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SCALING RELATIONS FOR EDDY CURRENT PHENOMENA*

C. V. Dodd and W. E. Deeds**

Metals and Ceramics Division
Oak Ridge National Laboratory

Astract

Formulae are given for various electromagnetic guantities
for coils in the presence of conductors, with the scaling
parameters factored out so that small-scale model experiments
can be related to large-scale apparatus. Particular emphasis
is given to such quantities as eddy current heating, forces,
power, and induced magnetic fields. For axially symmetric
problems, closed-form integrals are available for the vector
potential and all the other quantities obtainable from it.
For unsymmetrical problems, a three-dimensional relaxation
program can be used to obtain the vector potential and then
the derivable quantities. Data on experimental measurements
are given to verify the validity of the scaling laws for
forces, inductances, and impedances. Indirectly these also
support the validity of the scaling of the vector potential
and all of the other quantities obtained from it.

Introduction

Scaling of eddy current nondestructive testing problems has been
used for many years, for both analytical calculations and experimental
measurements.!~7 In the analytical calculations, we reduce the con-
figuration to dimensionless ratios, perform all the calculations using
pure numbers, and only introduce dimensions in the final step. In the
experimental measurements, we perform the measurements on models that
are usually larger than the actual test so that the dimensions can be

more accurately controlled.

*Funding provided by the Superconducting Magnet Development Program of
the Thermonuclear Division.

**Consultant from The University of Tennessee, Knoxville, Tennessee.



We have started our analysis with the vector potential, and can
obtain closed form integral equations for it for many of the simpler
cases. These equations can be quickly evaluated on a small digital
computer.

For more complicated problems we must use a relaxation or finite
difference tecnnique, in either 2 or 3 dimensions. This technique
requires a large digital computer for numerical evaluation. Once the
vector potential has been determined for various discrete frequencies
it can be calculated for any piece-wise continuous wave-shape using
Fourier synthesis. From the vector potential any induction phenomenon
can be calculated. These calculations generally involve the numerical
evaluation of multiple integrals which involve functions of the vector
potential. As an alternative to numerical calculations, in many instances
we can use measurements on a model to evaluate the multiple integrals.

A number of successful designs have been completed using these

techniques.8-13



I. Single Frequency, Scaled Equations for the Vector Potential

An axially symmetric coil of rectangular cross-section above multipie
parallel planes is shown in Fig. 1. The closed form integral equation
for the vector potential produced by such a coil is, in the n-th region:

o€

1 J(Rp, B1)J ) (ar) ~a(Lyt+Lg)
e
] 0

A% (p,z) = WIug [

2(Ro~Fy )03 aVyy(ky1)

7 ~-a 2z o 2
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Fig. 1. Coil Above Multiple Planes.



The terms in brackets are compietely dimensionless. They are a function
of the linear dimensions divided by scaling factor (usually the mean
radius of a coil of interest, R5). The frequency enters only through
the function wuoRs?, which is also dimensionless and would usually be

kept constant in scaling a model. The terms containing the frequency

are:
. 2
o = d a? + quncrnR5 . (2)
and
B = ! “Vu2+jmjoR2 . (3)
moou, non o>
rel

Both of these terms are dimensionless.

Vlz(n,l)
— contain an equal number of Bn's in both the
Voolk,1)

The terms

numerator and denominator and are dimensionless.

We can also obtain the vector potential for any irregular coils and
conductors using a three-dimensional relaxation technique. Using
Cartesion coordinates, as shown in Fig. 2, we find for the three com-

ponents of the vector potential in non-ferromagnetic media:

Gc cos ax Ok
A = wollI + A + A + A + A

“xim n2(Rp-R1)L3  Ck#1 Tk#1 k-1

o)
k
+ 4 + A + < - ]> <% ~ A4 + A ~ A )
L1 -1 Oter1 , Y141 Y7 21 B

o) fwpo R 2
3 [5 P + .7 5:| R (4)
Tx+1 n2
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Fig. 2. Cartesian Coordinates for Three-Dimensional Relaxation.
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60 cos (xz Om
4, = | g1 el WL S ¥/ H,  #A A,
kim n2(Ry-R1)Ly  ‘m#l Zmr1 Fmer Fker Fker Frer 1o
m /
+ (O - 1> (Ax -4  +4 -4
mt1 k1 Tk Yy Yy
Jwuo Ry
- [5+ m_ o, kim , (6)
Cfmﬂ nz
where

o is the magnetic permeability of free space (4w x 1077),

N is the number of turns in the coil,

T is the current per turn, and any subscript not written is

assumed to be k, I, m, as the case might be.

A1l other terms are dimensionless, and the vector potential is
directly proportional to the source terms, ugNI. The quantity 60 is
equal to 1 if the Tattice point is inside the coil, zero if it is out-
side. o is the angle between the wire direction and the x axis;

Rs is the coil mean radius; n is the number of lattice points in the

-

coil mean radius Rs; v is the number of lattice points in the coil

as the coil passes through the plane perpendicular to the x-axis; and

the term wpo 2 is dimensionless.

kinlS



From these equations, the vector potential at each point can be

obtained using a relaxation process.

The dimensionless numerical answer so determined will depend on:

1. The coil and conductor geometry;
2. The value of wuoRs? .
The dimensioned factors multiplying the dimensionless numerical

answer will be ngiI.

II. Fourier Synthesis to Form Non-Sinusodial Pulses

Thus far, the vector potential for a single frequency, w, has been

obtained. We shall now superpose a number of different frequencies to

obtain the vector potential of a pulse, such as illustrated in Fig. 3,

by Fourier synthesis. If the current is piecewise continuous and has a

repetition period 7, we can write the current waveform as

<o

ag
I(t) = Iy 5t z a, €os (mwt) + bmsm(rmulr) :
m=1
where oy = 20/7 ,
/2
wp
a = = f LC-T—Z-COS (mwit) dt m=0,1,2,3 ,,. =« ,
moow T
~T/2
and
" T/2
1 I(t) .
b == ‘I' l% sin (mw;t) dt m=1,2,3 ... % .
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Fig. 3. Diagram of Current Pulse.

From the current, the vector potential as a function of time can be

calculated:

o0

a, - -
A(T) = ugloli{~5 A(0) + 2 a A(m) COS (mwjt + ¢,/

m=1

+ bmﬁ(m)sin(mmﬂ + ¢m) } »(10)

where 4(m) is the vector potential calculated at the angular frequency

mw, with the ugToh factored out. A4(m) is completely dimensionless and



depends only on the geometry and the values of the products mwinoRs? .
The value of w; can be varied to compensate for changes in o and As .
The value of 1 must then be varied so that the product w;t is constant.
Thus, the pulse in real time ¢ may vary for the scaled model. The

Imd
. RIA
Im A%(m)] /2 | e shall rewrite the equation for A(t) as

phase shift, ¢, is determined by 9, = atn (=) , and Z(m) = [R1A%(m) +

A(T) = uolN A(x)
where
4(t) is the dimensionless sum given in curly brackets in Eg. (10).

From the vector potential we can calculate all the physically

observable phenomena.

IIT. Physical Phenomena

A. Eddy Current Density

N >
> 94
J=OE=-03—T—. (]])

TR
i

® -+
opDIONwI:E: mA (m) [am sin (mw1T+¢m) - b, cOs (mw]T+¢m)] . (12)

m=1
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The total current passing through a normalized area, dAn , in terms

of the actual area, dA” = (dA”/Rs5%)Rs? = A, Rs2 , is given by

N ->
J,= IoN dA_(wingo #52) :E: nm(m)[am sin (moyc +« ¢ )

m=1

- b cos (muit + ¢m)] . (13)

The only dimensions are contained in the 75 . All the other terms are

dimensioniess and normalized.

B. Eddy Current Power

The eddy current power dissipated per unit volume is:

dP = % 3N 2
AR IO 0o

The instantaneous power dissipated in a normalized volume, dvn, is
P = Ig%N2wiughs an(wlpooﬁsz)

w 2
X { :E: mA (m) [bm cos (muyt#, ) - a sin (moyt + ¢m)] } . (15)

me=1
Again, all dimensions are contained in the terms Tj%wjugfks , and the

others are dimensionless.
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If there are several different components of the vector potential, the
total power will contain the sum of the squares of the time derivatives

of all of the components of the vector potential. That is:

i 34, 2 34 \?2 84, 2
%Pf/—.-:o 3t + 5_{,7{_ *\3t ' (16)

C. Magnetic Field

(17)

o
it
<
x
>

The exact form of the curl of X‘depends on the coordinate system in
which ZAand E'are computed. Using symbols defined by Morse & Feshbach and

shown in Fig. 4, we have:

>

B=yx A= Zha 2 a2 A | (18)
h1h2h3 g agk 1 BEZ kK'k
Jsks1

The dimensions of E will be Z}]ength.

In general, we will have for the components of the magnetic field:

A

h.
3 ; 2 (1,7 _ ~_a_,( ;
B = nolol T [agk <7’ZZAZ(T)> e hk/lk(r)ﬂ . (19)

If we normalize the dimensions by dividing all lengths by Rs; we have

UDION hj 3 - B} -
B, = R Tihgh |36 (Wz”’) ~§E—Z—<hkAk(r)> . (20)
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Fig. 4. Curl in Curvilinear Coordinates.

For the special case of an axially symmetric coil above plane
layers of conductor as shown in Fig. 1 with only a e-component of the
vector potential, the expressions for the Z-component of the magnetic

field in the n-th region (in terms of the variables used in the computer

program) is:
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N3Ilgug

n f & 6 e 2 ~-al
N - . J o] - 3
Bz (ﬂ’Z) 2(17%?_*}.’1)]331‘?5 02 (R ,1(1) [] ’ ]

Via(n, 1) -a 3 Vooln, 1) OLnZ
X Jqlar) m@ +me J do .

The r component is given by:

oo

N3I9u0 —O£L6 —OLLZ
n o — e e - --(1[13
BI’ (v,2) = Z(Rz-ffl)l}gﬁs .[ 03 J(RZ’RI) [] & ]
Vig(n,1) - 2  Vapln,1) oz
X J (OLI’) BT ey Seennarat N 1 e n e (Y, e n dO(.
1 Vorfk,1) n Voo(k,1) n

D. Force Density

For non-ferromagnetic materials we have for the force density:

For the jth component of force in a normalized volume

dvn = hihyhy dEy dE, dgs we have

(22)

(23)



dFj = uglo2y?(wiugoRs?) ‘::z: mﬁk (m)[am sin (mwyt + ¢ )

m=1

9 - 3 -
- bm CoS (mwyt + ¢m)]:i hZ F"é; @kAk(T)> - BE"]; <thj(T)>}

- :E: mZZ(m) [am sin (moyt + ¢ ) ~ b cos (mwyt + ¢m)]

m=1

3 7 J i :
X hk {5—5’2 <thj(T)> - BE; (hZAZ(TD} de deodes . (24)

The only dimensions are contained in the wgl/o?N* term. The a and b
terms depend on the relative pulse shape, and the A(z) terms depend on

the geometrical shape and the dimensionless numbers, mwluOR52 .

If we evaluate the z component of force in cylindrical coordinates

we have:
dF, = wolo?N? (wyingoks?) :E: mAr(m)[a:ﬁ7 sin (moyt + ¢, )
_ om=1
~ b coS (mwyt + ¢ )] | 2oF (1) - A (1)
m 1 n 3z “r 3y Tz

-

- :E: mig(m) [a, sin (moit + 6 ) - b cos (mut * ¢,/
M1

X %sz - %—Z— (rﬁem> drdeds . (25)
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E. Voltages Induced in Coupled Circuits

The voltage induced in a length of wire is

>
94 ;
V = 5 ° as . (26)

The general expression for the voltage induced in coil 1 by a

current I, flowing in coil 2, as shown in Fig. 5, is:

o0

Vip = H0I2N2‘D1RS 2 m[am 51n (mwlr + ¢)12m)

m=1
> ~
= b COS (muyt + ¢,2m)] ~[' LAy (Guygm) . d§1 ’ (27)
‘ . all turns
in coil 1

where

>
_- s
Im [Az(jwlm) - dS

= qtn ’
m >
RZ_[Az(jmlm) . d5,

$12

and the element of length, dgl » has been normalized. Hence, the mutual

inductance of the two coils is:

Vi =
IZ = UONQ.wlRS Z m[am sin (mmlr + ¢12m) - bm cos (mwlr + ¢>12m)]

m=1

X E f Azz(jmlm)dsz . (29)

Jsk, 72 all turns
in coil 1

My, =
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Fig. 5. Coils in the Presence of Arbitrary Conductors.

The term in the absolute value brackets must be integrated over all of
the turns in coil 1. However, if the coil has a constant turns density

over its cross-section we can simplify the term to:

- -+
f ﬂz(jmlm) . dg = z J.le (jmlm) ¢ d§ . (30)
, turns single
all turns
in coil 1 turn

N1 i
~ ff lez(jmlm) . d3 d(c.s. area;) .
area; . %

i 1
cross sectiona “area,
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Therefore,

<]

Mio = wgl1lViowEs E m[am sin (mwyt + ¢12m) -~ bm cos (mwit + ¢

m=1

l?fﬂ) ]

s (31)

> St as, an,

rjjk.yz Al &

L1
Al

where 4, is the crossectional area of the coil, perpendicular to the
direction of the turns. The dimensions of a; will cancel those of da;.
For consistency we shall take both to be normalized. 1If dS is taken

along one coordinate, the summation over Z,m and r reduces to

fff Ay, (Joym) d(Vol) . (32)

coil volume

The value of My, , in ohms, is directly proportional to ugl,wifs . All
of the other terms are dimensionless and depend upon the relative geom-
etry and the shape of the current wave form. The voltage induced in the
gth circuit due to current flowing in ¥ other circuits can be calculated

by the equation,

N

V=2M I + TR . (33)
q qr T 9 9q
r=1
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Furthermore the terms in the expression can be written as

N o
Vq = 2 uOIPIVqNPwlRS 2 m[am Sin (mwyt + d)mqr)
r ma=1
1 -
"bm Cos (mwyt + d)mqp)] - ff f Ar(Jmlm) d Vol + IC[RQ
vol q
(34)
F. Currents in Multiple Coupled Circuits
We shall define a coupling coefficient with the following equation:
UON N mle _
™ ST T 3 tum d vor (35)
q
, UOZq !
and define the a. coefficient for the current in the rth coil as
a _=a_ . (36)

The current loop equation for the gth loop for ¥ coils then becomes:

Nz

i

V(t)=Aa IR + 2 I {a [R § _ sin(mwyt)

q q0 g9 q ro\rrm qqr
r=1  m=l

# Cpp S1N (mwyt + ¢mqp)] + b [Rqéqr cos(mwy 1)

+ g COSIMLT # ¢mqr)J } . (37)
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We have assumed that the current wave shapes can be represented by a

finite number of terms, N°. We can use the orthogonal properties of the

trigonometric functions to solve for the o and b, coefficients. We

shall multiply eq. (37) by sin (nw;), integrate from O to T (the period

of the periodic function, 7 = 2n/w;), and use the following relationships

to simplify the eqUations:

sin{mwyt + ¢mqp) sin(mw; 1) cos(¢r

ﬂqr) + cos(mwyt) sin(¢

mqy

cos(mwyt) cos(4_ ) - sin{mwyr) sin(e

cos (moyt + ql>mq;ﬂ) mqr mqr

Z'Tf/wl
: : _ T -
S]n(m(L)lT) S1n(7’£u)1“f) dT - ‘2‘ (Smn = A(;—-I‘ rSmn
2ﬂ/w1
: o .
cos(mwyt) cos(nwyt) dr = 56 = a7 8
2m/w

t
o

sin(méyt) cos(nwyt) dr =

Using these relationships, we obtain:

W
L (LA B 8+ Cpop €05 &) + Lb (0 sin g )]
o Lrem g qr mqr mqr ¥ rm* “mgr magy

Wy T
= — f Vq(T) sin{mwyt) dr.

)

)

(38)

(39)

(40)

(41)

(43)
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Similarly, if we multiply eq. (37) by cos(mw;t) and integrate from 0 to
2n/wy, we can obtain:

N
Y [ a (¢ _sing )Y+I_ b _(R6_+C _ cos¢ )J
=1 [I’ rm mqr ”ZC[P r rm q ql’ mql’ fﬂql"

w1 r
11—

{ Vq(T) cos(mwyt) dr . (44)

For each angular frequency component, mw;, there will be ¥ equations

of the form of eq. (43), one for each of the ¥ coils, designated by g:

- + +
I ay, (R1 €1, €OS ¢m11) et Ia (len cos ¢m1n)
+ - i + .t - i
[1b1m ( lel sin q)mn) o Inbnm ( len sin ¢m1n)
T
wl f .
= ':['T‘“' 0 Vl(T) S1i (mwlT) dt (45)

s + + B+

11 alm (Cmnl cos ¢mn1) e In Tm (Hn Cmnn oS ¢mnn)

+ I b, (-C

. N . ) .
L1 gy SN ¢mn1) oo ¥ LD (-c sin ¢ )

num mnri mnn

wy T

= ;~’£ Vn(T) sin{mw,t) dr .
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There will also be ¥ equations of the form of eq. (44), one for each of

the ¥ coils:

(c

sin
mln ¢’mlr»’z)

(¢

I
mill

a
n o m

a sin + ...+ 7
17 1m ¢le)

+ +
I1b1m(R1 Co.q COS ¢ cos ¢m1n)

+ + :
11 mll) Inbnm(c

min

T

f V() cos (mugx) dr .

0

:‘}S

(46)

1 i + ...+ 7T a 1
1a1m(0m”1 sin cbmnl) L (Cmnn sin qerm)
+ . + ...+ 1 2+

Ilbm(cm1 cos ¢mn1) lnbnm (Hn ¢ cos ¢mnn)

T
= wf Vﬂ(r) cos (mwit) dr .

0
Equations (45) and (46) provide 2¥ linearly independent equations to
determine the 2N coefficients, 7.a. » .. s T a o I.b. 4 «ov s I. b
1 1m norm 17 1m o
for the single frequency component, mw; . A similar set of 2V equations
must be solved for each of the frequency components in the pulse.

The d.c. component of current in the g-th coil will be

ri w
“ao7g . lf v (1) dt . (47)

There will be just ¥ equations of this type to be soived.
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G. Driving Voltages

In equations (43) through (47), it is assumed that the voltage
Vq(T) applied to the g-th coil is a known function of time, as is usually
the case. For the charge-up of a coil, the voltage would be a ramp

function, as shown in Fig. 6.

ORNL-DWG 75-10666

V(7)

T it

Fig. 6. Charging a Coil with a Voltage Ramp.

We can also simulate the turn off of the coil with a voltage step.
When the coil goes normal, the current is dumped into a dump resistor.
As far as the coil and coupled circuits are concerned, this is equiva-
lent to a single turn-off puise of the voltage, V°(r), as illustrated in
Fig. 7. There is no difference in the voltage and current at point a
between the two circuits. The value of v-(t) is v-(t) = v(z) + T Rdump .
The only real difference is that the voltage that would be dropped across
I Rdump is saved by the switch, reducing the power required by the voltage

source.
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Fig. 7. Equivalent Dumping of Current in Coil.

Once the voltage functions, Vé(r) are known or simulated, we can
obtain the current coefficients, which in turn will give us the current
in the various cifcuits. From these currents we can then calculate all
of the other parameters, such as forces, eddy currents, and power

dissipated.
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IV. Measurements of the Various Properties

The calculated parameters can be measured with various degrees of
accuracy and difficulty using models constructed of a similar material
or liquid metals with probes inside them. We shall now discuss these

measurements.

A. Eddy Current Density

This can be measured by putting a current probe in models containing
mercury or Weod's metal. However, the current probe will upset the
field to a certain extent in the region near the probe. The current is
usually measured indirectly, using the voltage drop or the magnetic

field.

B. Eddy Current Power

The total power can be determined by measuring the power consumed
in the coil. The instantaneous power generated in a small section of
the shielding can be determined by measuring temperature changes on the
surface of the conductor using infrared techniques or by using the
temperature coefficient of the metal's resistivity (measured with an
eddy current probe) or by using thermocouples inside the metal. The
latter measurement technique would probably influence the results more
than the others, but it could be applied to the interior of the con-
ductor. A1l three of these techniques depend on the shielding heating,
which depends in turn on the geometry, thermal conductivity and heat

capacity of the model.
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C. Magnetic Field

The magnetic field can be measured using a Hall probe for both ac
and dc fields or a pick-up coil for ac fields. The pick-up coil measures
the time rate of change of the magnetic field that passes through the
coil and furnishes both magnitude and phase information. The measure-
ment accuracy will be about 1% for the pick-up coil. The Hall probe can
measure the small fields to an accuracy of about 0.1%, with a frequency

response from dc to about 20 KHz.

D. Force Density

The magnetic forces can be measured by measuring small displacements
with strain gauges and extensometers, or by measuring the force required
on a part to prevent the part from moving. The amount of displacement
of a "rigid" body produced by a current pulse applied to a nearby coil
will depend on the stress-strain relationships of the body and its
inertia. Small, non-contacting eddy current displacement probes behind
the part could measure a displacement up to 2000 p in with a resolution
of 1T u inch and an accuracy of 10 p inches, at a high vibrational

frequency.

E. Voltages in Circuits

The magnitudes and phases of the voltages in the various circuits
can be measured to within about 0.1% and 0.2°, respectively, at a partic-
ular sinusoidal frequency. These measurements will allow quite accurate

calculations of the impedances and coupling coefficients in the various
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circuits. The most accurate range of measurements is in the 50 Hz to
10 kHz range. The time-voltage relationship for a pulse can be measured
to within about 1%, but it can probably be obtained more accurately

using a Fourier sum of the various components to reconstruct the waveshape.

V. Use of Measurements and Scaling in Lieu of Calculations

There will be advantages and disadvantages to using either experi-
mental measurements or numerical calculations. A list of several of

these considerations is given below.

A. Advantages of Measurements

1. They will be required anyhow to verify the calculations.

2. In many instances the measurements will be more accurate than the
calculations. In particular, for cases where we can use the
results of a single freqguency measurement, the measurements will be
more accurate for quantities such as voltages, total impluse, and
total power.

3. The measurements may point out problems and omissions made in the
calculation.

4. The measurements may be cheaper than the 3-dimensional relaxations.

B. Advantages of Calculations

1. The calculations themselves will not introduce errors into the

models as the measurements do.
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2. It is the only way to obtain some answers, such as the force
densities, eddy current densities and heating densities at various
places inside the metal.

3. The calculations may give some special insights into the problem
that the measurements would miss, such as where would be the best
place to modify the specimen configuration to reduce the eddy

currents.

In actual practice, the two techniques will probab]y'comp]ement each

other to some extent.

VI. Experimental Verification of Scaling

There have beén a number of experimental verifications of the
scaling of induction problems. All of the standard eddy current calcu-
lations are scaled, with the scaling factors'introduced as multipliers
after all the numerical calculations have been performed using dimension-
less functions. Therefore, anykexperimental'verification of the calcula-
tions also verifies the scaling.

We have made a series of impedance measurements and calculations on
coils of four different sizes and with different numbers of turns in the
presence of conductors with the resuits shown in Table I.

The four coils varied in mean radius from 0.30 in. to 1.20 in., and
the test frequency and 1iftoff were varied to keep the product wpoRg?
and the normalized 1iftoff as nearly constant as possible. However,
there were still variations, as shown by the standard deviations of the

wnoRg? and 1iftoff, which contribute to the impedance variations. The



Table I. Normalized Coil Impedance for Four Coils from 0.30 to 1.20 in.
Mean Radius as a Function of wuoRs? and Normalized Lift-off.

Measured Calculated % Difference
’ 2 -~ - N - - -
wloR g Sx Lift-off Sx Im, Sx R]n Sx Imn R]n Imn R?n
3.122  0.007 0.0473  0.0007 0.9990 0.0310 0.0766 0.0240 .9167 1000 +8.98%  -23.40%
8.742 (.029 $.8250 0.0120 0.1312 0.0047 .8283  .128%  -4.5¢9 +1.78
24.98 0.081 0.7343  0.0016 0.1300C ©.0005 L7278 .1268  +8.93 +2.52
78.10 G.36 0.6427 0.0012 0.1029  0.0017 .6378  .71005 +7.68 +2.39
334.13 1.16 0.5703 0.0005 0.0610 0.0005 .5645 .0616  +1.03 -0.97
874.20 2.97 0.5364 0.0024 0.0437 0.0011 .5362 0474 +0.04 +5.56
3.122  0.007 $.0946  0.0002 0.9175 0.0G105 0.0692 0.0065  .9247 .0870  -0.78 -20.4%§
8.742 0.029 0.8410  0.0112  0.1066 0.0C26  .8487 L1698 -(G.09 -32.00
24.G8 0.481 0.7693 0.0016 0.1086 0.0006 .7635 .1059 +0.7% +2.55
78.10 J.36 0.6817 0.0002 0.0845 0.0021 L6896  .0821 +0.3C +2.92
334.13 1.16 0.6339 0.0017 0.0488 0.0005 .6310 .0492 +0.46 -0.81
874.20 2.97 0.607¢ 0.0018 0.0351 0.0011 .6088  .0328 -0.30 +7.01
3.122  G.007 0.i892 (.0004 0.9225 £.0345 0.0480  ©£.0135 .9382  .0B86  -1.67 -27.03
8.742  0.029 0.8693 0$.0136  0.0817  G.006S .8807 .081¢ -1.29 +(.86
24.98 0.081 0.8245  $.0013  ©.0830 $.001G  .8192  .0755  +D.65 +§.G3
78.10 0.36 0.7707 0.0003 0.0593 0.0016 .7680 .0566 +0.35 +4.77
334,13 1.16 0.7735 0.0019 0.0326 0.0003 .7289 .0330 +6.12 -1.21
874.20 2.97 §.7140 0.0027 0.0229 0.0006 .7142 .0217 -0.03 +5.53
3.122 0.007 G.3785  0.0006  0.9870  0.004D  0.0292  9.0152 .9572 0406 +3.11 -28.08
8.742  (£.029 G.9293  0.0250 (.0538  0.004% .9232 . 0461 +0.65 +16.7C
24,98 $.081 G.8933 0.0019 0.0478 0.0016  .88%6  .0407 +0.42 +17.44
78.10 0.36 0.8647 0.0003 0.0322 0.0021 .8637 .0293  +0.17 +9.90
334.13 1.16 0.8470 0.0024 (.0154 0.0003 .8436  .0166  +0.40 -1.21
874.20 2.97 0.8382 0.0021 G.0115  0.0005 .8364 0108  +0.27 +6.48

Sx = standard deviation of the mean.

8¢
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numbers of turns were all different, but were also eliminated by normali-
zation. The impedances given in columns 5 and 7 are normalized by
dividing by the coil inductance in air. The important guantities to
notice in the table are the following: (1) the standard deviations of
the real and imaginary parts of the normalized impedances (columns 8 and
6), which should be zero if the scaling, construction, and measurements
were perfect; (2) the experimental and calculated values of the real and
imaginary parts of the coil impedances for the various 1iftoffs (columns
7, 5, 10, 9). Note that, except for the first two values of wuoRs?,
for which the frequencies were so low that the measurements were not
very accurate, the standard deviations in columns 6 and 8 are very
small, indicating that the four different coils all gave the same
results. This indicates the validity of the scaling Taws which keep
wnoRs? and the normalized 1iftoff constant and factor out the number of
turns of the coils, when the driving coil and the pickup coil are one
and the same. The calculated values in columns 9 and 10 are for a coil
with normalized dimensions whicﬁ are the average of those for the four
coils. Since the percentage differences between measured and calculated
values seem randomly scattered, it seems that the experimental measure-
ments are most in error, and the variations are generally comparable to
the standard deviations of the measurements.

Table I1 shows how the calculated and measured inductances vary for
a large number of coils that have been used in a number of eddy current
experiments, using the apparatus shown in Fig. 8. Although the agreement
is quife good for these examples, there have been a few instances where
the error was as large as 2%. It is suspected in these cases that an

error occurred in the number of turns.



Teble II. Comparison of Calculated and Measured Inductances

Inductance Inductance
Mean radius Inner Quter Length Turns {Measured) (Calculated) %
r (inches) Radius Radius (inches) N mh mh Difference
.603 .506 .700 .200 590 18.55 18.5185 +.170
.603 .506 .700 .20G 653 16.55% 16.5857 -.185
.603 .506 .700 .200 1335 68.604 59.3218 -1.035
.b0265 .5048 . 7005 .208 435 7.319 7.26857 +.702
.b05375 .50525 .7055 .2094 445 7.564 7.60335 -.518
56775 .5057 .6298 L2071 285 3.157 3.16425 -.229
.60415 .5058 .7025 .200 1219 57.755 57.77024 -.026
.53335 L5063 .7004 .200 1219 57.77 57.84052 -.122
.63265 .5053 . 7000 .200 1325 68.22 68.16977 +.074
48617 .333335 .65908 .333335 637 8.773 8.713 +.689
. 9951 . 6666 1.3235 .60666 1404.7 85.658 84.89 +.905
1.478 1.0060 1.9%6 1.000 1212.3 84,30 94,24 +.064
2.000415 1.333333 2.666749 1.333333 931 74.97 74.83 +.187

L4396 .333 . 660 .333 €37 8.863 8.712 +1.733

.998 .6665 1.3303 .b666 1404.8 85.94 85.0¢ +.999
2.752 2.244 3.261 1.008 836 118 117.9 +.777
2.748 2.244 3.248 1.005 835.3 117.5 116.93 +.487
3.743 3.375 4.100 3.000 754 111.7 110.7 +.903

o€
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Fig. 8. Diagram of Impedance Measurement Apparatus.

In Table III we show the experimental force measurements for two
different size coils with the same shapes, made with the apparatus
illustrated in Fig. 9. These measurements again demonstrate the validity
of scaling. The error is relatively large for these measurements, but
they were made before more accurate experimental apparatus was available.
Note that the forces are given in 10-7 newtons/{amp-turn)?, indicating
the validity of factoring out the number of turns and the driving

current.
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Table III. Comparison of Calculated and Measured Eddy Current Forces

Calculated Measured % Measured %
whoR 5?2 Force* Coil B** Difference Coil Cx** Difference

Lift off = .0476 Rs:

3.082 1.12146 1.048 ~-6.5b 1.058 -5.66
8.628 2.80859 2.642 ~5.93 2.694 -4.08
24.65 5.11168 4.714 -7.78 4.954 ~3.08
77.05 7.52462 6.933 ~7.86 7.326 -2.64
329.8 9.82756 8.989 -8.53 9.664 -1.66
862.8 10.7935 10.18 -5.68 10.90 +0.99
Liftoff = .0952 Rs:
3.082 . 987604 . 9289 -5.94 . 9540 -3.40
8.628 2.41421 2.265 -6.18 2.366 -2.00
24.65 4.29660 4.021 ~6.41 4.260 -0.85
77.05 6.17141 5.776 ~6.41 6.201 +0.48
329.8 7.85378 7.430 -5.40 7.954 +1.28
862.8 8.53364 8.237 -3.48 8.913 +4.46

*
Forces in units of 1077 newtons/(amp-turn)?

**Coil B mean radius = 0.6063 in.
* k%
Coil C mean radius = 0.9023 1in.
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Fig. 9. Diagram of Force Measurement Apparatus.

VII. Summary and Conclusions

The concepts of scaling will allow experimental measurements made
on relatively small models to be extended to full size models. There
will be an optimum size for a model to obtain the most accurate results
at the least expense. If the model is too small, it will be expensive
to hold the coil and conductor dimensions to the desired tolerances, and
the measuring apparatus will be difficult to install. On the other
hand, if the model is too large, it will consume an expensive amount of
materials and construction labor. A model which uses coils that are
2 to 4 inches in diameter would probably give the best results at the
lowest cost.

The experimental measurements made thus far demonstrate the validity
of scaling. However more accurate and additional measurements (such as
the voltage coupling coefficients for multiple coils) need to be made to

provide more confidence.
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While the scaling can provide quite valuable design parameters, it
will not furnish all of the answers. The best results will probably
come from a balanced program of matehmatical models and experimental
models with comparisons between numerical calculations and experimental

measurements.
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