport modes could then be established by the success of a number of

exponentials, rather than just one, in fitting the observed spatial varia

tion of the flux. A quantitative comparison of the actual values of the

exponential decay constants and the appropriate discrete eigenvalues would

add additional information for verification on this score.

Care must be taken to use a coarse energy resolution detection system,

so as to measure the flux averaged over a few alpha regions in energy (i.e.,

AE/E should be a multiple of 1 - [(A-l)/(A+l)]2, where A is the atomic

mass of lead). Since the effects of leakage out of the measured energy

range due to slowing down effects will increase the effective absorption

cross section for this group, the group should be wide enough so that an

effective c value close to 0.5 will result. This lower limit to c will

ensure the existence of well separated multiple discrete flux modes. A

500- to 1000-keV range around 14 MeV should suffice for this purpose.

The effective scattering anisotropy for the group is not a concern here

since it approaches the real anisotropy at these energies as the group

gets wider. For a smaller group the effective anisotropy in fact becomes

more forward peaked since back scattering events would cause the neutron

to lose too much energy and remove it from the group.
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