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REPRESENTATION OF NONLINEAR HEREDITARY MECHANICAL BEHAVIOR*

J. A. Geary E. T. Onat
Yale University

ABSTRACT

A general theory of state variable representation of hereditary meehanieal behavior is developed.
The theory is appropriate to the study of finite isothermal deformations and enables one to construct,
in principle, a state variable representation from observed phenomenologieal behavior.

1. INTRODUCTION

In classical continuum mechanics the problem of determining deformations and stresses that occur

within a body subject to external stimuli rests on two separate foundations. The first is the conservation

laws, which govern the space-time behavior of the fields of interest and are applicable to all materials.1 The
second, which is necessary to close the problem, consists of local statements (constitutive equations) about

the mechanical behavior of the particular material of which the body is composed. In the simpler case of

isothermal deformations the constitutive equations specify the relationship F that exists between the local

deformation D and the local stress a.

If the material of interest is elastic, the stress a depends only on the deformation D existing at the time

at which the stress is measured. However, if the material is not elastic, the current stress a(t) depends in

some manner and degree on the history of local deformation [i.e., D(r) on r < t]. Constitutive equations

for an inelastic (hereditary) material must specify the precise nature of this dependence on the past.

From a mathematical point of view, a hereditary material may be regarded as an operator F that maps

the set X of deformation histories of interest onto the set Y of stress responses.

It is easy to define a class of idealized materials by specifying X and Y and by assigning certain general

properties to F. The class C of materials considered in this report is defined as follows (cf. Section 2): X is

composed of continuous and bounded histories of the deformation gradient tensor D(r) on [0°°). The

stress histories produced by the elements of X are assumed to be continuous and uniformly bounded. The

causal operator F is time invariant and uniformly continuous, and it satisfies the principle of objectivity.2 It
will be seen that the class C contains most of the hereditary solids of interest.

The mathematical representation of the mechanical behavior of a particular material in the class C is

more difficult. The task of representation involves the specification of a sequence of mathematical

operations (an algorithm) that would enable one to compute the stress response of the material to any
deformation history of interest.

The purpose of this report is to show that the mechanical behavior of a material in class C admits a state
variable representation and to establish the main features of this representation. This mode of

representation [cf. Eq. (1.3)] employs a system of differential equations that governs the evolution of the
state and orientation of the material in the reduced state and orientation space as a function of the

deformation applied to it. The stress is then determined as a function of the state and the orientation. The

representation developed here can be constructed, in principle, with the aid of phenomenologieal

experiments.

It should be pointed out that the subject of representation of hereditary behavior has a long history

associated with the names of Maxwell, Volterra, Boltzman, and Frechet. However, fundamental questions

*Research performed under Subcontract No. 3863 for theOak Ridge National Laboratory, operated by Union Carbide
Corporation under contract with the U.S. Atomic Energy Commission.



concerning finite deformations of hereditary materials have been answered only recently in a satisfactory

manner. We refer here to the work of Green and Rivlin,3 Green, Rivlin, and Spencer,4 Noll,5 and Coleman

and Noll.6 Although the above-mentioned work is of basic importance, the explicit representations
contained herein are of the integral form. More recent developments have shown that integral

representations suffer, in general, from serious drawbacks.7"9 In contrast, representations based on state
variables do not suffer from these drawbacks and offer additional conceptual and computational

advantages. Section 11 presents a review and comparison of various modes of representation, together with

references to past work.

Motivation for the present and previous related work7"' ' comes from the fact that experimental
evidence on hereditary mechanical behavior is often found in the form of pairs of histories of deformation

and stress. It is therefore natural to raise the often asked question: Can one construct a state variable

representation of hereditary behavior from a study of such "input-output" pairs? In this report we provide

an affirmative answer to this question in the ideal case where experimental evidence of the above type is

available in unbounded quantities and in "noiseless" form. We hope that present results could be helpful in

the construction of representations in realistic situations where the data are finite and "noisy." For an

assessment of this expectation, see Ref. 8.

We now give a summary of the ideas presented in this report. Section 3 defines the notion of state and

orientation as in Refs. 7 and 10 in terms of observable histories of deformation and stress. This definition

induces an equivalence relation on the set of deformation histories on the time interval [0,T] and thereby

creates a quotient set. We refer to this set as the state and orientation set 2. The set 2 is then made a metric

space10 by introducing a notion of distance based on a comparison of future responses (Section 4). It is
then shown that 2 is separable, and thus it is possible to speak of the dimension of 2. We next argue that it

is reasonable to expect that 2 is finite dimensional or that it can be approximated by a finite dimensional

space.

Sections 5 and 6 discuss the effect of superimposed rigid rotations. To summarize the results obtained

in these sections, consider an element which is in the state and orientation S £ 2. Rotate this element

"suddenly" by an amount Q, where Q is an element of the group 0+(3)* of rigid-body rotations. This

rotation moves the state and orientation point S to a point PqS £ 2 and thereby creates a transformation
Pq on 2. The set of all PQ, Q6 0+(3) is a transformation group G on 2. Section 6 shows that under
certain circumstances 2 can be embedded in a finite dimensional euclidean space Rn in such a way that the
image of G in Rn is a group of linear orthogonal transformations. This result enables us to use the theory

of group representations to show that the state and orientation S of an element can be represented by a

sum of irreducible tensors of even rank:

S = qi+... + qm, (1.1)

where each qj defines through itscomponents an element in an invariant subspace ofRn.
A sudden rigid-body rotation Qof the element causes the state and orientation (ql, . . . , qm) tomove

to (PQq!, ••• , PQqm)> where PQqj has the meaning ofordinary tensor transformation appropriate to the
rank of tensor q^cf. Section 7).

The above results constitute a main contribution of this report. Many workers in the field assume that

the internal or structural variables are tensors.12'13 The present work provides a justification for this
assumption without recourse to physical considerations related to internal structure.

*The notation O (3) represents the group of proper orthogonal transformations in three-dimensional space, whereas
0(3) represents the full orthogonal group.



In Section 8 we consider the evolution of the state and orientation of an element as a function of the

applied deformation. We show that, under certain assumptions of smoothness, the rate of change of state

and orientation of an element S(t) depends on its present state and orientation S(t) and on the present rates

of deformation and rotation (the tensors V and f2 respectively) in the following manner:

S(t) = g[S(t), V] + T(J2) S , (1.2)

where T(J2) is a linear operator on Rn, whose properties are discussed in Section 8.
The complete state variable representation of mechanical behavior is composed of the following two

basic statements:

o(t) = f[S(t)] , (1.3«)

S(t) = g[S(t), V] + T(fi) S(t). (1.36)

Equation (1.3a) asserts that the present stress is a function of the present state and orientation.

Equation (1.3b) provides a system of differential equations for determining the state and orientation of an

element when appropriate initial conditions are given. The functions f and g are subject to the invariance

requirements

f(PQS) =Qf(S) QT

(1.4)

g(PQS,QVQT) =PQg(S,V)

for all Q £ 0+(3). We observe that these invariance requirements result from the principle of objectivity and

are in no way a consequence of any symmetries that the material may possess.

The symmetries that an element in the state and orientation S may possess are determined by asking

whether the equation

PQS =S

has any solutions for Q £ 0+(3). In particular, if the material is isotropic in its initial state S0, we have

PQS0=S0 (1-5)

forallQ£0+(3).

It is interesting to observe that in the state variable representation, initial isotropy of the material plays

a role only in the initial condition for Eq. (1.36). This point is further discussed in Section 11.

In Section 10 we consider as an example the class of materials for which g(S, V) is linear both in S and

V and f is linear in S. We give an explicit representation for this material and show that linear dependence

on S and V implies isotropy in a limited sense.



2. SPECIFICATION OF THE CLASS OF MATERIALS CONSIDERED

We define the class of materials of interest in terms of the behavior they exhibit under the following set

of "thought" experiments. We start at time r = 0 with a supply of identical, homogeneous test specimens

that are identically oriented with respect to a given fixed coordinate frame.

We shall say that these specimens are in the virgin state and orientation S0. We imagine that a typical

experiment consists of the application of a homogeneous* time-dependent isothermal deformation to a

specimen and the observation of the resulting stress. A material acts, through such experiments, as an

operator F that maps the deformation histories of interest into stress histories.

The applied homogeneous deformation is measured in terms of its gradientsDj:(t). Thus

x-Djj^Xj ij=l,2,3)r£[0,oo), (2.1)

where X: and x, are the initial and the current coordinates of the material point X: in the fixed rectangular

cartesian coordinate frame f and repeated indices imply summation. We denote by aJij), r £ [0,°°) the

stress components observed in the same coordinate frame. Note that a^ is a symmetric second-rank tensor,
whereas Dj= need not be symmetric.

We introduce the short-hand notation,

D(r) and o(t) t £ [0,°°)

for the tensor-valued histories Djj(r) and Ojj(t), t £ [0,°°). In the language of systems theory D(r),r £ [0,°°)
is an input and a(j), r£ [0,°°) is the corresponding output. For simplicity we shall often denote an input

simply by D and an output by a.

The input set X (i.e., the set of deformation gradient histories of interest) is composed of tensor-valued

functions D defined on [0,°°). These functions are assumed to be continuous and bounded in their

components. Note that, as Eq. (2.1) implies, if D£ X, then

D(0) = I (2.2)

and

detD(r)>0 r£[0,°°). (2.3)

Now let L denote the linear space of all second-rank tensor histories on [0, °°) whose components are

continuous and bounded, addition and scalarmultiplication of elements of L being defined component wise
and in the usual manner. We shall use"*" the following norm for L

||D|| =sup [Djj(t) Dy(T)]1/2 t £ [0~) , (2.4)
7

where D £ L.

*The classes of material considered here are "simple," so that in the study of mechanical behavior it is sufficient to
apply only homogeneous deformations and to observe the resulting stresses.1

'Sometimes we focus the attention on deformations on [0,T]. For such a case we use the same norm with r restricted

on[0,T].



It follows from the definition of X [cf. Eqs. 2.2 and (2.3)] that X is a subset of L.

We further assume that the output space Y is a bounded subset of L. This means that thestress response
a of the material is subject to the inequality

HolKM, (2.5)

where M is independent of a £ Y.

From a mathematical point of view a material in the class of interest acts (by means of tests described
above) as a mapping F from X to Y:

o=F(D) D£X,o£Y. (2.6)

It may be pointed out that the deformation histories that can be applied to a material element will in fact
lie within a bounded subset of X. This follows from the restrictions that physically realizable experimental
procedures place on the magnitude of D(t) and on the magnitude of D(r), where D(r) is the right-hand
derivative14 of D(r). Note also that the duration of a test will be finite.

Nevertheless the development of mathematical ideas presented in this report isconsiderably simplified
if one works with X rather than with X, which is a restriction of a bounded subset of X to a finite time

interval. One must of course make sure that the properties one assigns to the system (X, Y, F) produce a
physically acceptable class of materials when the input set is restricted to X.

We complete the definition of the class of materials considered in this report by assigning the following
properties to F.

Causality

As usual, we assume that the mapping F is causal. This means that the stressa(i) at any given time t > 0
depends only on the current and past values of the displacement gradients and not on any future value of

D. Thus at a given time t the mapping F creates a mapping of the set X[0,t] of input segments D on [0,t]
to the space of symmetric second-rank tensors such that

^) =ft([0Dt])' (2.7)

where D denotes an input segment on [0,t], and a(t) is the value of the stress at time t.
[0,t]

Principle of Objectivity

Next we consider the principle of objectivity2 and its implications for F. The principle of objectivity
requires that rigid-body rotations superimposed on a deformingelement rotate the surface tranctions acting
on the element by the same amount. In order to offer a more formal statement of the principle, consider a
deformation history D which gives rise to a. Next superimpose a time-dependent rigid-body rotation*

*For a given time t, Q(t) is an element of the group 0+(3) of proper orthogonal transformations in R3. Thus
Q(t)Q (t) = I and det Q(t) =+1. We assume that the components of Q(t), r e [0,°=] are continuous and that Q(0) = I.
Therefore Q(t), t e [0,~) belongs to X.



Q(r) £ X on D(t) to obtain the composite deformation

Q(r) D(t) t £ [0,°°) .

The principle of objectivity states that the composite deformation QD must give rise to the stress history

Q(r) o(t) QT(r) on r £ [0,°°). Therefore the principle of objectivity places the following restrictionon F:

F(QD) = Q F(D) QT (2.8)

for any D £ X and for any Q £ X with Q(r) £ 0+(3), r £ [0,°°).

Note that in terms of the functional ft introduced by Eq. (2.7) the principle of objectivity takes the
form

^W=mfWQT(t)> (29)

which shows that only the value of Q at time t affects the stress at time t.

Time Invariance or Lack of Aging

We assume that the material is such that a(0) = 0 and, moreover, in the absence of deformations the

stress remains zero. Thus

D(r) = 1, t £ [0,°°) -> o(t) = 0, r £ [0,°°) . (2.10)

We next assume, for simplicity, that the material is nonaging. This means that if D £ X produces the
stress response a £ Y, then

fl r£[0,t]
D,(r) =^ (2.11)

[D(r-t) t<r

must produce the output stress

0 T£[0,t]
*l(T) =

0(T - t) t < T

for any positive t.

Smoothness of F

Next we discuss propertiesof smoothness that we wish to assign to the mapping F.
We shall assume that F : X -»• Y is uniformly continuous1 s in the norm (2.4); namely, for every e > 0

there exists 6 > 0 such that



||D4 - D, ||< 5 -> ||F(D,) - F(D,)|| < e , (2.12)

where D! and D2 are any two elements of X.

When studying the behavior of a material (i.e., the triple X, Y, F), it is convenient to discuss separately

the influence of the past and future segments of the deformation on the future behavior of the material.

The reason for this division is that for many materials the future behavior may not depend "strongly" on

every detail of the past deformation. We shall discuss this point in some detail here to prepare the

groundwork for the definition of state introduced in the next section.

To this end, we let t denote the present time; we define the future time as

S = t - t, r>t

and the future relative deformation D*(£) by the relation

D(t + ?) = D*©D(t), (2.13)

where D*D denotes the products of the matrices D* and D. Thus D* represents the deformation gradients

measured with respect to the configuration of the material at time t. It follows from Eq. (2.13) that D*(ij),

| £ [0,°°) or simply D* is an element of X.

Next we introduce, for a fixed t, the future stress

o*(|) = o(t+$) ££[0,~). (2.14)

We observe that a*(0) = a(t), so that the future stress a* is not necessarily an element of Y but belongs

to a bounded subset Y* of L.

We now let the material be subjected to a given deformation D on [0,t]. In the next section we will

consider the future response of the material to all extensions of this deformation into the future. Thus we

shall consider the relationship that exists between {D*} and {a*} for a given D .

For a given past input D the system mapping F : X -*• Y induces a mapping F* : X -»• Y* given by

a* = F*( D ;D*) . (2.15)
[0,t]

Thus a material element which has been subjected to the past deformation D produces the future stress
[0,t]

F*( D ; D*) under the future deformation D*.
[0,t]

We observe that the uniform continuity of F implies that for a given D* £ X and e > 0, there exists a

8 > 0 such that

|| Dj - D2 ||<8-H|F*( D, ;D*)-F*(D2 ;D*)||<e (2.16)
[0,t] [0,t] [0,t] [0,t]

for any D,,D2 £X[0,t].
We wish to assume here (for the sake of later developments) that a stronger version of Eq. (2.16) holds

for F*. Namely, for a given e > 0 there exists a 8 > 0 such that Eq. (2.16) holds for any D*£ X and for



any Dx, D2 £ X[0,t]. We point out that this stronger version of Eq. (2.16) would automatically hold if X
were taken to be a bounded subset of L.

It should be pointed out that the properties we assign to X, Y and F and F* define a broad class of
materials. Most nonlinear viscoelastic solids would belong to this class. However, the continuity of F would

exclude materials of the Voigt type. For such solids the ideas introduced below must be modified in an

appropriate manner.

3. THE NOTION OF STATE AND ORIENTATION

We are now ready to define the notion of state and orientation. We shall say that two classes of

specimens (which have been, respectively, subjected to deformations Di and D2 on [0,t]) are in the same
state and orientation at time t if they produce identical future stresses under identical future deformations.

A more formal statement of this definition is obtained with the help of the mapping [Eq. (2.15)]: -

Definition: Two deformations Di and D2 on [0,t], t > 0 are said to give rise to the same state and

orientation (or belong to the same state and orientation) if and only if

F*( D, ;D*)=F*( D2 ;D*) (3.1)
[0,t] [0,t]

for all future deformations D* £ X.

The above definition* induces an equivalence relation on X[0,t] (the set of all deformations of interest

on [0,t]) and thereby a partition of this set into equivalence classes. We shall use the letter S to denote such

a class. Thus deformations on [0,t] that belong to this class S give rise to the state and orientation S.

We now let 2' denote the set of all distinct state and orientations produced at time t by deformations

belonging to X[0,t]. Clearly 2f is the quotient set^ of X[0,t] under the equivalence relation [Eq. (3.1)].
Thus the set 2' is, in general, smaller than X[0,t]. Indeed the expectation that 2l will be much smaller
than X[0,t] makes the notion of state and orientation a potentially useful tool of representation.

Note that when t = 0, Eq. (3.1) implies that all virgin identically oriented specimens are in the same

state and orientation S0 and evidently 2° is composed of only S0.
We shall now show that the time invariance of the material (X, Y, F) enables us to work with a single

state and orientation set (instead of U2l, t£ [0,T]) when studying the behavior of the material over a
given time interval [0,T]. For this purpose consider all deformations that belong to the state and

orientation S in 2l:

{ D }=S£2l . (3.2)
[0,t]

Now consider the set of deformations { D }, t<T where each D is derived from an element of the set
[0,t|

(3.2) by a right translation:

f I on [0.T - t]
D(t)=< . (3.3)

I D(r+t-T)on [T - t,T]

*According to this definition, if D[ and D2 give rise to the same state and orientation at time t, then it is not necessary
that Di(t) = D2(t).

'2* may therefore be referred to as the reducedstate and orientation set.



It follows from the time invariance of the material [cf. Eq. (2.11)] that

{ D }CS£2T . (3.4)
[0,T]

This observation shows that a state and orientation S produced at some time t £ [0,T] can be mapped

naturally into the state and orientation set 2T by a right translation of aninput segment belonging to S and
by the identification of the resulting state and orientation in 2T.

In this report we shall be interested in the representation of the mechanical behavior over the time

interval [0,T], where T is a fixed time which can be chosen as large as we please. For convenience we shall

refer to the state and orientation set at time T as simply 2. The states produced on [0,T] will be

represented by points of 2 following the procedure discussed above [cf. Eqs. (3.2) and (3.3)].

We note for future convenience that the definition [Eq. (3.1)] establishes a quotient mapping of

X[0,T] onto 2

^:X[0,T] +2. (3.5)

Note also that the mapping [Eq. (2.15)], the definition [Eq. (3.1)], and the above remarks concerning

2 create for a given S a mapping F*: X ->• Y* given by

ct* = F*(S;D*). (3.6)

Thus a material element which is in the state and orientation S produces the future stress F*(S; D*)

under the future deformation D* £ X.

Note for future reference that

F*( D ;D*) = F*(S; D*) if D £S. (3.7)
[0,t] [0,t]

We now let S(t) denote the state and orientation of an element at time t. It follows from the definitions

[and also from Eq. (3.6)] that the stress a(t) carried by this element at time t depends only on S(t):

a(t) = f [S(t)], f:2->R6. (3.8)

It is also a consequence of the definitions and causality that the state and orientation of an element at

time t + At £ [0,T] is a function of its state and orientation at time t and of the future deformation D*

that is applied to it on the interval [0,At]. We may therefore write

S(t+At) = G[S(t); D* ] , (3.9)
[0,At]

where G: 2 X X[0,At] -+2.

One might say that Eqs. (3.8) and (3.9) constitute a primitive representation of mechanical behavior,

but we aim to introduce coordinates for S and to replace (3.9) by a system of differential equations. We
begin this task by introducing a metric for 2.
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4. INTRODUCTION OF A METRIC FOR 2

The state and orientation set 2 defined in the previous section is as yet without a structure. For

instance, no notion of distance exists between distinct points of 2. Here we introduce a notion of distance

in 2 by comparing the future behavior of test specimens.1 °
We choose as metric for 2 the function p : 2 X 2 -*• R+, defined by

p(S,,S2) = sup ||F(S,;D*)-F(S2;D*)||. (4.1)
D*ex

In order to see the meaning of p(Si ,S2) we note from (3.6) that

F(S,; D*) - F(S2; D*) = a, *($) - a2 *(£), \ £ [0,°°),

where ox* and o2* are the future stresses in specimens in Si and S2, respectively, that result from the

application of the same future deformation D*. Thusp(Si,S2) is the largest possible "difference" between

future stress responses. It follows from the boundedness of Y and hence Y* that the metric space 2 is

bounded.

It is of course necessary to show thatp(Si ,S2) satisfies the metric axioms.1 s That the first two axioms
are satisfied follows readily from the definitions. The proof of the triangle inequality is straightforward but

a little cumbersome and will not be given here.

2 is separable. We first observe that the mapping

£> : X[0,T] ->2

is uniformly continuous (note that 2 is now a metric space). This follows almost immediately from the

property [Eq. (2.16)] that we assigned to F and from the definition of state and orientation and Eqs. (3.7)

and (4.1).

Now note that X[0,T], the set of deformation histories on [0,T] is separable. This is a consequence of
the choice of norm for X[0,T] [cf. Eq. (2.4)] and of the separability of C[0,T].16 Therefore 2 is a

continuous image of a separable metric space and hence is separable.

It is known that the separability of 2 enables one to embed it in a normed linear space (cf. Section 6).

Finally, we wish to note for future reference that the image of a compact subset of X[0,T] in 2 is

compact.

5. IMAGES IN 2 OF RIGID-BODY ROTATIONS OF MATERIAL ELEMENTS

Consider a deformation history D £ X[0,T] which gives rise at time T to a state and orientation S £ 2.

Next consider the time-dependent rigid-body rotation history (cf. Section 2) Q £ X[0,T]. Let

Q(T) = R. (5.1)

Consider now the composite deformation

QjV)D(r) r£[0,T] (5.2)

which is obtained by the superposition of Q on D.
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Let S' denote the state and orientation produced at time T by the composite deformation [Eq. (5.2)].
We now assert that the principle of objectivity [cf. Eq. (2.8)] and the definition of state and

orientation imply (a) S' does not depend on the values of Q(r) on [0,T) but only on Q(T) = R [cf. Eq.
(5.1)] and (b) if D! £X[0,T] is another deformation which gives rise to S, then the composite
deformation

Q(r)Di(r), Q(T) = R, r £ [0,T]

also gives rise toS'.

The proofs of these assertions are easy consequences of the definitions and will not be given here. The

assertions (a) and (b) imply that S' depends only on S and R = Q(T).

This observation shows that the superimposed rigid-body rotations Q subject to Eq. (5.1) applied to all

D£ X[0,T] create a mapping PR : 2 -> 2 given by

S' =PRS. (5.3)

It is convenient to think intuitively of the action of PR on S as being induced by the application of an
instantaneous rigid-body rotation R to a specimen in S, although such rotations do not belong toX[0,T]

(cf. Section 2).

Next we wish to show that PR is an isometry; namely,

p(S1,S2) = p(PRS1,PRS2). (5.4)

The proof of Eq. (5.4) rests on the observation that by the principle of objectivity [cf. Eq. (2.8)] and the

definition of PR, we have for a constant R £ 0+(3):

F*(PRS; RD*RT) = RF*(S; D*)RT . (5.5)

Therefore

||F*(PRSi; RD*RT) - F*(PRS2; RD*RT)|| = [|R[F*(Si; D*) - F*(S2; D*)] RT||

= ||R(a1*-a2*)RT||, (5.6)

where a{* and a2* are the future stresses caused by D* in the elements in Si and S2 respectively [cf. Eq.

(3.8)]. But by definition of the norm [Eq. (2.4)],

||R(aj * - a2*)RT|| = ||a, * - a2 *|| , (5.7)

(5.4) then follows from the definition (4.1) and from (5.6) and (5.7).

We wish to note that the set {PR} with R £ 0+(3) is a group G, where the group multiplication is the

product

PrPq (5-8)
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of the transformations PQ and PR. It follows from the definition ofPR that

PrPq=Prq> (5-9)

which shows that {PR} is closed under the operation (5.8). The associative property of group multiplication
follows from that of 0+(3) and Eq. (5.9). The identity element ofGis simply P,,where I is the identity in
0+(3). The inverse ofPQ is PqT [Eq.(5.9)].

Since PQ is an isometry and since its inverse exists, it follows that PQ is ahomeomorphism of2 onto
itself.

The mapping k : 0+(3) ->G given by

k(Q) =Pq (5.10)

is, in view of Eq. (5.9), a homomorphism. We shall assume that for the class of materials considered, the
homomorphism k is one-to-one. (This means that k is an isomorphism.)

It is desirable to explore the physical meaning of the last assumption.* Observe that if k is not
one-to-one, there would exist two different rigid-body rotations Q! and Q2 such that

This would imply that

S=PqTq2S for any S£2. (5.11)

If the stress a = f(S) associated with some S £ 2 has three distinct principal values, then one could
show, using the considerations associated with Eqs. (6.2), (6.3), and (6.4), that a point on the orbit of S
[namely, on {PQS: Q£ 0+(3)}] would violate Eq. (5.11). Thus we conclude that if the state and
orientation space 2 has a point S such that ct= f(S) has three distinct principal values, then the mapping k
must be one-to-one. It is now clear that the above assumption is equivalent to the very mild assumption
that the material must carry at some state of its deformation a stress tensor with three distinct principal
values.

We note for future reference that since k isan isomorphism and since 0+(3) isa compact Lie group,1 7
G is also a compact Lie group.

We now introduce an alternative interpretation of PR which should serve to increase our understanding
of PR, and will enable us to extend the domain of definition of k [cf. (5.10)] to 0(3), the full group of
orthogonal transformations on R3. Thisextension will enable us to assert later that the state variables must
be even-rank tensors. This extension could not be done without the alternative interpretation since a
continuum cannot be subjected to an improper orthogonal transformation.

To achieve the extension we let a future deformation D* £ X, applied to an element inS, produce the
future stress 0*£ Y*. Call this test (a). Let R be a constant element of 0+(3); then RD*RT applied to an
element in PRS will produce the future stress Ro*RT [cf.(5.5)]. Call this test (b).

*This assumption may seem to leave elastic fluids outside the scope of this report. (For such materials, PqS =Sfor all
Qe 0+(3) and for all Se 2.) However, it is easily seen that the case where the state variables qf are all scalars (cf. Section
7) corresponds to elastic fluids.
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Consider now a new rectangular cartesian coordinate frame fR such thatif x'j and Xj are the coordinates
of a given point in fR and f respectively, then

x'j =RjjXj .

Since D* and o* are histories of second-rank tensors, test (a), when observed in fR, would be seen as
the application of RD*RT and the production of Ro*RT. Thus test (a) observed in fR will be
indistinguishable from test (b) observed in f.

Therefore, an observer in fR would decide that test (a) represents the behavior of an element in

PRS£2.

Hence we have the following alternative interpretation of PR: If a material specimen is judged to be in

the state and orientation S by an observer in f, then an observerin fR would judge the same specimen to be

in PRS.
This alternative interpretation enables us to define PR in the case where R is an improper orthogonal

transformation(RRT = I, det R =-1). Clearly for such an R, -R £ 0+(3). Since

(_R)D*(-RT) = RD*RT and (-R)a*(-RT) = Ra*RT ,

it follows from the above interpretation of PR that

PR=P_R, R£0(3). (5.12)

Symmetries of a Deforming Element

Let S0 denote the state and orientation of a virgin element. If a material is isotropic in its initial state,

then*

PQS0 =S0 for all Q£0+(3). (5.13)

This observation is a consequence of the usual definition of isotropy.1 Equation (5.13) implies that there
are no preferred directions (initially) within an isotropic material.

If a specimen is not fully isotropic in its virgin state,

PQS0=S0. Q£gSoCO+(3),

where gs is a subgroup of 0+(3) and is said to be the isotropy subgroup of the specimen in the state and
orientation S0. (Note that for some materials gs consists only of the identity transformation I.)

We can, in a similar manner, define the isotropy group of an arbitrary state and orientation S £ 2. Thus,

ifforS£2,

PQS =S, Q£gsC0+(3),

we say the element in S has the isotropy subgroup gs.

"In view of (5.12), (5.13) implies PQS0 =S0, Qe 0(3).
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We expect that during the course of deformation, an initially isotropic specimen will, in general, lose
some or all of its symmetry. If this happens, gs will become smaller.

It will be of interest to compare symmetries of material elements in different state and orientations. To

this end, let Si andS2 have isotropy subgroups gs and gs respectively.
It is said that these are conjugate subgroups if there exists H £ 0+(3) such that

HSs,H1=8sa- (5.14)

This implies that

gpHSi =§s2 >

which shows that if Eq. (5.14) holds. S, and S2 have the same symmetries when Si is rotated by an
amount H.

It is of interest to know the number of state and orientations which have nonconjugate isotropy
subgroups. We shall see that if the number of such isotropy subgroups is finite, a powerful theorem due to
Mostow18 will enable us to embed 2 equivariantly in a finite dimensional euclidean space when 2 is finite
dimensional.

It follows from Ref. 19 that if 2 is a compact manifold, the number of nonconjugate isotropy
subgroups is finite in view of the fact that G is a compact Lie group of homeomorphisms.

6. THE EQUIVARIANT EMBEDDING OF 2 IN EUCLIDEAN SPACE

Before we discuss the details of the embedding of 2 in a normed linear space, it is desirable to offer a
brief discussion of the motivation behind such a move. The basic aims of the remainder of this report are
(1) to introduce coordinates for the state and orientation S and (2) to derive a system of differential
equations that govern the evolution of S.

As we shall see, these aims can be achieved if the state and orientation space 2 can be mapped into a
normed linear space N in an appropriate manner. Obviously, this mapping should be invertible and should
be smooth enough so that, for instance, the images of curves under this mapping remain curves.

Clearly we want to use a homeomorphism 0 (i.e., a one-to-one and bicontinuous mapping of 2 onto
2 C N). Furthermore, the study of the laws of evolution of S requires that the image 0(PR) of PR (cf.
Section 7) in 2 must be specified explicitly. The transformation 9(PR) on 2 takes the points 0(S) to
0(PRS):

0(PRS) =0(PR)0(S). (6.1)

It is easily seen that the set of transformations {0(PR)} as PR ranges over G is a group which is
isomorphic to G.

If 0 is such that 0(PR); PR £ G, R£ 0+(3) is the restriction to 2 of a linear transformation on N, then
the theory ofgroup representations can be employed to describe explicitly the action of0(PR) in 2 (cf.
Sections 7 and 8). An embedding which has the above mentioned property is called an equivariant
embedding. Thus an equivariant embedding is a pair(0,0), where 0 isa homeomorphism of 2 into N and 0
is an isomorphism ofG = {PR} into the linear group onN such thatEq. (6.1) holds.

It isdesirable to know circumstances under which an equivariant embedding (0,0) will exist for 2 and G
as defined in this report.
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Two theorems due to Mostow18'19 are central to the question of the existence of equivariant
embeddings.

Theorem 1. Let G be a compact Lie group operating faithfully on a separable metric finite dimensional

space 2. If 2 has at most a finite number of nonconjugate isotropy subgroups under G, there is a

homeomorphism 0 of 2 into Rn and an isomorphism 0 of G into the orthogonal group* on Rn such that 0
is equivariant with respect to 0 [i.e., Eq. (6.1) holds].

Theorem 2. Let G be a compact Lie group operating on a compact manifold M. Then M has at most a

finite number of nonconjugate isotropy subgroups under G.

In the present case G is a compact Lie group, and 2 is a separable metric space (cf. Sections 4 and 5).

However, in order to apply theorem 1 it is necessary that two further conditions be satisfied: namely, that

2 be finite dimensional and that 2 have at most a finite number of nonconjugate isotropy subgroups under

G.

It might be argued that the finite dimensionality of 2 might reasonably be assumed because the number

of particles in a material specimen is finite and each has only a finite number of degrees of freedom.

In any event, in the present work we shall assume that 2 is finite dimensional.t
To determine whether 2 has a finite number of nonconjugate isotropy subgroups under G, we observe

first that 0+(3) has an infinite number of nonconjugate subgroups (e.g.. subgroupsgenerated by rotations
of 27r/n about a fixed axis, n = 1, 2, . . .). Therefore since G is isomorphic to 0+(3), it is possible that 2

could have an infinite number of nonconjugate isotropy subgroups under G.

It is clear that whether 2 has a finite number of nonconjugate isotropy subgroups will depend on the

material. For instance, if the material is completely anisotropic in its initial state S0 (i.e.,PQS0 = S0 only
when Q = 1) and if it remains completely anisotropic during its deformation, there is only one (trivial)

isotropy subgroup for 2.

However, we often study materials that exhibit symmetries both in their initial and deformed states.

The question therefore arises as to whether we can create (by subjecting material specimens to appropriate

deformations) state and orientations that have an infinite number of nonconjugate isotropy subgroups.

To investigate this question, it is helpful to consider the stress a carried by a deforming material

element. We have already observed (cf. Section 3) that

a = f(S), (6.2)

where the tensor-valued function f is subject to the invariance requirement*

f(PQS) =Qf(S)QT Q£0+(3). (6.3)

Evidently if Q £ gs, the isotropy subgroup of the state and orientation S, thenPqS = S and consequently,
in view of Eq. (6.3),

a = QaQT .

*Note that the theorem asserts that 0(PR) is not only linear but also orthogonal.
'Even if 2 is infinite dimensional for a given material, it might be possible to represent the mechanical behavior of that

material with sufficient accuracy by a finite dimensional state and orientation space.

'''This requirement follows immediately from the principle of objectivity and the definition of state and orientation.
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It follows therefore that

Ss C 8a . (6-4)

where

go={Q:Q£0+(3),QaQT = a}.

The group ga depends on the principal values of a. If the three principal values ofa are distinct, then ga is
the group (of order 4) generated by 180° rotations about the principal axes of a. Thus ifwe let 2a denote
the set of points in 2 whose associated stresses have three distinct principalvalues, then in viewof Eq. (6.4)
we can make the following observation. Namely, if

S£2, ,

then gs is conjugate to one of the following three groups: identity, 180° rotations about an axis,and 180°
rotations about three mutually orthogonal axes. This means, of course, that the points in 2! have a finite

number of nonconjugate subgroups. Hence we can apply Mostow's theorem 1 to 2! (or 2! U S0, where S0

is the initial state and orientation of the material*) when 2 is finite dimensional. Therefore, it is clear that

if we restrict attention to deformation histories in X[0,T] that give rise to stresses having three distinct
principal values for t > 0, the corresponding state and orientations can beembedded equivariantly in Rn if
2 is finite dimensional.

We must now discuss the points in 2 - 2!, where each point will have an associated stress with at least

two equal principal values. In this case ga will be either 0+(3) or will be conjugate to 0+(2), the group of
rotations about an axis. Since 0+(3) and 0+(2) have an infinite number of nonconjugate subgroups, we
cannot conclude on the basis of Eq. (6.4) that the points in 2 - 2j, and hence in 2, have a finite number

of nonconjugate isotropy subgroups.

One could of course add to 2i all other state and orientations that have a finite number of

nonconjugate isotropy subgroups and then apply the embedding theorem 1. It may be that for a given class
of materials such additions would enable one to use the results of Sections 7 and 8 for all deformation

histories of practical interest.

There may exist also a class of materials for which the state and orientation space 2 is a compact
manifold. We have seen that for the class of materials considered here, 2 is a bounded separable metric
space, but we cannot assert that 2 is a manifold. If such were the case, theorems 2 and 1 would show that

an equivariant embedding of 2 in euclidean space is possible.

It is desirable to know the properties that must be assigned to the mapping F and the input and output
spaces X and Y which define the class of materials of interest such that the resulting state and orientation
space is a compact manifold. Although we have considered some aspects of this problem wecannot report
any real progress in this subject. However, it may be useful to discuss a particular case. It is easily seen that
one can choose a subset Mof X[0,T] such that Miscompact and right translations'1' of D£ Mare also in M.

*Note that the initial state is stress free and therefore does not belong to Zt.

'This requirement assures us that the states created on [0,T] by aDe Mlie on the image 2M ofMunder i
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An example of such a set is the deformation historiesD in X[0,T] that satisfy

|Dij(r,)-Dij(T2)|<m|r, - t2\ i,j= 1,2,3,

where m is a fixed positive constant. It may be noted that this set would contain all deformation histories

that can be employed in actual tests.

Now as noted before, the mapping &: X[0,T] -> 2 is continuous and therefore 2M, the image of M
under &, is compact. We have therefore shown that tests of practical interest give rise to a compact state
and orientation space 2M. The question as to whether this compact set is a manifold must now be
discussed.* Considerations based on the construction of 2 show that we could expect 2M to be at most a
manifold with a boundary.20 Further discussion of this case would require, among other considerations,

whether theorem 2 is applicable to a compact manifold with boundary.

7. REPRESENTATION OF STATE AND ORIENTATION BY IRREDUCIBLE TENSORS

We shall assume that 2 has been equivariantly embedded in Rn. For reasons of economy in notation we

shall use the same symbols to denote the embedded entities, so that 2 will stand for 0(2) and PQ for 0(PQ)
(cf. Section 6). Note that in view ofMostow's theorem 1, PQ is now a linear orthogonal transformation on
the entire space Rn. Therefore G= {PQ;Q £0+(3)} constitutes a linear representation of0+(3) and the
following observations hold:2'

1. Rn is the direct sum of mutually orthogonal subspaces M!, . . ., Mm.

2. Each Mj is of odd dimension.

3. EachMj is invariant under the action of G, namely, ifS£Mj; then PQS £ Mj; PQ £G.

These remarks imply that eachS £ Rn may be expressed uniquely in the form

S = qi +q2 + ... + qm,qi£Mi

and that (7.1)

PQS =PQq. + -+PQqm.PQq.eMi-

Here the Mj values are chosen in such a way that they have no proper subspaces that are invariant under
G. Thus the restriction of G to each Mj is an irreducible representation of0+(3) and therefore each M; is of
odd dimension as noted above.

The next task is to specify the action of G on each Mj. This can be done clearly and economically with
the aid of irreducible tensors.17 We illustrate this point by the following example.

Suppose that Mi is five dimensional. Consider now the nine-dimensional space T2 of all second-rank
tensors ry with i,j =1, 2, 3. An orthogonal transformation PQ on T2 has the form

(PQr)ij =QipQjqrpq,Q£0+(3). (7.2)

*Note that Pq2m,Qe 0+(3) is also compact.
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The space of symmetric traceless second-rank tensors T2S is a five-dimensional subspace of T2. If

r£ T2S, then PQr is also given by Eq. (7.2) and is again in T2S. When (7.2) is restricted toT2s, it provides
an irreducible five-dimensional representation of 0+(3). This representation of 0+(3) is isomorphic to that
given by G on Mi (cf. Ref. 17). Therefore, we may take M] to be T2S. Thisprocedure,whichdefines the
action ofPq on Mi by (7.2), may be generalized to invariant subspace of dimensions 1,3, 7,9, ... .

In particular, one-dimensional representations are given by scalars and three-dimensional representations

by antisymmetric second-rank tensors. Irreducible representations of dimension seven and nine can be

obtained from fourth-rank tensors which satisfy certain conditions of symmetry.17'21 Representations of
still higher dimension are given by tensors of higher rank and appropriate symmetry. Such tensors are called

irreducible tensors.1 7 In view of these remarks we will take each Mj to be a space of irreducible tensors, and
the action of the Pq on Mj will then be described by a tensor transformation appropriate to the rank.

In Section 5 we introduced an alternative interpretation for Pq and used this alternative interpretation
to extend Pq to the full orthogonal group 0(3). As a result of thisinterpretation we have

P-Q=PQ. (7.3)

If (7.2) is to hold for tensor representations of actions of PQ in Mj, then it is necessary that the tensors
involved be of even rank. It may be useful to summarize the above ideas in a less formal manner.

We have shown that the state and orientation of a material element can be represented* by a number of

even-rank irreducible tensors qj, .. . , qm. A sudden rigid-body rotation Q of the element causes the state

and orientation (qi, . . . , qm) to move to (PQqi, . . . , PQqm), where PQqj has the meaning of ordinary
tensor transformation appropriate to the rank of the tensor q;.

It may be pointed out that many workers12'13 in the field assume that the internal variables are
tensors. This assumption is often introduced on "physical" grounds. In this report we arrived at the above

summarized results by the mathematical structure developed in Sections 2 to 6.

8. GROWTH LAWS

We are finally in a position to discuss the laws of evolution (or growth) of the state and orientation of

an element as a function of the applied deformation.

We recall from Section 3 that if S(t) and S(t + At) denote the state and orientation of a material

specimen at times t and t + At, respectively, then S(t + At) can depend only on S(t) and on the future

deformation D* on [0,At]. We therefore wrote

S(t +At) = G[S(t); D* ] , (8.1)
[0,At]

where G : 2X X[0,T] -*-2. This mapping may be called a primitive growth law for the state and

orientation.

We now investigate the possibility of replacing Eq. (8.1) by a system of differential equations. We recall

that as a result of the equivariant embedding discussed in Section 6, the state and orientation space 2 is a

subset of Rn, and consequentlyS(t) and S(t + At) are vectors in Rn. It is therefore meaningful to talk about
S(t + At) - S(t) and about S(t), the time derivative of S(t).

"If 2 can be equivariantly embedded into a finite dimensional euclidean space.
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Observe that if At is sufficiently small and if D*(£) is sufficiently smooth, we can write

D*(£) = I + D*(0)%+ . . . on [0,At] , (8.2)

where D*(0) is the right derivative of D*(|) at £ = 0 .

Observe from Eq. (2.13) that

D*(0) = gradv, (8.3)

where v denotes the velocity field of the deformation at time t. The symmetric part V of grad v is called the

rate of deformation tensor and the antisymmetric part £2 is called the rate of rotation tensor.22 Thus

D*(0) = V + fi. (8.4)

In view of Eqs. (8.1), (8.2), and (8.4), it would be reasonable to expect that for small At, S(t + At) will

be a function of S(t) and of V + £2. In this case S(t), the right-hand derivative of S(t), would depend on S(t)

and onV+fl:

S(t) = g(S(t);V+n). (8.5)

Indeed it can be shown that if the mapping &: X[0,T] -* 2 is Lipschitz continuous, and if S(t) exists,
then Eq. (8.5) must hold.22 Reference 23 also asserts that if j&is differentiable, then S(t) exists.

We now show that as a consequence of the principle of objectivity the differential growth law [Eq.

(8.5)] must be of the form (1.2), namely,

S(t) = g(S(t), V) + T(S2) S(t) , (8.6)

where g is a form invariant function of its arguments and T is a linear operator on Rn that depends on the

rate of rotation fi at time t in the manner described below.

We first consider the derivative with respect to r ofPq(t\S at time t. Here S is a given element of 2 and

Q(r)£0+(3) with Q(t) = I. (8.7)

This derivative depends upon Q(t) and S in the following manner:

[PQ(r)S]'=T(Q)S, (8.8)

where T(Q) is a linear operator on Rn that depends on Q. Furthermore T : Rn ->• Rn has the following
properties:

1. T is skew symmetric: T+T =0.

2. The subspaces Mj that are invariant under PQ £ Gare also invariant under T.

3. T depends linearly on Q.

4. PRT(Q) =T(RQRT)PR.
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The proof of Eq. (8.7) and assertions 1 to 4 rest on the tensor representation of S[cf. Eq. (7.1)]:

m

PQ(r) = L PQ(r)qi. (8-9)
i=l

where Pq,^ are appropriate tensor transformations induced by Q(t).
The time derivative of the right-hand side of Eq. (8.8) can be computed easily to arrive at Eq. (8.7) and

the assertions listed above. As anexample of such a computation, consider Pn(T)r, where r is a second-rank
symmetric tensor:

P0(T)r=Q(T)rQT(T) (8.10)

and therefore

(PQ(T)r)'= Qr - rQ , (8.11)

where we used the facts that Q(t) = I (cf. 8.6) and Q is antisymmetric.

Now observe that the right-hand side of Eq. (8.10) defines a linearoperator on the space of symmetric

second-rank tensors. Moreover, this operator has the properties 1, 3, and 4 listed above. Similar

considerations for higher rank tensors lead to Eq. (8.7) and properties 1 to 4.

We are now ready to prove that Eq. (8.5) must be of the form (8.6). Let an element in the state and

orientation S(t) be subjected to the future deformation D* to produce the state and orientation S(r):

D*-*S(t) T>t. (8.12)

Now consider the application of the future deformation R(r) D*(r - t), r > t, with R(t) = I to a

specimen in S(t). By the principle of objectivity the state and orientation produced by this composite

deformation will be PR(T) S(r):

RD*^PR(T)S(r),r>t; R(t) = I . (8.13)

On the other hand, at r = t

D* = V + ft

and (8.14)

(RD*)' =V+ ft+R(t) .

Now, applying (8.5) to deformations associated with (8.12) and (8.13), we obtain

S(t) = g[S(t),V+ft]

and (8.15)

(PRs)'T=t=g[s(t),v+n +R] .
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But

(PrS)'t=, =£ [Pr(t) S(t)]T=t +^r fPR(t) S(r)]T=t . (8.16)

In view of Eq. (8.18), and since R(t) = I, Eqs. (8.15) and (8.16) yield

g[S(t),V+n + R] = T(R)S(t) +g[S(t),V + £2] . (8.17)

Since R(t) is an arbitrary antisymmetric second-rank tensor, we can choose it to be -J2, in which case

(8.16) produces the desired result:*

g[S(t),V+ft] =g[S(t),V] +T(fi)S(t). (8.18)

Next we must show that g(S,V) is form invariant:

g(PQS.QVQT) =PQg(S,V) Q£0+(3). (8.19)

For this purpose we observe again from the principle of objectivity that if the rate of deformation (V+ £2)
gives rise to S(t) when applied to an element in S(t), then the rate ofdeformation Q(V +12) QT gives rise to
Pq S(t) when applied to an element in PQ S(t). Thus in view ofEq. (8.17)

S(t) = g[S(t),V]+T(n)S(t)

and

Pq S(t) =g(PQ S(t), QVQT) +T(Q J2 QT)PQ S(t) .

Now using the property 4 of T and comparing the above equations we obtain Eq. (8.19).

We have thus constructed the state variable representation of mechanical behavior for the class of

materials considered here. It may be useful to summarize this representation.

The state and orientation S of an element is a vector in Rn, and it can be represented as a sum of

even-rank irreducible tensors q;:

S = qi + • • • + qm •

The stress a carried by an element is a function only of its state and orientation S:

a = f(S).

♦Observe that T(-Sl) = -T(n) in view of property 3.
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The rate ofchange of state and orientation, S, depends in the following manner on the present state and
orientation and on the rate of deformation and rotation tensors Vand S2, respectively, that are being
applied at present:

S = g(S, V) + T(fi) S .

The functions fand gare form invariant [cf. (6.3), (8.19)], and the linear operator Ton Rn is described
above.

9. DISCUSSION OF THE GROWTH LAW

In this section we offer adiscussion ofasimpler form ofthe growth law [Eq. (8.6)].
We first observe that the linear dependence in (8.6) of S on ft is aconsequence of the principle of

objectivity. It is natural to inquire whether alinear dependence on the rate of deformation tensor Vmay be
expected. It is known that there are important materials for which the dependence ofSon Vis not linear.
An elastic-plastic solid is an example of such a material where the dependence on Vis only piecewise
linear.24 For materials which exhibit "smoother" behavior alinear dependence of Son Vis apossibility.

Indeed it can be shown that if the mapping &: X[0,T] -> 2 CL is Frechet differentiable, then the
function g(S, V) in(8.6) must be of the following form:

g(S, V) =g(S) +h(S) V, (91)

where g: 2 -> Rn and, for each Sin 2,h(S) is alinear mapping from R6 to Rn.
Inview of (8.18) we have also the invariance requirements*

g(pQS) =PQ g(S); h(PQS)pQ =PQh(S) (92)

where pQ represents the action* ofQinR6 .
The complete growth law for this class of materials has the form

S=g(S) +h(S) V+T(ft) S. (93)

Note that g(S) is the term which controls the change in state in the absence of external stimuli (i.e.,
when V and £2 vanish), and thus is a measure of the internal relaxation which takes place within the
material. Note also that once the structure of the state space (i.e., the number and dimension of the
invariant subspaces Mj) is known, the operator T is known explicitly. Therefore, in order to single out a
material of the above type one must specify the functions f(S) [cf. Eq. (6.2)], g(S), and the operator h(S).

Forcomments on the form of f, g, and h for metals subjected to elevated temperatures and stresses, the
reader is referred to Refs. 8 and 25. It is shown in this work that the problem of classification and
identification of a broad class of materials reduces to the specification of only g(S) in Eq. (9.3). It is also
shown in Ref. 25 that thermodynamic considerations place further restrictions on the mapping g(S). A
study of these restrictions in the present context will be given elsewhere.

*Thus pQv =QVQT.
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We now focus attention on initially isotropic materials, so that the initial state and orientation S0 has
the property

PQS0=S0 for Q£0+(3). (9.4)

This means that the components of S0 in the invariant subspaces Mj are zero unless dim Mj = 1(cf.Section
7).

Now we wish to show that if the growth law is of the form (9.1) and if the material is initially isotropic,
then S at r =0 can have components only in those subspaces M; that correspond to scalars and to traceless
symmetric second-rank tensors. In other words, in the initial deformation of an isotropic virgin material the
only state variables that can be created are scalars and second-rank symmetric traceless tensors. This

observation might explain the tendency by the workers in the field to take the state variables as either

scalars or symmetric traceless second-rank tensors.

In proving the above assertion, first observe from Eqs. (2.10) and (2.11) that in the absence of

deformation a nonaging material maintains its initial state S0. Thus in Eq. (9.3) we must have

g(So) = 0. (9.5)

On the other hand the invariance requirement(9.2) on H(S0) implies, in view of Schur's lemma '7 that

h(S0)V=2Ca.V' +2d(3itrV, (9.6)

where V' = V - 1/3 (tr V)I is the deviatoric part ofVand Ca.V' and dg. tr Vare components ofh(S0)V in
the invariant subspaces Ma. and M^., respectively, where Ma. is five dimensional and Mp. is onedimensional.

On the other hand, since S0 has nonzero components only in the one-dimensional invariant subspaces,

the properties 1 and 2 of the operator T imply that

T(ft)S0=0 (9.7)

for any ft.

Combining now (9.1) with (9.5) to (9.7), we obtain

S(O) = 2Ca.V' + 2d0.trV,

which shows that only those state variables that are scalars and second-rank traceless tensors can be created

initially.

10. EXAMPLES OF REPRESENTATIONS

It is desirable to consider explicit examples of the general representation (1.3) that we have constructed

in the previous sections.

The simplest nontrivial example is the one where f(S) and g(S,V) are linear functions of their

arguments. Note that the term T(ft) S in (1.3) precludes consideration of a totally linear material in the

presence of finite deformations. The simple representation to be considered has the form

0 = fS ,
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S = AS + hV + T(ft)S, (10.1)

where f is a linear mapping from 2 C Rn to R6, A is a linear mapping from 2 C Rn to Rn, and h is a linear
mapping from R6 to Rn. It is assumed that the stateset 2 is a bounded subset of Rn and that the orbits of
points in 2 under the group G= {PQ}are contained in 2. It is aconsequence ofEqs (6.3), (9.2), and (10.1)
that f, A, and h are subject to the invariance requirements

fPQ =pQf, APQ =PQA and hpQ =PQh, Q£ 0+(3) . (10.2)

It should be emphasized that theseinvariance requirements result fromthe principle of objectivity and the
particular form of Eq. (10.1) and are in no way a consequence of any symmetries that the material may

possess.

In Section 7 we discussed the action of the transformations G = {Pq} in Rn. We observed that the
{PQ : Rn ->• Rn} is composed of irreducible representations of0+(3), and this gave rise to the result that S
is the sum of a number of tensors. We now let r;(i=1, . . . , i,) denote the state variables that are scalars
and Sj(i = 1, .... i2) denote the state and orientation variables that are second-rank symmetric traceless
tensors. State and orientation variables that are second-rank antisymmetric or of rank four or higher will be

denoted by tj, Wj, etc.

We wish now to study the implications of the invariance requirements (10.2). The main tool for this is

Schur's lemma,1 7 which when applied to the invariance requirement*

fPQ =pQf, Q£0+(3),

yields the following result: The stress can depend only on the state and orientation variables that are scalars

or second-rank symmetric traceless tensors. Moreover, this dependence must be of the form

a = 23;^ + I2bjrj , (10.3)

where we now use for emphasis boldface letters to describe tensors. Here I denotes (3 X 3) Kronecker delta

and a; and bj are constants.
On the other hand, the invariance requirement hpQ = PQh implies that hV can have components only in

the one- and five-dimensional invariant subspaces of Rn and that hV must be of the form (9.6). The
invariance requirement on A implies, in view of Schur's lemma, that under A, scalars produce scalars,

second-rank symmetric traceless tensors produce the same kind of tensors, etc.

Combining these observations with (10.1) and remembering that the linear operator T(ft) has the

properties (1) and (2) (cf. Section 8), we obtain

fj = Sbyrj + dj tr V ,
(10.4)

s; =2ajjSj +Cj V +T(ft) Sj,

*We remember that {pq} is the representation of O (3) in R6, and therefore it is composed of one- and
five-dimensional irreducible representations.
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and

tj =2Cjj tj + T(ft) tj , (10.5)

etc., where bjj, a^, dj, ci; Cjj,... are constants and V' is the deviatoric part ofV.
The above observations show that state and orientation variables that are second-rank antisymmetric or

of fourth or higher rank do not contribute to the description of mechanical behavior of the solid defined by

Eq. (10.1) because of the lack of coupling between (10.5) and Eqs. (10.3) and (10.4). Therefore, these

variables may be omitted and the representation (10.1) can be reduced to (10.3) and (10.4).

We now show that the consideration of the initial state (s°, . . . , S-1 ; r°, . . . , r-* ) introduces some
mild restrictions on the coefficients in (10.3) and (10.4). Indeed, since a - 0 at the initial state we must

have

2ajS?=0 and 2bjrf = 0 . (10.6)

Moreover, in the absence of deformations the initial state remains unchanged [cf. (2.11)], so that

h
2 ajjS? =0 i= 1, . . . ,i2
i

and (10.7)

ZVj

In the case where s° ¥= 0 for some i the material defined by (10.3), (10.4), (10.6), and (10.7) is not
isotropic in its initial state. However, the structure of (10.3) and (10.4) is such that the material of interest

can be said to be "isotropic" in a limited sense even when s^O. Indeed, if one considers deformation
histories where ft = 0 at every instant of interest, then in (10.4) the term T(ft) Sj vanishes and for this class
of deformation histories (10.3) and (10.4) become form invariant under orthogonal coordinate

transformations. Thus an observer who works only with the class of irrotational deformation histories

would judge that the material defined by (10.3) and (10.4) is isotropic.
We have therefore reached the rather surprising result that linearity [of f(S) and g(S, V)] implies

isotropy in a limited sense. This result may lead one to ask if the existence of linear anisotropic solids in the

case of infinitesimal deformations contradict the above result. It can easily be seen that there is no

contradiction. Indeed, in order to arrive at a representation appropriate for infinitesimal deformations, one

could linearize the general representation in the neighborhood of the initial state S0- The linearized

representation would look very much like (10.1), but it would not be valid in the neighborhood of the
entire orbit of S0 if the material is not isotropic. Therefore the linearized representation may not be subject

to the invariance requirements (10.2), and hence one cannot assert that (10.3) and (10.4) must hold. A

more detailed study of this case leads one to materials which are linear and anisotropic in the sense of

theory of linear viscoelasticity.
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We end this section by pointing out that other explicit examples of representations are available in Ref.

8. We also point out that Ref. 24 deals with the application of the ideas developed in this report to the case

of elastic-plastic materials.

11. COMPARISON OF REPRESENTATIONS

It is desirable to compare the present work with earlier work on representations.

To this end we recall [cf. Eq. (2.7)] that the mapping F : X -> Y induces, in view of causality of F, a
mapping fT : X[0,T] -*• Rg given by

o(T) = fT( D ), (11.1)
1 [0,T]

where D denotes a deformation gradient history on [0,T] and o(T) is the stress produced by this

deformation at time T. Equation (11.1) contains the tacit assumptions that the material is in the virgin state
at r = 0 and that all elements are identically oriented at t = 0 with respect to the fixed coordinate frame in

which the stress and the deformation are measured. If the material is nonaging, as is assumed here, then the

functional (11.1) represents mechanical behavior over the time interval [0,T] by means of right translations
ofD [cf. (3.2) and (3.3)].

It was shown by Green and Rivlin3 and Noll5 that (11.1) must be of the form

a(T) =D(T)F[g(r) ] DT(T), (11.2)
[0,T]

where

g = DTD

is Green's deformation tensor and F is a tensor-valued (symmetric second-rank) functional of the history of
g on [0,T]. This result follows from the principle of objectivity.

In view of (11.2) the problem of representation of mechanical behavior reduces to the representation of
the functional F.

Much effort has been devoted to the construction of integral representations for F (cf. Ref. 26). It is
known from Frechet's work2 7 and Ref. 3 that when F is "continuous" and the domain of F is restricted to

a compact set and the material is nonaging, then F can be represented to any desired degree of accuracy by
a sum of multiple integrals:

.T

Fij[ g 1=/ KijkE(T-r)gke(r)dr
[0,T] Jo

+( f Kijk2mn(T-7'i'T-7-2)gke(r1)gmn(72)dr1 dr2 +... . (11.3)
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Various modifications of (11.3) are available. It canbe shown28 that the above sum maybe replaced by
a polynomial of linear functionals*

fo CijkeCT-r)dgkc(r). (11.4)

Another form of representation is obtained by replacing strain components in (11.3) by nonlinear
functions of these components.2 9

If the material is isotropic in its initial state, then the sum (11.3) gains the additional structure"''
discussed by Green and Rivlin30 and Green, Rivlin, andSpencer.4

Examples of applications of integral representations may be found, for instance, in Ward and Onat,31

Onaran and Findley,32 Lockett,33 Pipkin and Rogers,29 and Wang and Onat.34
In the course of work on the applications of integral representations, it has become clear that these

representations suffer from serious drawbacks. It was shown by Onat7 (see also Ref. 33) that the number of
terms needed in Eq. (11.3) for a reasonably accurate description of elastic-plastic (or creep) behavior of
metals is prohibitively large. This drawback emanates from the fact that (11.3) is based on the Weierstrass
approximation of continuous functions by polynomials. As is well known, polynomials are an awkward

tool of representation for functions that are not smooth enough.35 In the representation of elastic-plastic
behavior, functions that are not smooth enough are encountered and the above-mentioned drawback

ensues.

Another difficulty with (11.3) (or its various modifications) is the lack of effective experimental
procedures for the determination of the number and the nature of multiple integrals and the related
problem of extreme sensitivity of the kernels in (11.3) to scatter in experimental data.9

The representations based on state variables do not suffer from these drawbacks. Elastic-plasticbehavior

admits a compact and relatively simple state variable representation.2 3 On the other hand, one can plan, on
the basis of the mathematical structure constructed in this paper, phenomenologieal experiments to obtain
information on the number of state variables and their tensorial nature and on the growth law.8'24

Moreover, the knowledge of the internal structure of the material may suggest that certain physical

quantities are "natural" state variables and these variables obey already known growth laws (for a
discussion of this point see Ref. 36).

Another advantage of the state variable representation is that in the computer analysis of structures

composed of hereditary materials, the state variable representation places a lighter burden on the memory
of the computer.

We may also point out conceptual advantages of the state variable representation (1.3), which defines

vector fields in the space of state and orientation. Global properties of these fields may be studied with the

methods of the theory of dynamical systems. A simple example of such a study is given in Ref. 25, where

various aspects of mechanical behavior such as creep, rate sensitivity, and plasticity are discussed in a

unified manner and in geometrical terms.

Finally, it must be remembered that representations based on state variables are widely used in

mechanics, in thermodynamics, and in physics. Most constitutive equations (proposed or in current use) are

*For a related result, see Ref. 6.

'It is interesting to observe that isotropy modifies the representation (11.3) in a remarkable way, whereas the only role
played by isotropy in the state variable representation (1.3) is in the initial condition for the growth law.
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of this type (cf. constitutive equations for elastic-plastic solids,37 various theories of creep,38 and
constitutive equations proposed byChu,12 Shapery,39 Biot,40 and Rice).4'

In this report we introduced a general theory of state variable representations that is appropriate to the

study of isothermal finite deformations. The theory enables one to construct, in principle, state variable

representations from observed phenomenologieal behavior.
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