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Abstract

The calculated absorbed doses, LET spectra, cell-survival probabilities,

oxygen enhancement ratios, and relative biological effectiveness are pre

sented and compared for two negatively charged pion beams, each incident on

a 30-cm-thick tissue phantom. All of the biological results were obtained

using the cell-inactivation model of Katz et at. and parameters for T-l

human kidney cells. The beam parameters were chosen to produce an approx

imately uniform absorbed dose in a small (2 cm in depth and 1 cm in radius)

and in a large (5 cm in depth and 2.5 cm in radius) cylindrical tissue vol

ume, each centered about a depth of 15 cm in the phantom.





1. INTRODUCTION

In a previous paper (Alsmiller, Santoro, Armstrong, Barish, Chandler

and Chapman 1973), hereinafter referred to as paper 1, calculated results

were presented and compared for the absorbed doses, LET spectra, cell-

survival probabilities, oxygen enhancement ratios (OER's), and relative

biological effectiveness values (RBE's) when photons, neutrons, negatively

charged pions, protons, and alpha particles were incident on a 30-cm-thick

tissue phantom. The beam parameters for each type of incident particle

were chosen to be approximately those appropriate for single-port irradia

tion of a cylindrical volume 2 cm in depth and 1 cm in radius centered about

a depth of 15 cm in the tissue phantom. In this paper, similar results are

presented for an incident pion beam with parameters chosen to be approxi

mately those appropriate to single-port irradiation of a cylindrical volume

5 cm in depth and 2.5 cm in radius centered about a depth of 15 cm in the

phantom. With the exception of the energy distribution of the incident pions,

the irradiation conditions are similar to those considered by Armstrong and

Chandler (1973). The results presented here are compared with the results

for incident pions given in paper 1.

Some details of the calculations are given in sec. 2 and the results

are discussed in sec. 3.





2. THE CALCULATIONS

The geometry considered is similar to that used for incident pions in

paper 1. The pions are assumed to be normally incident on a 30-cm-thick

tissue slab. The composition of tissue is the same as that used in paper 1.

The incident pion beam is assumed to be uniform over a circular area of

1 cm in radius for the case taken from paper 1 and of 2.5 cm in radius for

the second case considered here. As before, the incident pion beams were

assumed to be free of contamination.

The energy distributions used for the two cases are shown in fig. 1.

The energy distribution shown in fig. 1 as (a) was determined to produce an

approximately uniform absorbed dose over the depth interval of 14 to 16 cm

in the tissue phantom and the energy distribution shown in fig. 1 as (b)

was determined to produce an approximately uniform absorbed dose over the

depth interval of 12.5 to 17.5 cm. The numerical procedure used to produce

these energy distributions is described elsewhere (Armstrong, Alsmiller and

Chandler 1973).

All of the results presented here were obtained with the three-dimensional

nucleon-pion transport code HETC (Chandler and Armstrong 1972), as described

in paper 1 and elsewhere (Armstrong and Chandler 1973). The cell-survival

probabilities, OER's, and RBE's were obtained using the cell-inactivation

model of Katz et at. (Katz, Ackerson, Homayoonfar and Sharma 1971; Katz,

Sharma and Homayoonfar 1972; Katz and Sharma 1973) and the inactivation

parameters for T-l human kidney cells.
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Fig. 1. Energy distributions of incident negatively charged pions
that will produce an approximately uniform absorbed dose in the specified
depth intervals in a 30-cm-thick tissue phantom. Both distributions are
normalized to unity.



3. DISCUSSION OF RESULTS

In fig. 2 the absorbed dose is shown as a function of depth in several

radial intervals for the two incident beams considered. The results shown

for the small (1-cm radius) beam are absolute. The results shown for the

large (2.5-cm radius) beam have been normalized to agree with the results

from the 1-cm radius beam in the depth interval of 0 to 1 cm and the radial

interval of 0 to 1 cm. The absorbed-dose values given in the figure for

the large beam geometry become absolute with units of rad(incident pion)-1

when multiplied by 0.164.

In the radial interval of 0 to 1 cm, the absorbed dose from the small

beam decreases with increasing depth from the surface of the phantom. This

decrease is due primarily to multiple Coulomb scattering, as explained in

paper 1. In the radial interval of 0 to 2.5 cm, the absorbed dose from the

larger beam does not show a similar decrease as a function of depth because

the effects of multiple Coulomb scattering are less important.

For the 2.5-cm incident beam in the radial interval of 0 to 2.5 cm,

the ratio of the absorbed dose in the vicinity of the maximum to the ab

sorbed dose at the surface is ~ 2 and is just slightly larger than the cor

responding ratio in the radial interval of 0 to 1 cm for the small beam.

The difference in the ratios for the two beams is due principally to the

effects of multiple Coulomb scattering. At depths well beyond the region

of the maximum absorbed dose, the large beam gives a somewhat greater ab

sorbed dose than does the narrow beam. In the radial interval just outside

of the incident beam radii, i.e., 1 to 2 cm for the narrow beam and 2.5 to

3.5 cm for the broad beam, the increase in the absorbed dose with increasing

depth from the surface of the phantom is due primarily to multiple Coulomb
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Fig. 2. Absorbed dose vs depth for several radial intervals.
The values given for the 1-cm-radius incident beam have units of
rad(incident pion)"1. The values given for the 2.5-cm-radius incident
beam must be multiplied by 0.164 to have units of rad(incident pion)"1.



scattering but to seme extent is also due to energy deposition by nuclear-

reaction products.

LET spectra averaged over the indicated spatial intervals are shown in

fig. 3 for the two incident beams. It is to be noted that in fig. 3 the

results are presented with an absolute normalization. In the depth interval

of 20 to 30 cm, the histogram for the incident 2.5-cm-radius beam is shown

for only LET < IO3 MeV cm"1 because in this depth interval adequate statisti

cal accuracy was not obtained in the calculations at the higher LET values.

The histograms are shown for only LET > 31.6 MeV cm"1, and it is assumed

that photons, electrons, and positrons deposit all of their energy at LET

values < 31.6 MeV cm"1. Only a few error bars corresponding to one standard

deviation are shown. The abrupt change in the magnitude at specific values

of LET (e.g., at 2.5 * IO3 MeV cm"1) is due to the fact that some specific

type of particle does not contribute at the higher LET values. This fact

is borne out in paper 1 and in the work of Armstrong and Chandler (1973)

where the contributions of various particle types to the total LET spectra

are given. The integral LET spectra, i.e., the fraction of the absorbed

dose with LET > L obtained by integrating the distributions in fig. 2 are

shown as a function of L in table 1.

The cell-survival probabilities for aerobic and anoxic T-l human kidney

cells are shown in figs. 4 and 5, respectively, as a function of depth for

the two incident pion beam geometries considered. In fig. 4 the cell-

survival probability for the small (1-cm radius) beam has been taken to be

0.30 in the depth interval of 0 to 1 cm and in the radial interval of 0 to

1 cm, and the cell-survival probability for the large (2.5-cm radius) beam

has been taken to be 0.30 in the depth interval of 0 to 1 cm and in the



10

1.0-cm RADIUS BEAM

2.5-cm RADIUS BEAM

10'

LET (MeV/cm)

ORNL-DWG 73-11110R

AVERAGED OVER

DEPTH INT. RADIAL INT.
(cm) Jem)

0-1.0

0-2.5

0-1.0

•12.5-17.5 rO-2.5

0-1.0

.0-2.5

io-

Fig. 3. LET spectra averaged over the indicated spatial intervals,



11

Table 1. Integral LET Spectra Averaged Over the Indicated Spatial
Intervals for the Small and Large Beam Geometries

a'1)

Fraction of the Absorbed Dose with LET > L

1-cm Radius Beam 2.5 -cm Radius Beam

L

Depth Interval

(cm)
(MeV a

0-13 14-16 17-30 0-10 12.5-17.5 20-30

3.16 x 101 .044 .55 .53 .069 .46 .59

1.00 x 102 .035 .40 .30 .052 .33 .31

2.00 x 102 .029 .33 .21 .041 .27 .18

5.01 x IO2 .019 .23 .13 .027 .18 .10

1.00 x IO3 .011 .12 .071 .015 .091

1.58 x IO3 .0072 .072 .043 .010 .058

2.51 x IO3 .0036 .027 .017 .0056 .024

3.98 x IO3 .0027 .018 .012 .0038 .016

6.31 x IO3 .0019 .013 .0067 .0026 .013

1.00 x IO4 .00020 .00091 .0012 .00016 .0013
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radial interval of 0 to 2.5 cm. In fig. 5 the number of incident pions for

each of the beam geometries considered was taken to be the same as that

used in fig. 4; that is, the cell-survival probabilities were normalized as

described above to obtain the results shown in fig. 4, and this normaliza

tion was not changed in obtaining the results in fig. 5. Where shown in

figs. 4 and 5, the error bars are statistical and represent one standard

deviation.

Note that the 2.5-cm radius beam gives a cell-survival probability com

parable to that of the 1-cm-radius beam in the vicinity of the irradiation

volume, i.e., in the radial interval of 0 to 2.5 cm and depth interval of

12.5 to 17.5 cm for the large beam and in the radial interval of 0 to 1 cm

and depth interval of 14 to 16 cm for the small beam. The difference in

the cell-survival probabilities at depths preceding the irradiation volume

is probably due to the fact that multiple scattering of the incident pion

beam is more significant for the small beam than for the large beam. For

the larger radial intervals shown in figs. 4 and 5, the cell-survival proba

bilities are nearly unity except in the immediate vicinity of the corre

sponding irradiation volumes of the two incident beams. In the larger rad

ial intervals, the cell-survival probabilities in the 14- to 16-cm depth

interval for the 1-cm-radius beam and in the 12.5- to 17.5-cm depth inter

val for the 2.5-cm-radius beam are comparable.

A comparison of the OER's and RBE's is given in table 2 for the two

beam geometries. These data are for a 10% survival level averaged over the

indicated spatial intervals. For the spatial intervals considered and with

in the statistical accuracy of the calculations, the results are comparable

for both beam geometries.
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Table 2. OER and RBE Values at 10% Survival Level for T-i Kidney
Cells Averaged Over the Indicated Spatial Intervals

1-cm-Radius; Beam

Depth
(cm)

2.5-cm-Radius Beam

Depth
(cm)

Radial
Interval ]

0-1 cm

Radial
[nterval

1-2 cm

Radial Radial
Interval Interval
0-2.5 cm 2.5-3.5 cm

OER

0-10

OER

0-13 2.5 2.4 2.4 2.1

14-16 1.6 1.8 12.5-17.5 1.7 1.6

17-30 1.6 1.6 20-30 1.7 1.5

RBE

Aerobic

0-10

RBE

Aerobic

0-13 1.1 1.1 1.1 1.3

14-16 2.0 1.6 12.5-17.5 1.9 1.9

17-30 1.8 2.0 20-30 1.8 2.2

RBE

Anoxic

0-10

RBE

Anoxic

0-13 1.2 1.3 1.2 1.6

14-16 3.4 2.5 12.5-17.5 3.0 3.1

17-30 2.8 3.3 20-30 3.3 4.0
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