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Convergence of the Discrete Ordinates

Method for the Transport Equation

P. M. Anselone and A. G. Gibbs

ABSTRACT

The transport equation for the distribution of neutrons or
radiation is an integro-differential equation of some complexity.
The discrete ordinates method of approximate solution, which is
based on numerical integration, has been used for a number of
years to obtain satisfactory results. However, a complete con
vergence of error analysis is available only in some rather
idealized cases. We survey the various contributions to the
literature on the convergence question from an abstract and
unifying point of view. In the process, methods of analysis are
developed which are applicable to very general transport problems.

1. Introduction

The transport equation (transfer equation, linear

Boltzmann equation) governs the distribution of neutrons

in a nuclear reactor or of radiation in a stellar or

planetary atmosphere. It is an integro-differential

equation of some complexity in its more general forms.

Primary independent variables are position and direction,

speed (alternatively energy, frequency or wavelength),

plus possibly time. The differential operator in the

equation describes attenuation due to both absorption and

scattering away from a particular direction. The inte

gral operator describes scattering into a particular

direction from other directions and production by fission.

Source terms may be present. On any boundary surface

there are boundary conditions corresponding to incoming

directions. For time-dependent problems there are

initial conditions.



Since the transport equation can be solved explicitly

only in a few very special cases, approximation methods

are commonly used. The discrete ordinates method involves

the replacement of the integral operator by a numerical

integral operator in order to obtain differential equations

for approximate solutions. Empirically, this method yields

very satisfactory results for a large class of transport

problems. However, a complete and rigorous convergence

and error analysis is presently available only in some

rather idealized cases.

The discrete ordinates method was first applied by

Wick [18] and by Chandrasekhar [7, 8] to particular

steady-state problems from astrophysics with homogeneous

media bounded by single planes or parallel planes (half-

spaces or slabs), usually under conditions of isotropic

scattering and isotropic sources. Convergence theorems

for the approximations were obtained for various problems

of this type with isotropic scattering by Anselone [1-5] ,

Kofink [13], Keller [10, 11] and Wendroff [17]. Subse

quently, convergence theorems have been obtained for

certain transport problems involving anisotropic

scattering, other geometries, and time-dependence, by

Keller [12], Nestell [16], Madsen [14] and Wilson [20].

We shall survey these contributions from an abstract

and unifying point of view in order to isolate what is

essential to the convergence of the discrete ordinates

approximations. In the process, methods of analysis



will be developed which appear to be applicable to very

general transport problems and to other integro-

differential equations. The discussion is in terms of

a sequence of model problems of increasing complexity.

All functions considered will be real. For mathematical

convenience and physical relevence specified functions

are continuous and usually nonnegative. We remark that

the problems surveyed here involve discrete ordinates

approximations only for the angular integrals, and thus

do not represent the most general case of discretization

as practiced, say, in many nuclear reactor applications

today, where the spatial variable is also discretized.

However, as noted below, the powerful analytical tools

developed in applications to angular discrete ordinates

approximations also show promise for investigations of

the more general case.

2a. An Isotropic Transport Problem in a Finite Slab

Consider the problem for <j>(x, y) with a £ x < b,

-1 < y < 1, given by

y**£' y) + <j>(x, Vi) =| J *(x, y')dy' +g(x),
(2.1)

<j)(af y) = 0 for y > 0, <J>(b, y) = 0 for y < 0,

where (j)(x, y) is the one-speed angular flux at depth

x in a homogeneous slab in a direction making an angle

0 = cos y with the positive x-axis. The positive



number c is of order 1 and represents the mean number

of secondary neutrons per collision. In the above equation,

distance has been measured in units of neutron mean free

paths, i.e., x = ct , where a is the total cross section

and t is the actual distance.

The boundary conditions correspond to a situation

with no reflection of neutrons at the surface and no

incident neutrons. Actually, a non-zero incident flux

boundary condition could have been assumed. However,

such a problem can be reduced to (2.1) for <j>, = 4> - cj).,

where <j>0 satisfies the homogeneous equation

3<J>0(X' U)
y ^ + 4>Q(x, y) = 0

and the given boundary conditions. If this reduction is

not made, then an unnecessary approximation is introduced

for 4>n, which can be found explicitly. For the same

reason, zero boundary conditions can and should be assumed

also in applications of the discrete ordinates method to

more general transport problems.

To proceed, assume a numerical integration rule such

that, for any continuous function h(y), -1 <_ y <_ 1,

±n r 1

E w . h(y .) •+ / h(y)dy, n •+ »,
j=±l -1 J J-1

w .=w ,>0, y .=-y ..

0<y,<yo«*'<y < 1.
nl n2 nn —



The Gauss quadrature formula is an example. The symmetry

conditions on the w . and y . are a convenience rather

than a necessity.

Discrete ordinates approximations <j> (x, y),

n = 1, 2, ..., satisfy

Hn(x, y) ±n
y + (jj (x y) = E w . cb (x, y .) + g(x) ,

8x rn ' 2 . ,. ni 'n ' Kni y ''

(2.2)

cj>n(a, y) = 0 for y > 0, <J>n(b, y) = 0 for y < 0.

For y = y ., i = ±1, ..., ±n, this is a system of

ordinary differential equations for cf> (x, y .). Then

(2.2) yields <J> (x, y) .

The problems for § and <j> have equivalent integral

equation formulations which are more convenient for the

convergence analysis. Let

(2.3) f(x) =| J <|>(x, y)dy + g(x) ,

±n

(2.4) f (x) = § E w <j>(x, y ) + g(x).
-i=+l J J

From (2.1) and (2.3), it follows that

<j>(x, 0) = f (x) ,

(2.5)

x /„ _ „\ /,, z = a, y > 0,

z = b, y < 0.
(x, y) =ij* e^ "x)^ f(y)dy,

The equations for <j> in terms of f are identical.
^ rn n

From (2.3) and (2.5) ,



fb
(2.6) f(x) -f E1(|x-y|) f(y)dy = g(x),

J a

where E, is the exponential integral function of

order one,

(2.7) E. (s) = e~s/y y"1 dy, s > 0,
1 Jo

which has a logarithmic singularity at s = 0. Similarly,

fb

(2.8) fn(x) -| Enidx " YD fn(Y)dy = g(x),
-1 a

where E , is a numerical integration approximation to

El:

(2.9) E (s) = ? w S-l^Si, s>0,
D=l J Mn:

(2.10) E -, (s) -> E,(s) uniformly for s>_e as n^°°

for each e > 0. Thus, the discrete ordinates method is

seen to be equivalent to the approximation of the integral

operator in (2.6) by the integral operator in (2.8).

Express (2.6) and (2.8) in operator form

(2.11) (I - K) f = g, (I - Kn)fn = g

on the space C[a, b] with the max norm. Then K and

K are Fredholm integral operators with kernels

k(x, y) =| E:(|x -y|), kn(x, y) =| Enl (| x -y|) .



These are bounded linear operators on C[a, b] and for

c not too large (the case of a subcritical medium,

assumed here) we have

b

||K|| = max 1 k(x, y)dy < 1.
x Ja

Hence, (I - K) exists,

|| (I - K)_1|| < (1 - ||K|| )"\

and f and <j> are uniquely determined.

From (2.10),

||Kn - K|| + 0, ||Kn|| - ||K|| as n -^ oo.

Thus, we are in the realm of standard operator approxi

mation theory. For n sufficiently large, llKnll < 1/

(I - K ) exists and is bounded uniformly in n, and

(2.12) (I-Kn)_1 - (I-K)"1 = (I-Kn)_1(Kn-K) (I-K)"1,

(2.i3) || (i-Kn)_1 - (i-k)"1!! ill d-V-1!! llKn_K|1 II ^1-K)~1

-1 ,, „v-l
|| (I-K) 1| 2 || K-K||

(2.14) || (I-K ) -1" - (I-K) ^|| < ^
n " 1 - |!(I-K) X|| ||Kn-K||

-i -i„ IMi-V"1!!2 K~KH(2.15) (I-K ) X - (I-K) 1\\ < -2 _^
1 - (I-K ) ±\\ || K -K|

(2.16) ||(I-Kn)_1 - (I-K)"11| -> 0 as n -> ».

The error bound in (2.14) is "theoretical" in the sense



that it involves (I-K) , whereas (2.15) is "practical"

because it depends on (I - K ) , and can thus be computed,

The bound (2.13) is of mixed type. It follows from (2.16)

and (2.5)ff that f -> f and <j> -• <j> uniformly as

n •*• oo.

This is essentially the path followed by Anselone

[4, 5] and by Keller [11], although Keller's analysis

was less abstract and he defined the discrete ordinates

approximations only at the quadrature points. Previously,

Keller [10] and Wendroff [17] treated the differential

operators directly without inverting them. The results

2
were less satisfactory: L convergence on quadrature

points, and uniform convergence on quadrature points

under a restrictive assumption. Kofink [13] established

2 ...
L convergence on quadrature points by exploiting an

equivalence between the discrete ordinates method and the

spherical harmonics method.

2b. An Isotropic Transport Problem in a Half Space

Anselone [1-4] also derived uniform convergence

theorems for isotropic transport problems in the case

of semi-infinite slabs (0 <_ x <_<*>) . In particular,

the classical Milne problem leads to the homogeneous

equation (I - K)f = 0, where K is the same integral

operator as above. The Wiener-Hopf method, based on

Fourier transforms, was devised originally to solve

this equation.



A more direct method, which anticipated later

theories of positive and monotone operators, was given

by Hopf [9] for the case c = 1. It involves a change

of variable f(x) = x + q(x). Then q satisfies the

inhomogeneous equation (I - K)q = E , where E- is

the exponential integral function of order 3,

1

0

E3(s) = \ eS//y ydy, s>0

A nonnegative solution q is sought in the space of

bounded continuous functions on [0, °°) . Although now

||k|| = 1, monotonicity considerations yield a unique

solution q given by the uniformly convergent Neumann

series

oo

q = E Km Ev
m=0 J

The discrete ordinates approximation problem can be

recast in the form (I - K )f =0. Let f (x) = x + q (x)
n n n ^n

Then (I - K )q = E -,, where E -, is a numerical
n nn n3 n3

integration approximation to E_, and q is given by

oo

q = E K m E _.
^n „ n n3

m=0

A detailed term by term analysis yields q ->- q uniformly

as n -> oo. it follows that f -> f and tj> -> <j> uniformly,

3a. An Anisotropic Transport Problem in a Finite Slab

Consider the problem for <j>(x, y) with a <_ x <_ b,

-1 < y < 1, given by
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y5<Mx; U) +Mx, y) =|J pfx^y'HCx^Mdy' +g(x,y),
(3.1)

<})(a, y) =0 for y > 0, <j)(b, y) = 0 for y < 0.

Here, x represents the optical depth measured from the

plane of the origin, i.e.,

x(t) = [ atx'JdT',
J 0

with 0(x) the total cross section at position x,

and x the distance measured from 0. The differential

kernel p(x, y, y')dy represents the average number of

neutrons emerging with direction cosines in dy, following

a collision by a neutron with direction cosine y' at

position x. The function g represents sources within

the slab. We assume here that both p and g are

continuous functions of x and y.

Let

(3.2) f(x, y) =j J p(x, y, u')4>(x, y') dy'.

Then the problem is expressed in operator form as

(3.3) D$ = f, f = L<j> + g,

where f,g e C(X) with X = [a, b] x [-1, l]. Under

reasonable conditions on c)), M = D exists as an

operator on C (X) , and <j) = Mf = D f is given by



11

<j)(x, 0) = f (x, 0) ,

(3.4)

l f x <x« - vWn z = a for y > 0,
cj,(x, y) = ± etx Xj/y f(x', y)dx\

y J z z = b for y < 0.

Therefore, an equivalent formulation of the problem is

(3.5) <j> = Mf, (I - K)f = g, K = LM.

It can be shown that K is a bounded integral operator

which maps C(X) into C(X). Since K has a non-

negative kernel

||K||=||Ke|| , e 6 C(X) , e = 1.

If p is not too large, then ||k|| < 1, which we assume

in what follows. Then (I - K) exists as a bounded

operator on C(X), and f, cj) are uniquely determined.

Assume a convergent, positive quadrature rule:

n rl
E w . h(y .) + h(y)dy as n -* oo, he C[-l, 1],
j=l n^ n^ Jo

w . > 0, 1 < i < n, n = 1, 2, ...n-j _ -j _

In particular, for h = e = 1,

n

E w.+l as n -> °°.

1=1

Hence, there exists B < oo such that

n

E w.<B, n = 1, 2, ... .

j=l ^ "
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The discrete ordinates approximations <j> satisfy

84>n (x, y) 1 n
V 35 + *n(x,y) = j .2 wn;. p(x,y/ynj)(J)(x,unj) + g(x,u)

(3.6)

<j> (a/ y) = 0 for y > 0, <j> (b, y) = 0 for y < 0.

Equivalent formulations are

(3.7) D<j)=f, f = L d> + g,
rn n n nYn y'

(3.8) <j) = Mf , (I - K )f = g, K = L M,
Tn n' n n ^' n n '

where K is a bounded linear operator on C(X).

Since the "kernel" of K is positive, ||K || = ||k e|| ,

where e = 1.

It follows from (3.5) that K -*• K, i.e.,
n ' '

||K h - Kh|| ->• 0 as n->oo for each h e C(X) . However,

|| K — K|| -h- 0 in the anisotropic case, so the standard

operator approximation theory used in Section 2 above is

not applicable. An alternative course of action is

pursued here.

It follows from Kn -»• K, ||k|| = ||Ke|| and ||K || = ||K e||

that || K || -> || K|| . Recall that ||k|| < 1. Hence, for n

sufficiently large, ||K || < 1, (I - K ) exists and is

bounded uniformly in n, and

(3.9) (I -Kn)_1 - (I -K)"1 = (I -Kn)_1(Kn -K) (I -K) "1,

(3.10) fn -f= (I -Kn)_1(Knf -Kf),
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(3.11) || fn - £|| <||(I - K^"1!! ||Knf - Kf || .

It follows that f -*• f and <j> -> <j> uniformly as

n -*• oo. The error bound in (3.11) is of mixed type,

neither purely theoretical nor purely practical.

The fact that K and K are positive operators

is essential to the foregoing analysis, which is an

abstract version of that carried out by Keller [12] in

a more classical spirit.

3b. An Anisotropic Transport Problem in a Half Space

We remark that the case of anisotropic scattering

problems in a half-space was treated by Nestell [16] by

an adaptation of the positive operator theory of Hopf.

That work is an extension of the isotropic scattering

problem discussed in Section 2b above.

4. Collectively Compact Operator Approximation Theory

We shall consider the same problem as in 3 from

another point of view, which yields both theoretical and

practical (computable) error bounds. The analysis is

based on collectively compact operator approximation

theory (cf. Anselone [6]).

It can be shown that the operator K in (3.4) is

compact: {Kh : ||h|| <_ 1} is relatively compact or,

equivalently, bounded and equicontinuous. The sequence

{K : n >_ 1} is collectively compact: {Knh :||h|| <_ 1, n ^ 1}

is relatively compact. Thus, we have
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K -> K, K compact, K collectively compact.

These are the hypotheses for a general operator

approximation theory in a Banach space setting. Some

of the main conclusions of the theory are as follows.

The operator (I-K) exists iff for n

sufficiently large (I - K )~ exists and is bounded

uniformly in n, in which case

(I -Kn)_1 •* (I-K)"1.

Let f = (I - K)-1g and £ = (i - K )~1g. Then

f - f || -* 0. Let
n

An =|| (I -K)_1|| || (Kn -K)Kn||

An =j| (I -Kn)-L\\ || (Kn - K)K|| .

Then

A + 0, An->0 as n->oof

||(I - K)"1!! ||Kng - Kg||+ Aj|f||
Hfn-f|ll T^ ^— for An < 1,

n

||(I - Kn)-1|| ||Kng - Kg||+ An||fn||
f - f < 2 £ 5- for An < 1.11 n »- ± _ An

Moreover, (I - K) exists whenever (I - K ) exists
' n

•n — 1

and A < 1. Thus the existence of f = (I - K) g

can be inferred from approximations.
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The convergence of the discrete ordinates approxi

mations was established by means of the collectively

compact theory by Nestell [16] for an anisotropic

transport problem in a finite slab with p = p(y, y1)

and by Nelson [15] in greater generality. Both authors

worked directly with explicit representations of K and

Kn« Since K is an integral operator on functions of

two variables, its kernel involves four variables. The

kernel has a weak singularity. The definition of K is
n

similar, with the y-integral replaced by a sum. The

complications of K and K , particularly the singularity,

make it difficult to see what makes the analysis go

through. We propose a different approach here, which is

more transparent and extends more readily to a larger

class of transport problems. By (3.5) and (3.7),

K = LM, K = L M
n n

where M is defined in (3.4) and

1 f1(L<j>) (x, y) = j / P(x, y, y'HU, y'Jdy',

1 n
(L <j>) (x, y) = 7T E w . p(x, y, y ,)d>(x, y .)nr/ k/ 2 nj c p' pnj Y nj

The basis of the analysis is to take advantage of the

fact that only L, which has a continuous kernel, is

approximated in order to define K = L M. The singu

larity comes from M, which can be treated separately.
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Consider <J) = Mf for f e C(X). From (3.4),

<Hx, 0) = f (x, 0),

(x-z)

<(>(x, y) = 1 y e~ f(x - ty, y)dt,
•> n

z = a for y > 0,

0 z = b for y < 0.

It follows that <£ is continuous except perhaps at

(a, 0) and (b, 0). The boundary conditions

<j)(a, y) = 0 for y > 0, <j>(b, y) = 0 for y < 0,

are satisfied and

<}>(x,y) -»- (j)(a,0) as x -> a, y -*- 0-,

(j)(x,y) -*• 4>(b,0) as x ->• b, y -> 0+,

<j)(x,y) - (1 - e(a~x)/y)<Ma,0) * 0 as x -> a, y -> 0+,

(x,y) - (1 - e(b~x)/u)<Mb,0) - 0<j>(x,y) - (1 - ev 7/ ^) <j) (b,0) -> 0 as x ->• b, y •* 0-.

Thus, R(M), the range of M, consists of bounded

functions which are continuous except perhaps at two

points. By routine arguments, L and L map R(M) into

C(X). Define the domains of L and Ln by D(L) = D(Ln) = R(M).

Then the operators K = LM and KR = LnM map C(X) into C(X).

It follows easily from K - K = (L - L)M and the

properties of R(M) that K -*• K. To prove that K is

compact and {K } is collectively compact, consider

Kf = LMf and K f = L Mf for ||f|| < 1. As above, let
n n n ii _

<f> = Mf. Then for any e > 0 and any v > 0 there
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exists 6 = 6(e, v) independent of f such that

|<j)(x, y) - <j>(x', y)| < e for |x - x'| < 6, |y|>v.

This is an equicontinuity property in x, uniform for

|y| > v. Essentially, M is a compact operator with

respect to x, uniformly for each v > 0. Similarly,

the operator L is compact with respect to y uniformly

for a <_ x _< b. Examination of (Lcj>) (x, y) - (L(j>) (x, y')

and (Lcj>) (x, y) - (L<£) (x' , y) reveals that the sets

{Kf = LMf : ||f|| < 1}, {Knf = LnMf : ||f|| < 1, n > 1}

are bounded and equicontinuous. Therefore, K is compact

and K is collectively compact.

The error bounds in the collectively compact theory

depend particularly on

II (Kn - K)g|| = || (Ln - L)Mg|| ,

|| (Kn - K)K|| = || (Ln - L)MLM|| ,

II (Kn - K)Kn|| = || (Ln - L)MLnM|| .

Calculations based on these equations should yield

sharper bounds than would be obtained otherwise.

5. A Three-Dimensional Anisotropic Transport Problem

3
Let r be a domain in R with boundary dT which,

at least piece-wise, has a well-defined tangent plane at

each point. Directions will be denoted by B £ §, the
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3
unit sphere in R . Consider the problem for <j)(x, ft),

x e r, a e §:

ft • v 4>(x, ft) + <?(x, ft)4>(x, ft) = f(x, ft),

(5.1)

f(x, ft) = / p(x, ft, ft')<j>(x, ft')dft' + g(x, ft),
J§

with <j)(x, ft) = 0 for x e 3T and ft an incoming

direction. The gradient operator V acts with respect

to x. Assume that f, g and p are continuous and

and that p is nonnegative. In operator form (5.1)

becomes

(5.2) Dc)> = f, £ = L<j> '+ g.

Motivated by the fact that ft • V is the directional

derivative in the direction ft, we introduce additional

notation as illustrated in the following diagram.

The ray through x in the direction -ft is given by

x - sft, s :> 0. Let d(x, ft) = ||x - y|L/ tne Euclidean

distance from x to 3T along the ray.
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An equivalent formulation of D<j> = f is

(5.3) -~ <|> (x - sft,ft) + a(x - sft,ft)tj)(x - sft,ft) = f(x - sft,ft)

Solve (5.3) to obtain

rd(x,ft) -V o (x - rft,ft)dr
(5.4) c|)(x,ft) = f(x - sft,ft) e J0 ds.

J 0

Thus, M = D exists as an operator on C(X), where

X = T x g, and 4> = Mf is given by (5.4) . The original

problem now becomes

(5.5) 4> = Mf, (I - K)f = g, K = LM,

where L is the integral operator in (4.1).

Discrete ordinates approximations (l)n(x/ °-)

satisfy

(5.6) Dd> = f , f = L <f> + g,
v ' yn n' n nrn ^

where L is a numerical integration approximation to

L defined in terms of a positive convergent quadrature

rule. Now-familiar reasoning yields the equivalent

formulation of (5.6),

(5.7) <»n = Mfn, (I - Kn)fn = g, Kn = LnM.

The tasks are the same as before, namely to prove

that (I - K)"1 exists, (I - K )~ exists for n

sufficiently large, and

(I -Kn)-1 - (I-K)"1,
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which implies that f -»• f and <j> -> <J> uniformly.

If ||k|| < 1 and K •*• K, then these conclusions follow
" " n

as in Section 3. If also K is compact and {K } is

collectively compact, then the error bounds of Section 4

are obtained. This program will be undertaken in a

forthcoming sequel.

The collectively compact operator approximation

theory may also be applicable to the case where the

approximations are made with respect to the spatial

variable, either by approximating the detailed variation

of a(x, ft) and p(x, ft, ft1) with respect to position

x by appropriate smoothed functions, and/or by carrying

out the spatial integrations by some quadrature approxi

mation. In this more general setting, we have M

approximated by M. as well as L approximated by L .

Thus, it will be necessary to consider L M. -> LM in an
n j

appropriate sense.

6. A Positive Operator Approach

Explicit results for the three dimensional problem

can be obtained rather easily if an additional assumption

is made. Consider the problem of Section 5 in the form

(6.1) T<j) = g, T = D - L

under the restriction

(6.2) a(x,ft) - / ptx^ft'Jdft1 > c > 0, x e r, ft 6 g.
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Physically, this requirement means that absorption

dominates production by fission, i.e., that a > (v - l)a.p,

where a and crf are the absorption and fission cross

sections, and v is the mean number of neutrons produced

produced per fission. This inequality is always satisfied

in a non-multiplying medium (0=0) as long as some

absorption is present (a > 0); however, it may not be

satisfied in some nuclear reactor applications.

Suppose that for each g e C(X) the equation

T(j> = g has a unique solution <j) = T g such that

(J) > 0 if g ^ 0. Then T~ is a positive operator

from C(X) to an appropriate solution space. Let

e(x, ft) e 1 on X. Then (6.2) is equivalent to

(6.3) Te > c > 0 on X.

By an elementary argument, <J> = T g is bounded for

each g 6 C(X) and || 4> || < c"1 ||g|| in terms of the sup
norm. Thus, T maps C(X) onto a subspace of the

bounded functions on X, T~ is bounded, and

IIT"1!! = ||T_1e|| < 1/c.
The discrete ordinates approximations <j> satisfy

(6.4) Tn4)n = g, Tn = D - Ln.

As above, suppose that T ~ exists and is a positive

operator on C(X) . Since Ln -*- L, we have Tn •+ T and,

in particular, I e ^ Te. Therefore, for n sufficiently

large,
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(6.5) T e > c > 0 on X,
n '

T is bounded and ||T ~ || < 1/c. Now,
n " n "

T _1 - T_1 = T -1(T - T )T-1.
n n n

Let (b = T g and <b = T ~ g. Then
y r> Yn n ^

cj) -4) = T~1(T-T)4),
Tn r n n y'

II*n " ^llillV1!! IIV " T*H '

|Un - til - o.

The error bound for || <j> ~y|| is of mixed type, neither

purely theoretical nor purely practical.

A special case of this scheme was carried out by

Madsen [14] in a classical analysis setting.

7. A Time-Dependent Transport Problem

Wilson [20] investigated the discrete ordinates

method for a generalized transport equation in several

space dimensions:

(7.1) 94>(t^x,v) +v•V4>(t,x,v) +(I v|| 2a(t,x,v)4>(t,x,v)

= / p(t,x,v,v') 4>(t,x,v')dvI + g(t,x,v).

Independent variables are time t € (0, T), position

x 6 T, a rectangle in R , and velocity v 6 6, a ball

in R . The gradient acts with respect to x. An
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initial condition specifies 4>(0, x, v) . Partial

specular reflection on ST, ranging from full reflection

to an exterior vacuum, was assumed by Wilson.

In operator form (7.1) becomes D<j> = L4> + g.

Discrete ordinates approximations <J> satisfy equations

D4> = L 41 + <31 where L is a numerical integration

approximation to L with a convergent positive quadrature

rule.

Wilson [19] obtained existence and uniqueness

theorems for weak and strong solutions of a general

problem which includes both D<|> = L<j> + g and D<j> = L <j> + g

as special cases. The analysis involves an equivalent

formulation of the problem as an integral equation which

is of Volterra type in t. Direct iteration yields the

existence and uniqueness of <j> and <j> . plus inequalities

of the form

(7.2) |Un(t)|| <<a||4>n(0)|| +b||g|| )e(cH0H +d'lLJI >\

with max norms on the functions over undisplayed

arguments.

Since D((j> - 4>) = Ln(*n - <J>) + Lnr " L* with zero

initial conditions and the same boundary conditions, (7.2) implies

(7.3) ||«,n(t> - d»(t)||< b||Lnd, - Ld,|| e(cHall +d'lLnU )t,

(7.4) 4> -*• <j) uniformly as n -*• oo,

The error bound in (7.3) is of mixed type.
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8. Conclusions

In the preceding, we have attempted to survey develop

ments in the investigation of convergence properties and

error bounds for the discrete ordinates approximations to the

transport equation. This summary has been carried out in an

abstract setting which, we believe, serves to unify and

clarify much previous work in this area. The direction of

future investigations is also clearly indicated.

While the first studies of convergence properties of

the discrete ordinates methods were carried out nearly fifteen

years ago, in an astrophysical setting, they have generally

not come to the attention of workers interested in practical

applications of the method to nuclear reactor computational

problems. In fact, as recently as 1968, a standard work on

reactor computing methods refers to the convergence of the

discrete ordinates method as an unsolved problem.

A number of practical implications follow from the

results surveyed above. For example, the equivalence of the

spherical harmonics (pvj) and Gauss-quadrature methods for

slab geometry transport problems (in the sense that the

solutions agree at the quadrature points) establishes the

convergence of, and provides error bounds for, the P

solutions at the quadrature points.

Hopefully, future extensions of the results surveyed here

to include three-dimensional systems and discretization of the

spatial variable will provide convergence proofs and practical

error estimates which will be of use even in the most complicated

practical applications of discrete ordinates methods.
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