
LOCKHEED MARTIN ENERGY RESEARCH LIBRARIES

3 MMSb DSlSMflb H

CENTRAL RESEARCH LIBRARY.

ORNL-4981

%I

TOLERANCE FACTORS FOR THE

TWO-PARAMETER EXPONENTIAL DISTRIBUTION

S. A. Patil

V. R. R. Uppuluri



Printed in the United States of America. Available from

National Technical Information Service

U.S. Department of Commerce

5285 Port Royal Road, Springfield, Virginia 22151
Price: Printed Copy $4.00; Microfiche $1.45

This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States Atomic
Energy Commission, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness or
usefulness of any information, apparatus, product or process disclosed, or
represents that its use would not infringe privately owned rights.



ORNL-4981

UC-32 — Mathematics and Computers

Contract No. W-7^05-eng-26

COMPUTER SCIENCES DIVISION

TOLERANCE FACTORS FOR THE TWO-PARAMETER
EXPONENTIAL DISTRIBUTION

S. A. Patil

Professor of Mathematics

Tennessee Technological University

V. R. R. Uppuluri

Mathematical and Statistics Research Department

AUGUST 1974

OAK RLDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37830
operated by

UNION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION

LOCKHEEDMARTINENERGYRESEARCH LIBRARIES

3 HHSh DSlSMflh 14





iii

CONTENTS

Page

1. Introduction and Summary 1

2. p-content Tolerance Limit Factors 2

3. Mathematical Preliminaries 3

h. Upper Tolerances 6

5. Lower Tolerances 8

6. Illustration 11

7- Remarks 13

Acknowledgment 13

References lh

Tables

la 16

lb 17

2a 18

2b 18

3a 19

3b 20

Keywords: Two-parameter exponential distribution; Tolerance Factors

(p-content and p-expectation); p.d.f. of weighted sum of

chi-square variables.



TOLERANCE FACTORS FOR THE TWO-PARAMETER

EXPONENTIAL DISTRIBUTION

1. INTRODUCTION AND SUMMARY

The tolerance limit factors based on the assumption of a Gaussian

distribution of the underlying phenomenon, are often used in practice.

For instance, in 1963, Burrows [1] used such tolerance factors in the

context of finding tolerance limits for some data on ultimate yield

strength of hafnium ingots. More recently, at the Oak Ridge National

Laboratory, W. E. Lever and J. J. Beauchamp used Gaussian tolerance factors

in connection with the crack length on the studs in a high flux isotope

reactor. Though the assumption of normality may be questionable, several

investigators use the tables of Gaussian tolerance factors since they

are readily available [8].

As a matter of fact, not much is known about the tolerance factors

for other distributions with location and scale parameters. In some

situations the assumption that the underlying phenomenon has an exponen

tial distribution may be more realistic than that of a Gaussian distribu

tion. In the case of a two-parameter exponential distribution, the

theoretical aspects of the p-content tolerance factors, motivated from

'best tests', were considered by Guenther [7]- In this paper we investi

gate this case, and obtain formulae for the p-content upper and lower

tolerance factors which are amenable for computation. For comparison, we

obtain the corresponding formulae for the p-expectation tolerance factors

which were previously considered by Guttman [5]-



P-CONTENT TOLERANCE LIMIT FACTORS

Let

x-U

f(x;Li,a) = - e a,x>^, - » < y, < ., a > 0 (2.1)

be the probability density function of a two-parameter exponential dis

tribution. Based on a random sample x.. ,xp,. ..,x of size n from this

population, it is of interest to find the p-content tolerance limit

factors. As in the case of the Gaussian distribution [9>3l> these factors

will depend on the sufficient statistics of |j, and <j- It is well known [2]

that t = min(x1,...,x ) and s =y (x. - t) are sufficient for ^ and CT

respectively.

Definitions:

For a given significance level 0 < Oi < 1, and given 0 < P < 1:

(l) We say that \ is a P-content upper tolerance limit factor,

whenever

_ Pt + \ s
f(x;^,o-)dx > p >a. (2.2)

(2) We say that \ is a p-content lower tolerance limit factor, when-
A/

ever

f(x;u,CT) dx > pj >a. (2.3)
t + ^s

In the case of an exponential distribution, the tolerance limits

associated with the above definitions, agree with the p-content tolerance

limits (upper and lower) discussed by Guenther [6].



Similarly, the p-expectation tolerance limit factors may be defined

by

E

J + V
f(x;^,o-) dx > p (2.1|)

E[j f(x;^,a) dx] >• a (2.5)
t + V

where E denotes the expectation and v , v. refer to the upper and lower
U- Xj

factors respectively. Guttman [5] tabulated the values of v., and in
Xj

a later section, we will give the expressions for v and \j..
U- Xj

3- MATHEMATICAL PRELIMINARIES

In this section, we obtain the analytical expressions for the

determination of the upper (\ ) and lower (\ ) p-content tolerance limit
^ Xj

factors. In order to accomplish this, we need the distributions of

z = $3k. + x£ and Y =^ . I* for x> 0. (3.1)
a a a a

It is well known [2] that 2n\(t-y)/<j has a chi-square distribution
o

with 2 degrees of freedom (abbreviated as x (2)), and 2s/cr has a chi-square
2

distribution x (2n - 2); and these are statistically independent. We

obtain closed forms for the distribution of Z and Y useful for our pur

pose; these do not overlap with the known distribution theory [11] of

weighted chi-square variables.

Lemma 1:

The cumulative distribution function of Z, denoted by F(z)

is given by



n-2
"nz „/, r"- fr,U\3

(l-nX)n_1 .^0 °! l (l-nx)nljJ

n-1

1-e"nZ £ -^11 fornX =1. (3.2)
0

3=0

Proof:

Let u = (t-|i)/a and v = \ s/cr- Using the distributions of t

and s and their independence, we can write the joint probability

density function (p.d.f.) of u and v as

f(u,v) = , v11" exp(_ (nu +^ )), 0< u, v<». (3-3)
X (n-2)! ^ >• J

Making the transformation z = u + v and v = v and integrating out v,

we obtain the p.d.f. of z to be

-nz p -(- - n)v n-2, ,_ ,N
f(z) =-SLS f e * V dV- (3A)

Xn_1(n-2)! J

From this, we get the distribution function of Z as,

z ,1 ,

F(z) =-T-i f e * vn"2(e-nv -e"nZ)dv (3-5)
Xn_1(n-2)! JQ

and by integration by parts we obtain (3-2).

In the next lemma, we obtain the distribution of Y

for X > 0.

t-u, _ X£



Lemma 2:

P[Y <y] = [l ^—T e"ny , y>0.
' (1 + nx)n X

n-2 (3.6)

"3T/X V Ml! h 14 , y<0.
dt0 3l X (1 +nx)n-J'iJ "

Proof:

We will obtain this result, by the use of moment generating

functions and the inversion formula. Using the moment generating

functions of t and s, we can write the moment generating function of

Y, as

M(t) =E[etY] = r - r^ (3-7)
(1 -|)(l +xt)n

Using the partial fraction technique, we can write this as

n-1

(l-|)(l +nx) ^ (1 +Xt)\l +nxf *

Using the inversion formula for moment generating functions, we can

write the p. d.f . of Y as,

f(y) =

n-1

\k=l (1-

n

nx

- nx)n'
-k

-ny

(-y)

(k -

-1

1)

ey/x

• xk

H1 +- n\ f1'

, y < o

(3-9)

, y < 0.

Using the definition of the cumulative distribution function, and

interchanging the order of summation with integration, we obtain

(3.6).



h. UPPER TOLERANCES

In this section we discuss the p-content and p-expectation upper

tolerance limit factors. From definition (2.2) the p-content factor X

is given by

Z + V
f(x;u,CT) dx >p] >_ a.

o

For the two-parameter exponential distribution (2.1), this reduces to

X..S,

aP[x .exp{- ^ -̂ -} >

Prizk + JL. > _^(i-p)l >a . (k.l)
La a - J -

We note that \ can be either positive or negative. First we show

for the range of values of practical interest such as a = .90, -95, and

P = .8 to 1.0, that X cannot be negative, for n > 2. This will be justi

fied by contradiction. If X is < 0, then (l+.l) is equivalent to

p[y >-0n(l-p)] >a (k.2)

where Y was defined in (3-1)- Since -^(l-p) is always nonnegative (for

0 < P < 1), and the distribution of Y is known from (3-6); we have

p[y >-^(l-p)l = t1 "&)l 1 >a. (k.3)
(1 - nx)

Now we can see for n > 1, and a > .90 and p > .8, and \ < 0, (1^-3)

is incompatible. Hence we conclude that \ is positive in the range of

values of interest of the three parameters n, p and a. Thus X is

determined by using the distribution of Z given by (3-2), as follows:



"z =*HL+ x £> -^(l-p)"
cr u a -

> a. (h.k)

Explicitly, for given a and p, we find X such that

,n_1 ,_ _.n ,_ .lA ^2 .-o„(i-rVJ i r .i n-1^"

J=o

For n = 2, (I1.5) reduces to

a=A ^)lA - 2in ^-p)2- (*-6)

(1+.6) could also be seen from the distribution given by Geunther [6]

on page 57, in equation (11.8). Even in this simple case n = 2, explicit

solution of X is not possible. This may be the reason why Guenther says

that there are no techniques available for the evaluation of the tolerance

factors in the p-content case. Mention was made about X , by Hanson and

Koopmans [!<•], and a particular value of X obtained from D. B. Owen

was used to illustrate the upper tolerance limit in the case of a two-

parameter exponential distribution. In a personal communication Owen

informed us that there is no record available of the values of X • In

tables la and lb we give a short table of the values of X > for

3 < n < 12, p = .80, .90, .95, -99, -999 and a = .90, and a = .95.

For the sake of comparison we now briefly discuss the p-expectation

upper tolerance factors, v , defined by the expected value

t + v s

tff f(x;^,o-)dx] >p. (k.7)
0

In the case of the two-parameter exponential distribution (2.1), this

reduces to



E[x . expf *3t -^}] >P. (^8)
The independence of ^ and - reduces the left side of (U.8) to

^ GO

1- E[exp(- ^)] E[exp(- ^-) 1 . -2 i . (k.9)

Solving (U.8) for v„ leads to
1

,(n-1)

vu =i(n+l)(l-p)i X' ^ '

which is comparable with equation (11.11) given by Guenther [6], after

appropriate identifications. It is not clear why Guttman [5] did not

given a short table of values of v given by (U.10), though he worked on

all allied problems. In particular, Guttman [5] focused attention on the

lower p-expectation tolerance factors which will be discussed in the

next section.

5. LOWER TOLERANCES

From definition (2.3) the p-content lower tolerance limit factor

h
is

03

g Lven by

1 [ f(

t +

V

f(x;u,CT) dx >p] >a.

For the two parameter exponential distribution (2.1) this reduces to

P1

00

(t-|j,+XAs)/a

Once again, we note that \ can be either positive or negative. We will
Xj

first discuss the situations when \ will be negative, and where we need
Xj

e"u du > p] > a. (5-1)



to use the distribution of Y given by (3-6). Given X„ < 0, the random
Xj

variable Y could be either positive or negative, and the left side of

(5.1) becomes

eU du > p

max(0,Y)

L.i
eU du; Y < 0

max(0,Y)

00

r- O

+ P eu du; Y > 0
max(0,Y)

= P Y < 0 +PO<Y<-072P > a.

From the distribution of Y given by (3.6), we obtain

,n

1 - > ari Nn-1 , .n-1 -
(1-nx) (1-nX)

and x. is given by

1
,nv (n-1).

V*, - £ -(£f 1

(5-2)

(5-3)

(5.h)

In the above discussion, -we tacitly assumed that \ < 0; we note

that \ =0if and only if n=Mil2&, (5.5)
Xj 072P

and for values of n> ^L , X.given by (5.I1) yields inconsistent
values. Hence, for values of n > „ ~a' , we need to use the distribu-

tion of Z given by (3-2). Using this, we obtain X to be the solution
Xj

of the equation

n-2

(1-nx) ji

n-j-1

1-nxJ • (5-6)
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In tables 2a and 2b we indicate the values of n(~ }S '), for

which x = 0, for p = .80, .90, -95, -99, -999 and a = .90 and a = .95-

For n greater than the value tabulated in 2a and 2b, we need to use the

distribution of Z and equation (5-6).

There are no guidelines of the sign of L in the discussion by

Guenther [6]. However, for the p-expectation lower tolerance factors

(in the case of a two-parameter exponential distribution), both positive

and negative values of v, "were tabulated by Guttman [5], in table III.
Xj

In our notation, these tabulated values can be obtained from the following

discussion. The p-expectation lower tolerance factor is obtained from

00 _ X-|i,

CT ^1>P • (5-7)
a J _

t + v^s

When v > 0, we have t + u s > 0, and the left side of (5-7) reduces to
Xj Xj

and

1

rv- -in"l
rr n 1

/ n \n_1n / 1 \
" n + 1 VI + v J

Xj

•4-v£ - 11 n+l)eJ

When v < 0, we need a finer analysis, and we have
Xj

max(0, t + ys)

+ Pr0 < lik + ys < x-y,yi
L a a cr JJ

1 n 1

(5.8)

> p.

(5-9)

,.. »n-l n + 1 ,. ,n-l —
(l-nv) (l-nv)



Finally, v. is obtained from

"i-SU
1

(n+l)(l-p)J

1_
n-]

(5.10)

11

The values obtained from (5.8) and (5.10) agree with the values

given in table III by Guttman [5] after division by n - 1.

We present the values of the p-content lower tolerance limit

factors in tables 3a and 3b, for n = 3 to 12, p = .8, -9, .95, -99, -999

and a = -90 and a = .95- These are based on expressions (5-1+) and (5.6).

6. ILLUSTRATION

In this section, we use the data given by Proschan [10], on the

time of successive failures of the air conditioning systems in jet

airplanes, and obtain the tolerance factors. One set of data (for

plane number 7907) on intervals between failures is given by I9A, 15,

111, 29, 33 and l8l. These are failure times after an overhaul; the

plane is overhauled once in 2000 hours. For this data

x=82.16, V Y (x.-x)2/5 =82.12, min(data) =t=15,
i=l

6

=y (x.-t) = 1103.
1

i=l

From formula (2.2), the P-content upper tolerance limit factor

(under the assumption of a two-parameter exponential distribution) is

determined from

t + Xs (x-u.)

pT- J e a dx >p =a.
0
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For a = .90, P = .90, from table [la], we obtain X = .882, and the upper

tolerance limit is equal to 15 + (.882) (1*03) = 370.kh.

The p-content lower tolerance factor \ is determined from
Xj

(x-ix)

= a.p[i / e ° dx >p
t +V

For a = .90, p = .90, from table [3a], we obtain X. = - .066; and the
X>

lower tolerance limit is equal to 15 - (.066)(1|03) - - 11.60.

For numerical comparison, we find the p-expectation tolerance

factors discussed in sections 1+ and 5- The p-expectation upper tolerance

factor v is given by

f n ^ ±
vu =i(n+l)(l-p)i " X'

and for p = .90 (and n = 6), is equal to v = -537, and the upper

tolerance limit is 15 + (.537)0*03) = 231.^1.

The lower p-expectation tolerance factor discussed in section 5 is

given by

L(n+l)p_

and

n-1

1 for v. > 0
Xj

^^-[(n+DOL-p)]111) f-v,<0.v „ =

Since B = .90 and n = 6, S > qr which implies v is negative and iskv 'Kn+1 a

given by v . = -.01232, and the lower tolerance limit is equal to
Xj

15 + (-.01232) (1+03) = 10.Oil.
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7. REMARKS

In the past, for most problems Gaussian tolerance factors have been

used. For instance, in the Context of Ultimate Yield Strengths on 30

Hafnium specimens, Burrows [1] used the assumption of normality to

discuss the problem of tolerance limits. There may be several situations

where the assumption of normality is not valid. We made an attempt to

make available the p-content tolerance factors in the case of a two-

parameter exponential distribution. There is a need to make a theoretical

comparison of these P-content factors with the p-expectation tolerance

factors.
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TABLE la. p-content Tolerance Factors (upper), Xu,
for a Two-parameter Exponential Distribution

a = .90

n\8 .8 • 9

3-733

• 95

5-028

• 99

8.045

• 999

3 2.450 12.370

4 1.254 I.876 2.501 3.958 6.045

5 .819 1.212 I.608 2.528 3-847

6 • 599 .882 1.166 1.827 2.773

7 .469 .688 .907 1.417 2.147

8 .384 .561 • 739 1.151 1.742

9 .324 .472 .621 .966 1.460

10 .279 .407 • 534 .830 1.254

11 .245 .356 .468 .726 I.096

12 .218 .317 .415 .644 • 972
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TABLE lb. p-content Tolerance Factors (Upper) Xu
for a Two-parameter Exponential Distribution

a = -95

n\p .8 • 9

5.598

• 95

7-533

• 99

12.046

• 999

3 3-681 18.517

4 I.696 2.533 3-375 5-337 8.149

5 1.048 1.550 2.055 3.230 4.913

6 .742 1.091 1.441 2.256 3-424

7 .567 .831 1.095 1.710 2.590

8 .456 .666 .876 1.365 2.066

9 •379 • 553 .726 1.130 1.708

10 .324 .471 .618 .960 1.450

11 .282 .409 .536 .833 1.257

12 .249 .361 .473 • 733 1.107
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TABLE 2a. Values of n sMl^l
2n 0

a = .90

P .8 .9 .95 .99 .999

n 10.31 21.85 44.89 229.10 2301.43

TABLE 2b. Values of n ~Mil«l
9m P

a = .95

p .8 .9 -95 -99 -999

n 13.42 28.43 58.40 298.07 2994.23
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TABLE 3a. p-content Tolerance Factors (lower), \ ,
for a Two-parameter Exponential Distribution

a = .90

n\p .8 .9

-0.567

• 95

-0.643

•99

-0.705

0-999

3 -0.421 -0.719

4 -0.150 -0.218 -0.253 -0.281 -0.288

5 - .069 - .112 - .134 -0.151 -0.155

6 - .035 - .066 - .082 -0.094 -0.097

7 - .019 - .043 - .055 -0.064 -0.067

8 - .010 -0.028 - -039 -0.047 -0.048

9 - .oo4 -0.020 - .029 -0.035 -0.037

10 - .000 -0.015 - .022 -0.028 -0.029

11 -0.011 - .017 -0.022 -0.023

12 -0.008 - .014 -0.018 -0.019
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TABLE 3b. p-content Tolerance Factors (lower), \.,
for a Two-parameter Exponential Distribution

a = .95

n\6 0.8

-.733

•9

-•939

•95

-1.047

.99 •999

3 -1.135 -1.155

4 -.254 -.340 - .384 - .420 - .428

5 -.120 -.171 - -197 - .218 - .222

6 -.065 -.101 - .119 - -133 - .136

7 -.039 -.065 - -079 - .090 - .092

8 -.024 -.045 - .056 - .065 - .067

9 -.015 -.032 - .041 - .049 - .050

10 -.009 -.024 - .032 - .038 - .039

11 -.005 -.018 - .025 - .025 - .032

12 -.002 -.014 - .020 - .021 - .026
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