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ABSTRACT

Analytical shielding work performed for the fast reactor program
during the months of September and October consisted of calculations for
both the FFTF and the CRBR plants, continued computer code development,
the partial analysis of three different TSF experiments, and calculations
supporting the design of a new TSR~II beam shield. In the FFTF studies,
the combined effect of multiple penetrations through the reactor cavity
shield was determined, additional predictions of the 2%Na gamma—-ray dose
rates in the heat exchanger vault were made, and a preliminary three-
dimensional calculation of the reactor cavity fluxes produced by the FTR
stored fuel was carried out. 1In the CRBR studies, predictions were made
of the effect of stored-fuel neutrons on the response of the ex-vessel
RSP detectors. The code development work centered on selecting features
to be included in the DOT-1IV code. The analyses for the TSF experiments
consisted of calculations of the fission detector responses observed in
the TSF-FTIR first-fission stored-fuel experiment; calculations of the
neutron fluxes measured in the TSF inconel experiment; and calculations
of the energy deposition by 60¢co gamma rays in iron (as measured with
thermoluminescent detectors). Several calculations were also performed
to predict the heating deposition and leakage dose rates associated with

a proposed large-beam TSR-II shield.

vii






1. CURRENT FFTF STUDIES

The FFTF analytical shielding studies during September and October,
1973, consisted of calculations of the combined effect of the eight pene-

trations in the reactor cavity shield on the maintenance deck dose rate,

calculations of the SD0-200 <%Na gamma-ray dose rates in the heat exchang-

er vault for a revised design of the 1l6-in.-diam duct isolation valve, and
preliminary runs to investigate the adaptability of the MORSE Monte Carlo

code by the calculations of three-dimensional stored-fuel neutron fluxes

in the reactor cavity.

1.1. Coupled DOT-MORSE Calculations of Radiation Streaming Through
Penetrations in the Reactor Cavity Shield

Work done by: Margaret B. Emmett and W. W. Engle, Jr.

Calculations performed as part of the continuing analysis of the
radiation—attenuating characteristics of the FFIF reactor cavity shield and
head compartment have shown the combined effect of the various pipes and
ducts through the shield on the intggrated neutron and gamma-ray dose rates
at the maintenance deck level. The relative locations of the reactor cavity
shield and the maintenance deck are shown in Fig. 1.1. Basically, the
shield is a solid concrete rim that surrounds the top of the reactor vessel
(from a height of about 530 cm to 630 cm). However, at eight different
locations around the vessel the shield is penetrated by pipes and ducts.
These penetrations, pictured in Fig. 1.2, consist of three 16-in.-diam
sodium inlet lines fitting in grooves on tﬁe outer surface of the
shield, a 6-in.-diam overflow line that penetrates through the full shield,
a 3-in.-diam line that penetrates through the full shield and also turns
within the shield, and three SISI transporter slots that slant downward
through the shield from its outer surface to its inner surface. In all
cases the penetrations introduce lower density regions in the radial cavity
shield which might cause localized peaking of the dose rate and thereby an

increased integrated dose rate at the maintenance deck level.

In the last progress reportl the effect of each individual penetration

was compared with the effect of the solid shield. It was found that the
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Fig. 1.1. Geometry for FTR Calculations Including Reactor Cavity
Shield. Note: See Figs. 1.3 through 1.5 for variations in reactor
cavity shield configuration.
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6-in. overflow line had the largest effect on the integrated gamma-ray
dose, increasing it by about 14%, and the SISI transporter duct had the
largest effect on the neutron dose, increasing it by about 21%Z. Neither

of these increases is considered significant, however.

The combined effect of the eight penetrations has been calculated in
the same manner as the effect of the individual penetrations. That is,
the boundary angular flux at z = 532.42 cm from a forward DOT run was
used by the DOMINO code to generate tables of probabilities for selecting
the group, position, and direction for source neutrons for MORSE runs cov-—
ering the region of the reactor cavity shield. Above the reactor cavity
shield, results were used from four different adjoint DOT runs, the angular
flux tapes from each having been processed by DOMINO. The sources for the ad-
joint calculations were the neutron flux—-to—dose conversion factor and the
gamma-ray flux-to-dose conversion factor, each being placed at the top of
the maintenance deck and distributed radially from 260 to 450 cm in one

pair of cases and from 325 to 400 cm in the other pair.

Two MORSE calculations were performed: one for the shield with the
eight penetrations and one for the solid shield. It was necessary to repeat
the solid-shield case here because changes have been made in the reactor
cavity shield design since the calculations for the individual penetrations
were performed. Also, it was erroneously stated in the last report1 that
the MORSE geometry included the steel support straps between the shield and
the reactor vessel. The differences in the two solid-shield representations
are shown in Fig. 1.3. The additional material introduced by including the
steel support straps and reactor vessel flange and not cutting out the
lower outer section of the concrete shield decreased all the integrated

doses on the maintenance deck by more than a factor of four.

Changes in the reactor cavity shield configuration caused by the intro-
duction of the 16-in. sodium inlet pipe and the 6-in. overflow line are
shown in Fig. 1.4; the changes caused by the 3-in. makeup line and SISI
transporter slot are shown in Fig. 1.5. A horizontal cut through the MORSE
geometry at z = 601 cm shows the location of all eight penetrations (see
Fig. 1.6).
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Radius = 555 cm.



Table 1.1 gives the integrated dose rates on the maintenance deck for
both the solid reactor cavity shield and for the shield containing all eight
penetrations. The results from an all-DOT run are also included for the
solid shield. When compared to the DOT solid-shield results, the inte-—
grated gamma-ray dose rates are increased by 607 by the eight penetra-
tions; however, when compared with the coupled DOT-MORSE solid-shield
results the increase is only 30%. The integrated neutron dose rates are
increased 757 and 307 by the penetrations when compared with the all-DOT
and DOT-MORSE solid-shield results respectively. The disagreement between
the solid DOT and MORSE calculations is excessive and not well understood.
Calculations of this type obviously require the development of an "adjoint
difference" or "equivalent source'" DOT-MORSE coupling method which will pro-
vide the ability to calculate the dose change caused by the penetrations
rather than inferring the dose change by subtracting the unperturbed from
the perturbed case. From these calculations the increase in the average
dose on the maintenance floor is 1.5 due to these penetrations. The local
peaking factor on the maintenance floor has been previously calculated to
be 1.6 (ref. 1). The conservative estimate for the local dose peak on the
maintenance floor is a factor of 2.4 higher than the average value for

the unpenetrated reactor cavity shield.

Table 1.1, Integrated Dose Rate on FFTF Mainterance Deck with
and Without Reactor Cavity Shield Penetrations

Integrated Dose Rate
(cm?-mrem/hr)

Configuration Gamma Rays Neutrons

Adjoint Source at R = 260-450 cm

Solid shield (DOT) 1.37+5 1.53+5
Solid shield (DOT-MORSE) 1.70+5(0.06)* 2.07+5(0.09)
Shield with eight

penetrations (DOT-MORSE) 2.20+5(0.10) 2.69+5(0.16)

Adjoint Source at R = 325-400 cm

Solid shield (DOT) 7.00+4 9.40+4
Solid shield (DOT-MORSE) 8.72+4(0.06) 1.28+5(0.10)
Shield with eight

penetrations (DOT-MORSE) 1.12+5(0.10) 1.64+5(0.16)

*Read: 1.70 x 10° cm?-mrem/hr with 6% fractional standard deviations.
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1.2. Calculations of ““Na Gamma-Ray Dose Rates in Heat Exchanger Vault

Work done by: Margaret B. Emmett and W. W. Engle, Jr.

During this reporting period several additional Monte Carlo (MORSE)
calculations were performed to predict what the 2%Na gamma-ray dose rates
in the heat exchanger vault would be if stainless steel shield patches of a
slightly different design were used along the edges of the pipe chases on
both sides of the 27-in.-thick shadow shield wall.* The criterion, refer-
red to as the SDO—-200 condition, has been that at zero time after shutdown
the dose rate not exceed 200 mrem/hr at any location in the vault when
the isolation valves on the adjacent HTS pipeway have been closed long
enough for the sodium in the pipes beyond the valves to decay (during
operation at two-thirds power). Earlier calculations? (by F. B. K. Kam)
for the case of a shorter isolation valve for the l6-in.-diam pipe had
shown that even with patches the dose rates in the vault near the edge of
the 16-in.-diam inlet pipe would be 1170 mrem/hr, which is almost a factor
of six too high. Since this region of the vault presents the most serious
problem, these new calculations were also performed for the case of the

l16-in. pipe entrance into the vault.

The three-dimensional geometry assumed for the calculations is shown
in Fig. 1.7. The activated source, taken to be 14 miC/cm3, was restricted
to the reactor side of the isolation valve. The patches within the pipeway
consisted of two 40-in.-high stainless steel slabs, one 6 by 9 in. and
the other 6 by 12 in. The patches within the vault were large annular rings,
the one adjacent to the wall having an inside diameter equivalent to the

diameter of the pipe chase. The diameter of the other cylinder was 24 in.

Three detector positions were considered as shown in the lower left-
hand corner of Fig. 1.7. Detectors 1 and 3 were in the horizontal midplane
of the pipe, and Detector 2 was above the pipe on the inside surface of
the largest annular steel ring (see inset in figure). (In the coordinate

system used, X,y,z = 0 at the center of the reactor core.)

*The shadow shield wall was originally designed to be constructed of
magnetite concrete and to have a thickness of 33 in., but it was changed
to magshot and reduced to 24 in. about mid-1973.
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The dose rates for the three locations are given in Table 1.2. Only
the dose rate at Detector 2 is below the design criterion, the value for
Detector 1 being too high by a factor of five and the value for Detector 2
being too high by a factor of two. In view of these results, ARD re-
examined the maintenance requirements for the heat exchanger vault and
determined that access to the high dose-rate regions would not be necessary.
Therefore, the regions near the pipe chases were designated as exclusion
areas in which the dose rate could exceed 200 mrem/hr. The shadow shield
design was then released to the contractors with all the stainless steel

patches included except the 24-in.-ID ring.

Table 1.2. 2"Na Gamma-Ray Dose Rates in FFTF Heat Exchanger Vault

(See Fig. 1.7 for detector locations.)

Henderson Dose Rate (mrem/hr)

Detector Uncollided Total
1 89.3 (0.04)%* 1072.3 (0.36)
2 0.23 (0.01) 109.98 (0.44)
3 0.0101 (0.08) 406.44 (0.31)

*Number in parentheses indicates per cent standard devia-
tion.
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1.3. Calculations of Azimuthal Peaking in the Reactor Cavity
Neutron Fluxes Produced by Stored Fuel

Work done by: Margaret B. Emmett and W. W. Engle, Jr.

During this period a few preliminary Monte Carlo MORSE runs were per-
formed to investigate a technique for calculating the neutron fluxes in
the FFTF reactor cavity produced by the stored fuel. The source used for
these runs was the power in each of 22 elements in a stored-fuel module
which had been determined from an earlier DOT calculation in r-8 geom-—
etry.3 Two detector positions in the cavity were considered, both located
in the FTR core horizontal midplane. One detector was opposite the stored-
fuel module and the other was about halfway between two modules. All the

calculations were carried out in the forward mode.

The results indicated that the MORSE code was adaptable to this type
of calculation. Therefore, work has begun to describe the system in
COMGOM" rather than in general geometry. Once this has been done, the
calculation can be performed much faster and changes in the description
of the stored-fuel module can be introduced with a minimum of effort.

The plan is to perform a series of calculations which will yield the
average value of the flux and the azimuthal flux shape at a given radius

and given height in the cavity.
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2. CURRENT CRBR PLANT STUDIES

2.1. DOT Calculations of Stored-Fuel Effects on Ex-Vessel RSP Detectors

Work done by: W. W. Engle, Jr., L. R. Williams, and F. R. Mynatt

Our most recent studies for the Clinch River Breeder Reactor Project
(CRBR), has consisted of a series of DOT calculations to determine the
adequacy of the ex-vessel RSP detectors (reactor surveillance procedure)
monitoring the shutdown reactor in the presence of neutrons from stored
fuel elements. If the monitors are to be effective, the ratio of the
background from stored-fuel neutrons must not be excessive. The present
criterion is that the stored-fuel background should not exceed 10% of the

counts from the core.

The CRBR fuel elements are to be arranged in a hexagonally shaped core
consisting of an inner region and an outer region whose elements differ
slightly in composition. The two regions are shown in Fig. 2.1. 1In the
present design the core is surrounded by a radial blanket of depleted
uranium oxide, a radial reflector of stainless steel, and a radial restraint
region of inconel. Around the entire assembly is a l4-in.-thick steel
shield, with all the regions, including the shield, enclosed in the core
barrel., The materials in the various regions are given in Tables 2.1 - 2.4,
including the materials for the control rods. The control-rod positions

are indicated in Fig. 2.1 by the '"+'s" in the inner core.

When the first DOT calculations were performed, the plant design
in the region outside the core barrel was also as shown in Fig. 2.1. It
provided for the storage of as many as 36 used fuel elements in three
"stored-fuel modules' placed symmetrically around the core barrel within
steel shields. 1In between the modules, but outside the reactor vessel,
are three clusters of 23°U fission detectors serving as neutron-flux
moni tors during reactor shutdown. Since these detectors are sensitive
primarily to low-energy neutrons, the five detectors in each cluster are
embedded in a material (graphite) that moderates the incident fast neutrons.

The box is shielded on three sides with B,C. The compositions of these
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Fig. 2.1. Horizontal Cross Section of CRBR Reactor Vessel Through
Midplane of Core. See Table 2.1 for identification of numbered regions.
r,0 calculations were performed for 6 = 0 to 60 deg to determine response
of flux monitors to neutrons from shutdown core and stored-fuel elements.
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Table 2.1. Identification of Radial Regions Through
Horizontal Midplane of CRBR Reactor Core
(See Fig. 2.1)

Region
Number Identification Composition
1 Center control rod See Table 2.2
2 Row 4 control rods "
3,4 Row 7 control rods "
5 Inner core See Table 2.3
6 Outer core "
7 Radial blanket "
8 Reflector See Table 2.4
9 Radial restraint "
10 Sodium Average densgity =
2.186 x 10 2 atoms/becm
11 Radial shield See Table 2.4
12 Core barrel "
13 Stored-fuel shield "
14,15 Sodium See above
16 Stored-fuel element See Table 2.3
17 Reactor vessel See Table 2.4
18,23 Cavity Nitrogen, density =
5.38 x 10 ° atoms/be+cm
19 Guard vessel See Table 2.4
20 Insulation 0.061 vol% CaSiOj
21 B,C shield B,C, boron density =

9.37 x 10 2 atoms/b-cm,
carbin density =
2.34 x 10 % atoms/b+cm

22 Graphitea Carbon density =
1.1284 x 10 ! atoms/b-cm

24 Reactor cavity wall Magnetite concrete (see
Table 2.5)

4The carbon density used in the calculation was 2.25 g/cc; it
should have been 1.6 g/cc, but the difference would not be ex-
pected to change the relative responses of the detectors.
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various regions are given in Tables 2.1 and 2.4.

Table 2.2. Assumed Compositions of CRBR Control Rod Regionsa
(See Fig. 2.1)
Atomic Density (atoms/b*cm)
Natural Boron 40% Enriched Boron
Control Rods Control Rods Control
Nuclide (Regions 1, 3, 4) (Region 2) Channel
10g 7.177(-3)°¢ 1.473(-2)
lig 2.911(~2) 2.209(-2)
C 9.072(-3) 9.206(-3)
Na 7.334(-3) 7.334(-3) 2.053(-2)
Cr 4.4(-3) 4.4(-3) 1.497(-3)
Fe 1.709(-2) 1.709(-2) 5.814(-3)
Ni 2.75(~3) 2.75(-3) 9.335(-4)

a . . . .
For cases in which control rods were partially withdrawn, the
control rod and control channel were mixed with appropriate volume

fractions.
CWith control rod fully withdrawn.
Read: 7.177 x 10 3.

As pointed out above, the effectiveness of the monitors depends on
the degree to which they are protected from stored-fuel neutrons. In an
attempt to minimize the transport of neutrons from the stored fuel to
the detectors, the steel shield around each stored-fuel module was

thickened on each end.

Four cases were calculated to determine the fission counter responses
for the geometry shown in Fig. 2.1. The first two cases were for the reactor
at full power (900 thh) with and without neutrons from the stored

fuel considered, and the next two cases were for the reactor shut down
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Table 2.3. Assumed Compositions of CRBR Fueled Radial Regions
(See Fig. 2.1)

Atomic Density (atoms/b°cm)

Inner Core Outer Core Radial Blanket
Nuclide (Region 5) (Regions 6, 16) (Region 7)

239y 8.229(-4)2 1.1927(-3)

240py 2.9674(~4) 4.3021(-4)

241py 1.7555(-4) 2.5427(-5)

242py 5.407(=5) 7.834(=5)

235y 1.172(-5) 1.659(-5) 2.65(~5)

238y 5.8705(-3) 5.2863(-3) 1.323(-1)
0 1.433(-2) 1.438(-2) 2.625(-2)
Na 8.8865(~3) 8.916(-3) 5.451(~3)
Ni 2.2277(-3) 2.277(-3) 1.558(-3)
Cr 3.642(~3) 3.642(-3) 2.492(-3)
Fe 1.416(-3) 1.416(-3) 9.689(-3)

qRead: 8.229 x 107 “.

Table 2.4. Assumed Compositions of CRBR Nonfueled Radial Regions
(See Fig. 2.1)

Atomic Density (atom/bscm)

Type 304
Reflector Radial Restraint Stainless Steel
Nuclide (Region 8) (Region 9) (Regions 11, 12, 13, 17, 19)

Na 2.6567(-3)2 - : -

Cr 1.55317(-2) 1.52928(-2) 1.74(-2)

Fe 5.38472(-2) 1.24585(-2) 5.96(-2)

Ni 7.4207(-3) 5.92548(-2)° 7.7(-3)

Mn 1.3(-3)

8pead: 2.6567 x 10 3.

bWeighted 1/E O,
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with and without neutrons from the stored fuel considered. Source data
for the shutdown cases are given in Table 2.6 and the source energy spectra
are given in Table 2.7 in the standard 50-group structure used for earlier

FTR calculations. The two spectra correspond to the shutdown "inherent"

Table 2.5. Assumed Composition of Magnetite Concrete
Used in CEBR Cavity Wall

Density Atomic Density

Element (g/cc) (atom/be+cm)
Hydrogen 0.012° 7.17(-3)2°¢
Oxygen 1.1634 4.379(~2)
Iron 1.4982 1.616(-~2)
Titanium 0.3566 4.48(~3)
Vanadium 0.0098 1.2(-4)
Silicon 0.0765 1.64(-3)
Aluminum 0.0618 1.38(-3)
Magnesium 0.0107 2.7(-4)
Calcium 0.1640 2.47(-3)
Sulphur 0.0029 6.0(-5)
Carbon 0.0011 6.0(-5)
Sodium 0.0012 3.0(-5)
Other 0.0004

Total 3.3641 7.763(-2)

aExcept where noted, composition was given in FRP-770
(March 8, 1972 . Note: Current plans are to use ordi-
nary concrete for the cavity wall, but for this cal-
culation the differences in the two concrete composi-
tions would have little effect on the results.
Hydrogen densities given in FRP-811 (April 12, 1972).
“Read: 7.17 x 107 3.
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source and the shutdown '"fission" source respectively. The inherent source
consists of neutrons produced by the spontaneous fission of plutonium and

by oxygen (a,n) reactions. The fission source consists of neutrons produced
when the inherent source neutrons induce fissions in the plutonium or
uranium (that is, the multiplied source). For the purposes of these

calculations, the plutonium fission spectrum was used.

The DOT calculations used the 50-group FTR cross sections, an Sg quad-
rature, and P; scattering. They were performed in r,6 geometry, the
8 = 0 position being along a line connecting the core center and the
central detector. The region covered was from 6 = 0 to 60 deg, which was
the smallest symmetrical region that could be examined (see Fig. 2.1).
Along the radius the geometry extended past the flux monitors through the
nitrogen-filled cavity surrounding the reactor vessel and 1 ft into the

concrete reactor cavity wall (concrete composition given in Table 2.5).

The initial calculations in this study were performed in two steps,
the first step covering the region from the core center to the outer radius
of the radial shield (to r = 74 in.). The second step covered the remain-
ing regions, using as the source a boundary angular flux from the first

step. Later the full geometry was handled in a single run.

Table 2.6. Source Data for CRBR Shutdown Cases

Stored-Fuel Inherent Source 1.8 x 10° neutrons/sec
Stored-Fuel Fission Source 1.35 x 10° neutrons/sec
Core Inherent Source 8.24 x 10° neutrons/sec
Core Fission Source 8.44 x 10° neutrons/sec
K of Stored Fuel 0.429

eff
K of Core 0.911

eff
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Table 2.9. Spectra of Inherent and Fission Sources Used
for CRBR Shutdown Cases

Neutrons/Group
Group Upper Energy 3 b
No. Limit (MeV) Inherent Source Fission Source
1 1.4918(1)¢ 2.784(~3) 1.8567(~4)
2 1.2214(1) 4.913(-3) 1.0122(-3)
3 1.0000(1) 7.323(-3) 3.7899(-3)
4 8.1873(0) 1.3521(-2) 1.0441(-2)
5 6.7032(0) 2.2719(-2) 2.2400(-2)
6 5.4881(0) 3.8223(~2) 3.9215(-2)
7 4.4933(0) 5.7777(=2) 5.8216(-2)
8 3.6788(0) 8.7764(-2) 7.5625(~2)
9 3.0119(0) 1.0021(-1) 8.8198(-2)
10 2.4660(0) 1.0676(-1) 9.4291(-2)
11 2.0190(0) 9.7356(-2) 9.3976(-2)
12 1.6530(0) 8.2668(-2) 8.8512(-2)
13 1.3533(0) 7.0785(-2) 7.9651(-2)
14 1.1080(0) 5.9885(-2) 6.9089(-2)
15 9.0718(-1) 5.1314(-2) 5.8175(-2)
16 7.4274(-1) 4.7029(~-2) 4.7824(-2)
17 6.0810(-1) 3.6002(-2) 3.8558(-2)
18 4.9787(-1) 2.8846(-2) 3.0602(-2)
19 4.0762(-1) 2.3119(-2) 2.3980(-2)
20 3.3373(-1) 1.7139(-2) 1.8597(-2)
21 2.7324(-1) 1.3100(-2) 1.4302(-2)
22 2.2371(-1) 9.498(~3) 1.0923(-2)
23 1.8316(-1) 7.205(-3) 8.2960(-3)
24 1.4996(-1) 5.404(-3) 6.2722(-3)
25 1.2277(-1) 3.766(-3) 7.4788(-3)
26 8.6517(-2) 2.047(-3) 5.8508(-3)
27 5.2475(-2) 1.146(-=3) 1.6638(-3)
28 4.0868(-2) 7.86(-4) 1.1514(-3)
29 3.1828(-2) 5.40(-4) 7.9564(-4)
30 2.4787(-2) 3.77(-4) 5.4913(-4)
31 1.9304(-2) 0 3.7865(-4)
32-50 1.5034(-2) 0 0

a .. .
Neutrons due to spontaneous fission of plutonium and to oxygen (a,n) reac-
tions.

b . . . .
Neutrons produced by fissions induced in Pu and U by inherent-source
neutrons. Spectrum given here is 239y spectrum; it is used as the
spectrum for fission neutrons from both Pu and U.

“Read: 1.4918 x10%.
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The r,6 grids used for the calculations were selected to match the
edges of the various CRBR regions as closely as possible. For Regions
1l - 10, which had irregular edges because of their hexagonally shaped com—
ponents, this required bracketing the edges of the regions with the radial
and theta intervals. The resulting grid is shown in Fig. 2.2, in which
the heavy lines represent the edges of the regions. With these lines used
as a guide, the regional boundaries shown in Fig. 2.3 were chosen for the
calculations. The grid shown in Figs. 2.2 and 2.3 (also defined in Table
2.8) was used for the first step in the two-step calculation. The same
radial intervals were used for the full-geometry calculations, but the

theta intervals were revised slightly.

Table 2. 8. r,0 Grid Descriptions for CRBR
Calculation of Radial Regions 1-10
(See Figs. 2.2 and 2.3)

Radial Intervals

Outer Radius No. of Interval Width Interval
(in.) (cm) Intervals (in.) (cm) Numbers
4.76 12.0904 4 1.19 3.0226 1-4
9.52 24,1808 2 2.38 6.0452 5-6
16.66 42.3164 6 1.19 3.0226 7-12
21.42 54.4068 2 2.38 6.0452 13-14
45.22 114.8588 20 1.19 3.0226 15-34
59.50 151.130 24 0.595 1.5113 35-58
60.00 152.40 2 0.25 0.635 59-60
72.00 182.88 12 1.00 2.54 61-72
74.00 187.96 4 0.5 1.27 73-76

Theta Intervals

Theta boundaries were 0 and 60 deg in thirty 2-deg intervals.




24

ORNL-DWG 74-3230

8 =60°
rd

r=59.5 in.

9
] A ®
—
: 7
- 8=0
— ©
58
54
50
a6
f; 4 42
L 38
- 34
32
L 30
5 28
i %6 at®
H FZE\
L] 22 ‘v@
! 3>20 P
I 2 18 <@
R
19 oW
13 ab
12
10
8
6
5
] 4

Fig. 2.2. 1,9 Grid with Overlay of CRBR Radial Regions 1-10. See
Table 2.8.
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Fig. 2.3. r,0 Grid with Overlay of CRBR Radial Regions 1-10 as
Mocked Up in Calculations. See Table 2.8.
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The r,6 grid selected for the second step of the two-step calculations
is shown in Fig. 2.4 and Table 2.9. 1In this case the radial intervals
coincide with the region boundaries. 1In the case of the stored-fuel
elements, the theta intervals were assumed also to coincide with the region
boundaries; however, in the cases of the stored-fuel shield and detector
box, the edges were represented by stepped theta intervals. In this cal-
culation more theta intervals are required in order to accurately mock up
the flux monitor box and the stored-fuel module. The radial intervals shown
here were also used in the full-geometry calculation. The theta intervals
for the full-geometry calculations were very similar to these, but some
modification of the theta grid was required to handle all the CRBR regions
simultaneously. Most of the results given below are from the full-geometry
runs, Figs. 2.2 through 2.4 being presented only to help the reader visual-

ize the problem.

As is apparent from our previous progress reports, the detailed re-
sults from DOT calculations are most conveniently presented as "isoplots"
of the calculated responses over various regions of the geometry. At the
time these calculations were performed we did not have a capability for gen-
erating isoplots in r,9 geometries. The results from these calculations are
presented as isoplots on an x,y geometry, where the x axis represents the radius
and the y axis represents the theta direction measured in revolutions (60 deg
= 0.167 revolutions). An x,y representation of the regions beyond the reflec-
tor is shown in Fig. 2.5. Although in this representation the theta scale
is distorted, the isoplots presented over this geometry will be accurate

for given values of r and 6.

Isoplots for the two shutdown cases, that is, with and without the
stored fuel, are presented in Figs. 2.6 through 2.9. Figures 2.6 and 2.7
show the total neutron flux, and Figs. 2.8 and 2.9 show the reaction rate
for a 235U detector. Comparisons of the corresponding curves reveal that

the stored fuel has a significant effect on the responses in the vicinity

of the flux monitors.
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The reaction rates and count rates for the centermost detector determ-
ined from these two shutdown cases are given in Table 2.10, along with cor-
responding values for the at-power cases. The results show that when the
reactor is shut down, the ratio of the count rates due to stored-fuel
neutrons to the count rate due to core neutrons is about 17 to 1, which
is unacceptable. Even when the reactor is at full power, neutrons from

the stored fuel have a small but noticeable effect on the monitor.

In order to get some idea of whether the fission detectors could be
sufficiently shielded from the stored-fuel neutrons, additional shutdown
cases were calculated for a geometry in which the B,C shielding around the
graphite was extended inward to the core barrel as shown in Fig. 2.10 (a
structurally impractical case). The results for these cases, presented in
the third line of Table 2.2, show that the fission detector would count
2.5 core neutrons for every stored-fuel neutron, which is a great improve-
ment but still not satisfactory. This hypothetical configuration is an

upper limit in shielding the detectors from the stored fuel.

Finally, shutdown cases were run for a revised ARD design in which
the thickness of the ends of the fuel module shield was increased and the
reactor vessel was surrounded by a B,C shield (see Fig. 2.11). The re-
sults, shown in the last line of Table 2,10, still are not satisfactory
and indicate that an adequate shield design for the stored-fuel modules
may not be possible. The inclusion of the stored-fuel modules in this

region of the CRBR plant is therefore in question.




NOTE:
EACH STORED FUEL ELEMENT
IS POSITIONED BETWEEN
r=81.52cm AND r =85.88.
ON THE THETA GRID A FUEL
ELEMENT OCCUPIES TWO
1.54-deg INTERVALS. THE
ELEMENTS ARE ALSO SEPARATED
BY TWO 1{.54-deg INTERVALS.

ORNL-DWG 74-3237

“9 = 60°

50°

N \y37.38"
129.88"

Fig. 2.4. 1,06 Grid Overlay of CRBR Radial Regions 11-23. See
Table 2.9. Radial intervals actually extended to 252 in., which included
1 ft of the concrete cavity wall.

8¢
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Table 2.9. r,0 Grid Descriptions for CRBR

Calculation of Radial Regions 11-24
(See Fig. 2.4)

Radial Intervals

Outer Radius® No. of Interval Width Interval
(in.) (cm) Intervals (in.) (cm) Numbers
74 187.96 2 1.0 2.54 1-2
76 193.04 4 G.5 1.27 3-6
81.52  207.0608 2 2.76 7.0104 7-8
83.70 212.5980 1 2.18 5.5372 9
85.88 218.1352 1 2.18 5.5372 10
90.0 228.60 2 2.06 5.2324 11-12
100.0 254.0 4 2.50 6.35 13-16
114.0 289.56 7 2.0 5.08 17-23
121.50 308.61 2 3.75 9.525 24-25
123.88  314.6552 2 1.19 3.0226 26-27
129.88  329.8952 1 6.0 15.24 28
131.38  333.7052 2 0.75 1.905 29-30
137.38  348.9452 6 1.00 2.54 31-36
167.38  425.1452 30 1.00 2.54 37-66
180.0 457.20 2 6.31 16.0274 67-68
192.0 487.68 1 12.0 30.48 69
240.0 609.60 2 24.0 60.96 70-71
241.,0 612.14 2 0.5 1.27 72-73
243.0 617.22 2 1.0 2.54 74-75
252.0 640.08 3 3.0 7.62 76-78
Theta Intervals
No. of Interval Width Interval

8 (deg) Intervals (deg) Numbers
O—lb 20 0.5 1-20
10-20 5 2.0 21-25
20-23.04 2 1.52 2627
23.04-60 24 1.54 28-51

#Calculation begins at r = 72 in. = 182.88 cm.
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The isoplots given in Figs.
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Plots are of of¢, where Jf is the fission cross section,

Fig. 2.8.
Reactor Core (No Neutrons from Stored Fuel).

and ¢ is the neutron flux.



ORNL-DWG 74-3233

LMFBR DEMO 60 DEG R-THETR CENTER THRU MAG CON WITH ST F SRCE W FISSION =x

34

el
— - —8
w
o
F— —3
w
v
0
=
v
b—
w
— £
=)
[22)
=)
=
— o
@
a@
IO . SRS A
)] (o}
- «
R g S L T e TS
rapiebviniisinioiniigoiuiuiuisiopspajupapujepuiapiuiupuiuirinpuiaap=a O ®iing, CCIIIIIIIIIC
— © R o R P
-
= -
e
A O TVRIT I 0 TRRT AT T AR R o v e e st sl & ri-Todnlubnl . duirickatuinielnl o VU Auintuindnieidiated
roenmve \m----w.m.ﬁmwz:e-ﬁeoe-o-a,;? ................... CCIIITII
o~
— ~
*
g
o
Vg
Ty}
b v wy??
u
vl?SS:- 1AW B non s “n
0, -
||||||||||||||||||||||||||||||||||| B

—mma
[ ] r%g_ 1 w1 wm [T [} 1
[ [P N Y L 1 - [
- B - @,
|||||||||||||||||||||||||||||||||||||||||||| (I,
CoIooIoToIIIIIIIIIIIIIIIIIIIIIIIIIIIID N CIIIITIIIII IR 5
" 5
— wninn W N 0 -
w W -
mw A0 UAmN WD) AN =
W00 W wan o un wnn v W n
w v 7 Wn 1wy 0 © 00 Ve "
2] " 0 ATV YN [Te}
e uluiinininb=e bbbt D e b ininlininintelate it o
e _gmmm-T "o ... J Lomecn =
berome L e e b ce s T T ek

8

= -
=] S

T S i SR SO Wi SRS

) ~
3 8
o S

(A34) BL3HL

Q
g
(=]

™ ~
S 5
I o
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Core and Stored-Fuel Elements.

Fig. 2.9.
neutron flux.

Plots are of g¢¢, where of is the fission cross section, and ¢ is the



Table 2.10. Comparison of 2357 Fission Detector Responses to
Core Neutrons and Stored-Fuel Neutrons in CRBR Plant

. a ..
Reaction Rate (fissions

per g of 235y per sec) Count Rateb (counts/sec)
Core Plus Core Plus Count Rate Ratio:
Core Stored-Fuel Core Stored-Fuel Core Neutrons
Case Neutrons Neutrons Neutrons Neutrons Stored-Fuel Neutrons

Reactor at full power; 5.64(9) ¢ 6.15(9) 6.49(10) 7.07(10) 11.6/1
original design (see

Fig. 2.1)
Reactor shut down; 5.72(-1) 1.02(1) 6.57(0) 1.17(2) 1/16.9
original design

(see Fig. 2.1)
Reactor shut down; 8.46(~2) 1.10(-1) 9.73(-1) 1.27(0) 2.5/1

B,C shield added

(see Fig. 2.10)
Reactor shut down; 5.72(-1) 2.42(0) 6.540) 2.78 (1) 1/3.2

new design
(see Fig. 2.11)

Gg

8The reaction rate is equal to the fission rate (such as those given in Figs. 2.8 and 2.9) multiplied
by the constant 0.6023/A, where A is the atomic mass (=235 for 23°U). The source used was the "start-
of~cycle" source (=9.134 x 107 neutrons/sec).

The count rate is the reaction rate multiplied by 11.5, which is the total number of grams of 235y in
the five detectors. These count rates assume a 100% efficiency of the system. They also assume that

each detector is an FFIF intermediate range fission chamber, which actually consists of two fission
chambers containing 1.15 g of 235y each.

CRead: 5.64 x 102,
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ORNL-DWG 74-3228

Fig. 2.10. Geometry for r,0 Calculation for CRBR System Having an
Extended B,C Shield.

ORNL-DWG 74-3229R

rpo =298.45cm
r{ =289.56 cm

Fig. 2.11. Geometry for r,06 Calculation for CRBR System Having a
Revised Stored-Fuel Shield Design.
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3. CODE DEVELOPMENT

3.1. Development of DOT IV

Work done by: W. A. Rhoades and D. B. Simpson

Preparatory to the development of the next version of the discrete
ordinates code DOT (DOT 1V), several two-dimensional discrete ordinates
transport codes have been studied with respect to their data storage re-
quirements and the requirements for the transmission of data into and out
of the computer memory. A set of reference problems which a new code of
this type should be able to solve were designed, and the storage require-
ments, data transmission, and computation work for these reference prob-
lems were evaluated. How the reference problems would fit on several
large-scale computers currently available was then examined. It was
concluded that the best way to solve very large problems, possibly even
those whose data-storage requirements do not exceed the fast memory capacity
of existing computers, is to retain one row of information in the fast
memory at a given time. That is, blocks of data corresponding to one row
each would be successively input, processed, and returned to slow memory
or external files. For the reference problems studied, using this procedure
in lieu of inputting all the data at one time did not unduly penalize any

problem in computer time requirements.

Including a capability for this mode of operation in DOT would offer
several advantages, one being that the size of a single-run problem that
could be handled would not be limited by the fast memory capacity of the
largest computer. With the current versions of DOT, a problem that exceeds
the capacity of the fast memory must be divided into a series of runs that
are coupled in space and/or energy, which in itself creates difficulties.
Another advantage is that DOT could be used effectively to solve fairly
large problems on computers having a relatively small fast memory —-- such
as the CDC-7600 computer. The capability should be made optional, however,
so that small problems requiring only a few rows of data that could be

stored simultaneously would not be handicapped.
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The row option and other features ORNL is planning for DOT-IV were
presented to user-representatives from Westinghouse and General Electric
at a meeting at AEC-RRD in Washington on October 30. The user-representa-
tives in turn presented their anticipated needs, which had to do mainly
with special features rather than with general strategy. General agree-

ment was reached on the developmental approach to be taken.
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4. ANALYSIS OF TSF-FTR FIRST-COLLISION STORED-FUEL EXPERIMENT

Work done by: R. L. Childs and F. R. Mynatt

During the month of August an experiment! was performed at the Tower
Shielding Facility which, together with a successful analysis, will deter-
mine the validity of the techniques being used to calculate the 239py and
235y fission rates in the FTR stored-fuel modules. In the experiment, the
radial regions between the FTR core and a stored-fuel module were mocked
up, and the responses of 235U and 23%Py fission detectors just beyond the
configurations were interpreted as representing the fission rate at a point
in the stored-fuel module. Additional measurements with hydrogen counters

and BF3 detectors yielded information on neutron fluxes at the detector

positions.

The first experimental configuration, corresponding to Item I-B in the
program plan,! is shown in Fig. 4.1. The first region, 4 in. of stainless
steel, 6 in. of sodium, and 1 in. of void, is the spectrum modifier. This
modifier was designed by Westinghouse ARD to simulate the CRBR core leak-
age and was thought to provide a reasonably good simulation of the FTR
core leakage. The two inconel and two stainless steel slabs behind the
spectrum modifier represent the FTR inconel reflector and support
structure. The next region mocks up the FTR radial stainless steel
shield. This assembly, which was originally designed as an axial shield
for an earlier GE demonstration plant experiment, consists of an array of
closely packed stainless steel rods in sodium. Details of the radial shield
are shown in Fig. 4.2, and the composition of the various materials used

throughout the configuration are given in Table 4.1.

Another experimental configuration, corresponding to Item I-D in the

program plan,1

is shown in Fig. 4.2. This configuration more closely
resembles the real case in that it mocks up the pool sodium and stainless

steel core barrel between the radial shield and the stored fuel.

The analysis of the experiment was begun in September and during this

reporting period it consisted of calculations of the fission detector
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First-Fission Stored-Fuel Experiment

Composition of Materials Used in TSF-FIR

Density
Material (g/cc) Element wt?
Aluminum 2.767 Al 98
Alloy 6061~T6 Mg, Fe, Si 2
Sodium 0.945 Na 99.7
Ca, Zn 0.3
Boral B 27.5
Al 65.0
C 7.5
In slabs In rods
Stainless Steel 7.88 Fe 69.871 72
type 304 Cr 18.46 18.31
Ni 9.725 8.64
Mn 1.394 0.90
Si, C, O 0.55 .68
Slab No. 1 Slab No. 2
Inconel 8.51 Ni 74 .54 74.76
Cr 15.21 15.72
Fe 8.63 8.46
Cu 0.40 0.40
C 0.098 0.094
Mn 0.20 0.20
Co 0.1 0.1
Mo 0.03 0.03
Ti 0.09 0.09
Al 0.10 0.10
Nb <0.05 <0.05
n99.75 99.31
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responses for these two configurations. The calculations were performed
in two-dimensional cylindrical geometry with the discrete ordinates code
DOT in conjunction with the analytic first-collision computer program
GRTUNCL. (GRTUNCL calculates the uncollided flux and the first-collision
source resulting from a point source, which is used as input in the DOT
code to calculate the flux within the shield.) The air interval between
the outer surface of the configuration and the detector was treated in

DOT as an extra region in the cylindrical geometry. To obtain the fission
counter response, the calculated neutron flux at the detector position

was multiplied by the fission cross section for 2339py or 235y,

The cross sections employed were the 50-group cross sections that have
been in general use for the FTR calculations. An Sg quadrature and Pj.

scattering were used throughout.

The resulting calculated detector responses are compared with the
experimental responses in Table 4.2. These comparisons show that the
calculations are lower than the measurements by a factor of approximately
two for the 23°U counter and by a factor of about three for the 239py
counter. After these calculations were performed it was discovered that
the 23%py fission cross sections used were resonance self-shielded cross
sections. Since the layer of plutonium is very thin, infinitely dilute
cross sections should have been employed. When the 23%py results are
corrected for the self-shielding effect, they, too, are low by a factor of

about two.

The reasons for the large discrepancies between the calculated and
measured results are not yet understood. Additional work is under way to
determine whether the 50 energy groups used in the calculation are

adequate.
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Table 4.2. Comparison of Calculated and Measured Fission

Counter Responses in FIR First-Fission
Stored-Fuel Experiment

Detector Responses (cpm/MW) Ratio: Ratio:
Configurationa 235UCd 235UBare 239Pqu 235UCd/235UBare 235UCd/2 39Pqu
I-B, Calc. 7,538 7,913 1,356 0.9526 5.56
I~-B, Exp. 16,600 19,210 4,536 0.8641 3.65
Ratio: Calc./Exp. 0.45 0.41 0.30
I-D, Calc. 1,800 2,100 330 0.8571 5.45
I-D, Exp. 3,570 4,760 984 0.7500 3.62
Ratio: Calc./Exp. 0.50 0.44 0.34

q3ee Fig. 4.1 for Configuration I-B and Fig. 4.3 for Configuration I-D.

Section 4. Reference

1. C. E. Clifford et al., "Fast Reactor Experimental Shielding Progress
Report for August and September 1973," ORNL-TM-4420, p. 8 (December
1973).




46

5. ANALYSIS OF TSF INCONEL EXPERIMENT

Work done by: §S. Uchida and R. E. Maerker

An analysis of the FIR inconel experiment performed at the ORNL Tower
Shielding Facility during Julyl is almost complete, and comparisons of
the experimental and calculated data for neutrons are presented here.

As pointed out in the previous analytical shielding report,2 this ex-
periment was performed both to study the radiation-attenuating properties
of the FTR reflector material and to provide an experimental test for
calculated quantities based on nickel cross sections, which are not well

known.

In the experiment the radiation source was a beam from the Tower
Shielding Reactor (TSR-II) filtered through the Westinghouse Spectrum Modi-
fier (4 in. of stainless steel, 6 in. of sodium, and 1 in. of boral).3 Each
of the two inconel configurations tested, one 2-1/2 in. thick and the
other 5 in. thick, was positioned adjacent to the spectrum modifier as
shown in Figs. 5.1 and 5.2. Measurements made at various locations behind
the configurations included neutron spectral measurements with the NE-213
spectrometer and hydrogen counters, integral neutron flux measurements
with Bonner balls, and gamma-ray spectral measurements with a sodium

iodide spectrometer.

In the analysis the two-dimensional discrete ordinates code DOT in
conjunction with the analytic first-collision code GRTUNCL and the analy-
tic first-collision code FALSTF has been used to calculate the transport
through the configurations mocked up in cylindrical geometry. The calcu-
lations used 21 neutron groups, 18 gamma-ray groups, P3 scattering, and an
Sg quadrature. The composition used fcr the inconel was the same as the

measured composition.

The calculated neutron count rates for Bonner balls located on the
beam center line 24 in. behind the configuration are compared with
the experimental count rates in Table 5.1. In all cases the calculated

count rates are higher than the measured count rates. The fact that the
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Table 5.1. Comparison of DOT-Calculated and Measured (Bonner
Ball) Neutron Count Rates on Center Line 24 in.
Behind Inconel Configurations

(Westinghouse Spectrum Modifier Precedes Inconel)

Count Rate (cpm/kW)
3-in. Ball 6-in. Ball 10-in. Ball

24 in. Behind Spectrum Modifier (No Inconel)a

Calculated, scattered 6.39(5)b 4.44(6) 2.54(6)
Calculated, uncollided 2.3(4) 5.63(5) 6.04(5)
Calculated, total 6.62(5) 5.00(6) 3.14(6)
Measured 5.27(5) 4.59(6) 2.95(6)
Ratio: Calc./Meas. 1.26 1.09 1.07
24 in. Behind 2.55 in. of Inconel (Item A.3)€
Calculated, scattered 3.90(5) 2.68(6) 1.40(6)
Calculated, uncollided 2.68(3) 7.57(4) 8.31(4)
Calculated, total 3.93(5) 2.76(6) 1.48(6)
Measured 2.87(5) 2.27(6) 1.23(6)
Ratio: Calc./Meas. 1.37 1.22 1.20
24 in. Behind 5.10 in. of Inconel (Item B.3)°
Calculated, scattered 2.66(5) 1.61(6) 7.53(5)
Calculated, uncollided 3.50(2) 1.03(4) 1.14(4)
Calculated, total 2.66(5) 1.62(6) 7.64(5)
Measured 2.11(5) 1.45(6) 6.98(5)
Ratio: Calc./Meas. 1.26 1.12 1.09

4Taken from earlier calculation (ORNL-TM-4402, p. 60).
PRead: 6.39 x 10°.

c
Item number corresponds to outline of experiment given in ORNL-TM-4364,
p. 1.
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difference is greater for the thinner configuration is an anomaly

not yet explainable.

Comparisons of the experimental and calculated results in the energy
range of the hydrogen counter ( ~ 0.05 to 1.4 MeV) at a point 12 in. behind
the configurations are presented in Table 5.2 and Fig. 5.3. Again, most
of the calculated quantities (in this case energy fluxes) are higher than
the measured quantities and again agreement is better for the 5-in.

configuration than for the 2-1/2-in. configuration.

For the higher energy ranges, those covered by the NE-213 spectrom-—
eter, the calculated neutron fluxes are lower than the measured fluxes
for a detector position approximately 19 ft beyond the configurations
(see Table 5.3 and Fig. 5.4). Also, in this case the agreement is better

for the 2-1/2-in. configuration than for the 5~in. configuration.

As pointed out above, this analysis gives results that are in better
agreement with the thick-slab experimental data than with the thin-slab
data in some energy regions; also it gives results that are higher than
the experimental data in some energy regions and lower than the data in
other energy regions. At this point, we can only guess that compensat-

ing errors are oecurring in the calculations and that they can be traced

to the nickel cross sections.

Section 5 References

1. C. E. Clifford et al., "Fast Reactor Experimental Shielding Monthly
Progress Report for July 1973," ORNL-TM-4364 (September 1973).

2. F. R. Mynatt et al., "Fast Reactor Analytical Shielding Progress
Report for July and August," ORNL-4402, p. 73 (November 1973).

3. ORNL-TM-4402, op. cit., p. 56.
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Table 5.2. Comparison of DOT-Calculated and Measured (Hydroggn Counter)
Neutron Fluxes 12 in. Behind Inconel Configurations

(Westinghouse Spectrum Modifier Precedes Inconel)

Neutron Flux (neutrons-cmfz-min_l-W—l)

Energy Ratio:
Group Interval Calculated Calc. Flux
No. (MeV) Uncollided Scattered Total Measured Meas. Flux
12 in. Behind Spectrum Modifier (No Inconel)b
7 0.907-1.35 7.8(1)C 6.42(2) 7.20(2) 6.79(2) 1.06
8 0.550-0.907 4.1(1) 8.12(2) 8.54(2) 7.73(2) 1.10
9 0.334-0.550 2.6(1) 9.59(2) 9.84(2) 8.61(2) 1.14
10 0.202-0.334 2.4(1) 7.74(2) 7.99(2) 7.76(2) 1.03
11 0.123-0.202 9.0(0) 6.93(2) 7.02(2) 9.47(2)d 0.74d
12 0.0409-0.123 7.0(0) 7.54(2) 7.61(2) 1.18(3) 0.64
7-12 0.0409-1.35 1.85(2) 4.63(3) 4.82(3) 5.22(3) 0.92
12 in. Behind 2.55 in. of Inconel (Item A.2a)°
6 1.35-2.02 2.22(1) 2.82(2) 3.04(2) f f
7 0.907-1.35 1.17(1) 4.06(2) 4.18(2) 3.87(2) 1.08
8 0.550-0.907 6.54(0) 5.93(2) 6.00(2) 5.03(2) 1.19
9 0.334-0.550 2.75(0) 5.54(2) 5.57(2) 4.52(2) 1.23
10 0.202-0.334 1.60(0) 5.15(2) 5.17(2) 4.49(2) 1.15
11 0.123-0.202 5.57(-1) 5.42(2) 5.43(2) 4.00(2) 1.36
12 0.0491—0.123g 1.68(~-1) 5.39(2) 5.39(2) 4.29(2) 1.26
7-12 0.0491-1.35 2.33(1) 3.15(3) 3.17(3) 2.62(3) 1.21
12 in. Behind 5.10 in. of Inconel (Item A.2b)°
6 1.35-2.02 3.12(0) 1.05(2) 1.08(2) f f
7 0.907-1.35 1.72(0) 2.12(2) 2.14(2) 2.18(2) 0.98
8 0.550-0.907 1.01(0) 3.76(2) 3.77(2) 3.39(2) 1.11
9 0.334-0.550 2.79(~-1) 2.97(2) 2.97(2) 3.11(2) 0.95
10 0.202-0.334 1.02(-1) 3.06(2) 3.06(2) 3.01(2) 1.02
11 0.123-0.202 3.25(-2) 3.58(2) 3.58(2) 3.10(2) 1.15
12 0.0409-0.123 4.83(-3) 4.46(2) 4.46(2) 3.38(2) 1.32
3.79(2)2 1.18
13 0.0117-0.040 1.14(-6) 4.,99(1) 4.99(1) 8.78(1)a 0.57
7-13 0.0117-1.35 3.15(0) 2.05(3) 2.05(3) 1.93(3) 1.06

aMeasurements identified with superscript a were made with double-parameter hydro-
gen counter; all other measurements were made with single-parameter hydrogen
counter.

bTaken from earlier calculation (ORNL-TM-4402, p. 60).

“Read: 7.8 x 101,

dGamma—ray contamination is probably present.

®Item number corresponds to outline of experiment given in ORNL-TM-4364, p. 1.

fMeasured intensity too weak to be reliable.

8The width of energy interval No. 12 is smaller for this configuration.
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Table 5:3. Comparison of DOT-Calculated and Measured (NE—213)
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Neutron Fluxes v 19 ft Behind Inconel Conflguratlons

(Westinghouse Spectrum Modifier Precedes Inconel)

Neutron Flux (neutrons-cm 2-min !:W 1) Ratio:
Energy atio:
Group Interval Calculated Calc. Flux
No. (MeV) Uncollided Scattered Total Measured Meas. Flux
19 ft 7/8 in. Behind 2.55 in. of Inconel (Items A.l and A2b)b
1 10-15 7.91(-2)¢  3.95(-2) 1.19(-1) d d
2 6.7-10 3.19(-1) 1.92(-1) 5.10(-1) 5.75(~1) 0.89
3 4,49-6.7 6.78(~1) 4,57(-1) 1.14(0) 1.25(0) 0.91
4 3.01-4.49 1.24(0) 7.37(-1) 1.98(0) 2.01(0) 0.99
5 2.02-3.01 1.65(0) 1.36(0) 3.01(0) 3.35(0) 0.90
6 1.35-2.02 1.77(0) 2.07(0) 3.84(0) 4.16(0) 0.92
7 0.907-1.35 9.34(-1) 2.84(0) 3.77(0) 4. 27(0) 0.89
3. 98(0) 0.95
8 0.55-0.907 5.21(-1) 4.18(0) 4.70(0) 4, 57(0) 1.03
2-8 0.55-10 7.11(0) 1.18(1) 1.89(1) 2.0(1) 0.95
18 ft 10 3/8 in. Behind 5.10 in. of Inconel (Items Bl and B.2b)b
1 10-15 1.46(-2) 1.28(-2) 2.74(-2) d d
2 6.7-10 4.26(-2) 5.63(-2) 9.89(-2) 1.29(-1) 0.77
3 4.49-6.7 8.05(-2) 1.20(-1) 2.01(-1) 2.45(-1) 0.82
4 3.01-4.49 1.66(-1) 1.96(-1) 3.62(-1) 4.14(-1) 0.87
5 2.02-3.01 2.49(-1) 4.44(-1) 6.93(-1) 8.83(-1) 0.78
6 1.35-2.02 2.62(-1) 8.11(~1) 1.07(0) 1.28(0) 0.84
7 0.907-1.35 1.45(-1) 1.56(0) 1.71(0) 1. 80(0) 0.95
2. 07(0) 0.83
8 0.55-0.907 8.49(-2) 2.81(0) 2.90(0) 2. 97(0) 0.98
2-8 0.55-10 1.03(0) 6.00(0)  7.04(0) 7.86(0) 0.90

a . . . . .
Measurements identified with superscript a were made with 10-atm hydrogen counter;

all other measurements were made with NE-213 spectrometer.

bItem number corresponds to outline of experiment given in ORNL-TM-4364, p. 1.

“Read: 7.91 x 10 2,

d . . .
Measured intensity too weak to be reliable.
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6. CALCULATIONS OF GAMMA-RAY HEATING IN IRON: ANALYSIS OF TSF
MEASUREMENTS WITH THERMOLUMINESCENT DOSIMETERS (TLD's)

Work done by: F. B. K. Kam

The reliability of thermoluminescent dosimeters (CaSO,:Dy or CaF,:Dy
powder in iron capsules) for measuring gamma-ray heating continues to be of
concern. It was reported previously1 that ANISN calculations of the energy
deposition by 60¢co gamma rays in iron yielded results that were 15 to 30%
lower than those measured with the TLD's in a specially designed Tower
Shielding experiment.? In that experiment both the ®0Co source and the

TLD's were embedded in iron.

In an attempt to investigate the discrepancy, a new experiment3 and
accompanying calculations were performed for a configuration in which the
60Cco source was again embedded in iron but the TLD's were placed at l-in.
intervals on the surface of the iron as shown in Figs. 6.1 and 6.2. So
that the calculational method could be tested against measurements made
with another detector, the experiment also included measurements with an

Nal spectrometer at four angles from the Z axis.

The analysis of the TLD measurements was performed with the DOT and
ANISN discrete ordinates codes in cylindrical and spherical geometry
respectively. Both calculations used the same AMPX-prepared 30-group
gamma-ray cross sections employed in the earlier analysis. A point-

kernel calculation was also performed.

In the cylindrical geometry assumed for the first DOT calculation, the
cylinder height and radius were taken to be 22.70 cm and 91.44 cm, respec-—
tively, with the source located in a void region in the center of the
cylinder. It was found that the region beyond a radius of 44 cm did not
contribute significantly and could be eliminated from the calculation;
therefore, for the final calculation the radius of the cylinder was re—
duced to 44 cm. In addition, the cylinder was assumed to be symmetrical
about the plane containing the source, which allowed the region above the

source to be treated as a reflection plane. By thus reducing the amount of
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volume to be included in the calculation, that part remaining could be
treated in greater spatial detail. The resulting geometry is shown in
Fig. 6.3, in which z, the cylinder axis, corresponds to the experimental
axis of symmetry (see Fig. 6.1). The cylinder radius R corresponds to

Y in the experimental configuration.

It is to be noted that the radial dimensions for the void in the center
of the calculational model differ from those of the experiment. This is
partially because in the calculations the source is centered in the void,
whereas in the experiment it is not. Also, in the calculations it was
necessary to select a radius for the cylindrical void that would result in
the void having the same volume as that of the rectangularly shaped void in

the experiments.

The energy deposition was obtained from the DOT calculations for the
points indicated on the flat surface of the cylinder. The results are
compared with the TLD measurements (those corrected for spectral dependence
by the 1/f factor) in Fig. 6.4 and in Table 6.1. The slant iron thick-
nesses shown include the 1/8-in. wall thickness of the capsule in the TLD.
That is, the first entry in the table is for the TLD on the cylinder axis,
for which the slant iron thickness is listed as 10.716 cm. This includes

10.4 cm of iron in the configuration and 0.316 cm of iron in the capsule.

The DOT calculations and measurements agree to within +20% for radial
distances out to 7 in. (iron thicknesses of about 19 cm), but beyond 7 in.
the measurements are systematically higher, which seems to be characteris-
tic of the TLD measurements when the total exposure of the dosimeter is
low (in this case less than about 0.l r). As pointed out in an earlier
progress report,? this may be due to the methods of handling the experi-
mental and readout backgrounds, and these effects are currently under

investigation.

The ANISN calculations were performed for a spherical model consisting
of the source centered in a central void and successive concentric spheres

of iron with thicknesses corresponding to the slant ranges used for the
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Table 6.1. Comparison of Measured and Calculated TLD Energy Deposition
Due to 99Co Gamma Rays Penetrating to Surface of Iron Slab
R'I:&?.al iizgt TLD Energy Deposition (MeV/g-Fe'l

Position Thickness Exposure Uncorrected Point

(in.) (cm) (r) TLD 1/f x TLD DOT ANISN Kernel

0 10.716 1.30240 6.64(7)a 7.44(7) 9.00(7) 9.00(7) 9.78(7)

1 10.950 1.20480 6.14(7) 6.88(7) 7.85(7) 7.90(7) 8.74(7)

2 11.627 0.88480 4.51(7) 5.05(7) 5.60(7) 5.70(7) 6.23(7)

3 12.674 0.57600 2.94(7) 3.32(7) 3.50(7) 3.50(7) 3.71(7)

4 14.009 0.30880 1.57(7) 1.77(7) 1.90(7) 1.85(7) 1.95(7)

5 15.558 0.16320 8.32(6) 9.48(6) 9.35(6) 8.70(6) 8.27(6)

6 17.265 0.08048 4.10(6) 4.67(6) 4.40(6) 4.00(6) 4.29(6)

7 19.085 0.03936 2.01(6) 2.29(6) 1.90(6) 1.70(6) 1.86(6)

8 20.990 0.01792 9.14(5) 1.05(6) 8.30(5) 7.40(5) 7.83(5)

9 22.958 0.00833 4.25(5) 4,.89(5) 3.35(5) 2.95(5) 3.23(5)

10 24.976 0.00382 1.95(5) 2.24(5) 1.35(5) 1.12(5) 1.34(5)

11 27.031 0.00151 7.72(4) 8.88(4) - 5.10(4) 4.60(4) 5.39(4)

12 29.116 0.00056 2.85(4) 3.28(4) 1.95(4) 1.80(4) 2.15(4)
3Read as: 6.64 x 107,
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DOT calculations. Since in these calculations the TLD positions were as-
sumed to be embedded in the iron, it was necessary to correct for back-
scattering in the iron. The results, included in Table 6.1, are very

similar to those obtained with DOT.

The point kernel results, also included in the table, are higher than
those from the DOT and ANISN calculations. This is to be expected since
the point kernel technique used gamma-ray buildup factors for an infinite
iron medium and the effect of backscattering is retained. Thus the point-

kernel calculations are conservative.

In order to ensure ourselves that the persistent discrepancies between
the measurements and the calculations are not due to consistent errors in
the calculational methods, the calculations were extended to calculate the
spectra of gamma rays at the four locations of the Nal spectrometer (see
Figs. 6.1 and 6.3). The flux at these points outside the shield were cal-
culated with the FALSTF code which uses the flux calculated by DOT for
points inside the shield to determine the last-flight contribution of all
sources to a point outside the shield. (A special version of FALSTF which

corrected for the reflection plane was required for these calculations.)

The calculated and measured gamma-ray spectra at the four spectrometer
positions are compared in Figs. 6.5 and 6.6. The calculated fluxes are
also given in Table 6.2. Good agreement exists between the measurements
and calculations for the emergent angles of 0, 45, and 60 deg; however, for
the emergent angle of 75 deg, the measured spectrum is significantly higher
than the calculated spectrum below 0.8 MeV. The higher experimental values
are probably due to gamma rays penetrating the thin regions of the shield

on the back side and scattering to the spectrometer.

The integrals of the energy spectra for each of the four angles are as

follows:
Angle Measured Calculated
(deg) Integral Integral
0 6.99 6.99
45 2.12 2.20
60 0.785 0.789

75 0.233 0.179
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Table

6.2. Calculated Spectra of Gamma Rays at Various Angles

from ©9Co-Fe Configuration (see Fig. 6.3)

Energy (MeV)a

¢(E) AE (y's+cm 2esec’ 1)

6(E) (y's-cm 2+.sec_l-MeV)

Energy
Group Eg EU AE 0 deg 45 deg 60 deg 75 deg 0 deg 45 deg 60 deg 75 deg
1 1.33 1.34 2.0(—2)b 8.38(-1) 1.49(~1) 1.31(-2) 5.85(-6) 4.19(+1) 7.44(0) 6.67(-1) 2.93(-4)
2 1.30 1.32 4.0(-2) 1.09(~1) 2.68(-~2) 4.28(~3) 3.21(-5) 2.79(0) 6.70(-1) 1.07(-1) 8.03(-4)
3 1.26 1.28 4.0(-2) 1.09(-1) 2.74(~2) 4.70(-3) 8.90(~5) 2.72(0) 6.85(-1) 1.17(-1) 2.23(-3)
4 1.22 1.24 4.0(-2) 1.09(-1) 2.80(-2) 5.15(~3) 1.56(~4) 2.72(0) 7.01(~1) 1.29(-1) 3.91(-3)
5 1.19 1.20 2.0(-2) 5.44(-2) 1.43(-2) 2.74(-3) 1.07(-4) 2.72(0) 7.13(-1) 1.37(-1) 5.36(-3)
6 1.17 1.18 2.0(-2) 6.76(-1) 1.13(-1) 1.03(~2) 1.36(-4) 3.38(+1) 5.64(0) 5.15(-1) 6.82(-3)
7 1.135 1.16 5.0(~2) 2.67(-1) 6.53(~2) 1.19(-2) 4.98(~4) 5.33(0) 1.31(0) 2.38(-1) 9.97(-3)
8 1.085 1.11 5.0(~2) 2.67(-1) 6.80(-2) 1.35(-2) 7.68(-4) 5.33(0) 1.36(0) 2.70(-1) 1.54(-2)
9 1.035 1.06 5.0(-2) 2.68(-1) 7.06(-2) 1.54(-2) 1.10(-3) 5.36(0) 1.41(0) 3.08(-1) 2.21(-2)
10 1.00 1.01 2.0(-2) 1.08(~1) 2.90(-2) 6.70(-3) 5.52(-4) 5.38(0) 1.45(0) 3.35(-1) 2.76(-2)
11 0.97 0.99 4.0(~2) 2.16(-1) 5.95(-2) 1.44(-2) 1.33(-3) 5.39(0) 1.47(0) 3.60(-1) 3.32(-2)
12 0.925 0.95 5.0(-2) 2.72(-1) 7.71(-2) 2.01(-2) 2.16(-3) 5.43(0) 1.54(0) 4,02(-1) 4,32(-2)
13 0.875 0.90 5.0(-2) 2.74(-1) 8.05(-2) 2.27(-2) 2.81(-3) 5.48(0) 1.61(0) 4.54(-1) 5.63(-2)
14 0.825 0.85 5.0(-2) 2.77(-1) 8.39(-2) 2.55(-2) 3.62(-3) 5.53(0) 1.68(0) 5.11(~1) 7.24(-2)
15 0.775 0.80 5.0(-2) 2.79(-1) 8.77(-2) 2.88(-2) 4.58(~3) 5.58(0) 1.76(0) 5.75(-1) 9.15(-2)
16 0.725 0.75 5.0(-2) 2.81(-1) 9.19(-2) 3.22(-2) 5.70(-3) 5.63(0) 1.84(0) 6.45(~1) 1.14(-1)
17 0.675 0.70 5.0(-2) 2.83(~1) 9.63(-2) 3.62(-2) 7.60(-3) 5.65(0) 1.93(0) 7.24(-1) 1.41(-1)
18 0.625 0.65 5.0(-2) 2.81(-1) 1.01(-1) 4.07(-2) 8.62(-3) 5.63(0) 2.03(0) 8.13(-1) 1.72(-1)
19 0.575 0.60 5.0(-2) 2.79(-1) 1.07(-1) 4.54(-2) 1.04(-2) 5.58(0) 2.13(0) 9.08(-1) 2.08(~1)
20 0.525 0.55 5.0(-2) 2.73(-1) 1.12(-1) 5.06(-2) 1.33(-2) 5.46(0) 2.24(0) 1.01(0) 2.50(~1)
21 0.475 0.50 5.0(-2) 2.64(-1) 1.17(-1) 5.60(~2) 1.48(-2) 5.28(0) 2.34(0) 1.12(0) 2.95(-1)
22 0.425 0.45 5.0(-2) 2.53(~1) 1.21(-1) 6.11(-2) 1.72(-2) 5.06(0) 2.41(0) 1.22(0) 3.45(-1)
23 0.375 0.40 5.0(-2) 2.43(-1) 1.23(-1) 6.58(-2) 1.96(-2) 4.86(0) 2.47(0) 1.32(0) 3.92(-1)
24 0.325 0.35 5.0(-2) 2.33(-1) 1.23(~1) 6.86(-2) 2.13(-2) 4.66(0) 2.46(0) 1.37(0) 4.27(-1)
25 0.275 0.30 5.0(-2) 2.22(-1) 1.19(-1) 6.86(~2) 2.15(=2) 4.44(0) 2.39(0) 1.37(0) 4.29(-1)
26 0.225 0.25 5.0(~2) 2.00(-1) 1.12(-1) 6.50(-2) 1.93(-2) 3.99(0) 2.24(0) 1.30(0) 3.87(-1)
27 0.175 0.20 5.0(-2) 1.62(-1) 9.47(-2) 5.48(-2) 1.41(-2) 3.25(0) 1.89(0) 1.10(0) 2.83(-1)
28 0.125 0.15 5.0(-2) 8.42(-2) 4.75(-2) 2.46(-2) 3.56(-3) 1.68(0) 9.50(-1) 4.91(~1) 7.12(-2)
29 0.075 0.10 5.0(--2) 1.95(-3) 5.62(-4) 9.25(-5) 2.31(-3) 3.89(-2) 1.12(-2) ~v 0 ~ 0
30 0.030 0.05 4.0(-2) "~ 0 "~ 0 0 ~v 0 ~ 0 v 0 v 0 +v 0
aEg = average energy in group; EU = upper limit of energy; and AE = width of energy interval.

b

Read:

2.0 x 10 2.

29
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With the probable explanation for the discrepancy at the 75-deg angle, these
comparisons appear to validate the DOT calculational method for this ex-
periment. Thus the discrepancies in the energy deposition results are
probably due to some unknown factor either in the experimental technique

or in our understanding of the TLD's themselves.
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7. CALCULATIONS SUPPORTING THE DESIGN OF THE
TSR-I1I LARGE-BEAM SHIELD

Work done by: S. Uchida, J. Lewin, and R. E. Maerker

With the low efficiencies of most radiation detectors, the reliability
of flux and dose-rate measurements made behind thick shields depends on the
strength of the source incident on the shield and on the intensity of the
background in which the measurements are made. The demand for increasingly
accurate experiments in the fast reactor shielding program conducted at the
Tower Shielding Facility has prompted a recent study of a new design for
a TSR-II beam shield which will both increase the number of neutrons inci-
dent on a test shield configuration and decrease the background due to
neutrons that escape into the atmosphere. As part of this study, a series
of calculations has been performed with the discrete ordinates code ANISN to
predict the heating deposition and leakage dose rates that can be expected

for each of several shield designs.l

The beam shield that has been used for the ORNL fast reactor shielding
experiments performed to date consists of a 4-ft thickness of lead and
water surrounding the spherically shaped TSR-II core. Originally con-
structed for experiments in which the reactor was operated above ground, the
shield contains a beam port that is 10 in. in diameter over the first 24 in.
from the core and 15 in. in diameter over the last 24 in. It has been
adapted for fast reactor shielding experiments performed at ground level,
but the number of neutrons available for an experiment is limited both by
the beam port's relatively small cross section and by its relatively long
length. Thus criteria for the new design include increasing the beam diam-
eter and moving the shield test configuration closer to the core. At the
same time, the design calls for less leakage through other regions of the
shield than occurs with the present beam shield. Finally, the larger beam
port requires an improved beam—shutter design to ensure protection from

after-shutdown gamma rays.

To move the shield test configurations closer to the reactor and yet

reduce the leakage into the atmosphere will require an asymmetrical shield.
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Since reactor operation above ground is not necessary for these experiments,
the shield can be a stationary structure into which the reactor vessel is
lowered. Concrete was chosen for the bulk of the shield with layers of
steel and water adjacent to the reactor vessel. The shield shape selected
was a half-hexagon with the reactor located in the shield slightly off
center of the full hexagon. A v 3~-ft-diam beam will emerge from the thin™

side of the shield.

In the first ANISN calculations the thick side of the shield was
mocked up in spherical geometry for two propesed configurations (Cases 1
and 2 in Fig. 7.1). In each calculation the configuration was assumed to
be adjacent to the outer surface of the reactor vessel, and the heat depo-
sition throughout the shield was calculated for 1-MW operation. The
calculations were performed with 21 neutron groups and 18 gamma-ray groups
with B3 scattering. The response functions were 39-group kerma factors

taken from USAEC Report DLC-11. Figures 7.2 and 7.3 show the results.

As would be expected, Figs. 7.2 and 7.3 show that the energy deposition
due to gamma rays is much greater than that due to neutrons. Also, the
energy deposition for Case 2 is higher than that for Case 1, especially
for distances out to 125 cm from the core center. A similar calculation
for a configuration resembling that of the present shield (Case 3) yielded
heat deposition results much like those for Case 1 (compare Figs. 7.2 and
7.4). When applied to calculations of the temperature distribution in the
shields, no serious temperature gradients or heating problems were found

to exist for any of the configurations.

Next, leakage dose rates for neutrons and gamma rays, including after-
shutdown gamma rays, were calculated for all three configurations. As
shown in Table 7.1, all the dose rates for Cases 1 and 2 are lower than
those for Case 3; thus the background has indeed been reduced. To verify
that background radiation will be significantly lower than the dose rates
measured behind a test shield placed in the large beam, an additional
calculation was performed for a postulated fast reactor shield configura-

tion (Case 4). The dose rates shown in Table 7.1 for this case are indeed
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Fig. 7.1. Configurations Calculated in Support of TSR-II Large Beam Shield. Configuration begins
at edge of reactor tank (at 48.58 cm from core center).
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in Concrete During 1-MW Operation
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much higher than those for Cases 1 and 2 and thus background should not

create a problem.

On the basis of these calculations and economic considerations, it was

proposed that the thick side of the new beam shield have the configuration

given for Case 1 but that the concrete thickness be reduced by 6 in. A

calculation for the Modified Case 1 yielded at-power leakage dose rates

that are higher than those for either Case 1 or Case 2 but lower than
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Fig. 7.4. Energy Deposition in
Lead During 1-MW Operation (Case 3).

those for the present shield. The asymmetrical configuration as it is to
be constructed is shown in Fig. 7.5. The relative size of the present

shield is indicated by the dashed lines.

ANISN calculations were also performed for two configurations proposed
for the beam-port shutter (Cases 5 and 6). The after-shutdown dose rate
for Case 6 is the lowest and this configuration was proposed for the final
shield. It will allow access in the vicinity of the beam port a few minutes

after shutdown,
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Table 7.1. Dose Rates at Outer Surface of Configurations
During and After 1-MW Operation

During Operationa

After-Shutdown

Neutrons Gamma Rays Gamma RaysD

Case No. (mrem/hr/MW) (mrem/hr/MW) (mrem/hr/MW)

1 5.5(1) ¢ 3.09(2) 4.20(-1)
1 Mod. 5.0(2) 1.00(3) 1.58(0)

2 7.59(1) 4.72(2) 1.65(0)

3 8.83(2) 3.64(4) 2.11(1)

4 2.76(5) 1.06(5)

5 5.79(2)

6 8.48(1)

aSubsequent to the reporting of these data results in Ref. 1,
an error in a normalizing factor was discovered which would
decrease the operating dose rates by about 17%.

bImmediately following four operational cycles consisting of
8 hr up, 16 hr down, and 8 hr up.

“Read as: 5.5 x 10!.
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