
CENTRAL RESEARCH LIBRARY.

ORNL-TM-4585
II III II

3 W5b D555T07 1 V
i «nAn«Tfir>viiDn«Dicci

ENERGY CONTAINMENT AND

SCALING IN TOKAMAKS

(The Phylogony of a Tokamak Discharge)

J. F. Clarke

OAK RIDGE NATIONAL LABORATORY

CENTRAL RESEARCH LIBRARY

DOCUMENT COLLECTION

LIBRARY LOAN COPY
DO NOT TRANSFER TO ANOTHER PERSON

If you wish someone else to see this
document, send in name with document
and the library will arrange a loan.

UCNI-7969

(3 3-67)

OAK RIDGE NATIONAL LABORATORY
OPERATED BY UNION CARBIDE CORPORATION • EOR THE U.S. ATOMIC ENERGY COMMISSION



This report was prepared as an account of work sponsored by the United
States Government. Neither the United States nor the United States Atomic

Energy Commission, nor any of their employees, nor any of their contractors,
subcontractors, or their employees, makes any warranty, express or implied, or

assumes any legal liability or responsibility for the accuracy, completeness or

usefulness of any information, apparatus, product or process disclosed, or

represents that its use would not infringe privately owned rights.



ORNL-TM-4585

Contract No. W-7405-eng-26

THERMONUCLEAR DIVISION

ENERGY CONTAINMENT AND SCALING IN TOKAMAKS

[The Phylogony of a Tokamak Discharge]

J. F. Clarke

L. A. Artsimovich Memorial Lecture

Presented at the American Physical Society Meeting
Division of Plasma Physics
Philadelphia, Pennsylvania
October 30-November 3, 1973

MAY 1974

NOTICE This document contains information of a preliminary nature
and was prepared primarily for internal use at the Oak Ridge National

Laboratory. It is subject to revision or correction and therefore does

not represent a final report.

OAK RIDGE NATIONAL LABORATORY

Oak Ridge, Tennessee 37830
operated by

UNION CARBIDE CORPORATION

for the

U.S. ATOMIC ENERGY COMMISSION

3 HHSh QSSSTD? 1





Artsimovich Memorial Lecture

Presented at the APS-DPP Meeting, Philadelphia, 10/30-11/3-73

ENERGY CONTAINMENT AND SCALING IN TOKAMAKS

[The Phylogony of a Tokamak Discharge]

J. F. Clarke

Oak Ridge National Laboratory
Oak Ridge, Tennessee

The topic of energy containment and scaling in Tokamaks is an appro

priate one for the Artsimovich Memorial Lecture because it was Academician

Artsimovich who provided two fundamental insights in this area which have

enabled us to draw conclusions from the experimental results. In this

Lecture we shall first examine the electron energy balance as it is ob

served in Tokamak experiments and will show that the qualitative depend

ence of electron energy containment on plasma parameters is a result of

microscopic energy transfer by a diffusion process which can be charac

terized by the pseudoclassical diffusion coefficient. This coefficient

has the form of an effective collision frequency multiplied by the po-

loidal gyroradius squared. We will then address the question of ion

energy balance as observed in the experiments and conclude that the ion

energy containment in Tokamaks is the result of a balance between elec

tron heating and the loss processes of charge exchange, particle diffu

sion and neo-classical ion thermal conductivity.

Measurements of time dependent electron and ion density and tempera

ture profiles in individual discharges with precisely defined initial

condition provide the most informative data for evaluating our theoretical

models of Tokamak plasma behavior. Such studies form the basis of the

ontogeny of a Tokamak discharge.1 Unfortunately, these studies are as
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yet incomplete and we will adopt an alternative approach in this lecture.

We will examine the variation of the poloidal beta, the energy containment

time, and the peak ion temperature, which are parameters describing the

gross behavior of Tokamak discharges, as observed on several different

Tokamak experiments over a wide range of initial conditions. The para

metric variation of these quantities provides an indication of the nature

of the major energy transfer processes in Tokamak devices. This study

constitutes a phylogony of Tokamaks.

I. SCALING WITH PSEUDOCLASSICAL THERMAL CONDUCTIVITY

First, let us turn to the question of the electron energy balance.

When Academician Artsimovich considered this problem he assumed that the

energy input to the electrons from ohmic heating was balanced by an energy

loss by means of electron thermal conductivity.2 This balance is

mv \ 13 8T

J2 = rn^ — (1)
e2n/ r 3r & 6 3r

where we have written the plasma resistivity in terms of its constituent

parts in order to emphasize its dependence on the electron collision fre

quency v. In order to arrive at the parametric dependence of the electron

thermal conductivity k Academician Artsimovich replaced the derivatives

on the right hand side of Equation 1 by a scale length which we denote

here by a constant cq multiplied by the radius of the plasma a. This

yields



(x)
n T k

j2 = _e_e_e (2)

(C0a)2

In solving for the electron thermal conductivity we arrive at Equation 3

16 C-20
vp 2 (3)

V P

where we have defined the 6 as the energy content of the plasma divided

by the square of the magnetic field due to the plasma current. The funda

mental insight of Academician Artsimovich consisted in noting that the

experimentally measured values of beta poloidal were approximately con

stant and equal to 1/2.3 If we take beta poloidal in Equation 3 equal

to a constant we arrive at an electron thermal conductivity coefficient

which has the pseudoclassical form of collision frequency times the po

loidal gyroradius squared. The constant in the expression for the elec

tron thermal conductivity was determined by using the experimentally

determined electron temperature gradient in Equation 1 along with an

electron thermal conductivity coefficient of the pseudoclassical form.

This procedure gave a coefficient of 10.

k = 10 vp 2 (4)
e p

At roughly the same time that Academician Artsimovich proposed the pseudo-

classical form for the electron thermal conductivity, Yoshikawa4 proposed

a particle diffusion coefficient with the same pseudoclassical form.

D * vp 2 (5)
pc Kp



This particle diffusion coefficient was based on a theoretical analysis

of the effect of drift modes on particle transport rather than on an

analysis of the experimental observations and the coefficient was left

undetermined.

If we accept for the moment that the electron energy loss from the

plasma is determined by a thermal diffusion process with a diffusion

coefficient of the pseudoclassical form how will the experimentally ob

servable parameters vary? There are two experimentally observable param

eters whose behavior is most obvious. First, the poloidal beta must be

a constant. Secondly, the gross energy containment time should be given

by the scale length (cga)2 divided by the pseudoclassical diffusion co

efficient. From this we conclude that the gross energy containment time

should scale like T '•' I. In fact, neither of these consequences of
e M

pseudoclassical diffusion is observed in the experiment. At the time of

his original analysis, Academician Artsimovich noted that there were

deviations from constant beta poloidal in the experiment and over the

years the most commonly quoted scaling law obtained from the Russian ex

periments is given as energy containment time proportional to the plasma

current. Thus, on the surface there appears to be a contradiction be

tween the results of experiments and the predictions of pseudoclassical

scaling. On the other hand, simulation of plasma behavior through use

of computer codes using these pseudoclassical diffusion coefficients has

been quite successful in describing the results of individual experi

ments.5'7 This is illustrated in Figures 1 and 2. In these computer

simulations the coefficient of the electron thermal conductivity is taken

to be 3, whereas the coefficient of the electron particle diffusion is



taken to be 10. Therefore, for similar temperature and density gradients,

the best fit to the experimental data is obtained by assuming that par

ticle diffusion and not electron thermal conductivity is the dominant

energy loss process from the electrons. In the rest of this section we

will show that the dominance of pseudoclassical particle diffusion over

pseudoclassical thermal conductivity will lead naturally to the conclusion

that beta poloidal is a variable and that the electron energy containment

time should scale with the current as observed in the experiments and

the computer simulations.

Figure 3 shows a compilation of data taken from four Tokamak experi

ments, two in the Soviet Union and two in the United States.8»9»10>u

The vertical axis represents the plasma energy content per unit length.

The horizontal axis is the plasma current. On such a plot, beta poloidal

equal to a constant is represented by a straight line. As is obvious

from the data, there is a significant departure of beta poloidal from the

constant value of a half. In fact, this departure from a constant value

of beta poloidal is not random.and Figure 4 shows the parametric depend

ence of the variation of beta poloidal. These data were taken on the

ORMAK experiment12 and they show that beta poloidal is a linear function

of density and is inversely related to the current flowing in the plasma.

Similar data have been obtained on the T-49 and ST13 experiments.

II. SCALING WITH PSEUDOCLASSICAL PARTICLE DIFFUSION

To see how such a dependence can result from pseudoclassical diffu

sion we will assume that the pseudoclassical particle diffusion dominates
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the energy loss of the electrons in the plasma. The electron energy

balance is then represented by

13 3n

-rrTD —• = nJ2 (6)
r 3r e pc 3r

However, unlike the situation described by Equation 1, in which electron

thermal conductivity dominates the electron energy balance, we must now

simultaneously satisfy particle balance. Here the particle balance is

maintained by the ionization of neutral particles in the plasma.

— -r— rB — n = n„n <a.v > (7)
r 3r pc 3r e 0 e l e

Equations (6) and (7) can be simultaneously satisfied if we use Equation

7 to define a density gradient scale length r . Replacing the derivatives

in Equation 7 by the scale length r we obtain

D n

= n n <ct.v > (8)
pc e

r 2
n

which can be solved for the r :
n

0 e i e

r„- /-is— („
n <a,v >
0 i e

Notice that now, rather than being a constant, the scale length for the

diffusion process is itself a function of the diffusion coefficient and

also of the neutral density within the plasma.

The variation of the density scale length to be expected in the

experiments is illustrated in Figure 5 which shows the variation in the



plasma density profile as current is varied for a fixed particle source.

Referring to Equation 9 we can see that as the particle diffusion coeffi

cient is reduced by increasing the plasma current, the scale length of

the density gradient decreases, thereby leading to an increase in the

diffusive energy loss described by Equation 6. From Equation 6 it is

obvious that a change in the density gradient is just as important in the

energy balance as a change in the diffusion coefficient.

Let us define the pseudoclassical diffusion coefficient in the form

given by

D = Cav ,p 2 (10)
pc ei p

where alpha is the resistivity anomaly factor and v . is the electron ion

collision frequency and C is a constant. Then using this definition of

the pseudoclassical diffusion coefficient in Equation 6 and replacing

the derivatives with our density scale length defined by Equation 9, we

can solve for the energy content of the plasma n T . The result is

r JB

n T = -^-E (11)
6 e ^2~C

Since we are interested in the poloidal beta variation, which is measured

experimentally, we must average this plasma energy content over the volume

of the plasma. Replacing r in Equation 11 by its definition from Equa

tion 9 and averaging over the volume of the plasma, we arrive at

lO4 /»1 xdx /an

/ e. 1 - — J T1/* JV
0 e

/
e e /

V <o\v >
i e

' n0
(12)



The mean ionization rate <a.v > is approximately a constant for a wide

range of electron temperatures. The remaining parameters T , the current

density j, and n /n are all functions of space within the plasma. Nor

malizing each of these quantities to its peak value gives

I n (0)al/2
<n T > = - — G (13)

T (0)1/"
e

where I is the plasma current and G is a geometry factor depending on an

integral over the profiles. This integral is defined by

Where

1.4 x_ip-15 r1..... vi \l7V * y/2
,2 /G- ^ XXU xdx J ±-Y (-2- (14)

iraz Jn \T / \nn
0 e 0 e

A = A(r)/A(0)

We might expect this geometry factor G to be approximately constant since

the first term in the integrand is the normalized current density whose

integral over the cross section of the plasma equals a constant and since

the remainder of the integrand is seen to be a slowly varying function.

The unnormalized product of neutral density and electron density nQ x ng

has been left in the geometry factor. This is done because experimentally

we have observed that this product is approximately constant. The theo

retical model and the experimental data which support this conclusion are

given in the appendix.

Dividing the plasma energy content given by Equation 13 by the po

loidal magnetic energy density at the limiter gives an expression for beta

poloidal:



n a1/2
g G _£ (15)
P IT1/4

e

Notice that the 8 obtained here does not depend on c the numerical co-
P

efficient of the pseudoclassical diffusion coefficient. Thus we see that

the dominance of energy loss by particle diffusion over pseudoclassical

electron thermal conductivity loss leads to a beta poloidal which is a

function of the plasma parameters rather than a constant value. Also the

particular functional form of D given in Equation 5 is not necessary
pc

to produce the particular parametric dependence of B seen in the experi

ments summarized in Fig. 4.

There are, however, other consequences of the dominance of particle

diffusion which do reflect the functional form of D given in Equation

5. Since we are assuming that the electron energy is carried out by

particles and since these particles must be replaced in the steady state

we conclude that the plasma energy containment time is given by the par

ticle ionization rate:

rE - Tp - nn <a,v > (16)
o i e

Now since we have shown in the appendix that the neutral density in the

central region of the plasma has a dependence

nQ(a)

e

we conclude that the energy containment time in the plasma should be pro

portional to the electron density



10

<te> cc <ne> . (18)

Now using our definition of the density scale length r we can write an

equation for the electron density gradient in terms of the plasma param

eters :

3n n /n <a,v >

^ =+- =+» / n (19)3r r e / D v '
n v pc

Integrating this equation from the plasma surface to its center gives

the dependence of the plasma electron density on the plasma parameters.

This dependence is

lAT

n (0) - i _e—_ (20)
6 a1/2

Then combining Equation 18 and Equation 20 we are led to the conclusion

that the plasma energy containment time should be roughly proportional

to the plasma current with a weaker dependence on the temperature and

the anomaly factor

T
e

iA

l/2~
<te> al —7— (21)

a

To summarize, a simple analysis of the electron energy balance when

it is dominated by pseudoclassical particle diffusion gives the scalings
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n a1/2
S = G — —- (a)
P ! T l/n

e

1/4T

xp - n -~- (b) (22)E e al/2

n « I (c)
e

where 22(b) and (c) hold at constant surface neutral density. All of

these effects are in fact seen experimentally. A comparison of the data

from the ORMAK experiment with the scaling indicated by Equation 22a is

shown in Figure 6. The experimental data can be fit with only a 25%

variation in the geometry factor. A further check on the scaling shown

in Equation 22a can be obtained by using our plasma simulation computer

code. Figure 7 shows the results of such a calculation. The external

neutral density was fixed and the plasma current was varied. The figure

shows the value of beta poloidal obtained for currents ranging between

60 and 160 kiloamperes plotted as a function of the scaling parameters

of Equation 22a. The expected linear relation is evident. In this cal

culation the anomaly factor alpha was assumed to originate from the

presence of impurity ions in the plasma and we assumed that the effective

Z of these impurities was a constant.

Figure 8(a) shows data taken on the T-4 experiment under conditions

in which the current flowing in the plasma was held constant and the

density was varied by changing the initial gas filling. The linear re

lationship between the energy containment time and the average plasma
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density predicted by Equation 22(b) is evident. In these experiments

the resistivity anomaly factor was observed to vary approximately as 1/n

and the electron temperature varied approximately as l/n 1'2, With these

dependences included in Equation 22(a), we would expect the 3 to vary

approximately as n . The experimentally measured 3 is in agreement

with this expectation and is shown in Fig. 8(b).

The relationship predicted by Equation 22c is compared with experi

ment in Figure 9. From the figure we can see that the density is pro

portional to current if the external neutral pressure is maintained

approximately constant. Deviations from this linear relationship are

noted when the external pressure is varied. As mentioned in the appendix,

our neutral particle measurements indicate a linear relationship between

the neutral density outside the plasma during a discharge and the initial

filling pressure pq. Thus we interpret the data in Figure 6 to mean that

the electron density is proportional to the current in the plasma when

the external neutral density is maintained constant. Since the propor

tionality between the plasma density and the plasma current is derived

using the functional form of pseudoclassical particle diffusion given by

Eq. 10, this data constitutes experimental evidence for pseudoclassical

particle diffusion.

Figure 10 shows the relationship between the gross energy contain

ment measured on various experiments8'9'1^'11 and the current in those

experiments. There is a rough linear relationship between these qualities

as predicted by the combination of Equations 22(b) and (c).

The large scatter of points about the line, x proportional to I,

reflects the occurrence of several phenomena which are not reflected in
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the simple scaling given by Equation 22. First, among these is the fact

that in the experiments the surface density of neutral particles is not

controlled. Secondly, as the current in an experiment is varied, the

resistivity anomaly coefficient is observed to change.11* This can be

due either to a variation of the impurity content in the discharge or to

the occurrence of microscopic turbulence15 which increases the electron

scattering rate although specific mechanisms for the generation of this

turbulence are lacking.16 The third phenomenon depends somewhat on the

first two. This is the contribution of the electron thermal conductivity

to the loss of energy from the plasma. As the neutral density and the

anomalous resistivity in the discharge vary with current, the electron

temperature profile will itself begin to vary and consequently the amount

of energy flowing through the electron thermal conductivity channel will

be a function of the plasma current. The physical argument leading to

the scaling shown in Equation 22 is based on the assumption that particle

diffusion is always the dominant energy loss mechanism. The computer

simulation of the plasma operation shows that this is not entirely correct

and we would expect some variation from the linear relationship between

energy containment time and current such as is shown in Figure 10. In

general, however, the simple scaling law based on the dominance of pseudo-

classical particle diffusion seems to reflect the gross trend of the

experiments. The individual points shown in Figure 7 can be reproduced

by the computer simulations which do include the effect of electron

thermal conductivity and an anomaly factor determined by the resistivity

anomaly in that particular experiment. The scaling of n& and xg with

current obtained from these computer simulation calculations is shown in
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Figure 11. In these simulation calculations the resistivity anomaly was

taken to be due to the presence of impurity ions and was thus fixed as

current was varied. The neutral density external to the simulated plasma

was also taken to be fixed. Under these idealized circumstances the

scaling of x and n is in agreement with that predicted by Equation 22

and suggested by the data shown in Figures 6 and 7.

As a summary to this consideration of electron transport and scaling

in Tokamaks, we can state that both the gross scaling of the plasma

parameters and their quantitative values in particular experiments can

be understood in terms of electron heat conduction and particle diffusion

governed by pseudoclassical transport if one takes into account the var

iation of plasma resistance and neutral particle density in the experi

ments. We do not have any experimental evidence as to the nature of the

process responsible for pseudoclassical diffusion nor do we completely

understand the origin of the plasma resistivity anomaly. The former may

be due to drift wave turbulence as suggested by Yoshikawa and the latter

may be partially explained by the presence of impurity ions in the dis

charge.17 Certainly further work is necessary to increase our understand

ing of these phenomena.

III. ION ENERGY BALANCE

Let us now turn to a consideration of the ion energy balance in the

plasma. As in the case of the electron energy balance, Academician

Artsimovich provided us with a fundamental insight which aided in a simple
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conceptualization of the problem. He noted18 that for the range of param

eters ordinarily encountered in Tokamak discharges, the energy flow from

the electrons to the ions, Q .,
ei

%± ' 3 S nVei<Te " V <23>

could be simplified to

i

so that it depended only on the electron density and the ion temperature.

This energy input to the ions is balanced by the loss processes of charge

exchange, particle diffusion and ion heat conductivity. The first of

these loss processes, Q , can be roughly written as 19

Q ^ nnn. a v T. (25)
ex — 0 l ex l

If we were to equate this energy loss to the energy input from the elec

trons as written in Equation 24, we would find that the expected ion tem

perature depends only on the ratio of electron density to neutral density

as shown in Equation 26.

T. a (n /n.W2 (26)
l e 0

This quantity n /n. has been given the name plasma quality by those work

ing on target plasmas because it is a measure of the neutral shielding

property of the plasma.

The next energy loss process for the plasma ions is by particle

diffusion, which is described by
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QD =* 'TiVn (27)

As was the case with electron energy loss through particle diffusion, we

can make use of the fact that in the steady state this particle loss must

be balanced by a particle source. Therefore, we can replace Equation 27

by the approximate relation given in Equation 28.

% S n0ne <0iV Ti (28)

If we equate this ion energy loss to the energy input from the electrons

given by Equation 24, we find that, as in the charge exchange dominated

case, the ion temperature attained depends only on the plasma quality:

T. a (n /n )2/3 (29)
l e 0

Therefore, we see that if charge exchange and particle diffusion were

the only energy loss processes for the plasma ions the ion temperature

attained would depend only on the plasma quality variable.

The third ion energy loss process is ion heat conductivity. This

loss obeys Equation 30

QT = V • n.KiVT. (30)

where k represents the ion thermal conductivity coefficient. The object
i

of experiments on the ion energy balance is to determine the form of this

thermal conductivity coefficient. The theoretical prediction of the form

of k has gone through an evolutionary process in recent years. This is
i

summarized schematically in Figure 12. A calculation of ion heat conduc

tivity in the absence of toroidal effects gives an ion heat conductivity
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proportional to the ion collision frequency v multiplied by the ion gyro-

radius squared. This is indicated by the dashed line in Figure 12. The

inclusion of toroidal effects produces enhanced diffusion with a scaling

that depends on the value of the collision frequency v. In the colli-

sional or Pfirsch-Schliiter20 regime the classical heat conductivity is

enhanced by the square of the inverse rotational transform q. At inter

mediate values of the collision frequency Galeev and Sagdeev21 derived

a heat conductivity which was independent of the collision frequency.

At still lower values of the collision frequency21 the heat conductivity

was predicted to have a scaling similar to that in the Pfirsch-Schliiter

regime enhanced by the 3/2 power of the inverse aspect ratio e. The

most recent calculation of the ion thermal conductivity by Hinton and

Rosenbluth22 spans the region between these two asymptotic regions.

The asymptotic form of the thermal conductivity coefficient pre

dicted by the theory of Galeev and Sagdeev is shown by the upper dashed

line in Figure 12. The correct form for the thermal conductivity coef

ficient in the intermediate range of collision frequency between the

collisionless and the plateau regime obtained by Hinton and Rosenbluth22

is shown schematically by the solid line in Figure 12. Tokamak experi

ments operate in the range of collision frequency between the collision-

less and the plateau regime and therefore the theory of Hinton and

Rosenbluth is the appropriate theory to use in describing these experi

ments. However, when Academician Artsimovich first considered the prob

lem of ion energy balance in Tokamaks he had available to him only the

theory of Galeev and Sagdeev. Using this theoretical expression for k,

and replacing the gradient operators in Equation 30 by a scale length
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he obtained an expresssion for the ion thermal conductivity loss Q .

Equating this loss to Q . gave an expression for the ion temperature

scaling in the experiment in the absence of particle diffusion and charge

exchange. This scaling is

T. a Vn I Galeev-Sagdeev (31)
1 e °

Since the losses due to charge exchange and particle diffusion depend

on the plasma quality it is justifiable to neglect these loss processes

when the plasma quality is sufficiently high. However, the plasma quality

is not large enough to justify this assumption in all regimes of Tokamak

operation. Therefore we might expect deviations from the scaling indi

cated by Equation 31 as the plasma quality is varied. In addition, as

is clear from Figure 10, the Galeev and Sagdeev expression for the ion

thermal conductivity is larger than the more recent theory of Hinton and

Rosenbluth would indicate. If we use the Hinton-Rosenbluth prediction

of k, in Equation 30 we find in fact that the ion temperature is inde

pendent of electron density and depends on plasma current in the form

T. a I2/3 Hinton-Rosenbluth (32)
l

For the range of collisionality23 covered by the experiments, Figure

13 shows the scaling of ion temperature with plasma quality and current

predicted by Equations 26, 29 and 32. Since Equation 32 does not depend

explicitly on the plasma quality the thermal conductivity losses are

indicated on the figure as ion heat conduction asymptotes. It is clear

that no one loss process taken by itself is able to explain the observed

ion temperatures. However, the sum of the three loss processes equated
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to Q gives a prediction for the ion temperature as a function of the

plasma quality shown by the solid curves in Figure 13. There is reason

able agreement between these curves and the experimental data points.

We conclude from this agreement that the ion heat conductivity in

the experiments is in reasonable agreement with the predictions of Hinton

and Rosenbluth. On the other hand, Figure 14 shows ion temperature data

obtained on the Russian experiments T-3 and T-4 plotted against the

Artsimovich scaling parameter indicated in Equation 31.24 Here we appear

to have agreement between the data and the predictions of an archaic

theory ignoring the effects of charge exchange and particle diffusion.

The apparent contradiction between the models represented by Figure 13

and Figure 14 can be removed by recalling that the electron density is

itself a function of the plasma current as shown in Figure 9 and Figure

11. If we, therefore, replace the density in Equation 31 by a constant

times the current we see that the Artsimovich scaling gives a dependence

of the ion temperature on current which is essentially the same as that

obtained from the Hinton-Rosenbluth theory in Equation 32. Thus to the

extent that n a I, Figure 14 shows, in effect, a plot of the ion temper

ature vs current to the 2/3 power which is exactly the dependence to be

expected from the theory of Hinton and Rosenbluth. The data in Figure 13

also show this current dependence and in addition the dependence of the

ion temperature on the plasma quality.

This interpretation of the relationship shown in Figure 14 can be

confirmed with our pseudoclassical plasma simulation code. This code

uses the Hinton-Rosenbluth form of the ion thermal conductivity. The

ion temperatures obtained from this calculation are shown in Figure 15
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as a function of the Artsimovich scaling parameters. The linear rela

tionship obtained is just that found in the experimental data of Figure

14. Thus, we conclude that both the ORMAK experiment and the T-4 experi

ment produce ion temperatures which are consistent with the ion thermal

heat conductivity as defined by Hinton and Rosenbluth.

IV. SUMMARY AND CONCLUSION

The general agreement between the experimentally observed plasma

behavior in a variety of different Tokamaks and the predictions based on

microscopic pseudoclassical and neo-classical diffusion coefficients can

be taken as evidence that at least to the extent that the current theory

of trapped particle instabilities25 is valid, these theoretically pre

dicted instabilities have not yet appeared in the experiment. The largest

unknowns in our picture of the plasma behavior in Tokamaks are the mech

anism producing pseudoclassical diffusion and the cause of the resistance

anomaly, in so far as this anomaly cannot be attributed to the presence

of impurity ions.
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Appendix I

NEUTRAL PARTICLE BEHAVIOR IN TOKAMAKS

Although the density of neutral particles in Tokamaks is a small

fraction of the plasma density, typically a few parts in 105, these par

ticles are responsible for physical effects which greatly modify the

behavior of the plasma. In order to understand the way in which neutral

particles contribute to the dynamics of the plasma we must develop a

theoretical model describing the behavior of the neutral particles them

selves. The source of neutral particles is the wall bounding the plasma.

This wall can emit neutral particles chemically adsorbed in the period

before the creation of the plasma. It can also emit neutral particles

under the impact of the various types of radiation emanating from the

plasma. If the neutrals emitted from the wall have energies such that

their mean free path for absorption is small compared to a typical plasma

dimension they will penetrate only a relatively thin surface of the

plasma. However, because this thin surface layer contains plasma ions

with some temperature T., those neutrals that are absorbed by charge

exchange give rise to a second generation of neutrals with energies char

acteristic of the surface ion temperature. These neutrals typically

penetrate farther into the plasma than the colder, first generation

neutrals. Subsequent charge exchange reactions with even more energetic

ions in the interior of the plasma produce faster neutrals.

This process is schematically outlined in Figure Al. On the left

of the Figure we show the wall emitting neutral hydrogen atoms and mole

cules. The hydrogen molecules are stopped by ionization in a few milli

meters of the plasma. Because the H2 ion carries a certain amount of
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vibrational energy the neutral atoms produced by dissociate ionization

have energies ranging from 1 to 10 eV.26 The neutral hydrogen coming

from the wall can be produced by the reflection of charge exchange par

ticles emitted from the plasma and consequently can also possess nonneg-

ligible amounts of energy.27 In either case, our model envisions a flux

of moderately energetic H0 entering the plasma. These warm neutrals with

energies between 4 and 30 eV produce second generation neutrals by charge

exchange. A solution of the neutral transport equation shows that these

secondary neutrals have mean energies typically 1/6 of the local ion

temperature.

The Boltzmann equation given in the Figure describes the evolution

of the energetic neutral distribution function fg. The integral term in

this equation describes the interchange of particles between the plasma

ion distribution function and the neutral distribution function. The

second term describes the loss of fast neutrals due to ionization by

plasma electrons. The third term describes the source of fast neutral

particles due to the influx of the first generation neutrals from the

plasma surface. For reasons which will become clear we have assumed

that these first generation neutrals are produced by the dissociative

ionization of H2 ions which result from the influx of H2 molecules.

This dissociative ionization process is frequently referred to as Frank-

Condon dissociation and the neutrals resulting from this dissociation

as Frank-Condon neutrals. The results of our neutral particle transport

calculation will be found to be insensitive to this choice of a particular

model describing the origin of the first generation neutrals. °
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The transport equation shown in the Figure can be solved analyt

ically by making certain simplifying assumptions. A more accurate solu

tion which includes the spatially varying electron density and ion

temperature of the plasma can be obtained numerically. An approximate

solution29 for the neutral density at the center of the plasma shows that

this central neutral density has the characteristic form shown in the

Figure. There are three dominant dependences which are most evident.

The central neutral density is proportional to surface density of Frank-

Condon neutrals. Secondly, the central neutral density is inversely

proportional to the plasma electron density. And thirdly, the central

neutral density is related in an exponential manner to an average plasma

scale length divided by a mean free path for adsorption. The first two

dependences result from the fact that the central neutral density is pro

portional to the number of neutrals in, and the thickness of, the surface

layer which is the ultimate source of all neutrals in the plasma. The

thickness of this surface layer is inversely proportional to the electron

density; hence the 1/n dependence. The exponential factor is a reflection

of the fact that neutrals originating in this surface layer are attenuated

on their way to the plasma center. The exact numerical solution of the

neutral transport problem which includes the self-consistent electron

density and ion temperature profile gives the result that the Franck-

Condon density Nf times the attenuation factor is approximately constant

over the range of plasma operation in the ORMAK device. Consequently,

the neutral density in the plasma core is roughly given by 1/n . The

experimental data illustrating this behavior is shown in Figure A2.
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The solid lines in the Figure show the result of a numerical solu

tion of our transport equation. These lines indicate the ratio of the

central neutral density normalized to the surface Frank-Condon neutral

density as a function of the plasma electron density for different values

of the plasma ion temperature. These curves are obtained using typical

electron density and ion temperature radial profiles. The experimental

data shown in the Figure were obtained by measuring the charge exchange

flux T emerging from the surface of the plasma as indicated in Figure Al.
ex

This neutral flux was energy-analyzed in a neutral particle spec

trometer. The number of neutral particles detected in each energy channel

of the spectrometer was matched to that predicted by our numerical solu

tion of the neutral particle transport equation using the experimentally

determined electron density profile, the central ion temperature deter

mined from the slope of the measured neutral particle flux and an assumed

ion temperature profile consistent with the predictions of our plasma

simulation codes. The surface neutral particle density was varied until

agreement was obtained between the measured counts in each channel and

the numerically predicted result. This procedure results in a self-

consistent neutral particle profile across the plasma. It is superior

to the traditional method of estimating neutral particle density from

the measurement of the neutral flux emerging from the surface of the

plasma in that it automatically accounts for the attenuation of the

neutrals produced in the center of the plasma as they travel from the

center to the surface. The experimental points shown in Figure A2 can

be very well fit by the relationship ng <* N /n and the deviation from

this simple relationship is due to the ion temperature dependence in the

attenuation factor shown in Figure Al.
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Figure A3 shows the central neutral density as a function of electron

density obtained from our plasma simulation computer code. This code

solves the complete set of transport equations for the plasma density,

the electron temperature, and the ion temperature as a function of radius.

It also produces a simultaneous solution of the neutral transport equation

given in Figure Al. The solid line in the Figure shows the variation of

the central neutral density with plasma electron density when the surface

Frank-Condon density is maintained constant. The variation in n was
e

produced by varying the total plasma current in the calculation. Since

the pseudoclassical particle diffusion coefficient, the pseudoclassical

electron thermal diffusion coefficient and the neo-classical ion thermal

diffusion coefficient were used in this computer simulation the solid

line in Figure A3 represents the self-consistent neutral density varia

tion to be expected in a pseudoclassical plasma. The dotted line repre

sents the variation of the central neutral density predicted by the

simple relation n„n = a constant. All of the data shown can be fit with
0 e

a relation of this type with only an 8% error over the range of densities

shown. This is in substantial agreement with the variation of the experi

mental data shown in Figure A2.

Figure A4 shows a calculation of the energetic neutral density nor

malized to surface Frank-Condon density as a function of radius in the

ST Tokamak. The variation shown in this Figure is typical of that seen

in other Tokamaks. The various curves shown in the Figure illustrate

the effect of impurity ions in the plasma on the profile of neutral hy

drogen. From the second equation of Figure Al we can see that impurity

ions in the plasma will modify the neutral profile in two ways. First,
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since the presence of an impurity ion implies the absence of a number

of hydrogen ions equal to the impurities' charge, the contribution of

charge exchange in the attenuation factor will be reduced. On the other

hand, since the energetic neutrals are produced by a multiple resonant

charge exchange process this reduction in the hydrogen ion density will

decrease the production rate of energetic neutrals. The data shown in

Figure A4 reflect these two competing effects. These data indicate that

the balance is almost complete in the central region of the plasma in

that the neutral density in this region is essentially unaffected by the

presence of substantial numbers of impurities. However, the density of

neutral atoms in the surface layers of the plasma is reduced by the

presence of impurity ions in the plasma. Figure A5 illustrates the var

iation of the maximum and the central values of the hot neutral density

with impurity concentration for the ST and the ORMAK experiments. The

fact that the neutral density is insensitive to the fraction of impurities

over a large portion of the plasma means that measurements of the central

ion temperature and the central neutral density by charge exchange spec

trometers are insensitive to the presence of impurities. Furthermore,

the contribution of this neutral density to the energy loss from the

central region of the plasma will be unaffected by the presence of im

purities. On the other hand, since the hot neutral density in the sur

face layers of the plasma is quite strongly affected by the concentration

of impurities the energy loss from the surface of the plasma by charge

exchange will be significantly altered by the presence of impurities.

In the ORMAK plasma calorimetric probe measurements indicate that the

plasma energy, which flows to the surface by particle diffusion and heat
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conduction, is transferred to the walls of the device mainly by radiation

and charge exchange. Estimates3^ based on qualitative observations of

limiter heating in the ST Tokamak suggest that, at least under certain

conditions, the plasma energy is carried to the limiter by heat conduc

tion and is not transferred to the walls by charge exchange and radiation.

This difference might be explained by a larger surface impurity content

in the ST Tokamak since an increase in impurities would reduce the charge

exchange flux from the surface of the plasma and increase the diffusive

energy transfer.

In comparing theoretical models of the effects of neutral particles

on plasma behavior with experimental data, we are confronted by a dif

ficulty in that there is no direct measurement of the surface density

of neutral particles which provide the source of neutrals in the bulk

of the plasma. All of these theoretical predictions, based on a neutral

particle transport calculation, would be proportional to this surface

neutral density which we have labeled Nf . On the ORMAK experiment we

have observed that the surface neutral density, required to match the

predictions of our neutral transport calculations with the experimental

data, which we shall term Nf * has a definite relation to the filling

pressure of the device. Let us define a surface neutral density, Nf ,

in the following way:

Nfcm°del =8x109 (pQ/3 xlO"1*) cm"3 (Al)

where pg is the gauge pressure in torr. Equation Al represents a rela

tion between the surface neutral density and the initial filling pressure

which fits the general trend of our experimental data. Figure A6 shows
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the ratio of Nfc* to N as a function of filling pressure for the

ORMAK experiment. The standard deviation from unity of the data shown

is .1, showing a good statistical correlation between the surface neutral

density required to fit our measurements and the initial filling pressure.

Therefore, in general, we would expect experiments using a constant

filling pressure to approximate the results predicted by computer models

which fix the surface neutral density, although individual experiments

may deviate from this expectation. The physical process of neutral pro

duction, which is suggested by the data shown in Figure A6 is an evolu

tion of adsorbed gas from the wall of the chamber during the course of

the discharge. Since the data points shown correspond to a plasma cur

rent variation from 60 to 170 kiloamperes this gas evolution appears to

be relatively independent of the plasma energy content and, one would

surmise, of the direct interaction of the plasma with the wall. Because

of the equilibrium nature of this apparent gas evolution, we expect the

hydrogen to be in the form of H2 molecules and consequently we have

chosen the Franck-Condon dissociation process as the source of our first

generation neutrals rather than postulating a flux of warm hydrogen atoms

from the wall.

No data similar to that shown in Figure A6 is available from other

experiments, and it is quite possible that the particular dependence of

the surface neutral density on filling pressure suggested by the data

in Figure A6 is a relation peculiar to the ORMAK experiment. This could

be because the ORMAK experiment was designed with gold-plated liner in

contrast to the stainless steel liners employed in most other Tokamak

experiments. This liner material was chosen because of its low chemical
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activity with gases expected to be found in the experiment. As has also

been observed on other Tokamaks,31 approximately half of the gas ini

tially contained within the liner is adsorbed on the wall of the device

during the breakdown process. Thus there is ample gas on the wall to

supply the necessary neutral flux to the surface of the plasma. It is

quite reasonable to assume that the rate of this gas evolution from the

wall would be a function of the chemical bonding between hydrogen and

the particular wall material. Experiments or theoretical calculations

to clarify this situation would be quite welcome since we have shown

that the behavior of neutral particles in the plasma plays a very domi

nant role in the determination of the observable quantities in the plasma.
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plasma simulation code and the Boltzmann equation governing the transport
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