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ABSTRACT

Monte Carlo calculations have been carried out to determine the

depth dependence of the residual nuclei produced in tissue by a

negatively-charged pion beam. In addition, the depth dependence of

those residual nuclei which are 3 emitters and the photon energy

produced by tt° decay and nuclear de-excitation are computed since

these photon sources have been proposed as a possible means of

monitoring the treatment volume during radiotherapy using ir~ beams.

iii





1. INTRODUCTION

There are numerous potential advantages of using negatively charged

pions in cancer radiotherapy, and one of these is the possibility of

monitoring the treatment volume during patient irradiation. Several

methods have been proposed for mapping the spatial distributions of the

absorbed dose and stopping pions. These include the monitoring of

a) mesic X-rays ), b) y-rays from the annihilation of positrons emitted

by radioactive residual nuclei2), c) low-energy ('v few MeV) nuclear

de-excitation y-rays3), d) high-energy (^ 100 MeV) y-rays from

radioactive pion capture1*'5), e) high-energy (^ 70 MeV) photons from

tt° decay6, and Cf) neutrons7. The expected sensitivity, accuracy, and

spatial resolution of possible monitoring techniques have been discussed

by Sperinde et at.7).

In the present work the residual nuclei produced in tissue by a tt~

beam is estimated by means of calculation. In particular, the depth

dependence of those radioactive residual nuclei that are positron emitters

is obtained. Also, the depth dependence of the photon energy from nuclear

de-excitation and from ir° decay are computed and compared with the

absorbed dose variation with tissue depth. The calculations were made

using the HETC code8).

The method of calculation is described in Section II, and the results

are presented and discussed in Section III.



2. METHOD OF CALCULATION

The tt~ beam is taken to be incident uniformly over a circular area

2.5 cm in radius and normal to the tissue slab. The momentum distribution

of the beam is such that the number of tt~ captures per unit depth is

approximately constant between 12.5 and 17.5 cm. Monte Carlo calculations

using the code HETC have previously been made for this beam to obtain the

absorbed dose, LET spectra, and cell survival9). The magnetic tapes

containing the transport data generated by the HETC code in these previous

calculations9) have been further analyzed to obtain the results here on

residual nuclei production and photon-energy production. A detailed

description of the methods used by HETC to simulate the pion-nucleon

cascade is given in ref. 9, and the references given therein, and will

not be discussed here.



3. RESULTS AND DISCUSSION

Figure 1 shows the residual nuclei produced (over all radii) by all

non-elastic nuclear interactions for three depth intervals: in the

dose-plateau region (0-10 cm), in the tt~ stopping region (12.5-17.5 cm),

and beyond the stopping region (20-30 cm). These values include the

production from pion interactions in flight, from tt~ capture, and from

nuclear-interactions by all secondary particles, including neutrons down

to thermal energies.

It is noted from fig. 1 that the relative production of various

nuclides is similar at all depths. The relative production in the capture

region is similar to the production previously calculated10) for ir~

capture by tissue nuclei without the effect of nuclear interactions by

secondary particles included, with the main exceptions that the lkC

[produced predominantly from llfN(n,p) 11+C reactions by thermal and

near-thermal neutrons] production is much higher here and the 160

production [from (n,n'y) reactions] is higher here.

Those residual nuclei which are positron emitters are identified in

fig. 1. As found in the experiment of Taylor et at. 2) the main 8+

contributors are 150, 13N, and nC. The other 6+ emitters (lk0, 12N,

10C, and 8B) amount to only « 3% of the total (over all radius and depth)

production of nuclei that decay by g+ emission. About 1.8% of the

incident pions produced a 0 emitting nuclide in the it- capture region.
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Fig. 1. Residual nuclei (number of nuclei produced per incident
pion per unit depth interval) versus mass number. The curves connect
those nuclei having the same charge number.



It should be mentioned that in the calculations the Fermi-Teller

Z-law11) is used to determine the type of nucleus capturing the pion;

i.e., the probability of final capture by a nucleus of charge Z (excluding

hydrogen) is taken to be proportional to Z times the atom density of

Z-type nuclei. Deviations from the Z-law have been observed (e.g.,

ref. 12), and the use of some other method for determining the capture

probabilities could, of course, have some effect on the residual nuclei

production in the capture region.

Figure 2 shows the depth dependence of 8 emitting nuclei produced

within the radius of the incident beam (R = 2.5 cm) and produced over all

radii (R = °°). Also shown for comparison is the depth dependence of the

absorbed dose (from ref. 9) normalized to the R = °° nuclei production in

the 0-2 cm depth interval. The depth dependence of the 8 emitting

nuclei follows only very approximately the depth dependence of the

absorbed dose. Furthermore, because of the increasing radial spread of

the incident pions and secondary particles with increasing depth, the

depth dependence of the production of 8+ emitting nuclei within a radius

of 2.5 cm is quite different from the depth variation of the laterally-

integrated production. The local minimum in the production for R = 2.5 cm

near a depth of 10 cm is about a factor of 2 less than at the entrance.

Taylor et at.2) have measured the B+ activity as a function of depth for

a tt~ beam different from that considered here (and for beam diameter

and detector size that are unspecified in their paper), and find a

corresponding decrease of about a factor of 5. Taylor et at.2) attribute

this large decrease in the 8 activity in the dose-plateau region as

resulting from the energy dependence of the cross sections for pion
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Fig. 2. Depth dependence of 3+-emitting nuclei and absorbed dose.



interactions in the plateau region. However, it would seem that this

effect could in large part arise from geometric effects—i.e., if the

area of the incident beam is such that multiple scattering causes a

substantial fraction of the incident pions to scatter out of the incident

beam area and if the cross sectional area of the detector is of the same

order or smaller than the area of the beam, then a rather large decrease

in the 8 activity in the plateau region would be expected.

Figure 3 shows the laterally integrated depth dependence of the

absorbed dose, tt~ captures, photon energy production from nuclear

de-excitation, photon energy production from the decay of neutral pions,

and the production of 8+ emitting nuclei. All of these distributions

are normalized to unity at a depth of 15 cm. Absolute normalization can

be obtained as follows: the relative absorbed dose distribution in

fig. 3 times 1.72 x 10"7 gives the absorbed dose in rad/cm /incident

pion, the relative tt~ capture distribution times 1.34 x 10-1 gives the

number of it" captures/cm/incident pion, the relative de-excitation photon

energy times 8.23 x 10 gives the energy production in MeV/cm/incident

pion, the relative tt° energy distribution times 5.59 x 10_1 gives the

energy production in MeV/cm/incident pion, and the relative 8 -nuclei

distribution times 3.60 x 10"J gives the number of 8 -emitting nuclei

produced per cm per incident pion (same as in fig. 2). In computing the t,~

capture probabilities for each type of nuclide in the tissue, tt" capture

by hydrogen is not considered. Therefore, the photons from the decay of

neutral pions produced by ir~ charge exchange with hydrogen nuclei [a

reaction which occurs for 0.12% of the captures in water7)] are not

included in the energy production from tt° decay in fig. 3. The it" energy
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production can be converted to number production by using an average

energy per tt° photon of approximately 70 MeV. For the de-excitation

photons, the average photon energy produced per excited nucleus is about

4 MeV but because the emitted photon spectrum is rather complex (and not

computed) the conversion from energy production to number production is

not straightforward.
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