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THE OBSOLETE CASK PROGRAM: INITIAL TESTS

L. B. Shappert J. H. Evans

ABSTRACT

Two casks were subjected to impact tests, which
involved 30-ft drops onto a solid, essentially unyielding
surface. The first cask, weighing about 6200 1lb, was
dropped on end, while the second, weighing about 6000 1b,
was dropped twice on edge. Deformation to the casks was
predicted before the tests, and the values obtained were
compared with the test results. Both predicted cask
deformations and accelerations agreed reasonably well
with the measured values.

1l. INTRODUCTION

The Obsolete Cask Program was initiated to study the behavior of
casks under specified destructive test conditions and to establish the
adequacy of the calculational techniques that are presently employed
to predict cask damage. The test used to produce severe cask damage
consists of a free fall by the cask from an elevation of 30 ft, impact-
ing on an essentially unyielding surface in an orientation which would
produce maximum damage. Other damage-producing tests involving puncture,

fire, and submergence are described in the regulations.l

An advisory committee (see Appendix A), consisting of AEC and
Contractor employees who are knowledgeable and experienced in cask test-
ing and analytical damage prediction, was formed to provide guidance for
the Program. At the initial committee meeting in Bethesda, Maryland, on
June 14, 1973, a decision was made to place maximum testing effort on the
30-ft free-fall portion of the accident sequence. It was recognized that
the other accident tests described in the regulations are important and
should be investigated experimentally; however, present methods for
predicting damage resulting from these other tests currently seem more

satisfactory than for the 30-ft drop test. The effects of the 4O-in.




free fall of a lead-shielded, steel-jacketed cask onto the 6-in. bar has
2- .

been determined experimentally and reported. 4 The techniques presently

employed in predicting the response of casks to the thermal exposure are

based on sound theory and appear to be generally accepted.

The committee members suggested that, whenever experimental studies
of temperature effects on casks were undertaken, three important areas
should be investigated: (1) redistribution of melted lead after solidifica-
tion; (2) local damage from melting lead, particularly at edges, as a
function of time; and (3) demage from melting lead and thermal expansion
in the vicinity of penetrations and abrupt changes of section. They also
expressed the opinion that temperature distribution as a function of time

should be experimentally verified.

A list was prepared of casks thought to be obsolete and available for
testing. An effort was made to locate casks having geometries similar to
spent fuel element shipping casks currently in use, that is, cylindrical
lead-shielded casks having length/diameter ratios of 3 or greater. Some
casks that were originally suggested were either unavailable or considered

to be inadequate.

From this list, two ORNL casks (see Appendix B) were selected for the
first tests because they had the desired geometry (length/diameter ratio
of 3.08), were compatible with the capacity of the ORNL Drop Tower, were
readily available, and had minimal contamination levels. Procedures and
drawings illustrating modifications to the casks were prepared and circu-
lated to the committee for comments. Subsequently, the procedures and
modification drawings were revised to reflect these comments. These

procedures and drawings are shown in Appendix C.

Several committee members expressed concern because, contrary to
current practice in which most casks employ energy absorbers to minimize
cask damage, the ORNL test models were unprotected. However, they felt
that an understanding of the behavior of the basic cask was necessary prior
to an investigation of energy absorbers and that energy absorbers can be

>

evaluated most effectively by a model test program such as Davis” utilized
in studying fins and Evans6 employed in studying the tube in a tube energy

absorber. Model tests should be used to establish the feasibility of the




various concepts and should be followed by full-scale tests of the better

absorbers to verify results obtained with the test model.

2, CASK TESTS

The two ORNL casks used in the initial tests were actually lead-
shielded, steel-jacketed sections of an original cask built in three
sections; the original cask was intended for on-site use only (see Figs. 1
and 2). Cask 1, initially an end section, weighs 6200 1lb, while Cask 2,
initially the center section, weighs 6000 lb. Apparently, no effort had
been made to metallurgically bond the lead shielding to the outer steel
shell.

The cask sections were decontaminated prior to testing. Quarter-inch
holes were drilled at intervals along the length of the cask to aid in
evaluating the extent of lead displacement relative to the shell. Cask 1
was dropped directly on the end that had the closure plug bolted in place.
Cask 2 was dropped twice, each time at an angle which allowed the center
of gravity to be essentially directly above the point of impact. The
closure plug was not included in the edge drops since it could not be

readily removed from Cask 1 following the end drop.

3. TEST FACILITIES AND INSTRUMENTATION

The drop tests were performed at the existing ORNL Drop Tower (Fig. 3)
and Drop Pad (Fig. 4). The casks were hoisted as illustrated in Fig. 5,

and were subsequently released by a hydraulically actuated mechanism.

The instrumentation system, shown schematically in Fig. 6 and
depicted in Figs. 7 and 8, was used to record acceleration-time responses
of the cask and impact surface by attaching a piezoelectric accelerometer
to the cask and feeding its output signal through a charge amplifier and
a low-pass filter to the oscilloscope. With this instrumentation, an
acceleration-time relationship was recorded for the impact. The filter
was required because the high-frequency ringing experienced during the

impacts completely obscured the effective acceleration trace produced by
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the accelerometer. The trace was recorded on film by using time-exposure
photographic techniques and a Polaroid Land camera mounted on the oscillo-
scope. The laser system shown in Fig. 9 was used to trigger the oscillo-

scope.

Recording accelerometers, recently designed at ORNL (see Figs. 10 and
11), were used as a backup system to measure the peak or maximum effective
acceleration at a given point. They were installed on the casks as shown

in Figs. 1 and 2 for the two drops.

Three models of the recording accelerometer, designated as A, B, and
C, have been designed and fabricated. Model A serves for a high range of
accelerations, B for an intermediate range, and C for a lower range.
Model A has been partially calibrated using dynamic data taken from a
load cell in the manner described previously.5’6 The calibration data
compare favorably with the theoretical calibration curve derived from the
dynamic properties of lead published by Evans.7 The calibration data and

the theoretical curve for the recording accelerometer model A are shown

in Fig. 12,

Although no calibration data have been obtained for models B and C,
the close agreement of the theoretical curve and data for model A indi-
cates that use of the theoretical curves for the other models is appropri-
ate until an experimental calibration curve is developed. Figure 13

shows the theoretical curves for the three models.
L4, RESULTS

Cask 1, when released, fell as anticipated, impacting on end and
coming to rest on its end. Malfunction of an undetermined nature occurred
in three of the accelerometers (Nos. 1, 3, and 4) and prevented data from
being acquired at these locations. An acceleration-time trace taken from
accelerometer 2 is reproduced as Fig. 1k. The recording accelerometers
indicated peaks in acceleration of 275 g's at location 1 and 100 g's at
location 2. The physical damage is illustrated dimensionally in Fig. 15
and shown photographically in Figs. 16-18. Failures occurred in the seam

weld of the outer shell and in the weld joining the head and shell. Holes
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drilled in the outer shell of the cask may have contributed to the

seam weld failure. DPost-test examination of the failed welds indicated
several spots in which the weld was only partially fused; in addition,
there was an estimated 1/8-in. mismatch in the 1/4-in. shell at the seam

weld in some locations.

There was a general settling of lead as a result of the impact, as
indicated in Fig. 15. It was also discovered that a void of several
cubic inches had occurred in the lead shield at the time of fabrication.
The presence of this vold should not have affected the test or be
considered significant since the cask was apparently filled with lead
with its axis horizontal in lieu of current practices of pouring lead
with the axis vertical. The plug was Jjammed in the cavity and could

not be removed using commonly available tools.

Cask 2 was dropped on an edge in such a manner that the center of
gravity was directly above the point of impact. During free fall, the
cask became fouled with the accelerometer cables, severing them before
the impact occurred. However, the recording accelerometers indicated
peak accelerations of 200 g's at location 1 and 120 g's at location 2

(see Fig. 2 for accelercmeter location).

A second edge drop was made with Cask 2 turned 180° as opposed to
the previous impact point. Acceleration-time traces for location 1 on
the cask and location 3 (see Fig. 8) on the impact surface were acquired
(see Figs. 19 and 20); the other accelerometer systems malfunctioned due

to undetermined causes, and no data were obtained.

The recording accelerometers again indicated peak accelerations of
200 g's for location 1 and 120 g's for location 2. Figure 21 is a sketch
of the observed physical damage to the cask as a result of the two edge

drops. Photographic records of the damage are shown in Figs. 22-24,

The damage, which was primarily local in nature, did not extend to
locations far removed from the impact area. The gap between the lead
and the top head, originally very small prior to the drop, was found to
be 1/16 in. after the drop (see Fig. 25). The weld joining the shell to

the head failed in the area of contact. In addition, local failure
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occurred in the shell. The 1/hk-in. holes that had been drilled through
the shell to indicate lead movement probably contributed to the shell
failure. The gross failure indicated in Fig. 21 was apparently the
closure weld of the lead pour hole., Post-test visual examination of the
failed welds indicated that inadequate weld penetration existed at the

time of the drop test.

For each of the tests, the acceleration and time were scaled from
the photographs of the oscilloscope traces and transferred to data cards.
An existing computer program CIDR,8 which numerically integrates the
discrete force-time or acceleration-time data and obtains cask velocity

and displacement as functions of time, was utilized to reduce the data.

Figure 26 is the computer plot of the acceleration-deformation data

for the tests.
5. PREDICTIONS REGARDING DAMAGE

Prior to the tests, predictions of the damage to the casks were made

using computer programs developed at ORNL, CEIR,9

a program that predicts
the deformation of a steel-jacketed, lead-shielded cask when dropped on
end, was used to estimate the response of Cask 1. A movement or lead
slump of 2.06 in. was predicted as a result of dropping the cask 30 ft

onto a solid, essentially unyielding surface, A machine plot of the

predicted acceleration-deformation curve is illustrated in Fig. 27.

Two programs, given in Appendix D and denoted as CCI-1 and CCI-2,
were used to predict the response of Cask 2 in an edge impact. Analysis
methods used in CCI-1 are based on the assumption that the cask is built
of lead having a specific energy of 8000 in.—lb/in.8 This approximate
value of the specific energy (sometimes called the dynamic flow pressure)
has been observed in impacts of lead-shielded, steel-jacketed casks.
Analysis methods used in CCI-2 are based on the assumption that energy
deforming the steel head, the steel outer shell, and the lead shielding
can be separated. The specific energy of the confined lead in this case
was assumed to be 6000 in.—lb/in.3 Estimates of the energy required to

bend the flat head and buckle the outer steel shell are based on limited
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available dynamic data. The two programs (CCI-1 and CCI-2) predicted
deformations of 3.4 in. and 4.0 in., respectively. The acceleration-
deformation responses of the cask are shown in Figs. 28 and 29 for the
two drops.

It was also predicted that significant weld failures would occur in
the impact area, particularly the shell-to-head weld. Previous testslo
on similar welds in ASTM A-516 grade 55 low-alloy base metal had resulted

in failure.
6. COMPARISON OF EXPERIMENTAL DATA AND CALCULATED VALUES

The calculated values and the experimental data were found to corre-
late reasonably well. For the end drop, a lead settlement of 2.06 in.

was calculated using CEIR.9

The actual settlement (see Fig. 15) was
measured to be 2.75 in. A discrepancy such as this should be expected
since the calculated value was based on the assumption that the outer
steel shell would remain intact in the impact, dissipating some of the

inetic energy of the lead in circumferential tension. In fact, the
outer shell failed. The calculated and experimental acceleration-
deformation curves are reproduced for comparison in Fig. 30. Note that
there is considerable difference in the shapes of the curves, as well as
a significant numerical variation in the coordinates, although the
predicted and measured accelerations are of the same order of magnitude.
Some of the difference in the shapes of the curves can be attributed to
the failure of the outer shell of the cask. Examination of the experi-
mental data curve indicates that shell failure occurred quite early in the
impact -- in the neighborhood of acceleration and deformation coordinates
of (150 g's, 1 in.).

Deformation values of 3.4 in. and 4.0 in. were calculated for the
edge drop, using the CCI-l and CCI-2 codes respectively. Measured
deformations for the two essentially identical edge drops (see Fig. 21)
were 3 in. (first drop) and 3.25 in. (second drop). The curves of experi-
mentally determined and computed acceleration-deformation data are repro-

duced in Fig. 31 for comparison. The curves have the same general shape,
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although significant variations in values are evident. Note, however,

that the computed values are of the same magnitude as the measured values.
7. CONCLUSIONS

The experimentally determined and calculated responses of the test
casks were in sufficient agreement to warrant continued use of the basic
calculational methods employed. It should be noted that current predic-
tions are not always conservative; consequently, there may be a need to
add a small margin of safety to them. Certainly, improvements in present
analysis methods can be made as a result of a better understanding of
the modes in which large casks might fail. It is apparent that welds
need to be of high quality if they are to withstand, without rupture,
the severe impact required by the regulations. Improvements need to be

made in the data acquisition system for future tests.
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APPENDIX B:

ORIGINAL ENGINEERING DRAWINGS OF CASKS
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APPENDIX C:

OBSOLETE CASK TESTING PROGRAM

Impact Test Description No. 73-4

Purpose — The tests outlined in subsequent paragraphs are the first of

a sequence of tests which will be conducted to investigate and, hopefully
confirm,the validity of certain calculational techniques currently employed
to predict the behavior of casks when exposed to the impact specified in

the regulations. Secondary goals of these tests are to establish or

confirm material properties, to verify the adequacy of current data
acquisition techniques and equipment, to develop additional data acquisition
techniques as necessary,and to develop information on the cost of preparing
for and conducting tests.

Cask Description — The first two casks we propose to test weigh 6200 and
6000 pounds and are an end and the center sections of the ORNL Tube Shield
Cask,which was originally built in three sections. The end section is
identified as Cask No. 1 and the center section as Cask No. 2. The cask
was fabricated from ORNL drawings E-17731, E-17732, and E-17733. It is
identified by ORNL number 585-18-1L41. The salient features of the casks
and the modifications to be effected for this test are illustrated on

ORNL drawings M-11577-EM-001-E for Cask No. 1 and M-11577-EM-002-E for
Cask No. 2.

Pre-Test Preparation — The casks will be disassembled by ORNL P&E Division
personnel and surveyed for contamination by ORNL Health Physics. If
contaminated, the cask will be decontaminated to green tag limits.* All
painted surfaces will be sandblasted to bare metal. Lead cavities will be
checked for moisture and contamination via pipe taps installed for this
purpose. The lead cavities will be leak checked and leaks repaired. The
modifications shown on drawings M-11577-EM-001-E and M-11577-EM-002-E will
be made and a dimensional inspection of the complete test cask performed
and the results recorded. The modified casks will be weighed.

Test Philosophy — Cask No. 1 will be dropped twice on edge in an orientation
such that the center of gravity of the cask and the point of impact are in
the same vertical plane. The intended impact points are identified on
drawing -00l. Piezoelectric accelerometers and "peak' recording acceler-
ometers will be mounted in the location shown on the drawing for these
tests. The instrumentation system shown in Fig. 1 will be used to measure
and record the acceleration with respect to time for each test. Post
yielding strain gages will be mounted on the cask in those locations shown
on the drawing. Readings will be taken before and after each test. A
graphical map of the damaged area will be produced by applying a grid to tne
impact area before dropping and measuring after impact.

*x

Green tag limits restrict direct survey readings to <300 « dpm/lOO e
and <0.05 mrad/hr B, transferable contamination to <30 « dpm/100 cn®
and <200 B, dpm/100 crf .




38

Cask No. 2 will be dropped on its end as identified on the drawing.
Piezoelectric and peak recording accelerometers will be mounted as
indicated on the drawing. As before,post yielding strain gages will
be mounted on the cask in the locations shown and "before" and "after"
readings will be taken. A graphical map of the damaged area will
also be made.

We will consider applying "Stresscoat" to selected areas where it will

not interfere with the above., After the edge and end drops the container
may be dropped on the 6-in.-diam bar from 40 in. if the damage from the

30 ft drop is such that it seems practical., The cask will be photographed
extensively before and after each test, and each test will be photographed
by both normal and high-speed movies,
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APPENDIX D:

LISTINGS FOR PROGRAMS CCI-1 AND CCI-2
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CCI-1 PROGRAM

**FTN,L,E,G.
PROGRAM NUMBER 1001-CASK
MADE OF A HOMOGENEOUS MATBRIAL / AN IDEAL STRESS-STRAIN RELATIONSHIP
IMPACTING AN UNYIELDING SURPACE. THE CASK INPACTS ON ITS CORNER
THIS PROGRAM CONMPUTES THE RESPONSE OF A CASK HAVING RIGHT CYLINDRICAL
GEOMETRY.
BY JOAN BYANS P.E., GENERAL ENGINBERING DIVISION, OAK RIDGE NATIONAL LAB.

GLOSSARY OF NOTATION
R=RADIUS OF CASK
C=CASK LENGTH
S=YIELD STRESS OR FLOW PRESSURE
W=CASK WEIGHT
H=DROP HEIGHT
O=ANGLE AT WHICH CASK IMPACTS
U=ENERGY
F=FORCE
T=TINE
AG=ACCELERATION
UT=TOTAL ENERGY
V=VELOCITY
X=DEFORMATION
AN=ANGLE IN CONTACT / THE SURFACE

e Xz KsEsNeKsKeEe s e K Ee Es N Ke Ne N K2 e Ks Ne Ne X2l

DIMENSION V¥ (1000) ,AR(1000),F (1000),0(1000),T(1000),AN (1000),
1 X(1000) ,AG (1000)
$=0.0
ANA = 0.0
INPOT MATERIAL CONSTANT
INPUT CASK GEOMETRY
R=9.S
C=60.
W=6000.
O=ATAN(2.*R/C)

C INPUT TEST CONDITION
H=360.

C INPUT ANGLE INCREMENTS

30 BB=.01
AA=.01
$=8000.
WRITE (51,1002)
WRITE (51,1002)
WRITE (51,1010)

1010 PORMAT(1H ,30X,'TESTING OF OBSOLETE CASKS, TEST 1')

WRITE (51,1002)
WRITE (51,1002)

C ZERO SUBSCRIPTED VARTABLES
DO 14 I=1,1000
AN(I)=0.0
AG(I)=0.0
v(I)=0.0
X (1) =0.0
T(1)=0.0
F (I) =0.0
U(I) =0.0
AR(I)=0.0

14 CONTINUE

aa
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C Z2ERO NONSUBSCRIPTED VARIABLES
TA=0.0

AE=0.0

2=0.0

AR=0.0

TX=0.0

U=0.0

XX=0.0

XA=0.0

UT=W*H
VV=SQRT ( (64.*H) /12.)
DO 1 I=1,1000
AR=0.0

INCRENENT ANGLE A

9 A=A+AA

CA=COS (A)

B=0.0

AE=0.0

SUMU=0.0

10 DO 2 J=1, 1000
INCRENENT ANGLE B
B=B+BB

CB=COS (B)

CALCULATE VOLUME DISPLACED
11 CC=(CB-CA)
BY=TAN (0) *R*CC
BX=R#*CC

12 DZ=R*CB*BB
DU=BY*BX*DZ*S
CALCULATE ENERGY ABSORBED
SUNU=SUNU+DU
CALCULATE AREA

13 DA=2.%BX*DZ/COS (0)
AE=AE+DA

IF(B.GE.A) GO TO 3
2 CONTINUE

3 U(I)=SOUNU
IP(U(I).GE.UT) GO TO &
AR(I) =AE

CALCULATE FORCE

P (I) =AR(I) *S
CALCULATE VELOCITY

a o ao a

(o]

5

v

=SQRT ((68./ (12.%4)) *(UT-U(I)))

CALCULATE ACCELERATION
AG(I)=F(T) /W
CALCULATE DEFORMATION

9

wm N

XA

= (TAN (0) #COS (0) *R* (1.-CA))

X (I)=XA
CALCULATE TINE

TX= (XA-XX)/ ((VV+VR) %6.)
TA=TA+TX

T (I) =TA*1000.

XX=XA

v (I)=VA

VV=VA

AN(I)=A%*57.3
IFP(U(I).GE.UT) GO TO &
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1 CONTINOE
4 CONTINUE
c OUTPUT-WRITE LOOP
K=I-1
WRITE (51,1002)
WRITE (51, 1004)
1004 PORMAT (18, 9X,37HCASK GEONETRY AND MATERTAL PROPERTIES)
WRITE (51,1002)
WRITE(51,1005)
1005 PORNAT (1H, 4X,6HRADIUS,8X,6HLENGTH,10X,6HWEIGHT,6X,
1 1SHSPECIPIC ENERGY)
WRITE (51, 1006)
1006 PORMAT (1H, 4X,6HINCHES,8X,6HINCHES,10X,6HPOUNDS,8X
1 13HLB-IN/CU. IN.)
WRITE (51, 1002)
1002 PORMAT (1HO)
WRITE (51, 1007) R,C,W,S
1007 PORNMAT (F11.3,P14.3,F16.1,F18.1)
WRITE (51, 1002)
WRITE (51, 1000)
1000 PORMAT (1H.,8X, 11HDEFORMATION,4X, BHVELOCITY,7X, SHTIME, 13X, SHFORCE,
1 10X, 6HENERGY, SX,12HACCELERATI ON)
WRITE (51, 1001)
1001 FORMAT (1H, 6X,6HINCHES,7X,8HPT./SEC.,4X,12HNILLISECONDS, 8X,
1 6HPOUNDS, 10X, 6HLB-IN.,10X,3HX G)
WRITE (51, 1002)
DO 15 I=1,K
WRITE (51,1003) X(I),V(I),T(I),F(I),U(I),AG(I)
1003 PFORNMAT (1R ,F14.4,F13.2,F16.5,F15.2,P16.2,F12. 2)
15 CONTINOE
CALL QWIKPL (X,AG,K,'LINEAR','J.H.EVANSS')
20 CONTINOUE
STOP
END

13

16
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CCI-2 PROGRAM

**PTN,L,E,G.
PROGRANM NUMBER 1007-CASK

THIS PROGRAM ANALYZES THE IMPACT OF A CLAD LEAD SHIELDED CASK HAVING RIGHT
CYLINDRICAL GEOMETRY, IMPACTING WITH ITS AXIS INCLINED AT AN ANGLE
CODED BY JOHN . EVANS P. E. OAK RIDGE NATIONAL LABROTORY AOG. 1973

TESTING OF OBSOLETE CASKS

GLOSSARY OF NOTATION

X=DEFLECT ION (INCHES)
U=ENERGY (LB-INCHES)

P=PORCE (POUNDS)

T=TINE (MILISECONDS)

AG=ACCELERATION (G'S)

B=ANGLE SUBTENDED BY THE DEFORMED AREA(DEGREES)

V=V ELOCITY (FT/SEC)

W=WEIGHT OF THE CASK(POUNDS)

H=DROP HEIGHT (INCHES)

C=CASK LENGTH(INCHES)

R=CASK RADIUS (INCHES)

O=ANGLE SUBTENDED BY THE DEPORMED AREA (RADIANS)
UT=TOTAL POTENTIAL ENERGY OF THE CASK (LB-INCHES)
T=SHELL THICKNESS (IN.)

TH=HEAD THICKNESS,PLUG END (IN.)

TAH=HEAD THICKNESS,BOTTONM END (IN.)

W=CASK WEIGHT (POUNDS)

SL=SPECIFIC ENERGY OF SHIELDING MATERIAL (IN-LB/C7.IN)
ST=SPECIFIC ENERGY OF CLADDING IN TENSION (IN-LB/CO IN)
SC=SPECIFIC ENERGY OF CLADDING IN COMPRESSION (IN-LB/COU IN)
SB=SPECIFIC ENERGY OF CLADDING IN BENDING (IN-LB/CU IN)
0O=INCREMENT OF ANGLE O

TH=TIME (SEC.)

G=ACCELERATION (PT/SEC/SEC)

B=0 IN DEGREES

VL=VOLUME OF SHIELDING DISPLACED (CU.IN.)

A=ANGLE OF SHELL BENDING (RADIANS)

US=ENERGY DISSIPATED IN STREACHING THE SHELL (IN.LB.)
UH=ENERGY DISSIPATED IN DEFORMING THE HEADS (IN.LB.)
UL=ENERGY DISSIPATED IN DISPLACING SHIELDING (IN.LB.)
UB=ENERGY DISSIPATED IN BENDING THE SHELL (IN.LB.)

o000 00NNNANANNANAANNAN0NNANANANANNARN

DINENSION U{1000),X (1000),P (1000),6 (1000),AG (1000), TH (1000)

1,1P (1000) ,V(1000)

2, UL (1000) , UH (1000) ,US (1000) ,ULL (1000)
C INPUT CASK GEOMETRY

R=9.75

CL=59.5

T=,250

TH=.250

W=6000.
C INPUT MATL. PROPERTIES

EN=29000000.
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(9]

(9]

C
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IN
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pR=.3
SL=6000.
ST=65000.
SC=120000.
SB= (ST+SC) /2.
PUT CONSTANTS
CP=2.094
CPP=3.1416/2.
PUT TEST CONDITION
B=360.
CALCULATE CASK POTENTIAL ENERGY
UT=W*H
INPUT INCREMENT OF ANGLE,O
00=.01
DZ=.01
AA=.002
ZERO SUBSCRIPTED VARIABLES
DO 1 I=1,1000
UL(I)=0.0
ULL (I)=0.0
UH(I)=0.0
US(I)=0.0
X(I)=0.0
U (1) =0.0
P(I)=0.0
TH(I)=0.0
G (I)=0.0
AG(I)=0.0
AP(I)=0.0
V(1) =0.0
CONTINUE
ZERO NONSUBSCRIPTED VARIABLES
2=0.0
B=0.0
DT=0.0
T5=0.0
PU=0.0
¥Yv=0.0
U0=0.0
XX=0.0
0=.1
X0=.005
ULL=0.0
0L0=3.141593
SUNX=0.0
B=ATAN (R*2./CL)
BB=SIN(B)
CB=COS (B)
TB=BB/CB
PK=ENM/(SQRT (3 .*(1.-PR*PR)))
FS= ((FK*T*T) /R)
DO 2 I=1,1000
IF(0.GT.O0LO) GO TO 31
IP(I.NE.1) GO TO 12
V(I)= SQRT((64.*H) /12.)
CONTINUE
IP(I.EQ.1) GO TO 5
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€C=00
0=0+400
SO=SIN(0)
S00=SIN (2.%0) /2.
€0=C0S (0)
STO= ((SIN (2.%0))/2.)
C SOLVE EQUATION & BY TRIAL AND ERROR
C=0-
DO 20 K=1,2000
C=C+CC
YC=R*TB* (COS (C) -CO)
DELU= PS*YC¥R*CC
UCS=UCS+DELU
IF(C.GE.O0) GO TO 21
20 CONTINOE
21 CONTINUE
US (I) =0CS
C EQUATION 5
US (I) = ( (T*T*C*SB*R*0) /2.)
2=0.0
2=0.0
VL=0.0
po 22,3=1,1000
2=24DZ
A=ARCOS (1.~ (Z/(R*TB)))
IF(A.GT.0) GO TO 23
SSA= (SIN (2.%1))
SA=SIN(A)
CA=COS (A)
C EQUATION 1
AREA= (( (R*R) /2.) * (2. *A-SS1))
DV=AREA*DZ
VL=VL+DV
22 CORTINOE
23 CONTINUE
UL (I) =VL*SL
UH (I)=( (. 1194 *SB*TH*TH*R*R*B) * (0-STO) )
C EQUATION 2
C COMPUTE DEPORMAT ION
X (I) = (R* (1.-CO) *TB)
DEFO=X(I) '
IF(0.LE.OLO) GO TO 32
31 CONTINOE
SUNX=SUMX+XO0
VLL=(3. 181593 *R*R*SUMX)
ULL (I) =SL*VLL
X (I) =DEFO+SONX
32 CONTINUE
U (I) =UL (I) +0H (I) +US (I) 4+ULL (I)
c COMPUTE APPLIED PORCE
P(X)=(U(I)-00)/ (X (I)-XX)
c COMPUTE ACCELERATION
G(I)=(P(I)*32.)/%
AG(I)=P () W
IF(U(I).GT.0T) GO TO 7
c COMPUTE VELOCITY
8 V(I)= SORT({UT-U(I))*(64./(W*12.)))
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7 CONTINOE
c CONPUTE LAPSED TINE
DT= (VV-V (I)) /G (I)
TS=TS+DT
TN (I) =TS*1000 .
c COMPUTE PERCENTAGE ENERGY STORED
PU=0 (I) /UT
5 XX=X(I)
UU=0(T)
vV=v(I)
IP(U(I).GE.UT) GO TO 4
2 CONTINUE
4 CONTINOE
J=1
WRITE(51,1010)
c OUTPUT-WRITE LOOP
WRITE (51, 1002)
WRITE(51, 1010)
WRITE(51,1010)
WRITE(S1, 1002)
WRITE (51,1008)
WRITE(S1, 1002)
WRITE (51, 1010)
WRITE (51, 1002)
WRITE (51,1004)
WRITE (51, 1005)
WRITE(51,1006)
WRITE (51, 1002)
WRITE(51,1007) R,CL,T,TH,THH, W
WRITE (51, 1002)
WRITE (51,1000)
WRITE (51, 1001)
WRITE (51, 1002)
DO 11 I=1,1000
WRITE(51,1003) X (I),V(I),TN(I),P(I),0(I),AG(T)
. IP(I.EQ.J) GO TO 10
11 CONTINUE
10 CONTINOE
WRITE (51, 1002)
WRITE (51,1010)
WRITE (51, 1010)
WRITE (51,1002)
WRITE(51, 1011)
WRITE (51, 1002)
WRITF (51, 1012)
WRITE (51,1002)
DO 26 I=1,1000
WRITE (51,1009)UL(I), 0S(I),UH(I),O0LL (I)
IP(I.EQ.J) GO TO 25
24 CONTINOE
25 CONTINOE
WRITE (51, 1002)
WRITE(51,1010)
WRITE(51,1010)
CALL QWIKPL(X,AG,J,'LINEAR','J.H.EVANSS')
1000 PORMAT (1H.,4X,11HDEPORMATION,U4X,B8HVELOCITY,7X,4HTINE,13X,SHFORCE,
1 10X, 6 HERERGY,5X, 12HACCELERATI ON)
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1001 PORMAT (1H, 6X,6HINCHES,7X,8HFT./SEC.,4X, 11THNILISECONDS, 8X,
1 6HPOUNDS , 10X, 6HLB-IN.,10X,3HX G) )

1002 FORMAT (1HO)

1003 PORMAT (P12.4,P13.2,P15.8,P18.2,P16.2,FP12.2)

1004 FORMAT (1H,30X,13HCASK GEOMETRY)

1005 FORMAT (1H, 4X,6HRADIUS,9X,6HLENGTH,8X, 10HSHELL THK.,5X,

1 9HHEAD THK.,5X,9HHEAD THK.,7X,6HWEIGHT)
1006 PORMAT (1H, 4X,6HINCHES,9X,6HINCHES,9X,6HINCHES,9X,6HINZHES,
1 9x,6HINCHES,9X,6HPOUNDS)

1007 FORMAT (F10.3,4FP15.3,F15.1)
1008 FORMAT(1H,5X, 34HTESTING OF OBSOLETE CASKS TEST & 1)

1009 PORMAT (4F20.1)
1010 FORMAT (1H, X, U9H*KKkkbkahkkkhhikhrhhkhhahkhkhkhkhkananpukhhhhkhhkkaneks,

1 SEHkk Rk kkkkkkkkkkkkkk kR ke kKRR KL KRk R R R RR R R KRR KR REEE R R KkEE Lk ’
2 1!"]*#####*#***##*)
1011 PORMAT(1H, 15X ,26HCONPONENTS OF TOTAL ENERGY)
1012 FORMAT (1H,13X,5HUL(X), 15%,5HUS(I), 15X, SHOH (I) , 14X, 6HULL(I))
STOP
END
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