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ABSTRACT 

Neutron noise signatures were obtained on August 3 ,  1973, that  were  

due to  abnormal  movement of the core  ba r re l  a t  the Pal isades Nuclear 

Plant.  Frequency spec t ra ,  rms noise,  and amplitude probability density 

were  recorded as sensed by ex-core and in-core neutron detectors .  

signatures will s e rve  as reference data fo r  future studies of co re -ba r re l  

motion a t  the Pal isades plant. 

that should make them useful for  noise diagnosis in other pressur ized  

water  reac tors .  

These 

Also, the resu l t s  a r e  presented in units 
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1. INTRODUCTION 

1 

At the request of the Core Per formance  Branch of the Office of the 
1 

Director  of Regulation, U. S .  Atomic Energy Commission, the authors 

investigated unusual neutronic noise at the Pal isades Nuclear Plant  in late 

Ju ly  1973. Previously the plant operator ,  Consumers  Power Company 

(CPCO), had noted.abnorma1 flux oscillations on the output f r o m  ex-core 

detectors  in the plant. 

CPCO and the plant designer,  Combustion Engineering (CE),  investi- 

gated these oscillations with noise analysis techniques and concluded that 

the oscillations resul ted f rom flow-induced motion of the core  ba r re l ,  

which hangs f rom a sea t  machined into the reactor  vessel  wall. 

thors  spent 4 days a t  Pal isades performing on-site noise analysis of 

plant signals such as in-core and ex-core neutron flux, temperature ,  and 

vibrations (sensed by ex-vessel acce le rometers )  with the aid of a computer- 

based noise analyzer.  

The au-  

These measurements  fur ther  substantiated a previ-  

ous conclusion by CPCO and CE that the abnormal  ex-core.detector  flux 

oscillations were  attributable to changes in neutron leakage to these de-  

tectors  caused by a rocking motion of the core  ba r re l  inside the p r e s s u r e  

vessel .  

por t  and a conference paper‘ and therefore will not be discussed here .  

The resu l t s  of on-site investigations a r e  contained in a t r ip  re- 
1 

Following the on-site measurements ,  an analog magnetic-tape r e -  

cording of plant neutron detector signals on August 3, 1973, was obtained 

f r o m  Combustion Engineering“’ so that an  in-depth study of the flux oscil- 

lations could be conducted a t  ORNL. Shortly a f te r  this tape had been r e -  

corded, the Pal isades plant was shut down because of leaks f r o m  the 

s team generator.  

that the vessel  internals be visually inspected to confirm the conclusion 

that the core-bar re l  had rocked during operation. 

J- 

While the plant was being repaired,  the AEC requested 

The inspection showed 

tha t  a 0.25-in. thickness of metal  had worn f rom the mating surfaces  of 

the core  support b a r r e l  flange and p res su re  vesse l  and that all fas teners  

holding the expansion-compensating ring in position were broken. 

1 

3 

J, ’ 
“‘The authors acknowledge the contribution by J .  T. Thompson of 

Combus tion Engineering Corporation who supplied the analog-tape -re - 
corded plant signals for  this study. 
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We will not a t tempt  to discuss  the details  of damage or  the mecha- 

n isms  that resulted in the fai lures  ( see  ref. 3 for  details  of the fai lure) ;  our 

objective in this repor t  is  to document the noise signatures (and the method 

used to obtain them) associated with such anomalous mechanical conditions 

within the vesse l ,  as obtained f rom the CE tape recording. 

t u re s  can be compared with signatures obtained when the plant r e sumes  

operation to determine to what degree the core  b a r r e l  rocking is  eliminated 

by the correct ive mechanical modifications made by CPCO and CE during 

the shutdown period. Also the resu l t s  are in units that should make them 

useful for  noise diagnois in other pressur ized  water reac tors .  

I 

These signa- 

2. NEUTRON NOISE SIGNAL RECORDING 

Signals f r o m  twelve neutron detectors  were  recorded by CE on Au- 

gust 3, 1973, using the instrumentation shown in Fig.  1. 

The dc component of the signals was biased out, and the fluctuating 

portion was’amplified (by a factor of 1 to  10 for  ex-core and a factor  of 

500 f o r  in-core de tec tors )  and recorded on magnetic tape using F M  e lec-  

t ronics  with a bandpass of 0 to 312 Hz. 

recorded f r o m  each of various combinations of seven detectors .  The 

amplif ier  gain and dc level of each signal were  noted s o  that the resu l t s  

could be expressed in absolute units, 

Approximately 30 min of data was 

The approximate locations of the detectors  a r e  shown in Fig.  2 (the 

angular orientations of the detectors  a r e  c o r r e c t  in the figure,  but the 

indicated distances between detectors  a r e  not to scale) .  

3. SIGNAL ANALYSIS 

The recorded signals were played back and analyzed a t  ORNL to obtain 

noise amplitude distribution, root-mean-square amplitudes, power spec t ra ,  

and cross-power spec t ra .  The instrument was a fas t  Four i e r  t ransform 

t ime s e r i e s  analyzer by Hewlett-Packard, model 5451A. 

All resul ts  were  normalized to absolute units a s  descr ibed in the 

following sections.  



ORNL- DWG 7473196 
I .  - 8  . ,  

TYPICAL SIGNAL 
CONDITIONING OF 
NEUTRON 'DETECTOR 

SEVEN CHANNELS 

I 

SIGNALS FOR ONE OF ' I  

I $ 

0 F REQU E N CY t- 1 
BUFFERED SIGNALS t- 
FROM REACTOR 
I N ST R U M EN TAT I ON MODULATED 

TAPE 
RECORDER 

V 
DC AMPLIFIER 
WITH BIAS CONTROL 
(GAIN= I TO 500) 

F i g .  1. Instruments for recording noise signals. 

ORNL-DWG 74-3195 

DETECTOR DESCRIPTION 
FULL  LENGTH, EX-CORE, BORON 40 

A 4-ft LONG, EX-CORE, FISSION 
(LOCATED AT BOTTOM OF VESSEL) 

4 FULL LENGTH, IN- CORE, COBALT 

NI10. 

N I 4 r  

Fig.  2.  Locations of neutron detectors.  
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3. ,1  Power Spectra  

The power-spectral  density (PSD) was computed fo r  each detector 

over a frequency range f rom 0.04 to 10 Hz with a resolution bandwidth 

of 0.  02 Hz. Approximately 30 min of signal was analyzed, yielding an  

estimated relative statist ical  uncertainty4 of each PSD est imate  of *17%: 

€ =- PSD = (Be T ) - 1 / 2  PSD, 
I 

= (0 .02  x 1800) - ' I 2  -N 0. 1 7 .  

In Eq. ( I - )  B 

time ( sec )  

is  the t rue PSD that would be obtained f r o m  an  infinite record .  

is the resolution bandwidth (Hz), T is the total measurement  e 
is  the standard deviation of the PSD est imate ,  and PSDT ' *PSD 

The spec t ra  were  normalized to  absolute units by dividing the raw 

Thus the spec t ra l  density units a r e  Hz ', and such var iables  a s  

PSD's  by the square  of the steady-state component of the detector signal 

'DC 
detection efficiency, detector sensitivity, and preamplifier gain a r e  a c -  

counted for  properly ( re f .  5 contains a development of this normalization 

procedure) .  

- . 

Spectra  f r o m  different detectors and even different reac tors  can thus 

be compared on the same absolute scale .  

power spec t ra l  density (CPSD) was normalized by dividing CPSD 

the product of the two steady-state signals V 

The magnitude of the c r o s s -  

AB by A B 
DC and VDc. 

3 . 2  Coherence and Phase Between Signals 

Another variable of interest  in noise analysis is coherence,  which is 

a measure  of the commonality of two signals (A and B) ,  i . e . ,  the close- 

ness  of their  relationship in a cause-and-effect sense.  It is computed a s  



Under this definition, two perfectly correlated signals have a coherence 

value of 1, and two completely lated noise signals have a coherence 

value of 0.  
t j  

If two signals have a relatively high coherence,  say > 
Thi ingful to  speak of a phase relationship between them. 

puted as 

[ ImCPSDAB (f I] Y 

( 3 )  
-1 

ReC PSDAB V ) e(f) = tan 

where ImCPSDAB(f) and ReCPSDAB(f) a r e  the imaginary and real par t s  
., 

of the c r o s s  -power spec t ra l  density, respectively. . 

3.  3 Root-Mean-Square Noise 

The magnitude of noise superimposed on a more  o r  l e s s  steady-. 

s ta te  signal can be expressed as a single number by calculating the 

root-mean-square ( rms)  noise fo r  the bandwidth desired.  

spectrum has already been co'mputed, the rms value in absolute units. is 

most  easi ly  obtained by integrating the power spectrum ( in absolute units)  

If the power 

between the desired frequency l imits ,  f l  and f2 ,  i. e .  , 

The resulting quantity is the rms noise, expressed a s  a percentage 

The estimated relative statist ical  of the steady-state signal level VDc. 

uncertainty of the rms noise is computed f rom 

€ =  2[(BT)liz] , (5)  

where B = f -f and T is the measurement  t ime.  2 1  
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3.4 Amplitude Probabili ty Density 

Amplitude probability density (APD) and i ts  integral  (LAPS), some- 
116 t imes  called "cumulative probability distribution function, 

culated for  each detector.  

APD was calculated, because the APD is  frequency dependent and we 

des i red  to  calculate the APD f o r  approximately the same frequency range 

as used for  rms. 

were  computed using a total signal t ime of 2 7  min for  each of the 12 de-  

tectors .  

( rms,  PSD, CPSD), the APD was normalized to the steady-state signal 

level. 

TO-') vs  amplitude in percentage of steady-state signal level VDc. 

were  cal-  

Detector signals were  band limited before the 

Therefore ,  APD's  f o r  the range f rom 0.025 to 5 Hz 
- 

To maintain consistency with the other quantities computed 

Therefore ,  the APD was plotted as probability density (units of 

4. R'ESULTS 

The following sections discuss  the type of information that can be 

derived f r o m  signatures obtained f r o m  each f o r m  of analysis ;  the Appendix 

contains a documentation of the frequency spec t ra  obtained f rom the nine 

detectors  whose frequency spec t ra  a r e  not included in the body of this 

report .  
1 

4. 1 Direct  Noise Signal Observation 

The s implest  fo rm of noise analysis is d i rec t  observation of the t ime 

behavior of a noise signal. 

difficult to quantify signal propert ies  solely on the basis  of t ime history,  

but such observation can provide a valuable qualitative image of the 

s ignal ' s  major  character is t ics .  F o r  example,  observation of a signal 

f r o m  a typical ex-core detector (Fig.  3 )  shows that (1)  there  a r e  la rge-  

amplitude, low-frequency spikes superimposed on the signal, (2 )  these 

spikes a r e  consistently in one direction, and ( 3 )  they occur randomly a t  

a n  average rate  of approximately one every 5 sec .  

subjective observations,  they a r e  a good basis  fo r  understanding the 

resu l t s  of the more  detailed quantitative analyses  that follow. 

Owing to  the random nature of the signal, it  is 

Although these a r e  
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4 . 2  Power Spectral  Density 

The power spec t rum of a n  ex-core,  full-length detector (NI6)  is 

shown in F i g .  4.' The power in the signal is seen  to increase sharply 

at  low frequencies,  and there  is a definite inflection (the suggestion of 

a shor t  plateau) between 1.0 and 2 . 0  Hz (note that the s ta t is t ical  un- 

certainty is only *570 at 1.8 Hz due to averaging 11 adjacent PSD es t imates  

before plotting). 

detector a t  the bottom of the vessel ,  has  a higher amplitude than N16 

between 0 . 0 4  and 1.0 Hz. 

i ts  pivot point a t  the top, thus allowing maximum movement at the 

bottom. 

The spec t rum of ex-core detector N14 ( F i g .  5 ) ,  a 1-ft 

This resulted f r o m  core  b a r r e l  rocking, with 

F igure  6 shows the spectrum of in-core detector NI42-5. The ampli-  

tude, of noise below -2 .0  Hz is much lower than that sensed by the ex-core 

detectors ;  therefore,  this shows that the core  fission rate (power produc- 

tion) did not fluctuate in this frequency range near ly  s o  much as would be 

inferred f rom the ex-core detectors .  The spec t ra l  peak a t  about 2 . 0  Hz 

is more  prominent than in the ex-core noise spec t rum ( see  a l s o  Fig.  7 ) .  

The source of this noise is not known, but its presence in both in- and 

ex-core spec t ra  suggests that i t  may be a t rue reactor  power fluctuation 

r a the r  than a variation in neutron leakage. 

The spec t ra  of the other ex-core and in-core detector signals recorded 

by CE (6. Appendix) were  similar to those already i l lustrated,  except for  

slight variations in amplitude. The differences in overall  noise amplitude 

as a function of detector location will be discussed fur ther  in the following 

s e c t ion. 

4 . 3  Noise Amplitude 
I 

The percentage of r m s  noise relative to the mean detector output 

level VDc was computed for  each of the 12 detector signals recorded by 

CE for  frequency ranges f r o m  0 . 0 3  to  5 Hz and 4 to 8 Hz using Eq. (4). 
(See Table 1. ) Although these two frequency ranges were chosen some- 

what a rb i t r a r i l y ,  we believed that the lower range would be more  sensit ive 

'$The indicated s ta t is t ical  uncertainty in F igs .  4 -7 ,  9,  and the 
Appendix f igures  is calculated using Eq. (1). 
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to the co re -ba r re l  rocking motion. 
7 has been determined by others to  be related to  core  vibration. . 

P W R  noise in the 4 -  to  8-Hz range 

Using Eq. (5) we computed the s ta t is t ical  uncertainty of the resul ts  

in  Table 1 to  be (conservatively) *O. 01% rms /mean .  

Table 1. rms noise relative to mean 
detector output level 

I 

rms Mean ( 7 0 ) ~  
Detector 

(0.03-5 Hz) (4-8 Hz) 

A. Ex-core Detectors 

NI 3 0.98 
N14 0.96 
N15 Upper . . 0.80 

0.028 
0.030 
0.030 _ _  

N15 Lower 
N16 
N17 
N18 
N19 
NIlO 

N16 - 5 
N17 -5 
NI42-5 

0.80 0.030 
0.69 0 .029  
0.57 0.031 
0 . 7 0  0.032 
0 . 9 6  0 .026  

z 0.94 0.030 

B.  In-core Detectors 

0. 17 0 .016  
0.018 
0.023 

0. 18 
0. 17 ' 

a These resul ts  a r e  based on a 30-min data 
record  which yields a n  estimated uncertainty of 
*O. 01% rms /mean .  

Several  observations can be made f r o m  these results:  

1. The in-core rms noise is approximately four t imes less than ex-core 

rms noise in the 0.03- to  5-Hz range (this is equivalent to  a factor 

,of 16 in PSD as indicated by F i g .  7. ) 

The ex-core detector noise between 4 and 8 Hz is -25 times less than 

it is f r o m  0 . 0 3  to 5 Hz, which would seem to indicate that core  

vibration is not a significant cause of the noise. 

Some ex-core detectors  have considerably higher noise level in the 

0.03- to 5-Hz range than others,  which indicates that the neutron 

2 .  

3. 
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leakage variation caused by b a r r e l  rocking is rea tor  at some ex-core 

locations (a p re fe r r ed  direction of motion). 

This latter observation is i l lustrated bet ter  by F i g .  8, which is a 

plot of 0 .03 -  t o  5-Hz noise vs the circumferent ia l  location of the detec- 

t o r s .  

motion, but one cannot be cer ta in  because detectors  NI3, 4, 9, and 10 

a r e  not located in concrete wells as a r e  NI5, 6,  7, and 8. A study of 

the effect of the concrete wells on neutron leakage vs b a r r e l  motion is 

beyond the scope of this investigation, but it is c l ea r  that this effect 

should be understood before any attempt is made to calculate the magni- 

tude of b a r r e l  motion f rom the magnitude of the noise. 

These data support the supposition of a prefer red  direction of b a r r e l  

4.4 CPSD Analysis 

F igure  9 shows a CPSD analysis of two ex-core detectors ,  N16 vs  

These detector signals show high N15 lower (taken a s  the reference) .  

coherence over the frequency range f r o m  0 . 0 4  to  1.0 Hz, but a r e  opposite 

in phase (e= -180"). We believe the cause of this to be rocking of the 

b a r r e l  back and for th  between the detector locations (the angular dis-  

placement between N16 and N15 is -172", Fig.  2 ) .  

Table 2 summar izes  the resu l t s  obtained f r o m  CPSD analyses  of the 

ex-core detectors ,  using N15 lower as the reference detector in each 

case.  In general ,  signals from detectors  on the same side of the vesse l  

as N15 lower show small phase shifts relative to this reference,  but 

detectors  with a la rge  angular displacement (opposite side of vesse l )  

show phase shifts close to  -180". In all ca ses ,  the coherence over the 

frequency range f r o m  0 . 0 4  to 1 Hz was high, indicating that all ex-core 

detectors  a r e  driven by a common noise source.  

E a r l i e r  resu l t s  f r o m  on-site analysis ( re f .  2 )  showed that the co- 

w 

herence between ex-core and in-core detectors  is low for frequencies 

below 1.0 Hz, but relatively high in the frequency range f r o m  2 to 4 Hz. 

The noise in this la t ter  frequency range is much l e s s  significant than 

the low-frequency noise caused by b a r r e l  rocking ( F i g .  7 ) .  
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a Table 2 .  Resul ts  of c r o s s  spec t rum analysis of ex-core detectors  
using N15 lower as reference detector 

Angular c i rcumferent ia l  
PSDAB Phase (6) C ohe enc e displacement f rom N15 Detector 

( " 1  lower ( " )  B x 1 ~ 4  
~ 

N15 Upper 

N19 
N13 

N17 

N16 

N I4 

NIlO 

N18 

1.99 
2.57 

1.88 

1.37 

1.45 

1. 17 

1.77 

1.74 

- 0 . 1  

0 . 3  

1.5  

0 . 7  

- 180. 

-180. 

- 179. 

- 178. 

0.998 

0.997 

, 0.985 

0.939 

0.985 

0.977 , 

0.969 

0.946 

0 

-26 

-53 

-77 

- 172 

t 145 

t 118 

t 8 9  

a Analysis performed with center  frequency of 0 .04  Hz, resolution 
bandwidth of 0.02 Hz, and data record of 30 min. 

4. 5 Amplitude Probability Density 

When signals containing spikes such as those in Fig.  3 a r e  analyzed, 

the amplitude distribution of noise may provide a n  insight that cannot be 

obtained f r o m  spec t ra l  analysis.  However, when computing the APD, one 

must  consider that any filtering (both low- and high-pass) of the signal 

before i t  is processed can change the shape of the APD. 

maintain consistency, the signals were  band limited to a range f r o m  0.025 

to  5.0 Hz (near ly  the same as used for  rms values of Table 1) before the 

APD was computed. 

signal (N15 lower).  

Therefore ,  to 

Figure 10 shows a typical analysis of a detector 

Two observations can be made f r o m  this analysis:  

1. The APD is not symmetr ic  with respec t  t o  its mean value; i . e . ,  there  

a r e  l a rge r  positive (as high as 3.47'0 of the mean signal level)  than 

negative (2 .2%)  amplitude deviations in the signal. 

implies that there  is a prefer red  direction of motion toward N15, with 

a net difference of t 1.27'0. 

F o r  807'0 of the t ime the signal amplitude is in a range f rom -0. 9 to  

to. 870 of the mean (this is the par t  of the APD between 10 and 90% on 

the IAPD, which we consider statist ically reliable).  

This information 

2 .  
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Item 1, preceding, supports an  assumption that the b a r r e l  is shoved 

toward detector N15 by the hydraulic fo rces  in the downcomer region be- 

tween the vesse l  wall and bar re l .  The 8070 probability, peak-to-peak 

oscillations were  normalized by dividing by the rms noise for  the same  

bandwidth which is given in Table 1. 

lower one gets 

F o r  example, using detector N15 

(8070 peak-to-peak)/rms = (0 .91 t 0.82)/0.80 

OL 2 . 2 .  (5)  

This ra t io  is comparable to  a value of -2. 6 fo r  a Gaussian noise d is t r ib-  

ution. The values of peak-to-peak ampl i tude / rms  l isted in Table 3 show 

that this quantity is not a sensit ive indicator of b a r r e l  motion. The range 

of the quantity for the 12 detectors  is only 2. 1 to 2.8.  

Table  3. Summary  of APD analys is  based  on 30 min  data  record  

P r e f e r r e d  
Negativea Positivea Peak-to-peakb Maximum negative Maximum positive d i rec t ion  

ampli tude ampli tude of motion 
(70 of mean)  (70 of mean)  (7' of mean)  (70 of mean)  (70 of mean)  + rms 

Detec tor  ampli tude amplitude amplitude 

N15 Lower  

N15 Upper 

N19 
N13 

N17 

N16 

N I4 

NI 10 

N18 

N17-5 

N142 -5 

NI6-5 

-0.91 

-0.92 
-1 .3  

-1.2 

-0.57 
-1.0 

-1.2 

-1 .3  

-1 .1  

-0 .23 

-0.20 

-0.20 

t 0.82 

t 0.74 

t 1.1  

t 1.2 

t 0.61  

t 0.69 
t 0.86 

t 0.92 
t 0.84 

t 0.20 

to. 18 

to. 17 

2 .2  

2 .1  

2 . 5  

2 .4  

2 . 1  

2.4 

2 .1  

2.4 

2 .8  

2 .4  

2.2 

2 .2  

Signal is between these ampli tudes 8070 of the time. a 

brrns values  obtained f r o m  Table 1. 

'Not computed. 

\ 

.' 

-2.2 

-2 .8  

-3 .3  

-3.5 

-1.6 

-3.6 

-4 .9  

-4 .9  

-4.0 

C 

', 

C 

+ 3 . 4  

t 3 . 9  
t4.4 

+5.8 

t 2 .4  

t 2.4 

t 2 . 6  

t 3 . 3  

t 3 . 0  

C 

C 

C 

+ 1.2  

t l . l  

t 1 .1  

t 2 . 3  

t 0 . 8  

-1.2 

-2 .3  

-1. 6 

-1.0 

C 

C 

C 



. ' The preceding APD analysis 'was perfor'med o 

tector  signals, and the results-are '  summai ized  in 'Tab1 

direction of motion resu l t s  s e e m  to indicate t-hat the ba'rre1's"natural';: 

res t ing point is the side of the vesse l  where detectors  NI6, N18 

NIlO a r e  located and is randomly pushed toward detectors'  NI5, lNI9,r.and 

N13. 

neutron t ranspor t  computer codes. However, these calculations a r e  be - 
yond the scope of our present  investigation. 

> 

The magnitude of movement could be calculated using numerical  

1 '  

5 .  SUMMARY AND RECOMMENDATIONS 

I .  

The objective of this investigation, namely a documentation of abnormal 

noise signatures fo r  Pal isades,  was accomplished. 

repor t  se rve  as references with which to  compare data taken af ter  the 

Pal isades plant r e sumes  operation. 

The signatures in this 

We recommend that follow-up data acquisition and analysis be p e r -  

formed after plant operation is resumed,  using the same  techniques and 

normalizations described in this report .  The purpose would be to de te r -  _ _  . - 
mine whether o r  not the core  b a r r e l  motion has  been eliminated. 

We a l s o  believe that the neutron noise signatures associated with 

the movement of the co re  ba r re l  in this P W R  will be helpful in diagnosing 

similar abnormalit ies if they should occur in other PWR's. - ,  

: <  i 

.. -. .. . ,- ." . 
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