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THE NUMERICAL SOLUTION OF ILL-CONDITIONED

SYSTEMS OF LINEAR EQUATIONS

Michael T. Heath

ABSTRACT

The physical origins of ill-posed problems are discussed,
and the computational difficulties involved in their solution
are examined. An iterative suboptimal constrained estimation
method for solving such problems is presented and several
related methods are surveyed. An extensive bibliography is
included.

INTRODUCTION

This paper is concerned with the numerical solution of ill-conditioned

systems of linear equations. Such systems commonly arise in science and

engineering from experiments or problems that are ill-posed. This does

not necessarily mean that the problem is ill-conceived, a result of

caprice or poor design. Rather, ill-posed problems usually stem from

fundamental physical limitations on the accessibility of information

about an object or process under study.

In addition to presenting a new method for handling these problems,

an attempt is made to survey other techniques and relate them to the

present approach. Although the methods discussed are applicable to a

wide variety of problems arising from different circumstances, indirect

measuring processes are singled out as a paradigm to illustrate the

computational difficulties caused by ill-conditioning and to motivate

the proposed cures.



The bibliography is meant to be fairly comprehensive with two

exceptions. There is little mention of the voluminous Russian litera

ture on regularization. Only a small sampling of applications is given,

just enough to indicate some of the flavor and variety of concrete ways

ill-posed problems crop up in practice. Many well known concepts

and results from linear algebra and matrix theory are used freely without

specific reference. For clarification or further information on such

matters, one of the several excellent books in this area [20, 35, 59,

8h, 106] should be consulted.



I. ILL-POSED PROBLEMS

1. Measurement

In ordinary life the act of measuring seems completely transparent,

devoid of any subtlety. For instance, when one measures the length of

a desk with a ruler, there is no reason to suspect that the result

is significantly different from the physical reality of the object

measured. Suppose, however, one is trying to determine the size of

soot particles in a smokestack or fog droplets in a cooling tower.

The ruler is of no use. One must resort to some indirect scheme of

measuring, such as the scattering of light when the particles are

illuminated. Now the quantity actually read on the device might be

a voltage in an electrical circuit. The relationship of the voltage

readings to the particle sizes present may not be at all simple.

Even with the best electronic and optical equipment available a

10 micron particle may sometimes produce a voltage reading expected

of a 100 micron particle, and vice versa. Furthermore, the instrument

may be completely insensitive to particles in certain size ranges.

While this situation is far removed from ordinary experience,

it is common in science and engineering. This is particularly true

of experimental or observational sciences where measurements must

often be made with imperfect instruments or through significant

obscuration. The particle size distribution problem [J8, 96, 105*

112-116] is of particular importance because of its relevance to control

ling air pollution. Spectroscopists [lU, kg, 57] "try to determine the

energy distribution of incident particles (e.g., neutrons, photons, etc.)

from scintillation counts in the voltage bins of a multichannel analyzer.
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Similar circumstances occur in physics [50, 91, 93], meteorology [53, 98?

99, 103, 10U], astronomy [11, 15, hk, kf, 9h], optics [19, 31, 79], geo

physics [^-7, 37, hi, 63, 81], medicine [29], and many other fields.

2. Mathematical Model

The above kinds of measurement processes can perhaps best be

modeled mathematically by an integral equation in which the kernel repre

sents the characteristics of the instrument, the known function is the

observed data, and the desired unknown function reflects the actual

phenomenon taking place. Probably the most common cases are linear

Fredholm integral equations of the first kind. These have the form

b

J K(s,t)f(t)dt = g(s),
a

where f, g, and K are real valued functions defined, respectively, on

11 2
[a,b]CR , [c,d]CR , and [c,d] X [a,b]CR .

In the examples given above, the function g would represent counts

as a function of voltage, K the response function of the instrument

determined by calibration, and f the unknown true particle distribu

tion as a function of size or energy. The response function K can be

thought of as a transition probability; that is, K(s,t) is the probability

that a particle of size or energy t will produce a voltage reading s.

In this model a perfect instrument is one having the response of a

Dirac delta distribution K(s,t) = 8(s-t). Then

b

g(s) =J 5(s-t)f(t)dt - f(s),
a

where for simplicity we take f and g to be defined on the same interval.

This means that the instrument provides direct measurement of the quantity

of interest.
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For the complex objects of study in science, such an ideal device

is usually technologically impossible. At best one must settle for a

broadened response, such as a Gaussian distribution which, as a function

of t, peaks on the diagonal s=t and drops sharply to zero on either

side. Although such a function roughly approximates a delta response,

it necessarily smooths or smears the function f somewhat, causing a

loss of information in the measured function g. This can be seen, for

example, from Riemann's lemma, which implies that for integrable K

lim fK(s,t)sin(nt)dt = 0.
a

Thus an arbitrarily high frequency component of f has a very small

effect on g.

A good many instruments used in actual practice exhibit little

or no peaking response at all and are characterized by wide plateaus

of complete insensitivity. Such an instrument suffers even more

severely from blurring and biasing effects and reduces still further

the information content of measured data.

The recovery of this information and determination of the unknown

function f is variously known as inversion, unfolding, and unscrambling.

This is a classical ill-posed problem in the sense of Hadamard.

According to his definition, a problem is well-posed if the solution

exists, is unique, and depends continuously on the data. As evidenced

by Riemann's lemma, unfolding problems do not meet this definition

since a small change in the data g can correspond to an arbitrarily

large change in the solution f. In Hilbert space terminology one would

say that the integral operator does not have a bounded inverse.



3- Discretization

A standard approach for obtaining a numerical solution to an

integral equation is to replace the integral by a quadrature formula

and the continuous variables by discrete mesh points. If the weights

for the quadrature formula are denoted by w , j=l, ..., n, and the

mesh points chosen are

aStlSt2S •'• SVb'

cSsiSs2§ ••• -SmSd'

then the original integral equation is replaced by the approximate

equation
n

g(Si) = ^K(si,t;.)f(tj)wJ, i-1, ..., m.
3=1

This can be more compactly written in matrix notation as Ax~b, where the

,n , , ^m
mxn matrix A and the vectors x eR and b eR are defined elementwise by

a. . = K(s.,t.)w. \
v i J 0

/ i=l. • . ., m;

X.
3

= f(t.)
1 j=l, • .., n.

b.
l

=g(s.) )

A solution vector x for the matrix equation is taken to be a discrete

approximation to a solution function for the integral equation. It

should be noted that the validity of this process depends on both

approximations: the replacement of infinite dimensional function

spaces by finite dimensional vector spaces and the replacement of the

integral operator by a summing matrix. In the sequel it will be assumed

that these approximations are adequate and attention will be devoted

to solving the resulting system of linear algebraic equations.
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h. Ill-Conditioning

If the matrix formulation is of primary interest here, it might

be wondered why the problem was not stated as such at the outset.

This is because a knowledge of the physical source and underlying

mathematical theory of ill-posed problems is important in trying to

understand the computational difficulties they present and suggests

possible approaches to their successful solution.

Physically ill-posed problems lead to computationally ill-condi

tioned problems. This means that the solution is extremely sensitive

to error. There are many possible sources for error in any computation:

inaccuracies in the data as originally recorded, truncation error in

entering it into the finite word length of machine memory format,

accumulation of rounding errors during the course of calculations. In

explicit recognition of at least part of this error, the matrix equation

might be written

Ax = b + e,

where e eR is a vector of errors in the measured data b. When

the matrix A is ill-conditioned, the error e in the data b can so

contaminate the computed solution x that it is wildly oscillatory,

bearing little or no resemblance to any physical quantity it may repre

sent. Indeed, if straightforward matrix inversion techniques are

applied to the system as it stands, a nonsensical, physically impossible

computed solution is a likely result [107].



A quantitative measure of the conditioning of a matrix is given

by the condition number defined by

Cond (A) =||A||2 ||A+||2,

where ||-|| denotes the Euclidean norm and "t" denotes the Moore-Penrose

pseudoinverse. A theoretical upper bound for the relative error in

the computed solution is given by [8^]

ll*-*ll2 , , IMI2
(i-i) ~TFnr *c°na(A) TFTfJ '

t — t
where x=A b is the solution to the original system and x=A (b+e)

is the solution to the perturbed system. Thus, ill-conditioning is

asociated with a large value for Cond (A), since in this case the bound

on the error in x is very large. Practically speaking, this allows

undesirably wide variation and great uncertainty in the calculated

solution even when ||e|| is small. This behavior corresponds to the

unboundedness of the inverse of the integral operator from which A is

obtained.

There are other ways of looking at ill-conditioning which lead

to similar conclusions. For instance, if A is considered constant

and assumed nonsingular, then the partial derivatives of the components

of the solution with respect to the components of the data are given by

ax..
i

a.' .
db lj

J

where ja!.j =A~ . Here again the large magnitudes of the elements of

the inverse matrix indicate great sensitivity of the solution to the

data. Mendelsohn [5^, 55] discusses several interesting properties

and simple examples of ill-conditioned matrices.



It should be noted that matrices arising from ill-posed problems

such as first-kind integral equations are inherently ill-conditioned,

regardless of the particular discretization employed (so long as it is

reasonably faithful in approximating the integral). For example,

Gautschi [2k] has studied the effect of a great variety of different

quadrature formulas on the conditioning of the kernel matrix resulting

stfrom Laplace transform inversion (K(s,t) =e ). He shows that while

some are better than others, they are all poorly conditioned.
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II. PREVIOUS METHODS

1. Constraints

The fundamental difficulty with ill-posed problems is the lack

of sufficient information from response measurements to infer the

correct solution. This is reflected mathematically in the fact that

the system matrix tends to be underdetermined (rank deficient) even if

it is formally overdetermined (more rows than columns). An obvious

approach, then, is to augment the data provided by the instrument with

any additional knowledge of the nature of the quantity being measured

in order to make the computed solution at least physically meaningful

and possibly even correct. Mathematically this amounts to building

up the rank of the matrix or reducing the solution space so as to

yield a unique solution which satisfies all constraints known to obtain

a priori. Such constraints usually take the form of inequalities

or equations, perhaps with tolerances, imposed on the solution.

2. Smoothing

In contrast to the wildly oscillatory behavior typically resulting

from applying simple matrix inversion algorithms to ill-conditioned

equations, most natural processes are smooth. This notion has given

rise to a family of techniques which require the computed solution

to be smooth, in some sense, by a process variously known as damping

[51, 52, 87, 88, 101], smoothing [68, 95, 9, 80], regularization

[89, 90], relaxation [76], or stabilization [78, 82].

The central idea of such methods is to replace the minimization

problem

T{!|a*-W|}
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by the problem

(2-1) *f {||Ax-b|| +K||x||'},
where I[•I|' is possibly a different norm from ||.||, and the positive

scalar A. is a relative weighting factor. By simultaneously minimizing

the residual and some norm of the solution, oscillations in the solu

tion tend to be damped out, giving a smoothed solution which still

satisfies the original equations to some degree.

The amount of smoothing is controlled by the choice of norm ||•||'

as well as the scalar K. Norms usually employed are of the Sobolev

type, involving finite differences of the elements of the solution

vector x, or derivatives if applied directly to the original integral

equation. The usual central difference operators

lead to the norms ||x| |' = ||a.x|| , and the minimization problem (2.1)

becomes

mm

x
jn{||Ax-b||2+x||Aix||2|.

The normal equations for this least squares problem are given by

T 2 T T
(A A+\ ATA- )x = A b.
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T
However, explicit formation of the matrix A A can be avoided by employing

the equivalent partitioned matrix formulation

which can then be solved by orthogonalization. Note that this approach

subsumes the case where the Euclidean norm is employed for both the

residual and the solution by simply taking A0=I , the nxn identity

matrix. More complicated Sobolev norms consisting of linear combina

tions of higher differences can be handled computationally by stacking

the difference matrices, for example,

where X. , X are independent scalar weights.

The role played by the weighting factor X in these methods is

crucial. If X is chosen too small, then the problem is still poorly

conditioned and the solution still oscillatory. However, if X. is taken

too large, then the solution is excessively damped and the original

equation to be solved has little influence on it. The arbitrariness

of seeking a mediating value for X is the chief drawback of these

methods. Even if the solution obtained is made physically reasonable,

there is no indication how much the solution could vary and still remain

within the smoothness constraint and error tolerance of the original

data.
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3- Singular Value Expansion

The singular value decomposition of the matrix A is given by

the factorization

A = <y.
where UU =I , V V=I , and D=diag(& ,••.,8 ), with 8, t &2 ? •••

8 ^ 0. The diagonal entries 8. of D, called the singular values of

T
A, are the nonnegative square roots of the eigenvalues of A A and the

T Tcolumns of U and V are orthonormal eigenvectors of AA and A A,

respectively. The conditioning of the matrix A can be characterized

in terms of this decomposition. If 8, is the smallest nonzero singular

value of A, then Cond(A) = l/s,. Thus, a poorly conditioned matrix

is one with a great variation in the magnitudes of its singular values.

To see how this affects the solution of the equation Ax^b, the

factorization is substituted in to obtain

<DoK* =>.
or

x = V(Df,0)UTb,

t -1 -1where D =diag(s ,...,& ,0,...,0). The expansion becomes clearer

if the summation is written out explicitly

k T,

^ uib(2.2) x. I -|_ v.,
i=l 1

where u. and v. denote column vectors of U and V, respectively. Thus,

the smaller singular values entering into the denominator of the terms

of the expansion tend to greatly magnify any error in the data vector b,
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resulting in a spurious solution. To alleviate this it has been sug

gested [27, 28, 100, 8] that the expansion simply be cut off before

the contamination due to the small singular values creeps in. This

does produce a well behaved solution but again, like the damping factor

X discussed earlier, entails a somewhat arbitrary judgment as to when

to terminate the summation.

k. Mathematical Programming

What is lacking in the above methods is a useful error bound.

It has already been observed that the classical bound (1.1) is exces

sively pessimistic and of little practical value in the presence of

ill-conditioning. What is needed is to determine the maximum range

of all possible solutions that are consistent with all constraints

known to apply. This might be specified either as absolute error

bounds or as probabilistic confidence limits.

Such an approach, imposing physical constraints and extremizing

a functional of the solution, can be carried out by means of mathematical

programming [12, 70, 75, 13]• Nonnegativity is the basic constraint

for several reasons. Many quantities, such as energy, diameter, counts,

or probability, are inherently nonnegative. Many mathematical program

ming algorithms assume nonnegative variables. Other constraints, such

as monotonicity or smoothness, can be transformed into nonnegativity

constraints by an appropriate change of variable, x = Cz, with z 1 0.

For example, to force x to be nonnegative and monotonically nondecreasing,

let
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If x is required to be nondecreasing, but not necessarily nonnegative,

then

i -l i. :i

The obvious changes are made to yield nonincreasing x. The solution

can be made smooth by taking x to be a nonnegative linear combination

of smooth vectors, the columns of C Several of these constraints

can be made to hold simultaneously by using the product of the corres

ponding matrices, x - C,C2 • • • C^z.

Such constraints can also be conveniently imposed as separate

side conditions. The nondecreasing constraint, for example, is equiva

lent to requiring Cx ? 0, with

ii O
C = I -11

O -:ri

The solution x can even be first increasing up to a certain point,

then decreasing by letting

Many variations on these themes as well as absolute bounds on the

solution can be implemented in this manner.

The type of mathematical programming problem which results from

a given unfolding problem depends on the design of the experiment,

the kinds of errors present, and what sort of information is sought
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about the solution. A very flexible and informative objective function

Tis an arbitrary linear functional of the solution, cp(x) -w x, obtained

by taking an arbitrary vector weR . To pick out an individual component

of the solution vector x, the vector w is chosen to be the corresponding

coordinate basis vector.

Sometimes the true data vector b is known to lie within a polytope

determined by an interval of uncertainty about each of its components.

This would be true with rounding or truncation error in recording

or entering the data, in which case the interval width might be, say,

one digit in the last decimal place. A natural norm for such a problem

is one whose unit ball is a polytope, such as the max-norm ||•|| or the

sum-norm j|> ||,. Under these circumstances one may consider any

solution equally acceptable which satisfies the equation within the

tolerance of the data,

|Ax-b| § |e|.

TDetermining the extrema of a linear functional cp(x) =w x is then a

linear programming problem of the standard form [60-62, 70, 73]

sw xf subject to x g0,

Ax gb - IeI, -Ax s _b-|e|

and

max/ T I ,. , , ^„
w xt subject to x l 0,

Ax ^b+ IeI, -Ax «-b +|e|.

Any of the previously discussed constraints can be imposed, either by

change of variable or by incorporating additional side constraints

directly into the tableau. The form of the problem is retained, but
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the solution obtained satisfies whatever conditions are desired. The

preceding formulation can be modified to allow negative x by introducing

nonnegative variables u and v and setting x^u-v.

A far more realistic and common experimental situation is for

the measured data b to be drawn as a sample from some population with

a random error of observation due to counting statistics or other

source of uncertainty. Such a probabilistic interpretation not only

models instrumental behavior better but also makes available a rigorous

statistical error analysis. As will be seen in greater detail below,

an ellipsoidal norm, such as the Euclidean norm, is the logical choice

here. This leads to an optimization problem of the form

:iw xi or min<w xfmax<

x v x

subject to ||Ax-b| | S ||e
12

plus other possible constraints. Unfortunately this is the reverse

of the standard quadratic programming problem [2, 5, 92, 93, 39]

which has a quadratic objective and linear constraints. It can be

converted to a parametric problem [75] of the standard type, but this

can be prohibitively expensive computationally. It is therefore the

aim of the next section to develop methods for the quadratic problem

which, like the smoothing and singular value methods discussed earlier,

require little more work than simple matrix inversion techniques but,

unlike those methods, produce error bounds as well.
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III. CONSTRAINED ESTIMATION

1. Classical Regression

The measured data vector b is assumed to be centered in an

ellipsoidal measurement error region E CR defined by
m—

Em ={yeRm: (y -b)T S-2 (y -b) ^2},
-2 2

where S is a positive definite matrix and u. is a positive read-

constant. For example, the surface of this ellipsoid might represent

a probability isopleth for a multivariate normal statistical distribu-

2
tion with covariance matrix S • Estimates are sought for the upper

T
and lower bounds of an arbitrary linear functional cp(x) =w x of the

solution vector xeR subject to the constraint Ax eE • From the
m

ellipsoid E the matrix A induces another ellipsoid E Cr defined by
* m n

En =jxeRn :(Ax-b)TS~2 (Ax-b) g^\.
Thus the problem is to estimate

max I T I , min I T I
cp = r wx and cp,„ = „ wx .
^up xeE J lo xeE I J

^ n n

From the theory of linear regression it is well known that the minimum

residual

min L , ,T „-2|(Ax-b)T S"2 (Ax-b)ir0 = x ^AX_D^ b ^x-o;f s ^

is attained when

x = (Ax S""A) 'kL S""b

Furthermore, provided cp is an estimable function (i.e., w lies in the

row space of A), the upper and lower bounds for cp are just the values

T
assumed by w x on the two support planes of E which are orthogonal to w.



20

To determine these values note that the covariance matrix of the

T -2 t
solution x is (A S A) and therefore the variance of cp is given by

wT(AT S~ A) w. Thus, defining

8=[(^2-r0)wT(ATS-2A)tw]*,

the bounds are given by

TA TA
cp =wx + 8, cp-, =wx-8.
^up ' ^lo

For more information about confidence ellipsoids and their planes of

support, as well as other statistical concepts employed in this paper,

see Scheffe [77]. For the use of the Moore-Penrose pseudoinverse in

this context, consult Price [69].

2. Suboptimal Estimation

The classical procedure outlined above completely solves the

problem when cp is estimable; and this is always the case if the rank

r of the matrix A is full, r=n. But if r<n and w does not lie in

T -2
the column space of A S A, then the above bounds become infinite.

To see why this is true geometrically, observe that the ellipsoid E

T -2
has its axes in the directions of the eigenvectors of A S A and

their respective lengths are proportional to the reciprocals of the

corresponding eigenvalues. As a result, even though E may be well

T -2
behaved, if A S A is singular, then the axes of E determined by

eigenvectors corresponding to zero eigenvalues have infinite extent.

Thus if w has a nonzero projection in any of these directions, its

variance becomes infinite, hence the name inestimable. Near singularity

is just as disastrous computationally because the great elongation

of E due to very small eigenvalues gives very large bounds for cp
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for some choices of w. Unfortunately rank deficiency, near singularity

and severe ill-conditioning are the rule rather than the exception in

problems arising from the discretization of integral equations.

Many an experimentalist has been rudely initiated to this behavior

upon finding that seemingly innocent variations within E allow

solutions obtained to roam far afield from expected results and yet

remain within E .
n

What is needed is to cut E down to size by utilizing any "ball
n

park" knowledge one may have of the solution. A method for doing

this is presented below. It is an iterative extension of a suboptimal

technique first given in ["jk], which is reviewed here for motivation

and to fix notation. Suppose one can give reasonable lower bounds

p and upper bounds q for the solution. These intervals for the

components of x define a polytope

B = ixeRn :pgx ^ql.

Assuming that the solution must lie in BflEn narrows the interval

[cp-, ,cp ]• The polytope B is difficult to treat analytically when

2
using the l norm, so it is replaced by the circumscribing ellipsoid

of least volume. Defining the vector d =-|(p + q) and the matrix

Q = diag(d), this circumscribing ellipsoid is given by

C=|xeRn :(x -d)T Q~2 (x -d) Snl.
Since BCc the solution is contained in CHE , but the price paid for

convenience is that the interval for cp is somewhat widened due to

the increase in size of the constraint region.



22

The intersection of two ellipsoids does not have a smooth surface;

so still another suboptimal approximation is made, this time replacing

CHE by a convex combination of C and E . Such a combination is

itself an ellipsoid having the form

D=|xeRn :T\.\ (Ax -b)T s"2 (Ax -b) +(1-7)) '\ (x -d)T Q-2 (x -d) Sll,

where 0 ^ 7] == 1. Note that CHE CD, so that D ^ f> whenever CHEn ± 0.

The ellipsoid D can be represented more compactly in partitioned matrix

form by defining

•2 o2 /l-j\ 2 -2 ' ° WS

V " = I ^ 2
T = —r ' v = o iio-2Qn ^

so that

( n T 2 2 21D= ^xeR : (Rx - y) V (Rx - yM t +n ?•
2

The new parameter T varies from 0 to » as 7] varies from 1 to 0

and can be considered a relative weighting factor between the two

2 2
ellipsoids, t =0 giving E and t =» corresponding to C- Assume

2
for the moment that a specific value of t has been chosen. Strategies

for making this choice judiciously will be discussed later.

The new suboptimal problem has now been reduced to the form

of a classical linear regression

max
cp
up

axf T ) min T \
^<w x> , cp, = „w x(
eDl ) ' \Lo xeDl )

and can be solved in the same way as previously demonstrated. Specifi

cally, the minimum residual
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min (. ,1 -2, J

po= x v^-y) v (^-y)} * 2 2

is attained when

x = (rWVvSt .

2
Note that R is necessarily full rank if t ^0. Thus, the indicated

inverse exists, the normal equations have a unique solution, and

every linear functional cp is estimable. The resulting bounds are

again given by

TA Ta „cpup = w x+8 , cplQ = w x-S

with

8 [(t2+M-2-P0)wT(rV2R)-1w]s

In a practical computational algorithm one would not explicitly invert

T -2
R V R but would instead use an orthogonalization technique, such as

modified Gram-Schmidt or Householder transformations, to factor

(3-1) V_1R =w(K)

T -1
with W orthogonal and U upper triangular. Then, with z=W (V y),

this would easily yield

x = (U_1,0)z,

T -2 11 n |P0 =yV y-zIQ 0lz,

[, 2 2 . TTT-1 TT-T "14I(t +|i -pQ)w U U w|s

in an efficient and stable manner.
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3. Iterative Procedure

T
At this point an interval bound rep, , cp 1 has been obtained for w x.

L lo upJ

Successively taking w equal to the n coordinate basis vectors produces

interval estimates for the individual components of the solution vector.

At least some of these are hopefully sharper than the original values p

and q. This provides the basis for an iterative procedure. After the

first step any improvements in the bounds can be incorporated into the

estimates p and q and the process repeated. This can be carried on so

long as any one of the 2n bounds continues to change. In practice the

convergence of this process is assured, since one simply would not

accept the new iterate for a given component bound if it were not an

improvement. Thus, monotonic bounded sequences would result, and

convergence necessarily follows.

The object is to successively shrink the bounding region so as to

yield the narrowest possible interval estimate. Because of the sub-

optimality of the ellipsoidal approximations made along the way, the

ultimate theoretical bounds resulting from a linear constraint can never

quite be reached. However, this deficiency is minimized by the fact

that the convex combination ellipsoid produces the tightest possible

fit [U2].

After the first step subsequent iterations are not as expensive

computationally, since the orthogonalization (3-l) does not have to be

repeated in its entirety. This is true because only the last n rows of

the matrix V R change from one iteration to the next. Thus, the first

m rows, S A, are orthogonalized only once, stored, and then the

successive sets of the last n rows treated as updates. Furthermore, since
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these lower rows are nonzero only on the diagonal, a simpler orthogo

nalization technique, such as Givens transformations, can be employed

to complete the factorisation. It should also be noted that using all

n basis vectors as values for w is hardly a problem computationally,

since this merely amounts to picking out the diagonal elements of the

-1 -T
matrix U U . After obtaining the smallest bounding region one may

then want to estimate [cp , cp ] for some other w, and the orthogonal

factorization from the last iteration is available for that purpose.

Initial estimates p and q for the bounds on the solution are needed

to begin the iteration. If these are unavailable explicitly from

physical considerations, useful starting values can sometimes be generated

from other a priori information. It is often the case that A, x, and b

are known to have all their elements nonnegative. This automatically

gives p S 0. If in addition the matrix S = diag (a,,...,a ), or the
\ 1 m'

problem has been transformed so that S is diagonalized, then the

inequalities [7^]

(Ax). ) . .\ [ , j = 1, ...,nx. § min
3 1 < i S m ) a. .1.1 I

for any vector x § 0 give the bounds

(5.2) x. £ min jbi +^U, j = l,...,n
' 1 ^ i ^ ( a. . J

for the components of the solution vector x, and these can be used to

define the starting value for q.

The choice of the parameter t plays an important role in the

potential success of the above technique. Since t determines the convex

combination D of the two ellipsoids E and C, there is a trade-off between
^ n '
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them as T varies. If t is chosen too small, then D is nearly the same

as E and the problem is still poorly conditioned. On the other hand,

if T is very large, then C dominates the combination and the new bounds

for the solution cannot be expected to differ much from the original

ones which determine C. Thus an intermediate value for t is desirable

and may be sought by trial and error or determined from detailed know

ledge of the error structure of the problem. However, the apparent

arbitrariness in choosing t, which plagues several related methods,

can be exploited to good advantage in the present approach. This is

because at any stage the best previous information is retained for use

in the next step. Thus, T can be varied as the iterations proceed,

making the bounds subject to improvement due to altering t as well as

to the iteration procedure itself. In ^act, test cases indicate that

bounds for different components of the solution may react best to

different values of t. The author has found this approach particularly

useful in an interactive, time-sharing computer environment, since the

user can monitor the progress of the iterations and experimentally

change T for the greatest effect.
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IV. OTHER METHODS AND PROBLEMS

1. Related Methods

The iterative suboptimal constrained estimation method presented

in the previous section has some important similarities and some impor

tant differences with other techniques for ill-conditioned linear systems.

There is an obvious kinship with the methods (2.1), the parameter t being

analogous to the weighting or damping factor X. However, the proponents

of these methods seem to have been interested only in obtaining a single

plausible solution rather than in getting bounds on all possible

solutions. This vagueness makes such techniques of questionable rigor.

Moreover, they have failed to utilize the geometric interpretation of

such methods as a convex combination of ellipsoids. For instance, the

Phillips-Twomey method [68, 95]

(U.l) x = (ATA + XH)"1 ATb

can be interpreted as taking combinations of E and a circle about the
n

origin when H = I , or a strip along the line x =x = ... =x when

TH = A1A1- Other related techniques which can be interpreted similarly

include the statistical estimation method of Strand and Westwater

[85, 86], the stochastic extension method of Franklin [22], and the

ridge regression method of Hoerl and Kennard [32-3U]. Another technique

along these lines was developed by Backus and Gilbert in the context of

geophysical inversion problems [U-7]. Many of the ingredients of

the Backus-Gilbert approach can be found in earlier work, but these

have been combined in a particularly systematic and thorough way,

including a penetrating analysis of the trade-off between resolution
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and noise reduction. Recent treatments of regularization methods in a

more general setting include [56], [Uo], and [102].

As Rutishauser has pointed out [76], the relaxation methods are

related to the singular value decomposition in that they attenuate,

rather than truncate, the singular value expansion for the solution.

He also goes a step further by defining a doubly relaxed least squares

solution, given by

[T T -11 TA A + XI + X(A A + XI) Jx = A b,

together with an orthogonalization algorithm for solving this equation.

Riley has proposed the interesting iterative scheme L71, 26]

(i+1) / T \-l ( t, . (±)\
- ' = ^A A + \I) \A b + Xxv ')

It can easily be shown that for any X>0 this sequence converges to the

true least squares solution of Ax=b, provided A has full rank.

Practically speaking, for ill-conditioned A the iteration must be

treated much like an asymptotic expansion and halted before the oscil

latory behavior of the true solution starts to creep into the iterates,

a fact which negates somewhat the attractive feature of being (theoreti

cally) independent of X. A similar iterative scheme is related to the

method of steepest descent in [U5], [58], and [67].

A number of authors [1, 1+6, 88] have pointed out the relationship

of the damping methods to the Moore-Penrose pseudoinverse summarized

by the formula

t T -1 T
A = 11m(A A + XI) A •

X-0
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Wiener filter theory is also relevant in this connection, as shown

by Foster [21].

The idea of splitting the solution space into two subspaces, one

where the problem is well conditioned and the other where it is poorly

conditioned, has been explored in several papers [16, 18, 25, 30]

but without conspicuous practical success, unless one includes the

truncated singular value expansion as an example of this approach.

Although the viewpoint of this discussion has been exclusively

that of solving integral equations, it should be noted that many of the

techniques discussed have also been applied to other kinds of ill-posed

problems, such as those arising in partial differential equations.

For examples see [23], [56], and the bibliography in [6k]•

2. Errors in the Matrix

Throughout this paper the elements of the matrix A have been tacitly

assumed to be sharply defined constants, subject to no uncertainties.

However, in an experimental situation the calibration runs which deter

mine the kernel matrix may be as liable to instrumental error as later

data gathering runs. Even in a purely mathematical problem, such as

integral transform inversion, the quadrature formula and mesh points

chosen for the discretization can significantly alter the system matrix.

The effects of such uncertainties in the matrix should be adequately

assessed if the solution obtained is to be meaningful.

For an ill-conditioned matrix this problem is greatly complicated

by the fact that the rank of the matrix is poorly determined numerically

and may well change as the matrix varies. Important geometric insight

into this phenomenon is given by Kahan [kj]- The analog of the
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classical error analysis for nonsingular matrices is carried out for

the rank deficient case in [10] and [83]. Pereyra [65,66] has extended

these considerations into a general notion of stability for linear

equations. The problem has also been considered in a linear programming

context [60-62, 73]. Kuperman [k8] employs several techniques—norms,

sensitivities (partial derivatives), linear programming, interval arith

metic, statistical analysis—to determine intervals of uncertainty for

the solution due to uncertainties in both the data vector and the matrix

under mild ill-conditioning with invariant, full rank. An approach

closer in spirit to that of Section III is [17]-

Whatever method is used in solving a system of linear equations,

ideally one would like to know under what conditions the solution it

produces is a continuous function of the matrix elements, as well as

a quantitative measure of the possible effects of matrix errors. Too

little attention has been given to this aspect of the problem by pro

posers of techniques for ill-conditioned systems, including the present

author. This difficult task should provide ample ground for future

research.
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V. AN EXAMPLE

In order to illustrate the above concepts and methods, the following

example is taken from [110]:

A

6JT/2 •8jVz\ Z1
8^1/2 .6/172 J, b=

2
7172 yi/2 / \3

= 1 u2 = 0.8636,

with the constraint x ^ 0. This simple system does not exhibit the

extreme degree of ill-conditioning frequently associated with unfolding

problems and does not invoke the full power of the methods discussed

above. Nevertheless, it still demonstrates the efficacy of these

special techniques and affords comparisons between them. Furthermore,

having a two-dimensional solution space enables convenient pictorial

representation.

The main point of [110] is to explore the relationship between the

damped least squares method (!+.l) with H=I and the truncated singular

value expansion (2.2). To this end the locus of solutions given by each

of the two methods is traced as the parameter X and the rank k, respec

tively, vary. These loci are shown in Figure 1, which is adapted

from [110]. In order to make the latter locus a continuum, a notion of

fractional rank is defined by letting the rank k +y, with k an integer

and 0^Y =1, mean that the solution is obtained by summing the first k

terms of the singular value expansion plus the fraction y of the k+1

term. The effect of this is to connect the discrete solutions resulting

for integral k by straight line segments.
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Figure 1. The Loci of Solutions for the Damped Least Squares and
Singular Value Methods as Their Respective Parameters Vary.
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As seen in the diagram, both of these methods can produce valid

solutions which lie in the intersection of the ellipsoid E and the
n

positive quadrant. However, both methods also yield "solutions" which

lie in only one of the two constraining regions. Furthermore, no

distinction is made between these possibilities other than inspecting

or testing each candidate individually. Thus there is no rigorous

basis for determining an admissible solution or knowing how much the

solution could vary and still satisfy the constraints.

These shortcomings are remedied by the method of Section III.

First note that the bounds for just the ellipsoid E , as obtained by

classical linear regression, are

Since nonnegativity places no additional restriction on p or q^, the

above values are also the optimal values for these bounds, and they

can be obtained at any point in the iterative procedure by taking

t=0. As will be seen, however, it is not necessarily a good idea to

do this at the outset.

Independently of these considerations the nonnegativity constraint

together with the inequality (3-2) gives the bounds

and these were used as initial values for the iterative procedure.

Since p9 =0 is already optimal and since optimal values for p, and
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q2 can be determined by classical linear regression, the bound of

greatest interest is q . The initial value for q is very good and

is difficult to improve upon. Extensive trials indicate that the

best strategy is to use t=2 for several iterations, then take t=1-5

for one iteration, and finally sharpen p and q_ by taking t=0.

The final values thus obtained are

The initial and terminal stages of this process are shown in Figure 2.

If a very small or zero value for t is used initially, then p,

and q~ assume their optimal values very quickly, but q never improves

beyond its starting value. This behavior is not completely understood

at present. However, a guiding principle seems to be that t should be

varied so that all the bounds are improved at about the same rate in order

to obtain the best ultimate result. The reason for this is that a

radical change in one or two component bounds can cause the approximating

ellipsoid to become too eccentric and consequently enclose a great deal

of volume outside the bounding polytope.

The final coordinate bounds obtained above are very sharp. However,

they can be considered a worst case analysis in the sense that neither

the vector p nor q is actually a solution to the problem. To get even

more precise limits on the constraint region as a whole, one can estimate

T
still another linear functional, such as w = (1,1). This can be done

as a simple byproduct of computations already made, and in this case

gives the interval estimate x.. +x? e [2.932, 1+.353]- Adding this to the

previous information gives the final picture shown in Figure 3.
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Figure 2. Initial and Final Coordinate Bounds for the Iterative
Method of Section III.
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