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ON THE STABILITY OF MAGNETICALLY-CONFINED, HIGH-BETA PLASMA*

G. E. Guest, C. L. Hedrick, and D. B. Nelson

Oak Ridge National Laboratory, Oak Ridge, Tennessee 3783O

ABSTRACT

Plasma waves propagating perpendicular to the magnetic

field in a high-beta, magnetically-confined plasma can be

unstable in configurations for which the guiding-center

drifts are in the "favorable" direction. We illustrate

the basic instability mechanism and give the conditions

for growth using the Maxwell and Vlasov equations in a slab

model of the plasma.

Variational analyses of ideal MHD and guiding-center plasma model;

12^
have been used by many workers ' ,J to show that high-beta plasmas in

various magnetic fields can be unstable to ballooning modes if the

curvature of the magnetic lines of force is unfavorable. This result

is not affected by the plasma currents, which may reverse the sign of

the gradient of the magnetic field, together with the sign of the

guiding-center drift velocity, without significantly changing the

curvature of the field lines. Based on this result it is often con

cluded that a plasma cannot "dig its own well"; i.e., improve its

stability by virtue of its own diamagnetic current.

The same analysis can give very different results when applied to

k
interchange perturbations, showing a strong stabilizing effect
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Research sponsored by the U.S. Atomic Energy Commission under contract
with the Union Carbide Corporation.



associated with reversing the sense of the buiding-center drifts. Here

we seek to elucidate the properties of the unstable ballooning modes

predicted by the variational analyses, using the more microscopic Vlasov-

Maxwell plasma model in a simple slab geometry. The Vlasov kinetic

equation permits the straightforward inclusion of finite gyroradius

effects, missing from the MHD and guiding-center theories, and offers

additional insight into the limits of validity of the fluid models. The

applicability of the fluid theories is particularly questionable for hot-

electron plasmas, exemplified by the ELMO series of experiments, in

which the characteristic drift frequencies may easily exceed the ion

gyrofrequency.

We consider a hot plasma whose density is uniform in the y- and z-

directions but decreases monotonically in the x-direction. It is

immersed in a z-directed magnetic field which is uniform in the absence

of the plasma. A diamagnetic current flows in the -y direction,

balancing the force due to the plasma pressure gradient and causing

the magnetic field to increase in x : 2d 2/n B/dx = - (3d l/n P/dx, where
o

P = 2^ P/B . We investigate the stability of plasma waves which extend

indefinitely in z, propagate in the y-direction, and are polarized so

that the wave magnetic field is in the z-direction. We restrict our

attention to some localized region in x, within which any x-dependence

of the wave properties can be neglected.

The waves must satisfy Maxwell's equations with charge and current

densities calculated from the linearized Vlasov equation for each species:



E = - Vcp - dA/dt ; B = V X A
MA AAA AM AW AAA

U0
species

and
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scies

v x £ =^A + eo^9t) (1)

I *s Sd3y Xfis +^oeo sl/dt
ecies

M0fnc, = - q0 \ dt (E + v X B) * Sf'/Sv ,
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where qQ, M , and f are the charge, mass, and distribution function of

each species. We have described the waves by potentials, cp and A, which
AW

in the Coulomb gauge must satisfy

o

e V cp = - p (Poisson's equation) ,

and (2)

o _p

- V A + c" d(dA/dt + Vcp)/dt = nJ (Ampere's Law) .

eov • £=p= I *s ^ d3v fis
species

For the present case, we require only the x-component of Ampere's Law

and must therefore solve

. 2eQk cp = p

e (c k - a) )Ax = Jx ,

(3)

with p and j obtained from the linearized Vlasov equation. For gentle

gradients, the two moments are given approximately by

v c/n r . r . , s v / L
p = -

icies m=-o° \ D '

(K
+ iA (uu-<ju.



and

v.J J'
mJx = I V1 ("icp(u)-u)*) I \^mn

species m=-°° \HD

+ A
x

(<u-^) 2,

(5)

In these expressions N is the particle density at the point of interest;

T is the temperature, here assumed independent of x; cd^_, ox. and Q are

the diamagnetic frequency, the guiding-center drift frequency, and the

gyrofrequency of each species:

v„ > 0

= kT d grcN '*
"* =*B to v. <0

2 £e,y
kMv^- d^B ^ kT (f))

% 2qB dx qB R^ [ '
B

Q = qB/M .

All Bessel functions, J , have the same argument, kvj/fi, where k is the

magnitude of the wave vector; and angular brackets denote averages over

the unperturbed Maxwellian distribution function (here normalized to

unity). If-we neglect the velocity dependence of m, these averages

become

<J2> = e"X I (x) =Q (\)
m m m

<vxJ J') =£j Q' (7)
x m m qB m v''

<^f> -(if (4 %-*%)
x

P P P P

where X = k T/MQ = k a /2, and a is the average gyroradius.



Poisson's equation and Ampere's Law can now be put in the following

convenient forms:

CO

9[i + I (kxDr2 i1 +I z^b %)]
species m=-°° u

and

iA ,-, ,-, U)-u>„
x

+ ) qN ) ~ Q = 0
ke^BUB La. u, ul

0 species m=-°° T)

r ^o v v U)~U)* i
' L72 2, *N 2, UT^3 Qm J

B species m=-°° H3

2
ikA r 2 (D-u) m Q x -.

c k species m=-c0 HD 2 a

with A. = enT/q N and P = 2n NT/b . The condition for existence of non-

trivial solutions provides the general dispersion relation:

c k species m=-°° D

CO

species m=-» u

r l V T1 U)"u>* ~l2+ —— ) qN ) p, Q' = 0 ,
L ck e B L>. L> ul -U)-mfi m J '

0 species m=-°° T)

o

which we shall abbreviate as D^D + (CT) = 0.

To exhibit the instability of immediate concern, we apply this

general dispersion relation to a hot-electron, cold-ion plasma and first

2 2
investigate long-wavelength (\.,\ -*• 0), low-frequency (uj « Q. ) modes.

We then obtain familiar expressions for B and D :
EjM do

(8)

(9)



and

2

Dpn - 1 + -£- + (kO (11,ES n2 D (D-uip uj

CT a (kX r1 Ve/2
<V %

D' "^ u)- ^D

The Alfven speed is vA, and 3, \ , u^, and ul all refer to the electrons

The dispersion relation can then be written in a very compact form if

we define x = "'/"Vi and-

x„ =(1 -u)2/v2 k2 +0^/(^)7(1 -u)2/v2k2 +B) : (12)
0

2

D N Ql ' s V -" "0,>2(-£)(-£) -£(M£) • («:
Notice the following features of this dispersion relation:

1- If xq -* 1, we recover the dispersion relation describing ordinary
7

flute modes.

2- If Xq > 1 and (%/oil < 0 the dispersion relation has three real roots

corresponding to stable propagating waves.

3- If xQ < 0, the dispersion relation may have a complex conjugate pair

of roots if the left-hand side, (k\D)2(l +uj2./Q2)(1 -w^/V)"1,
lies within the unstable region depending on x as shown in Fig. 1.

For the slab model with straight magnetic lines of force,

Poj^/ul = -2, so that

-x = (1 + u)2/v2k2)/(l -U)2/v2k2 + B) . (110



p p p

If uj /v.k ^ 1, x ^ - 0.5, and a rough approximation to the stability

boundary of Fig. 1 is simply -2/x ; that is, for instability

(kAD)2 (1 +^./n2) (1 -a)^)"1 *-2/xQ (15)

Now in a cylindrical plasma, k must satisfy a periodicity condition such

that k = i/r, where i = 1,2,3,••• and r is the location of the point of

interest. The instability condition then becomes

2/ 2, 2
a. . nzr/ o \t x + p " 'a ,— r/ N/l + 0-uu /v k \-il/2

f^VIfr +fX , 2,2,2 )] • <l6>1 + uj /vAk

where a and m are the electron gyroradius and mass. The factor in

l/? 2 2 2
square brackets varies from [(2 + f3)(l + P)/P] for <u « v.k , to

l /p P P P
[l + P/2] ' for uj = v k . Thus, this instability is only possible if

the plasma radius exceeds the electron gyroradius by a factor of order

l/2(M/m) ; smaller plasmas would lie in the stable region of Fig. 1.

The unstable growth can be understood in elementary terms by noting

that in the magnetic field of the wave, electrons will drift in x so

as to reinforce the wave if B., the wave magnetic field, is in phase

with cp, the electrostatic potential of the wave. The relative phase

of cp and B1 is determined by Ampere's Law:

lecp 0.„.„ ..
— = T >0 if x <x<o
B 2T x-x^ 0

e 0

Since waves which satisfy the criterion for instability have X ^ m/M,

our assumption of long wavelengths is clearly justified. The low-

frequency approximation is not, however, generally valid. Unstable

waves have frequencies u> ~ ox. and



l^-i!e_%M ^£
0. 2 r R^ m £ R^
1 a a

(l +§) ' (17)

where we have imposed the condition for instability on a /r. Thus, if

r » R-o, as is true of the annular plasma in ELMO, waves satisfying
B

2 2
the condition for instability could violate the assumption uj « Q. .

This assumption can be relaxed by including the cyclotron terms in the

dispersion relation. Evaluating (10) for the general case uj ~ Q.

leads to

2 2
2 _ co . ou -i ^"W*

dem s 1- -h> L1 +-JT2+ -rl (w-«v)(-VJ+ 8^
c k fl. -u) n u> u

i e

2 2

^^1 +7^ +f +(kV ^? ^ (18)

<V "b uj2 1CT s (k^)"1 ^8/2 [
^ cu2-n2 JUJ

1

The electron cyclotron term in D has been simplified in the anticipa-

tion that uj ~ ox. The resulting dispersion relation is

.2, 21+jji *2^4 1(1 iV^r x2(x-l) fh
D 1-0X./UX, ~ J2_2 L2 x-1 U 2 x-x, L ^ _,„ /,., U.2_n2/iV J

(19)

'ox 2 2/2 x-1 be 2 x-x^ L - / w 2 „2 / 2,-T) x -U3£H/o^ 0 (l-uj^/uJr))(x -ni/(0[J

r~) O P P

where WTTT —uj . /(l + uu /0 ) and now
LH pi pe e

s (1 - A + Buj7ox)/(1 - A + 0) (20)xQ = U - A + B^/oUp

with o 2 2
2 ,_ uj . uj

_ UJ

A = ~2~\2 L _ _
c k Q. -u> Q uj

l e

r UJ . UJ -i

[l +^g +~H ^-ujjtuj-a^j (21)



In the limit oj « Q. equations (18-20) revert to the previous ex

pressions (11-13). Before studying this dispersion relation, it is

instructive to consider the limit 0. « uj « ox„, for which (19)

becomes

2 2 2
(i) . k L 2 r x-1 /jx-uj \2n
_Ei D = JL. [I + I _2_ (JL )1 (22),2 1^7% 1-x Lx +2x-xQ \^-%J J [^}

The equilibrium property 0uj^/ox = -2 implies that

& •m2 -*
The righthand side of the dispersion relation is shown in Fig. 2. Now

we find only stable roots for x < 0, a consequence of the fact that

the dielectric constant has changed sign for frequencies between 0.

and oXjt-

These simple limits, uj « Q. and to » Q., incorporate most of the

features of the full dispersion relation (19)- For ltjx/Q.| —1, the

dispersion relation must be treated numerically. We find that the growth

rate goes to zero when |ux/^.I exceeds unity by a complicated factor

P 2 2 2 2 2
which involves ux/c k . (uVr/0 ^ is a coupling factor which appears

in T)-., = 0 or x = x_. We observe that the growth rate goes to zero
EM 0 & &

when the roots of T)-., = 0 become real.) In Fig. 3 we show the growth
EM D b

1 crate versus 0 for several choices of the parameter D = — ? . Here
2 r n

Q

guided by the ELMO series of experiments, we have set

uj2 /Q2 = 1 ; |d^p/dx|/r = 0.2 .
pe e

The mode number, JL, was taken to be 2. Under these circumstances
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X = ^P

|ox/n.| =9.2 x103 D02

It must be noted that when these modes are stabilized, |u>/oxl — 1

so that our neglect of the dispersion in the drift speed is questionable.

However, inclusion of this effect and a more careful inclusion of ion

gyroresonance effects does not seem likely to give rise to any rapidly

growing waves, although some microscopic instabilities may be possible.

This question is under continuing study.

In conclusion, we have used a Vlasov description of a simple plasma

equilibrium to exhibit a low-frequency mode which, like the ballooning

modes of variational analyses, is not stabilized by the "magnetic well"

produced by the plasma diamagnetic currents. However, the characteristic

frequency of the unstable wave is around the guiding-center drift fre

quency; and in a hot-electron plasma of moderate size, this frequency

may easily exceed the ion gyrofrequency, thus invalidating the MHD

description. From the Vlasov analysis it appears likely that the

present modes may in fact be stabilized in such a high-frequency regime.

Finally, one should notice that a "ballooning" character is suggested

for the present instabilities by Ampere's Law, in that although cp may

be maintained nearly constant in z by the rapid flow of electrons along

field lines, the fluctuating magnetic field, B,, is allowed a signifi

cant variation in z-dependent equilibria. This aspect becomes apparent

when the present slab model is generalized to axisymmetric equilibria

with curved magnetic lines of force. Alternatively, the relation of

the present instability to the traditional ballooning modes can be
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established through detailed comparison of the normal mode calculation

and a parallel variational analysis. This is treated in a separate

paper.
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Fig. 1 Stability boundaries in the low frequency regime.
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Growth rate as a function of plasma pressure, 0,

2 2 2
for several values of the parameter D = c /(2r Q ).
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