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EFFECT OF CHARGE EXCHANGE REACTIONS

ON NEOCLASSICAL TRANSPORT

D. J. Sigmar* and J. F, ClarkeT

ABSTRACT

A collision operator for the reaction H+ (hot) + Ho (cold) =
AHQ {hot) + I-I,+ (cold) is-derived from the Boltzmann integr_al,
and incorporated in the proton drift kinetic equation for a
toroidally confined plasma in the bénana regime. In addition to
the proton diffusion, the relaxation 6f the radial electric field
and.thé parallel flow velocity is calculated and. shown to
occur in a few charge exchange times, much faster than

via perpendicular ion viscosity.
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1. INTRODUCTION

Results from the ORMAK experiment indicate that the ion dynamics
in plasmas of the TOKAMAK type may be described by the "banana-plateau”
‘cheory1 provided that the effect of charge exchange collisions of

the type

H'(hot) + H(cold) = H'(cold) + H(hot) (1.1)

are included.2 A physical discussion of the plasma behavior due to this
reaction is given elsewhere.3 In this paper, we incorporate charge
exchange effects into the neoclassical banana regime theory and pro-
ceed to calculate certain modifications'of the proton transport prop-
erties. To keep the analysis simple we shall not include the effect of
impurity ions here.4 The combination of impurity and charge exchange
effects into a common theory is straightforward but cumbersome.

In Section II, a collision operator for the process (1.1) is derived
from the Boltzmann integral and the classical momentum — and energy
loss due to this operator is calculated. In Section III, the neoclassical
versions of the proton-proton and the charge exchange collision oper-
ator are specified, to first order in (r‘/R)l/2 (where R/r is the toroidal
aspect ratio) and ch/vpp (the ratio of charge-exchange to proton-proton
collision frequency.) In Section IV we solve the drift kinetic equation
for the protons. In Section V, we calculate the neoclassical momen-
tum loss, the radial diffusion and the instantaneous flow velocity u of
the protons parallel to the magnetic field. In Section VI we calculate

the rclaxation of the radial electric field and of u, produced by the




nonambipolar diffusion due to charge exchange. (We also allow an
anomalous electron diffusion balanced by electron replenishment from

ionization.) A summary and conclusions are given in the last section.

II. CHARGE EXCHANGE COLLISION OPERATOR,

CLASSICAL FRICTION AND HEAT LOSS
Starting from Boltzménn's. integral we have

ot

f (v )-gd \' S.dﬂ o (V,Q)lv —vn

cX

X [£ (v (¥,) —fp(vi,) fn<v;1>]
where p stands for protons and n for ngeutrals. Tﬁe first term
describes the loss of protons out of the velocity interval around _\_rp,
the second term describes the gain of proton$ into the velocity interval
around _‘.’p’ from the regction'with all protons and neutrals having
V! and _\f}l before the collision. While it is tedious to work out

the collision-dynamics for Coulomb scattering it is trivial for the

charge exchange process. We have simply

vi = v v = v .
-p -n° - -n -p’

Furthermore, the energy- and directional-dependéhce of T,y Can be

neglected in the integrals for proton temperatures less than 10 keV and

we get



f (v)
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(2.1)

Note that although ch conserves particle number it will not in general
annihilate a Maxwellian proton distribution function. We will refer to |
the velocity integrals as the Roseﬁbluth potentials of fp and fn.5 To
calculate them, fp and fn are needed. The deviations of fn from a
Maxwellian have been calculated elsewhere6 and are neglected throughout
this paper. For the protons,: a'nt icipating a perturbation expansion of |

fp in powers of Vex it will suffice to calculate

The most general expression for fp describing a plasma flow parallel

1/2

to the magnetic field'with velocityu, < (Tp/mp) is given by the dis-
placed Maxwellian |

u,v :
I (2. 3)

f =~ f 1+
p po vz
Tp
Here, vZ =T /m_ and
Tp p’p T
2, 2
- m
o /ap) ith ap T (2.4)
=n wi = , .
po |% 3/2 3 2 p
o a




is a local Maxwellian for the protons. We assume the same shape, -
but a different density and temperature, for the neutrals.

Defining the errorfunction

X
$(x) = 2_ g exp(~t%) dt,
(“)1/2 0
one finds
f lv-—v', 2 2 -
3 o = — 1 1 +x : 2
dav'— =x|(¢=x¢'){ 1+ + exp(-x")
S‘ noea ( sz) x (“)1/2
= xy (%), . o | (2.5)
where x = v/e, ¢'=d¢/dx, and
f Iv-—v', v? v
3., 0 == I _ " _
S.dv n az —-(l— XYI(X)’ o . o (2-63-)
where
1 x
WOE 11—5 - S' exp(~t2) t© dt + x¢' + 5 x¢!
x 1/2 Y0 :
()
[emxe bx2\ ‘ |
-[—= ——_i,-(”x ) 2 exp(-x). (2. 6b)
2x x /J (“)1/2

The function (¢—x¢'}’2x2 is tabulated in,Spitzer,8 the first term in (2. 6b)

is small for small and large values of x and could be neglected without
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much error, Using (2.3) for the protons and taking a Maxwellian for

the neutrals we obtain

o fnol¥) M p!Y)
ch[fp(z)] = Vex™p) XpYo(xp) = xpyl(xp) " "n_ [pro(xn)]
o , £ P
P
. (2.7a)
where
v = (2.7b)

=0 noa.
CX CXOp

For a Maxwellian proton distribution function, u, = 0, whereupon
(2.7) is similar to a Krook-operator, having an energy dependent col-
lision frequency.ltis straightforwardto prove particle conservation,

‘and to calculate the parallel momentum and heat loss, defined as

_ 3 ‘~
RIch = 5 v mpv“CCX(fp),
, m Vv ‘
_S' 3 P ¢
QCX = d'v > ch( p)s

respectively. One finds, expanding in powers of Tn/Tp <1,

2
R, _=- o [ & Ni4ln,olln (2. 8)
lex = "MpMpYexip /2 2 T_ 2 :
3(m) P P
2
Q _=-Tn 2 —2 1——1-23+'039- . (2.9)
cX pp cx 1/2 2 T Tz : :
(Tr)/ P p
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_protons, but keép. the index n for:the neutrals) ,solves'] T
> » :.‘,.’.{’% ; . ~ L R [ o

tion we w1ll expand f

(For details, . see Appendix A.) An exact calculation yields_Q ._'OC

anp( Tp -~T ), as expected, 9 having the same asymptotic expansion .

"as in 2.9).) This charge exchange heat loss is in add1t1on to (and may

exceed) the proton heat loss through 1on heat conducnwty In Ex Tokamak,

the proton temperature is balanced agamst these losses by Joule

[ alf

'heatmg of the electrons and subsequent electron—)on colhs1ons The ;

neutral temperature is maintained through the constant 1nflux of charge
exchange neutrals.2 The charge exchange friction will be wor_ked out

in the banana regime, subsequently.

e ..

- - JIL .NEOCLASSICAL COLLISION OPERATORS,: ..

O
S ST R W

. BRI B s ERL S F S
We adopt the banana regime ordering for the protons and assume

the weak charge exchange limit, so that

W » Yop » vy ' v (3.1)
where c’Sb is the average bounce frequency. (For, 'typi'c:al; Palta;mr?:c-,@rs’«-«
such as those occurring in the ORMAK experiment,3 T];) ~ 10-45 S,
Top ~ 10"3 & and T .~ 1_0’2 $.). L . ot o

In steady state on the banana d1ffus1on ‘time scale, the proton

distribution function f = fo + f1 (we now drop the index p for the

Bf
VR P YD Gt G 8
LT BAR LT SRR IR S T SN E R

Asusual the expansmn of f is in powers of the gyroradlus and in addl—

?

1 in the colhslon frequenc1es, accordmg to (3.1).



For the proton-proton collision operator we take Kovrizhnyk' 10,7
model operator _
C,_ () ?(f ) + Ml
p ‘ vpp' 1 pPp VZ o (3. 3a)
Tp
where, using the notation of Ref. 7, & = 2hq 8% g E?_)\’ q= _V"l -
1/2 wB . v
(I_F) s X:—E", h-1+§cos6, .
n
P gy e4 In A

PP ' 2
= —2——5- [Xq) +(2X - 1)¢], Vpo = ——3— 5
“»  Tp

Vpo

v

The velocity p in (3. 3) is determined a posteriori from momentum

conservation, i.e.,
3
S d v mv, C (f) =0,

or, using(3.3a)and the identity

CcX

S a3v A(w) Z1) = _—g v A(W) £ f, A(v) ... arbitrary
, -
de nv,=( advy g (3. 3b)
p= ity * pp .2 o :
v
T
(f) is given in (2. 1) leading to an integral eqqatlon for f. However,
and

C

cx
because of the ordering (3.1) one can expand f in powers of v
=0) (see Eq. (2.2)) in the Rosenbluth potential, as mentioned

use f(vcx-

Thus




Coxlfy) = o, {f @ Gl +i,, e =N - @LDE. (.4)
For Vox = 0 we write the standard solution7 of (3.2) as
- 0 o
f—fo+F+ch »(3.5a)

where f0 is Maxwellijan,

vy 8f, S o
F=-§;—a—r-.' (3.5b)

with Qe = ]e]Be/m and By the poloidal magnetic field. H is the step-

function (equal to 1 for circulating particles) and

. | |
Xl
=15, 9 (¢ &, | (3. 5¢)
A (q) '

with
S, = 1 i"’—Jrfuf'{HH o " (3.5d
'siéf 2 . : (3.54d)

Vi

_ _ »
Here, f = afo/ar, c= V||/IV||I and (...) = fo"(de/zw) (1 +-§ cos 6) ..
is the flux surface average. On gg, the subscript stands for circulating par-
ticles, the superscript for the order in the vcx-expansion. uﬁ'HH is the

parallel flow velocity of the proton-electron probiem,7 orhitting O[(r/R)l/Z]

terms:
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T n' » T

p p |elo p .
ulf,‘HH=_ : — + IT -7 = . (3.6)

IeIBe P p p

é' = 9¢/dr is the radial plasma potential.

At this point we mention that the "standard" so.lution (3.5) is
incomplete: The neoclassical distortion £ owing to friction between
circulating and trapped protons has been omit’ced.11 This friction

scales as \)r/R v

pp’ compared with the charge exchange friction

scaling as Vex® Since the ordering used in this paper is

<
Vox S Nr/R Vop' Nr/R Vox ~ (r/R) Vop «1,

*
one should retain the distortion fp for a complete theory. Whereas

sk
the corresponding fp for the electron distribution function has been

12,13

o %
worked out this has not been the case for fp.

Neglecting temperature gradients, Egs. (3.5) combine to give

simply
f= fo +F... for trapped particles
3.7)
R > (
Y HHVH .

f=f {1+ 5 for circulating particles

v

Tp
J
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Siﬁce (f v v"F) ~ (r/R)3/2, the calculation of u; =(J By v”f)/np
to lowest order in (r/R)l/ Z from (3.7) will automatically result in
(3.6). We have calculated the Rosenbluth potential of distributions -
such as (3.7) in Section Ii. |

Keeping the radial temperature gradient one finds the Rosenbluth

.

potential .

v _
?(F+Hgg) = np 7" 2x2y1(x) (uﬁ'HH+ u“T)' ’ (3. 8a)

(for details, see Appendix B.) Here,

A Yo (%)
u“T=-'r§T r 2~ .33, ~ (3.8b)
IelBg YI(X) .
where
ZXZYZ(X) = S.XZYI(X) - X 'z%: (x?‘yl), X =’7“{— (3.9)
' p
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and Y, has been defined in (2. 6). The ffaction of trapped particleslv4

=1, 46 (r/R)l/z. Note that u, . depends on v and (r/R)l/Z. The

A
P T
appearance of r’x\T indicates a trapped particle effect.

Using (3.8) and (2.5) we find from Eq. (3.4) for the charge ex-

change operator to first order in vgx and (r/R),l/z
b i “T}HH.‘L“MT)
=0 w4 '
ch(fp) - vcxxp n, fno(v) Yo(xp) + Yl(xp) VZ
Tp
—fp(V) Yolxy) (s (3.10)
where fp = fpo + fpl‘ Since (uﬁ'HH+u“T) and fpl are of first order
in the gyroradius we write (3.10) as
Conlfy) = (Coyf)g +(Cof)y, (3.11a)
where
"p Yol¥p)
(C f) =v |—1 (v) -f (v){, (3.11Db)
cxpo ¢cx|n  no Yo(xn) po
and
RHH
"o ypx) M +ulIT>
(,chfp)l = Vex ‘n—o fno ) > - fpl . (3.11c)
Y0 n VTp
L |

Here we have defined the velocity dependent collision frequency
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- .0

Vex = vcxpro(x ). . (3.11d)

Note that (chfp)o is even in ¢ and (chfp)l is-odd. (chfp)o- con-
tains only known functions, (chfp)1 resembles a Krook-operator.

This completes the specification of the collision operators.

IV. SOLUTION OF THE PROTON KINETIC EQUATION

~We return to Eq. (3.2) with Cpp given by (3. 3) and ch by (3.10),

(3.11). In the banana regime ordering (3.1) the solution is

f1 =F+ g. + g .
with F given' by (3.5b) and -516 ‘gc =0 (CT... for circulating,
trapped protons.) Expanding in v/ W we find the usual constvxjaint

equations7 ‘determining g c .T’

| g L P (C Lt (Cf) o
O= —{(g+F)+f — CXpPo cx pl (4.1)
vy ¢ ° Vo o0 el
and
5,0 46 | = (chfp)o . -
o=(2"® g, v ——f \ (4. 2)
o ) |v,| Ypp

where 6 ], 2 are the turning points of the banana orbits, satisfying v, = 0.
? .

In the derivation of (4.2) we used the even parity in o of (chfp)l/vll

vs the odd»pal_‘ity of (chfp)o/V”. Néte also, that (_chfp)1 is first
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order in m/e while (chfp)o is zero order in m/e. However, since

we assume vcx/vpp < 1 we order (chfp)b as shown in (4.1), (4.2). For

the circulating particles, the response eo to the driving term (chfp)o

is easy to calculate from (4.1). However, since (C__f ) /v is odd in

cx p'o pp I

% Eeo will be even in ¢ and can therefore not contribute to u, or T.
R i 3 .

(The contribution of o to T, i.e., (fd vargCO) has the right sym-
metry in ¢ but the wrong symmetry in the poloidal angle 6, since
agco/ae = 0.) Consequently, we will ignore co henceforth. Similarly,
for the trapped particles, the even parity of (chfp)o in (4. 2) produces
a nonzero response gr. which is even in ¢ and 0, so that again ETo

cannot contribute to u, and T and we neglect €70 also.

It remains to solve for g_,, the response to (C from the equation
cl _

— — C f :
% & P Coxplt
NEANNG-S I, + , (4.3)
AT cl Vi op _2 vV
YTp pp

with the last term given by (3. 11c), where fp1 =F+g,,. (We drop

the subscript on .1 from now on.)

A._.
VvV =

Defining the smallness parameter vcx/vpp’ q = Iv” ]/v,

(gh) = Q, g = g/fop, and using the identity (v/v") = -20 (8Q)/0ox,

we get

(4.4)

where
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1 5, °
S,.Q:Ee-f— +'V—2- (4. 5a)
o) Tp
£ np f Y1p uRHH+ u.
_1 7o no il SNT
S ——— e + Tm—— ? (40 Sb)
! QG fo %o fpo Yon vZ
Tp

and, for brevity, we wrote

Yl(xp) Yl

=g
yo(xn) on

p

Equa'tion (4.4) is to be solved in the éubspace of circulating particles.
A .
AL
|, =0and (i) gA=A Q) = £, at
=0 g :
the transition layer. In the charge exchange free case gr = O.7 As

The boundary conditions are (i) A -5%

can be concluded from (4.2), gy is of of(v . (r/R)l/z] (the

ex /Vpp)
factor (r/R)l/2 deriving from the magnitude of the support region,
i.e., the trapped particle subspace.) Short of solving the kinetic equa-

Fal
_tion in the transition layer we neglect gT(XC) and use the boundary

condition

A S .
g(xc) = O, "~ (4.6)

This limits our theory to neglecting O[vcx(r/R)l/z] everywhere.

A
We solve (4.4) by iteration. For v =0, Eq. (4.4) reverts to the

standard proton-electron problem with solution

1N .
No oV S’cdh'
g =-— S —_—. (4.7)

_2 (o] ' Q _ )
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We note that S0 as given in (4. 5) contains the selfconsistent value
of the momentum restoring-velocity p contained in the proton-proton
operator Cp . In the absence of charge exchange, p = u'IE'HH results

from condition (3. 3b). However, for Vex > O, one cannot expand p in
v | . ,
a power series in v as will become apparent. (Recalling that p is
determined from [ d3v v”Cpp(fp) = 0, all processes concerning the.
proton momentum balance matter equally for p, magnetic particle
trapping being only one. Thus, a proper expansion would be in powers of
A 1/2 . A .
v/(r/R) rather than in powers of v.) Thus p is treated as a free
parameter, to be determined later,

. Ao . A A
Inserting g~ from Eq. (4.7) into the term v(Q'/Q)g in (4.4) pro-

duces a solution

Gepoep

and one finds

A
og' A GV ' )‘c dr! o c dx
)\T):-z—-v.? .SOS. Qg ——+Q(S+S) (4. 8)

A
For the velocity moments needed later, a knowledge of NOg/dN) is

sufficient, In fact, one needs only

A
A ag' _ K
5 CoN N — = -y 2oV [(s1 +zso)<1 - 1.46(r/R)1/2) —380(1 -1.95(r/R)1/2)‘

0 X 3 |

-+ O(%), | (4.9a)
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where the elliptic integrals of Eq. (4. 8) are worked out in Appendix C. For

) A
value of completeness we list also the well known result for g°

A .
N ag° . |
c _ _20v _ /2y .
S; Ao = -5 So(l 1.46 (r/R) [ ) | - (4.9b)

V. CALCULATION OF up and R,

We now calculate the quantities

: [
u f 1 :
=<§ d v, Tﬁ Y >(F+Hg +Hg') >, (5.1)
p - P pp

using

3 _ZZn‘Edde
dv= ) T =577

v 8 mz-' M1 '

and

A
S'cd)\g= —S’lcx—ﬁ‘d)\
0 A 0

where we employed the boundary condition (4. 6). The last integral

has been worked out in (4. 9).
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After a lengthy calculation one finds from Eq. (5.1)

p= u” o (5. 2)

where ﬁ =1,46 (r/R)l/z,

T
[+8} 4 4
K3 = __g_g dxp xp exp(—xlz) % vcg
3(w)1/2 0 | po
and
3
X
8 0 4 2. 5 Vox P 1)
Ky=—— S dx, X, expl=x)) 5 0= 3 (%) -
3(")1/2 0 . po a Yo''n

For vgx = 0, one recovers the standard result, but notice that ohe must

keep to O[(r/R)l/z] although p is of O(1) in the aspect ratio expansion.

For vgx > 0, (5.2) shows an expansion of p. is possible only if an

ordering in terms of A = vO /v fi.. has been assumed. It is rea-
cx’ "'po T _

sonable to assume that A <1 over most of the radial extent of the

plasma, in the banana regime, and in this limit (5. 2) takes on the

form

o} (K4—K3)

v
1/2
p=1u, 1+7;-§-(R/r)/ —17:1?+"' . (5. 3)
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Finally, u; follows from (5. 1) as

o . i 0
v’ . A v v
u, = pll-n.--CXg | ¢+, SHHE cx g
Il T v 1 Il v 2
po po
V2
A o2 (a+5a ) o 5.4a)
nT Qe ( 1 2 2 ) . ( M a)
where as usual
' nl' Tl : Tl
plele' 5 7p p (5. 4b)
A =—+ - A =7, *
1 n. T 2 T ° 2 T
p p p P
For brevity, we also define
2 | |
x o Tp ' (5.4c)
Ay = ng‘ 4, )
Furthermore,
- ) 0 v
' K, =8 Sﬂ dxp x: exp(-x;) -vﬁ
3(Tr)l/.z 0 pp
3
, e’ y,(x)
' 8 * 4 2, Yex P 1P
K2 = 4 dxp xp exp(—xn) ” -3
3mi/2 V0 PP a_ v (%))

The integrals K, 5 3 4 are evaluated in Appendix D, as a function

) o A
of Tn/Tp‘ Again, for "vcx/vpo « N,

Tl
P
o w, = w7 /2
le|B,
) ‘ : (o} : o .
RHH Tox I +K
—uy X (KK, KK, + O(a).

: po

(5. 5a)
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Compared to Eq. (148) of Ref. 7, the second term in Eq. (5. 5a) has
been omitted there. The third term shows the modification of the

parallel flow velocity due to charge exchange. As shown in Appen-

dix D,
T, [T
KI-KZ—K3+K4z3.Ol 1 -0.29 ','I,—;-!- O ;z— ] (5.5b)
p

We can now write down the proton momentum loss Rllcx due to charge

exchange collisions, correct to first order in Vex and (r/R)l/z. Rllcx
consists of the classical piece derived in Section II plus two neoclassical
pieces proportional to (r/R)l/Z apparent in (3.10). Using fpl = F+Hg°

and Eq. (5.3) for p, itis straightforward to calculate

3
lex = <S‘ d’v mpV”ch(fp)>

T
= - 8 vC m n III{HH 1 +_1£_T_n - 1,46 (r/R)l/2 P
17z "exTp"p o o] B
3(w) - 0
Tn
X (1.67 + 0, 33 ‘,:‘[,— . (5. 6)
p

(Here, as in Section II we have evaluated the velocity integrals involving
vox ONly in the limit (Tn/Tp) <1, see Appendix A.)
The first term in (5. 6) corresponds closely to the classical result

in (2.8). The second term in (5. 6) will give rise to an additional proton-

banana friction due to charge exchange collisions. As can be seen from the
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. | ' 7
neoclassical momentum balance equation

0= Ie] Bercx + Rllcx‘
bofh termslgive rise to a charge exchénge driven proton diffusion, rcx
Comparing the diffusion due to the first term in (5. 6) with the proton

diffusion in the absence of charge exchahge a_ﬁd iinpurity ion effects

(cf. Ref. 7) we find the scaling

-4 T v w2 , o .
(;X) t ~-v£’f-(R/r)1/ 2 (.mi/me)l/ 2, O (5.7)
proton pp : : ‘ '

a number which may exceed unity for the usual ordering (vgx/v'pp) <1.

VI. RELAXATION OF PROTON PARALLEL FLOW VELOCITY

'AND OF RADIAL ELECTRIC FIELD

As Equation (5.5a) has shown, the radial gradients give rise to a
toroidal bulk flow of the plasma. Equation (5.5) has been derived omitting
the relaxation term' ( 8f/8t) in the kinetic equation, thereby implicitly
assuming that such a relaxation occurs on a time scale slower than
the effective collision time in the banana regime. As‘ can be seen from
the neoclassical moment equations (éf. Ref. 7), the gradients decay on
the diffusion time scale

r 2

|2 (R/r)}/2
pee
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(rn ... plasma radius, Pee ... electron gyroradius in the poloidal field,

Tei®* 90° scattering time). However;, due to the reflux of charge
exchange neutrals and ionization on one hand and Ohmic heating on the -
other, the density and temperature gradients are maintained in a quasi-
steady state and the decay of L will be determined by other mechan-
isms. Rosenbluth et al15 have treated the relaxation of the parallél
flow velocity due to perpendicular ion viscosity for an electron-proton
plasma and found a \lfery slow decay rate scaling as x/rf) where the
viscosity x ~ 0.1 pizvizi/l,2 with p. the ion gyroradius in the total field,
Vii ~ (me/mi)l/z/-rei and ¢ the rotational transform. One expects
this decay to be somewhat enhanced in the presence of impurity' ions,
and/or nonaxisymmetric magnetic field variativons16 but here we wish to
point out 2 muchmore rapid mechanism for this decay process, namely

nonambipolar diffusion suchas charge exchange driven proton diffusion.

We start from Poisson's equation for the radial electric field Er’

oE

. r .
div = = ~47|e| div (r;-T' ),

or, with div =

=

58—1' r and a natural boundary condition at r = 0,

" e]
_48
t+“

Bo Bo

(ri'—re) = 0, . (6.1)

showing that only nonambipolar diffusion can affect Er' As shown in

Ref. 15, for each species the radial diffusion I" in its most general
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form is given by

. mr - | 9¢ | 2 |
Sppu—— 3 J¥ e o m_ .
I'=-35 <S.d ""uhl:Cf 8 ~m ot ae]> +O ez> (6.2)

where
E_ =~ f)i and €= -‘f-
r or 2 -

The first term describes collisional diffusion which will be ambipolar
to the extent that momentum is conserved in the collision processes
under consideration. The s‘epond term is driven by mn(au”'/at),
clearly much larger for the ions than for the electrons. The last term

is ‘driven by the decay of the radial plasma potential. Since, however,
f= fo * f‘l"

where fo is even in o and f1 ~ V“fo vanishes for v=0 and v = o,

this term cannot contribute to I'. We oi)tain from (6. 2)

: ou,,.
- _ - i .
le] By(T;-T,) = z R, z R, + mn, — (6. 3)
where in principle the sum over thefriction terms R = {fd3v’v“th)m
includes all collision processes. However, since ordinary Coulomb

collision terms such as Rei + Rie cancel, (6.3) contains only the

nonambipolar momentum loss mechanisms. In this paper we
single out Rllcx for the protons, neglect any further nonambi-
polar losses for the protons and lump all possible electron

processcs (é. g., pseudo-classical diffusion) into RZ, where
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the superscript stands for "anomalous." We will further assume that
RZ does not depend explicitly on the radial electric field, so that we
can treat Rz as an external driving term.

We combine Egs. (6.1) and (6. 3) to get

. 2 C
w . a
E pt . __Rllcx+Re

__L.*.___ u
B 2 I m h
6 Qg PP

=0, : (6.4)
where the dot stands for (8/8t). This equation is valid on each flux
surface separately. In contrast, for the problem of Ref. 15, u, is
determined by a radial diffusion equation. For Tokamak plasmas,
(wlz)i/Qgi) » 1, showing that a small amount of n'onambipol;r dif-
fusion will produce a large relaxation rate for Er’ Generally, (6.4)
reveals that the relaxation process for Er and u, will continue 'unti_l

the source of nonambipolar diffusion, namely (R +R: ), vanishes.

ltex
Specifically, we write Eq. (5. 5a) for u, as

_ _RHH _ A
u” = u” (1_‘\)0) 1. 17 nTAZ)

where A, has been defined in (5. 4c) and

()
1\ % .

Vo ET (K1 K, K3+K4)
pPo
vc?x T,

2 2.01{1 -0.29—=—1]. o (6.5)

) T
po p



-

25

_ RHH e
Rllcx = mpnpvlu” _+ mpnpvznTAz‘
where
T ’ T
vo=—2 0 [1elon) o, o8 0 ) 674033 =2,
1 1/2 cxX 2 T 2 1/2 cx T
3(w) P 3w P
We recall that
T n' T'
RHH _ Er P P)_Ep
W =BT no "0 =gt Uy
0 le] Be p . % 6
g ' o , . RHH
where we have defined ug as the gradient driven part of u, , for
brevity.
Assuming the density and temperature gradients and the poloidal
field BB are constant on the charge exchange time scale v;x’
. .
» Er
u, =—=— (1-v )
Il o o
and (6. 4) becomes
L _ .
E E R
r r ~ AT e
= (1l-v )+v, == =-v.u_+v.n. A + (6. 6)
Be o,lBe l7g 27T 72 mpnp

showing a fast relaxation of the radial electric field and a time

asymptotic solution



EI‘ Vz A - Ra .
- =-u_ +—=n A +—5— (6. 6)
Be . g v T2 mpnpv1

valid after a few charge exchange times. Eqﬁation (6.6) exhibits a complete
decay of uﬁ‘HH= (Er/Be) + ug to zeroorder in the (r/R) 1/2 expansion., Tofirst

order, however, there remains an effect 'Az, and the anomalous electron mo-

mentum loss. Inserting (6.6)in (5.5), we obtain for t » (vgx)-1
- 1.67 + 0. 33 i
| =1.46 (r/R)}/2 ™ 117+ (1-v,) =
e| B . n
3] 1+4+0.5 T
o p -
a o 8 1 Tn
+(1-v )R /m n v° ——m [1+4 2], (6.7)
o e P P cx 1/2 2 7T
3(w) P

Where o has been given in (6. 5). Thus,  in the absence of a temperature
gradient, Eq. (6.7) predicts a value for u, such that the proton momen-
tum loss due to charge exchange is balanced by the anomalous electron
momentum loss. Note that nonambipolaf diffusion cannot relax the
toroidal flow driven by (r/R)l/2 (BT'p/Br), a "banana" term related

to ;:hermal friction. Experimental evidence of a plasma flow consistent with this
term has recently been observed.!” The analogous O[(r/R)l/z]-term
has not been kept in the analysis of Ref. 15, Moreover, comparing

the present result (6.7) with the time asymptotic value for u, due to
relaxation by ion viscosity, . one concludes that the relaxation rate due

to charge exchange is fast enough to be observable in present

experiments while the relaxation due to ion viscosity is not.
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VI. SUMMARY AND CONCLUSIONS

We have adde\d to the standard n’eoélassical transport theory in the
banana regime the effect of proton charge exchange collisions with a
- Maxwellian population of neutral hydrog.en produced by multiple chargé
éxchange, iin-thel limit of small' charge-eﬁ;éhange frgquency to prdton-
proton-‘collision frequency. A collision ope.rator ch is derived frpm

1/z]

the Boltzmann integral, including O[(r/R) -terms, i.e., magnetic
particle trapping. Charge exchange collisions produce significant momen-
.tum and heat loss for the protons. Compared‘to the standard banana

regime résults, the ébrresponding particlé diffusion scales as

O . ;
v

cx (,R/r)l/z (m./m )1/2
vpp . X e

and the heat loss as

T -Tn rZT

o
v
1/2
_C_X_(R/r) / T 5

. ]
.

where Tp’ q is the proton/neutral temperature, rop o~ [(1/ Tp) (dTp/dr)]*l
and Poi is the poloidal proton gyroradius. ch has an even apd an odd
. piece in o (= v“/ ]v“ ]). The even piece produces even distortions to both
the trapped and the circulating proton distribution fp' which, however,
do not contribut e to odd moments of fp such as i‘adial‘ diffusion I' or
parallel flow velocity w, because these moments vanish on the flux
surface average. The odd piece of ch produces distortions with non-

vanishing flux averaged moments, thus contributing to I' and u,.
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Keeping terms of O[(r/R)l/z] in the Rosenbluth potential for ch, T
and u; take on "banana terms" of O[(r/R),i/z] besides their more
easily predicted O(1) terms following from the simple estimate RCXE
) d?v mpvllccx(fp) ~ —mpnpvgxull' |

The nonambipolar‘ momentum loss ch relaxes the rédial eieétric
field Er of the toroidal plasma much more rapidly than the perpendicu-
lar ion viscosity previously invoked. On a time scale of O[(v(c)x)—l L E.
and u; adjust themselves so as to annihilate the surh of Rl”cx and other
nonmomentum conserving friction terms such as the anomalous electron
friction R:. Keeping to O[(r/R)l/ 2], the time ésymptotic value of ﬁu
does not vanish but remains at a finite value (r/R)l/z, given‘ b;;r the
first term of (6. 7). Concerning RZ' and the correspbnding anomalous
electron diffusion I"z, an upper limit for 1"2 may be determined by the
steady state requirement that the anomalous loss be balanced by ioni-

zation.
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Appendix A
To. find the functions Yg and vy, (Eq. (2.5), (2.6)) expand ,.Y-l’.'l

in spherical har-monics.18 Using polar coordinates (v, ¢, 8).one

obtains

( ‘ :
2 V'[ao(%) + al(-g;-) cos 6 cos O' + ... ], v<v!
g do' |v-v'| = 23
o A

~ T LA WY A A ' o
V[ao(v),"' al'_(v_) cos 0 cpse + ], V3V

\

where

| n xz 1 ' .
an(x) = X" 4533 ~ Inoi -
Exploiting the experimental fact Tn/Tp « 1 we expand Yo' Y1 in the

ranges X - 0, x - o, finding

0 (x) = — 1+X2+' ) (x) 2 (1 X2+
X - Xy (X) = — =+t...], XY = - — -=+...
° N 3 . 1 _ 3N _5_
‘., 1 ., . 1 .
X = 0 xy (x)=x 1+~—-—+...), xy (%) = =5= {1 = —+ ...
o ( sz 1 2x sz

These limits can be used for the energy averages occurring in the

expressions for Rllcx and ch' Specifically, we use the small argument
limit for xpyl(xp)v in /n[xpyl(xp)], and the large argument limit for
X Y (%) in /p[xnyo(xn)], where
8 o ' 4 - x? ’ :
fsz S dxsxse S; s=p,n
3T Yo

Using integral"c,ables19 the integrals can be calculated for arbitrary values

of Tn/ Tp.
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Appendix B

- The calculation of ?(F) proceeds along the lines of Appendix A,
The integral underlying yz(x) defined in (3. 9) follows from differentiation
with respect to the temperature of the integral underlying yl(x).

The result is

VZ
Vi Tp

g(F)_—n L o sz[yl(x)A1+y2(x)A2],

where A is defined in (5. 4b).

1,2
To calculate ?(Hg ) we transform to the pitch angle varlable7

A= pBO/E - h sin® 6.
The stepfunction H restricts A to 0 S\ <1 - r/R. The \-integration

leads to elliptic integrals listed in Appendix C. The energy integration

requires

- ™ lval(v> o

V! v

and

vt [u(E)
§0 Tl\%bl(\%)/

where x =v/a. The total result is given in (3. 8a).

7 =5[ xzyl(x)] - x—aa—x [xzyl(x)]
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Appendix C

7\c dx

0o — As shown in' Ref. 7, Eq. (80),
(qh)

Define I1 =

l-¢
d7\ d)\
- =1, 95 Ne + O(¢€),

where € = r/R. ' The first integralg gives [2+O(¢€)], ‘where upon

I =z[1-o.97'5~/”€].:

\ o
Define I, f c O\ - Jge an b P where A =1-¢ With
' ( gh) c {gh)

(q'i) -z—— (dh) and (q(x ))-— NZe

A M()\) g
1 (e dnt 1 2 3/2
5 =(ar)) -{ar ) - -Ne/2 ~<K(m)|/m>“°,
25\ (gh) S‘ %E(m) 0

Here, M(\) = 2\e/[1 -\ +Xe- 62].

The elliptic integral has been calculated in Ref. 7 and we obtain

L =% [1-1.46V¢]



Appendix D

Using (3.11d), and the techniques of Appendix A, -

K =28 S-°° dx X e‘-xp (x.)
3T Z3vwd ks Yorm
2
_ 20 1 Ty Ty
= l+z5 ¢ Ol—= ||
3N p T
: p
| fa. \> 0 -X a
K, = .a_n_ 20 S dx_x_ e y1<x __r_1_>
p 3N @ Yo n ap
2
Tn 5 Tn
=TT tOl=7 |
p W T
p
T |
K, is of O} —5" ), which we neglect.
T
P
o -x Y (%))
K1 - -8 S‘ dx x e AO 1
3 0 (x
'rr vpp( )
v (x)
where v__ (%) = = , a function we gave subsequent to
PP Vpo X

Eq. (3.3a) and which is tabulated in Ref. 8. From Appendix A,

T 4 >
vy(x)=1+ = Ax%. One finds numevrically
o n Tp p

00 2
c, = 5 dx x> % /Cpp(x) = 12/171/2 = 6,77
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