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EFFECTS OF NUCLEAR ELECTROMAGNETIC PULSE (EMP) 
ON SYNCHRONOUS STABILITY OF THE ELECTRIC POWER SYSTEM 

R .  W.  Manweiler 

ABSTRACT 

The e f f ec t s  of a nuclear electromagnetic pulse (EMP) on 
the  synchronous s t a b i l i t y  of t he  e l e c t r i c  power transmission 
and d is t r ibu t ion  systems are  evaluated. 
of coupling of EMF' t o  the power system are b r i e f l y  discussed, 
with par t icu lar  emphasis on those perturbations affect ing the  
synchronous s t a b i l i t y  of t he  transmission system. 
review of t he  fundamental concepts of t h e  s t a b i l i t y  problem 
i s  given, with a discussion of the  general charac te r i s t ics  of 
t rans ien t  analysis .  A model i s  developed t o  represent s ingle  
s e t s  as w e l l  as r epe t i t i ve  s e t s  of multiple f a u l t s  on the  
d i s t r ibu t ion  systems, as might be produced by EMP. The r e s u l t s  
of many numerical s t a b i l i t y  calculations a re  presented t o  
i l l u s t r a t e  t he  transmission system's response from di f fe ren t  
types of perturbations.  The important parameters of both 
multiple and r epe t i t i ve  f a u l t s  are studied, including the  
dependence of t h e  response on the  s i ze  of the  perturbed area, 
t h e  f a u l t  density, and the  effect ive impedance between the  
f a u l t  locat ion and t h e  transmission system. Both major load 
reduction and the  e f f ec t  of the  opening of t i e  l i n e s  at the  
time of perturbation a re  a l so  studied. 
t he re  i s  a high probabi l i ty  t h a t  EMF' can induce perturbations 
on t h e  d is t r ibu t ion  networks causing a large portion of t he  
transmission network i n  the  perturbed area t o  lose  synchronism. 
The r e s u l t  would be an immediate and massive power failure. 

The various modes 

A b r i e f  

We conclude t h a t  
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CHAPTER I 

INTRODUCTION 

A. PURPOSE OF THE STUDY 

A high-al t i tude nuclear detonation causes currents  t o  flow i n  the  

atmosphere. 

propagates t o  the  e a r t h ' s  surface where it induces current and voltage 

surges on conductors. 

extent  t o  which such EMP-produced surges w i l l  d i s turb  the  synchronous 

s t a b i l i t y  of t he  e l e c t r i c  power system through the  production of multiple 

and r e p e t i t i v e  f a u l t s .  

This current generates an electromagnetic pulse (EMP) which 

The purpose of t h i s  study i s  t o  determine t h e  

B. THE ELETROMAGNFTIC PULSE 

The nuclear EMP f i e l d  i s  generated by t h e  ac t ion  of t h e  primary 

gamma rays produced by a high-al t i tude nuclear detonation. 

t i o n  mechanism i s  i l l u s t r a t e d  i n  Fig. 1. For a high-al t i tude burs t  

(approximately 50 km or more height of bu r s t )  t h e  gamma rays produced 

w i l l  i n t e r a c t  with t h e  atmosphere between 20 and 40 k m  a l t i t u d e ,  p r i -  

The produc- 

marily by Compton sca t t e r ing  with electrons of air molecules. T h i s  

sca t te r ing  causes t h e  electrons t o  move downward away from the  point  of 

burs t  i n  a t r a j e c t o r y  which i s  bent by t h e  e a r t h ' s  geomagnetic f i e l d  8 
g 

(shown i n t o  t h e  page i n  Fig. 1). 

t h e  electromagnetic pulse from the  atmospheric umbrella between 20 and 

40 km which i s  within l i n e  of s igh t  of t he  burs t .  The primary Compton 

electrons,  composing the  "primary e lec t ron  currents  " a l so  s c a t t e r  and 

produce secondary electrons which are accelerated i n  t h e  opposite direc-  

t i o n  by an e l e c t r i c  f i e l d  produced by the  charge separation. 

secondary e lec t ron  current  flows i n  roughly t h e  opposite d i r ec t ion  as 

t h e  primary e lec t ron  current .  

These accelerated electrons radiate 

. 

This 

The EMF' f i e l d  can be calculated from Maxwell's equations usingboth 

the  primary Compton and t h e  secondary e lec t ron  currents  as the  source 

I 
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currents .  

t i m e  ago by Karzas and Latter,' and others .  

a la rge  y i e ld  detonation may have an e l e c t r i c  f i e l d  s t rength of 50 k i lo -  

volts/meter with a r iset ime (time t o  peak value) of 10 nanoseconds, and 

a time t o  half  t he  peak value of 30 t o  200 nanoseconds. 

pulse has a very l a rge  f i e l d  s t rength and produces e l e c t r i c a l  t r ans i en t s  

with rapid risetime as compared t o  those typ ica l ly  occurring on power 

systems, e. g . , l ightning.  

This generating mechanism has been described i n  d e t a i l  some 

A t y p i c a l  EMP pulse from 

Thus, such a 

One d i s t i n c t i v e  feature of EMP i s  i t s  extremely la rge  geographical 

extent .  For a high-al t i tude burst ,  t he  e n t i r e  atmospheric umbrella 

defined above rad ia tes  so t h a t  t he  EMP f i e l d  below t h i s  atmospheric 

umbrella does not decrease i n  i n t e n s i t y  as r-l from t h e  burs t  loca t ion  

as i n  t h e  case of f i e l d s  radiated from a small volume. The EMP f i e l d  

occurs everywhere within l i n e  of s igh t  of t he  burst ,  as Fig. 2 i l l u s -  

trates. 

power system i n  i t s  la rge  geographic extent,  which has important e f f e c t s  

on t h e  system's s t a b i l i t y ,  a s  w i l l  later be shown. 

Clearly EMF' d i f f e r s  g rea t ly  from other per turbat ions of t he  

C *  "HE COUPLING OF EMP TO "HE POWER SYSTEM 

The coupling of EMP t o  the  e l e c t r i c  power system has been previously 
discussed by Nelson' and i n  more d e t a i l  by Marable, e t  a l . 3  

f i e l d  induces currents  on exposed conductors. High voltage surges can 

be produced, p a r t i c u l a r l y  a t  points  where l i n e s  change d i r ec t ion  or 
branch and at locat ions where the  impedance i s  discontinuous. 

and voltage surges of several  kiloamps and of nearly a megavolt, respec- 

t i ve ly ,  can be produced on unshielded p a r t s  of t he  system, and only a 

f e w  hundred meters of length of conductor are necessary f o r  t h e  induction 

of a s igni f icant  pulse.  Distribution, transmission, control,  and com- 

munication l i n e s  are pa r t i cu la r ly  good examples of conductors which w i l l  

be affected,  and a l l  of t he  system i n  the  exposed area w i l l  be simultane- 

ously affected.  

of l i g h t  c. 

The EMP -- 

Current 

(Actually the  EMP wave f ront  w i l l  t r a v e l  a t  t h e  speed 

But t he  important time sca le  f o r  t h e  power system i s  t h e  
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period of the  synchronous system, i . e . ,  one-s ixt ie th  second. Thus, t he  

time difference between a r r i v a l  of t he  EMF pulse a t  d i f f e ren t  loca t ions  

i s  of no s ign i f i can t  consequence. ) 

Figure 3 shows a t y p i c a l  d i s t r ibu t ion  system, and Fig. 4 shows a 
transmission system ( t h e  Tennessee Valley Authority Network) which 

supplies t he  connecting d i s t r ibu t ion  systems a t  major substat ions.  

i s  d i f f i c u l t  t o  determine the  prec ise  e f f e c t s  of EMF surges on such 

complicated systems, but previous work does provide us  with reason- 

able  expectations. I n  t he  next sect ion w e  b r i e f l y  discuss t h e  e f f e c t s  

of EMP which may per turb the  power system su f f i c i en t ly  so t h a t  synchron- 

i s m  w i l l  be l o s t .  

i s  avai lable  i n  Refs. 2 and 3. 

It 

2 ,3  

A more de ta i led  analysis of t h e  coupling mechanisms 

This study i s  pr imari ly  concerned with the  e f f e c t s  of EMP on t h e  

transmission system, r a the r  than on any s ingle  d i s t r ibu t ion  system. 

However, t h e  dynamical and e l e c t r i c a l  response of t h e  transmission sys- 

tem cannot be separated from t h a t  of t h e  d i s t r ibu t ion  systems. EMP may 

perturb e i t h e r  system i n  such a manner as t o  cause par t ,  or  a l l ,  of 
t h e  transmission system t o  lose synchronism. 

t i o n  i n  the  sense t h a t  a synchronous system a t  equilibrium i s  being 

i n i t i a l l y  "disturbed" by some event of f i n i t e  or continuous durat ion 

which may then a f f e c t  t h e  synchronism of thesys tem.  

e n t a i l s  one or more machines (generators) f a l l i n g  out of s tep with i t s  

connecting machines, necessi ta t ing t h e  removal ofthemachine, ormachines, 

from the  e l e c t r i c a l  system. This study i s  concerned with determining 

t h e  l ikel ihood of major machine losses  r e su l t i ng  i n  the  transmission 

system's pa r t i t i on ing  or complete collapse.  

W e  use the  t e r m  perturba- 

Loss of synchronism 

For convenience of analysis ,  we p a r t i t i o n  t h e  system's response t o  

a per turbat ion i n t o  two t i m e  in tervals :  t he  t r ans i en t  and t h e  dynamic 

response. The f irst  i n t e r v a l  ( the  t r ans i en t  response) includes up t o  

about t h e  f i rs t  one and one-half t o  two seconds and i s  t h e  r e s u l t  o f t h e  
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immediate e f f ec t s  of the  perturbation. 

response) starts a t  about 2 seconds and extends t o  the  time when the  

system has reached a new equilibrium, i . e . ,  it i s  the  response determined 

by the  later-t ime co l lec t ive  e f f ec t s  as  wel l  as by addi t ional  perturba- 

t i ons  tr iggered a f t e r  t he  f i rs t  second or two following the  i n i t i a l  

perturbation. 

types o f  perturbations one may expect from EMP. 

The second in t e rva l  ( the  dynamic 

I n  t h e  remainder of t h i s  subsection we discuss t h e  major 

EMP-induced f a u l t s  (short  c i r c u i t s  between l i n e s  o r  from l i n e  t o  

ground) pose a very serious perturbation fo r  t h e  en t i r e  e l e c t r i c a l  sys- 

t e m .  Because of t h e  transmission l i n e s ’  greater  insulation, it i s  much 

less l i ke ly  t h a t  EMP w i l l  cause f a u l t s  on these higher voltage l i n e s .  

But t he  typ ica l  d i s t r ibu t ion  system i s  probably insuf f ic ien t ly  insulated 

against  EMP-induced surges, pa r t i cu la r ly  a t  discont inui t ies  i n  geometry, 

e tc . ,  as previously mentioned (Section C ) .  

induced e l e c t r i c a l  surges w i l l  i n i t i a t e  f a u l t s  on the  d is t r ibu t ion  l ines ,  

i n  which case the  l i n e  voltage may maintain the  f a u l t s  u n t i l  t he  l i n e  i s  

opened (disconnected from t h e  e l e c t r i c a l  system) and cleared i n  the  normal 

manner. 

t he  transmission system were it not for  the  f a c t  t h a t  many d is t r ibu t ion  

system f a u l t s  may be induced simultaneously over a very large area ( for  

example, see Fig. 2 ) .  The cumulative e f fec ts  of t he  multiple f a u l t  per- 

turbation on the  d is t r ibu t ion  system w i l l  probably have a s ign i f icant  

e f f ec t  on the  transmission system. 

It should be expected t h a t  

Such d is t r ibu t ion  system f a u l t s  would pose no serious th rea t  t o  

A second important type of EMP-produced perturbation i s  the  possi- 

b i l i t y  of r epe t i t i ve  EMP pulses produced from multiple detonations closely 

spaced i n  time. 

nuclear scenarios. However, both s ingle  and multiple high-al t i tude detona- 
t ions should be considered. Multiple bursts  have two important e f fec ts .  

F i r s t ly ,  there  w i l l  be a cumulative e f f ec t  of r epe t i t i ve  s e t s  of fau l t s ,  

i .e . ,  c losely spaced groups of fau l t s .  Secondly, c losely spaced r epe t i t i ve  

surges may lock open many relays u n t i l  they a re  manually reset. 

t yp ica l  mechanical re lays  may in t e rp re t  r epe t i t i ve  f a u l t s  as being a 

“permanent fau l t , ”  th ree  or more burs t s  c losely spaced could lock open many 

relays removing the  consumer load normally f e d  by the  l ines ,  and thus 

It i s  not t he  purpose of t h i s  paper t o  discuss possible 

- 

Since 
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reduce the  transmission network's load. A subs tan t ia l  load reduction . 

could cause the  system t o  accelerate  so rapidly t h a t  generation could not 

be reduced su f f i c i en t ly  before loss  of synchronism, o r  before t r ipp ing  of 

overspeed relays on generators. The e f f ec t s  of r epe t i t i ve  f a u l t s  with o r  

without subs tan t ia l  load reduction w i l l  be discussed i n  Chapter IV. 
A t h i r d  type of EMF'-induced perturbation may be the  malfunction of 

i n su f f i c i en t ly  protected transmission l i n e  relays causing e i t h e r  t he  

unnecessary opening of l ines ,  or the  destruct ion of re lay  c i r c u i t s .  

Solid state relays commonlyusedin veryhighvol tagetransmissionl ines  

may be par t icu lar ly  sens i t ive  t o  EMP-produced t rans ien ts .  

electromechanical re lays  typical lyused on d i s t r ibu t ion  systems and lower 

voltage transmission l i n e s  should not be ser iously vulnerable t o  t h i s  

type of malf'unction. 

s ion system c i r c u i t r y  w i l l  - not be affected by the  t rans ien ts .  

there  i s  l i t t l e  hope of t h e  system remaining i n  operation. 

malfunctioning or  damage of so l id  s t a t e  re lays  should be carefu l ly  

However, 

I n  t h i s  study, we have assumed t h a t  t h e  transmis- 

Otherwise, 

The possible 

examined. 

A fourth type of perturbation which may occur i s  generator t r ipp ing .  

When a generator i s  tr ipped, it i s  removed from the  l i n e  and shut down. 

One must dis t inguish between two basic  categories of generator t r ipping.  

F i r s t ,  generators may be f a l s e l y  t r ipped a t  the  time of t he  burs t  by 

e l e c t r i c a l  surges induced i n  the  generator control  system. If a s izable  

portion of the  generation capacity i s  f a l s e l y  tr ipped, t he  e n t i r e  system 

could collapse. 

simulate such a false- t r ipping s i tua t ion  since it i s  not now known what 

e f f ec t  EMP w i l l  have on generator control  systems. 

causes serious problems of t h i s  nature, t h e  e f f ec t  on the  s t a b i l i t y  w i l l  
be severe. A second category of generator t r ipp ing  t o  be considered i s  

t h a t  which i s  necessitated some time a f t e r  t h e  i n i t i a l  EMP perturbation, 

i .e . ,  after a f e w  seconds o r  even after several  minutes. 

generator t r ipping may be necessitated e i the r  i f  t he  generator governor 

However, i n  t h i s  study we have - not t r ipped generators t o  

Certainly i f  EMP 

Late-time 

systems are unable t o  reac t  su f f i c i en t ly  rapidly t o  an increase i n  t he  

system's average frequency, or i f  a machine fa l l s  out of s tep  and loses  

synchronism. This second category of generator perturbations w i l l  a f f ec t  
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c 
the  l a t e r  time dynamic responze rather  than the  e a r l i e r  time t rans ien t  

response of the  system. 

end of t h i s  subsection. 

We discuss the  dynamic response fur ther  a t  the  

An added d i f f i c u l t y  i n  estimating the  e f f ec t s  of generator t r ipp ing  

i s  t h e  poss ib i l i t y  of terminating too much generation i n  response t o  a 
legit imate need fo r  a reduction. 

m a l  generator regulation and control procedures may not respond properly 

t o  EMP-type perturbations i n  which the  disturbed area i s  very large and 

i s  simultaneously affected.  Operation and control  procedures may need 

t o  be reviewed t o  determine whether they respond properly t o  EMP 
disturbances . 

Such a s i t ua t ion  could a r i s e  since nor- 

The various transmission networks a re  connected by t i e  l ines ,  where 

t h e  power flow between networks i s  controlled.  

bation would be d i r ec t  interference with the  t i e  l i n e  monitoring o r  

control  system. 

rupted i f  t i e  l i n e  control  systems were affected by t rans ien t  pulses, 

and t h e  l ikelihood of such f a i l u r e  increases for  computerized systems. 

Additionally, response of real-time t i e  l i n e  control  may be qui te  

crucial ,  since s igni f icant  interact ions between adjacent transmission 

networks should be expected, pa r t i cu la r ly  i f  one network i s  subjected t o  

t h e  perturbation more severely t h a n  neighboring ones. 

stances it may be desirable  t o  open t i e  l ines ,  a poss ib i l i t y  which w i l l  

be fur ther  discussed i n  Chapter IV. 

A f i f t h  type of pertur- 

The normal power flow between networks could be in t e r -  

I n  some circum- 

A s ix th  perturbation which might r e s u l t  from EMP would be damage t o  

or  interference with computerized load flow centers and dispatch stations. 

Typical computer-controlled power systems are described by Ross and 

Green.5 

s ive use of computers which, unless shielded, are par t icu lar ly  vulnerable 

t o  EMF' effects  and w i l l  l i k e l y  malfunction. 

such perturbations a r e  similar t o  t i e  l i n e  control  problems. 

This i s  becoming a more serious th rea t  because of the  more exten- 

The possible e f f ec t s  from 

A s  a consequence of co l lec t ive  e f f ec t s  of t he  various EMP-induced 

perturbations discussed above, there  w i l l  ce r ta in ly  be late-time dynamic 

e f fec ts  on the  systems. However, one cannot precisely determine what 

spec i f ic  dynamical e f f ec t s  w i l l  r e su l t  from any given perturbation. 
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This study was therefore  l imited t o  the  early-time t r ans i en t  response 

of the  system. But we  present ly  mention several  possible dynamical 

e f f ec t s  which EMP could produce, fo r  one must keep such p o s s i b i l i t i e s  

i n  mind when assessing the  t o t a l  e f f ec t  of EMF' on the  power system. 

If there  i s  a major load loss,  an increase i n  t h e  system's average 

frequency i n  t h e  dynamical time period might occur, which could t a x  

generator control  systems t o  an extreme. 

e f f ec t  i s  transmission l i n e  overloading resu l t ing  i n  the  opening of 

transmission l i n e s  and causing cascading failures similar t o  t h e  

Northeast power f a i l u r e  of 1965. 
period were monitored t o  detect  overloading conditions. 

study we assume t h a t  transmission systems w i l l  remain i n  operation 

except fo r  spec ia l  cases of t i e  l i n e  openings. 

major transmission l i n e s  w i l l  only magnify t h e  perturbation. 

sequently, it should a l so  be expected t h a t  major b l a s t  damage t o  the  

transmission system would have a disastrous e f f ec t .  However, much 

of t he  transmission system and the  generation capacity i s  outside 

probable t a rge t  areas  and therefore  may not be grea t ly  a f fec ted  by 

b las t ,  pa r t i cu la r ly  i n  a l imited nuclear engagement. Again, one 

cannot a t  present easily calculate  t he  dynamical response of t h e  

system, pa r t i cu la r ly  t o  such complicated perturbations as w i l l  l i k e l y  

be induced by EMP. 

Another possible dynamical 

The power surges i n  the  t r ans i en t  

In  t h i s  

Certainly loss  of 

Con- 



CHAPTER I1 

THE STABILITY PROBLFM FOR THE SYNCHRONOUS POWER SYSTEM 

I n  t h i s  chapter t h e  general charac te r i s t ics  of s t a b i l i t y  a r e  

described, and two h i s t o r i c a l  examples of perturbed transmission systems 

are presented i n  Section A. 

cussed i n  Section B. 

The s t a b i l i t y  equations a re  given and dis- 

A. GENEFLAL CHARACTERISTICS OF I,OSS OF STABILITY 

1. His tor ica l  Examples 

Perhaps t h e  most notable h i s t o r i c a l  example of loss of s t a b i l i t y  

of t h e  transmission network i s  the  Northeast Power Failure of 1965. 
Extensive s tudies  

s t a t e s  have been made. 

systems have been considerably improved, ye t  t he  f a i l u r e  i s  a good 

i l l u s t r a t i o n  of cascading fa i lures ,  i .e.,  f a i l u r e s  i n  which one event 

t r i gge r s  a succession of events eventually leading t o  the  collapse of 

a l l  or pa r t  of t h e  power system. 

collapse of t he  Northeast pow,er system w a s  evidently i n i t i a t e d  by a 

backup re lay  opening one of f ive  230-kilovolt c i r c u i t s  between the  Beck 

6 of t h a t  blackout of nearly a l l  of t he  Northeastern 

Since 1965, t h e  transmission and generation 

The sequence of events leading t o  the  

Generating S ta t ion  and Toronto-Hamilton, both i n  Canada. This event 

resu l ted  i n  more than two dozen switches t r ipping within the  next f ive  

seconds, and producing enormous power surges. Generators i n  western 

New York and a t  t h e  Beck Stat ion accelerated u n t i l  synchronism w a s  

l o s t ,  necessi ta t ing t h e i r  separation from the  remainder of t h e  system. 

After about 7 seconds from the  opening of the  f irst  c i r cu i t ,  t he  t rans-  

mission network had s p l i t  i n to  several  separate areas. 
p a r t s  of t he  system was very low, subnormal by as much as 10% for  many 

The frequency of 

minutes. 

load and generation collapsed because of t he  i n i t i a l  e f f ec t s  of t h e  

Even i so la ted  p a r t s , o f  the  system which had reasonably balanced 
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perturbat ion.  Swing curves of various generators (see Section B of 

t h i s  Chapter f o r  an explanation) are presented i n  Volume I11 of Refer- 

ence 6. It should be noted t h a t  t h i s  pa r t i cu la r  per turbat ion occurred 

on the  transmission system, not on t h e  d i s t r ibu t ion  system, and there-  

fo re  d i f f e r s  from t h e  expected EMP-generated perturbations.  The col-  

l e c t i v e  e f f ec t  of t h e  series of events resu l ted  i n  t h e  nearly complete 

collapse of a major segment of t h e  transmission network. 

We wish t o  consider a second example, much less spectacular than 

t h e  Northeast power failure. 

- not collapse,primarily because of a strong transmission system. On 

January 19, 1964, sudden outage occurred on t h e  TVA Paradise Steam 

Plant  when generation of 1250 megawatts was abruptly l o s t .  

after t h e  event, t he  adjacent t i e  l i n e s  supplied t h e  TVA network with 

addi t iona l  power. 

generation i s  shown i n  Fig. 5. 
t h e  generation-deficient TVA network (a "sink" of power a f t e r  t h e  event) 

with power from the  adjacent networks (a la rge  ''source" of power), thus 

preventing loss of synchronism. 

t h i s  pa r t i cu la r  per turbat ion.  

I n  t h i s  second case,the power system did  

Immediately 

The t i e  l i n e  power flow before and after the  loss  of 

A strong transmission system provided 

The system i n  t h i s  case w a s  s t ab le  t o  

Numerous power f a i l u r e s  have occurred s ince 1965 and continue t o  

occur frequently, usual ly  on a state-wide bas is .  Most, i f  not a l l ,  

have been cascading type of f a i l u r e s  i n i t i a t e d  by a s ingle  event 

usual ly  associated with the  transmission system. 

events range from storms t o  mechanical failure of equipment. 

The type of i n i t i a t i n g  

2 .  Differences Between EMF' and "Natural" Perturbations 

EMP-induced per turbat ions w i l l  d i f f e r  subs tan t ia l ly  from "natural"  

perturbations,  such as those mentioned b r i e f l y  above. A s  explained i n  

Chapter I, EMP w i l l  most l i k e l y  induce multiple f a u l t s  on t h e  d i s t r ibu -  

t i o n  systems--not on t h e  transmission system, and the  area covered by 

faults can be extensive. 

f o r  multiple nuclear detonations. 

s ion system's average frequency t o  increase subs tan t ia l ly .  

- 
Repetit ive s e t s  of f a u l t s  would possibly occur 

EMP e f f e c t s  may cause t h e  transmis- 

Local 
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SOUTHERN 
SYSTEM 

25 MW FROM TVA (a) 
215MW TO TVA (b) 

I 

before loss of Paradise 
b . Power f low immediately 

af ter  loss o f  Paradise 

I ELECTRIC ENERGY INC. I 

Fig. 5. The Interconnected Network Power Flow Immediately 
Before and A f t e r  a Sudden Outage of a Major Generator. 
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increases  i n  frequency do occur a t  times from "natural" perturbations,  

but not on t h e  same scale  as EMP. 

transmission system i n  many d i f f e ren t  ways than na tura l  per turbat ions.  

The experience which power companies have gained i n  determining the  

Additionally, 'EMP may per turb t h e  

system response from na tu ra l  per turbat ions may therefore  not be d i r e c t l y  

applicable i n  determining t h e  response i n  an EMP environment. 

t he r  compare t h e  two h i s t o r i c a l  examples given with t h e  calculated EMP 

response i n  Chapter IV, Section D. 

We fur- 

B. BASIC PHYSICS AND MATHEMATICS OF THE STABILITY PROBLEM 

The purpose of t h i s  sect ion i s  t o  introduce t h e  reader t o  t h e  gen- 

e r a l  physical  and mathematical concepts important i n  determining the  

response of t h e  transmission system t o  a per turbat ion such as EMF. 

should not be considered as a rigorous treatment.  

i n  a more rigorous development of t h e  s t a b i l i t y  problem should refer t o  

standard t e x t s .  7,8,9 
explanation. The modeling of t h e  transmission system and t h e  numerical 

method for  solving t h e  s t a b i l i t y  equations w i l l  be presented i n  Chapter 

111. 

It 

A reader i n t e re s t ed  

Reference 7 gives a p a r t i c u l a r l y  good physical  

1. Basic Equations 

The transmission system cons is t s  bas i ca l ly  o f :  (a) generating 

devices, or machines; (b)  t h e  e l e c t r i c a l  c i r c u i t r y  which t ransmits  t h e  

generated power t o  the  various major substations of t he  d i s t r i b u t i o n  

systems (which we  refer t o  as t h e  network i n  t h i s  chapter) ;  and ( c )  t h e  

various cont ro l  and monitoring equipment, with which we are not pres- 

en t ly  concerned. 

E l e c t r i c a l  t r a n s i e n t s  on t h e  network propagate a t  s l i g h t l y  l e s s  

than t h e  speed of l i g h t .  

t he  synchronous behavior i s  i n  f a c t  not determined by t h e  time of t r a v e l  

of e l e c t r i c a l  pulses.  

However, t h e  important time sca le  re levant  t o  

Rather, there  are two important response times 
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(or  frequencies) determining the  system's t rans ien t  response. 

r e l a t e  t h e  response time T t o  a corresponding frequency f by t h e  

def in i t ion  

One can 

( 2  4 1 f = r  
The equilibrium synchronous frequency f, or i t s  inverse period T, 

(60 her tz  and 16.7 milliseconds respectively i n  the  U.S.A. )  s e t s  an 

important time scale. 

chronous frequency f, which we  designate as Af become important a t  a 
time A t  when ( A f  A t )  becomes a s igni f icant  f rac t ion  of a complete 

cycle. 

t r i bu t ion  networks operate on t h i s  time scale, from one t o  twenty To 

(approximately 15 t o  350 milliseconds). 

Frequency deviations from the  equilibrium syn- 

Most of t he  mechanical relays on both the transmission and dis- 

A second important time scale  determining t h e  behavior of t he  sys- 

tem after being perturbed i s  the  machine response time, o r  machine 

period, T . A s ingle  machine can be modeled as a ro ta t ing  mass with a 

la rge  moment of i n e r t i a  I. 

power t o  it (from steam plants ,  hydroplants, e t c . ) ,  and has a back 

e l e c t r i c a l  torque re opposing ra. 

m 
The mass has an applied torque ra delivering 

Then at  equilibrium 
, 

ra - re ? '  

and t h e  mass ro t a t e s  a t  frequency wo. However, i f  a per turbat ion i s  

applied, t h e  e l e c t r i c a l  torque r i s  changed resu l t ing  i n  a net torque 
l e  

on the  mass and from Newton's l a w  

(2 .3 )  

where we have, defined 

The motivation for  defining 6 i s  the  following. 

e l e c t r i c a l  phase angle which, i n  equilibrium, increases as wet. How- 

ever t he  power delivered by machines depends upon t h e i r  r e l a t i v e  angles. 

Since the machines normally ro t a t e  together it i s  desirable  t o  define a 

0 i s  j u s t  the  absolute 
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coordinate system ro ta t ing  a t  frequency u) t. Then 6 ( t )  i s  the  angle of 

departure from equilibrium, measured with respect t o  some ro ta t ing  r e f -  

erence, with a l l  i n i t i a l  angles given with respect t o  one pa r t i cu la r  

machine a t  t = 0. 

0 

The mathematical d i f f i c u l t i e s  a r i s e  from the  complicated depend- 

ence of re on the  machine angles. 

nonlinear equations; f o r  the  ith machine 

For n machines, there  a r e  n coupled 

where the  r's a r e  the  applied and e l e c t r i c a l  "crques previously defined 

for t he  ith machine. 

Clearly t h e  e l e c t r i c a l  torque 

on a l l  of t he  machine angles and t h e i r  der ivat ives .  

be expressed i n  terms of the  applied and delivered power, Pa and Pe, 

respectively,  by multiplying by u) and defining the i n e r t i a  constant M, 

A dot means the  der ivat ive with respect t o  time. 

i s  a complicated function depending 

Equation (2 .5)  can 

The torque multiplied by the  angular frequency i s  j u s t  the  power t rans-  

ferred,  and we have 

where the  subscr ipts  have the same meaning as i n  Eq. (2 .5) .  
To get  some fee l ing  for  t he  power Pe delivered,consider a simple 

example of a generator driving a motor as shown i n  Fig. 6. 
i s  only one motor, we can suppress the  subscript  i .) 

inductive l i n e  X, 

(Since there  

Then, f o r  a purely 

The, r e a l  power P delivered by the  generator i s  j u s t  

P = %(EG * I)  = (-7) lEGl IEMl s i n  6 ( t )  , 
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where 6 i s  t h e  difference i n  phase between EG and EM. 
c ruc ia l  angle s ince P depends upon the  phase difference between E 

EM. 
delivered by the  generator i s  proportional t o  s i n  6. 

becomes 

Clearly 6 i s  the  
and G 

I n  normal operation, EG, EM, and X are constants so t h a t  t he  power 

Equation (2.7) 

.. 
M 6 . =  Pa - Pm 'sin 6 (2.10) 

where P 

Eq. (2.10) has s t ab le  solutions.  Figure 7 shows a p l o t  of P as a 

function of 6.  Assume the  equilibrium angle i s  6 , then i f  t h e  load on 

the  motor i s  increased it w i l l  decelerate  or slow down with respect  t o  

the  generator and 6 w i l l  therefore  increase.  Correspondingly, t he  del iv-  

ered power P w i l l  increase u n t i l  it exceeds the  new load, a t  which 

time the  motor w i l l  begin t o  acce lera te  u n t i l  i t s  ro t a t iona l  frequency 

approaches t h a t  of t he  generator again. 

i s  t h e  maximum power t r ans fe r .  It i s  easy t o  understand why rn 
e 

0 

e 

Without damping, S ( t  ) would 

o s c i l l a t e  about 6 

(Actually the  case i s  more complicated than t h i s  s ince 6 must change 

sign, not j u s t  6 . However, t he  bas ic  idea i s  not modified.) I f  the  

increase i n  load i s  too  great,  t h e  motor w i l l  s tal l .  A t  t h e  nodes of 

Pe( 6 )  where P 

de l ivers  power, but, i n  f ac t ,  a c t s  as a motor. It must be removed from 

the  system; it cannot regain synchronism. A repeat of t h e  above analy- 

sis  w i l l  show that  i f  t h e  i n i t i a l  angle were 6 (Fig. 7), then t h e  

motor-generator would not be s table .  

works, a machine i s  considered t o  be out of synchronism when 6 d i f f e r s  

by more than 120° from e l e c t r i c a l l y  "close" machines. 

unless Pm i s  in su f f i c i en t  t o  meet t h e  new load. 
0 

.. 

s i n  6 changes s ign (at  0 or K),  t he  generator no longer m 

U 
I n  p rac t i ce  i n  multi-machine net-  

We can now re tu rn  t o  our o r ig ina l  question concerning t h e  response 

For small perturbations,  t he  system w i l l  o s c i l l a t e  time of t he  system. 

about 6 and Eq. (2.10) can be l inear ized .  Then, f o r  small e 
0 

s i n  (6, + e)= s i n  s cos c + cos s s i n  6 
0 0 

= s i n  6 + c cos 6 + 0 ( c 2 )  , 
0 0 

(2.11) 



21 

cu 
0
 

ai 

k
 
0
 

-v 
ai 
k
 

a, c a, 
a
 ai 

k
 
0
 

h
 

h
 

0
 

c 0'
 

ai 



22 

where 

, Equation (2.10) becomes 

.. . E: = - P ’ S  m M €  = P - P  ( s i n  6, + 8 cos bo) = - (Pm COS 6,) a m  

where w e  have used t h e  equilibrium iden t i ty  

Pa = P s i n  6, . m 

Equation (2.12)  i s  j u s t  t h a t  of harmonic osc i l l a t ion  with na tura l  

frequency 

Note t h a t  

p i  p COS 6, = - d (P s i n  6 )  I m m d 6 .  m 6 = 6, 

9 

(2 .12 )  

(2 44) 

i s  j u s t  t he  ,ncremental power gradient (frequently c a l l e  t h e  synchroniz- 

ing power). 

second, so t h a t  a f t e r  a perturbation, s tab le  machines w i l l  o s c i l l a t e  or 

swing, with small osc i l la t ions ,  about t h e i r  equilibriumvaluewith roughly 

t h i s  same period. 

scale  fo r  s t a b i l i t y  s tudies  

response time of t he  machines. 

A t h i r d  important time scale  i s  t h e  response time of t h e  generator 

The e f f ec t s  of t he  generator governors 

For typ ica l  machines the  period, Tm, i s  of t h e  order of a 

Thus the  period, Tm, defines a second important time 
and i s  d i r e c t l y  r e l a t ed  t o  t h e  mechanical 

and load control  c i r cu i t ry .  

become important about one or two seconds after a perturbation since t h e  
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I 

governors respond rather  slowiy and gradually. ' The governor response 

i s  d i f f i c u l t  t o  model, and it ' i s  therefore  again convenient t o  consider 

t h e  response i n  each of two in te rva ls :  (1) the  short  time t rans ien t  

response, which is, t h a t  before generator control  becomes s ignif icant ,  

and ( 2 )  the  l a t e r  time dynamic response, which i s  strongly dependent 

on the  generator control systems. A s  e a r l i e r  mentioned, the  t r ipping of 

c i r c u i t  breakers i s  an important c l a s s  of perturbations which can a f f ec t  

t h e  t rans ien t  response since relay response time i s  between 1 and 15 

cycles. Typical generator t r ipping relays exci te  breakers when there  i s  

a 60% or more voltage reversal  for  a time of 10 cycles, with the  

excited breakers opening about three cycles l a t e r .  

One cannot completely p a r t i t i o n  a response in to  t rans ien t  and 

dynamic s t a b i l i t y  components. 

since a system which i s  qui te  s tab le  during the  t rans ien t  period, but 

which i s  completely unstable dynamically, r e s u l t s  i n  j u s t  as unfortun- 

a t e  a collapse as i f  s t a b i l i t y  were l o s t  very ear ly .  However, one can 

be ce r t a in  t h a t  a system which has an unstable t rans ien t  response w i l l  

not l i k e l y  regain synchronism. 

time response can therefore be qui te  informative i f  not always conclu- 

Certainly both aspects must be considered 

A study l imited so le ly  t o  the  ear ly  

sive, and t h i s  i s  t h e  primary l imi ta t ion  on t h i s  study. However, some 

knowledge of t he  dynamic response can be gained, as w i l l  be seen. 

2 .  Method of Solution 

Because of t he  nonlinearity of Eq. ( 2 . 7 ) ,  one must solve the  . _  

coupled equations numerically. 

puter  program of t h e  Philadelphia Elec t r ic  Company. 

We have used t h e  ve r sa t i l e  d i g i t a l  com- 
10 

I n i t i a l l y  t he  load flow of t he  network a t  equilibrium must be 

found by solving Kirchhoff's laws' fo r  t h e  given e l e c t r i c a l  network 

using an i t e r a t i v e  technique. 

and i n i t i a l  equilibrium angles of t he  machines. 

flow of n machines, there  a re  n equations with n + 1 unknowns; and, with 

t h e  specif icat ion of an i n i t i a l  reference phase 6. I t = 0, a unique 

solution for  a l l  other 6. ' s  can be obtained (i.e.,  again it i s  not t he  

s .  

This determines the  voltages, power flows, 

For t he  complete load 

1 

1 
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absolute angles which a re  important, but t he  r e l a t i v e  angles) .  

must, of course, know the  s e l f  and mutual admittance Y of t he  network 

between each jth and kth terminal, and t h e  voltage magnitudes Ei of t he  

machines. The determined hi's then completely specify the  power output 

fo r  each machine at  equilibrium. 

One 

jk  

More spec i f i ca l ly  ( reca l l ing  t h a t  t h e  e l e c t r i c a l  quant i t ies  are 

complex) w e  have fo r  t h e  power output for  

* 
P. = E  I 
1 i i  

and 

I .  = CY 
3 k j k  

Then defining t h e  phase between E .  and 
1 

t he  ith machine 

(2.16) 

Ji 

i 6 i  
Ei = \ E i \  e (2.18) 

Equation (2.17) can be used t o  eliminate I 

power of each machine i n  terms of Y, E, and 6. The angle 6 can be found 

by i t e r a t ion .  

i n  (2.16), expressing the  i 

(An example i s  given i n  Section 3 of t h i s  chapter.)  

I n  t h i s  study, a solved base case representing t h e  peak summer 

power f l o w  of a projected 19'77 transmission network i s  used. 

s t a b i l i t y  program could be used once a su i tab le  model f o r  t he  EMP f a u l t s  

was determined. Chapter I11 discusses the  model i n  d e t a i l .  

The d i g i t a l  

3. Swing Curves - An ' I l l u s t r a t ive  Example 

A s  an i l l u s t r a t i v e  example of s t a b i l i t y  calculations,  consider the  

simple two-machine problem i l l u s t r a t e d  i n  Fig. 8. The power delivered 

by each generator i s  a function of the  difference i n  angles of t h e  two 

machines, i .e.,  of 6, - 6, 5 A .  The power delivered by each machine f o r  

t he  two-machine problem i s  of the  form 
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P = a1 - b cos ( B  + 6, - 6,j 
e, 1 

P = a, - b cos ( B  - 6, + 6,) 
e72 

where B i s  r e l a t ed  t o  the  impedance phase of t he  c i r c u i t .  

a r e  found by using Eqs. (2.16) through (2.18) .  

and t h e  angles 6, and 6, a re  constant. 

a f a u l t  modifies t he  o r ig ina l  c i r c u i t  changing a, b, and B, and therefore  

P, and P, change resu l t ing  i n  a net torque on the  machines. 

6, and 6, then begin t o  change 'as given by Eq. (2.7). 

The angles Si 

e , i  
However, a per turbat ion such as 

During equilibrium P 

The angles 

The e f f ec t s  of t h e  perturbation, of course, depend upon many fac tors  

such as the  duration of the  f au l t ,  i t s  location, i t s  severity,  e t c .  Two 

t yp ica l  r e su l t s  fo r  t h e  change i n  t h e  6 ' s  as a function of time a re  

i l l u s t r a t e d  i n  Fig. 9. The machine angle curves labeled A represent an 

unstable case i n  which the  f a u l t  was not cleared with su f f i c i en t  rap id i ty .  

The case labeled B i s  t h e  response fo r  a more rapid clear ing of t h e  f a u l t ,  

and the  curves ind ica te  t h a t  t he  generators remain i n  synchronism since 

t h e  machines swing back%o equilibrium. Appropriately, t he  curves 

a re  ca l led  swing cwves and show t h e  deviation of t he  machine angles 

from equilibrium as a function of time. 

A general c r i t e r i o n  for loss of synchronism i s  t h a t  when two elec- 

t r i c a l l y  close machines d i f f e r  i n  phase angle by more than 120°, t h e  

machines are said t o  be out of step.  Thus, when t h e  angular difference 

i n  the  6 's  of two such machines exceeds t h i s  angle, t h e  machines w i l l  not 

be i n  synchronism with each other.  

suf f ic ien t  t o  resynchronize the  machines. A loss i n  synchronism i s  qui te  

apparent from t h e  swing curves. . 

The res tor ing  torque w i l l  not be 
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CHAPTER I11 

MODELING OF EMP-INDUCED PERTURBATIONS 

A. THE DESCRIPTION OF THE MULTIPLE-FAULT MODEL 

The general  cha rac t e r i s t i c s  of EMP-induced per turbat ions were , 
discussed i n  Chapter I, Section D. There it was noted t h a t ,  wi thin 

the  l imi ta t ions  and s implif icat ions mentioned, t h e  p r inc ipa l  d i s tu r -  

bance a f fec t ing  the  t r ans i en t  response i s  multiple f a u l t s  on the  

d i s t r ibu t ion  system. The response from the  per turbat ion can be calcu- 

l a t ed  by using standard d i g i t a l  computer s t a b i l i t y  programs. However, 

i n  using th se  programs two modifications must be made. 

must simulate the  f a u l t s  which occur on t h e  d i s t r ibu t ion  systems (not 

on the  transmission system as i s  the  usual  case) .  

f a u l t s  must be simultaneously applied on the  d i s t r ibu t ion  systems con- 

nected t o  the  transmission network over a la rge  area. 

both of these modifications can be eas i ly  handled with no reprogramming 

of t he  basic  s t a b i l i t y  program of R e f .  10. 

F i r s t l y ,  one 

Secondly, many 

Fortunately 

A f a u l t  on a d i s t r ibu t ion  system w i l l  couple t o  t h e  connecting 

transmission network through some ef fec t ive  impedance Z, with Z deter-  

mined by the  loca t ion  and nature of t h e  pa r t i cu la r  f a u l t  on the  

d i s t r ibu t ion  system. 

side of t he  major substat ion transformers shown i n  Fig. 3. The char- 

Faul ts  should occur pr imari ly  on t h e  low voltage 

a c t e r i s t i c  impedance Z w i l l  then be determined pr imari ly  by the  primary- 

to-secondary impedance of t h e  transformer a t  t h a t  point,  i .e. ,  a f a u l t  

on t h e  low voltage s ide  of t he  transformer w i l l  couple t o  t h e  transmis- 

s ion systems with an e f fec t ive  impedance Z nearly equal t o  t h a t  of t h e  

t y p i c a l  transformer. This impedance i s  due t o  t h e  leakage flux of t he  

non-ideal transformer and i s  almost pure reactance. Faul t s  occurring 

on the  d i s t r ibu t ion  system far from the  major substat ion w i l l  have a 

much la rger  e f f ec t ive  impedance. Consequently, t h e  f a u l t s  c lose t o  
the' major substat ions w i l l  produce the  most severe per turbat ion of t he  

transmission system. We a re  assuming t h a t  t he  voltage insu la t ion  o f t h e  



transmission network feeding the  major substations i s  su f f i c i en t ly  good 

t h a t  EMP w i l l  not induce f a u l t s  on the  transmission system. 

t i o n  i s  not without j u s t i f i c a t i o n  as e a r l i e r  discussed. 

This assump- 

Figure 10 i l l u s t r a t e s  t he  model for simulating the  e f f ec t  of 

d i s t r ibu t ion  system f a u l t s  on the  transmission system. I n  normal t ran-  

s i en t  studies, t h e  load i s  considered t o  be on the  major substation bus 

labeled S.  However, by defining an addi t ional  bus, D, w e  can- simulate 

f a u l t s  on or  close t o  D by connecting bus, D t o  bus S by a "transmission 

l i n e , "  D-S, having an impedance Z .  

network produced by a f a u l t  on or near D can be calculated simply by 

fau l t ing  D, a standard option i n  the  s t a b i l i t y  program. 

Then the  e f f ec t s  on t h e  transmission 

The procedure i s  e s sen t i a l ly  as follows. The bus D i s  grounded (or 

i s  faul ted with a 3-phase f au l t ,  leaving t h e  transmission l i n e  looking 

a t  t he  predominantly react ive load from t h e  leakage f lux  of the  non-ideal 

substation transformer. This modifies t he  network [the Y i n  Eq. (2.17)] 
resu l t ing  i n  a modification of t h e  a's, b ' s ,  and B ' s  of equations similar 

t o  (2.19). The swing angles &( t )  a re  then calculated from Eq. (2.7)  

using the  new c i r c u i t  parameters, i . e . ,  the  new Y ' s .  I f  t he  f a u l t  (or 

f a u l t s )  a r e  then removed or modified a t  a later time t,, a new s e t  of 

c i r c u i t  parameters w i l l  spec im the  power t ransfers .  The machine angles 

b i ( t )  can be calculated fo r  t > tl using t h e  new power t r ans fe r s  t h e  

value of h l ( t , ) ,  and Eq. (2.7).  
c i r c u i t  i s  returned t o  i t s  i n i t i a l  configuration, the  machine angles w i l l  

vary i n  time since 'S.(t,) a re  non-zero and t h e  S . ( t , )  a r e  not a t  t h e i r  

equilibrium values. 

zero. 

s t a b i l i t y .  

bation on bus D, i t s e l f ,  nor on the  l i n e  D-S; these c i r c u i t s  a r e  

introduced merely t o  simulate the  e f fec t  of d i s t r ibu t ion  f a u l t s  on t h e  

transmission network. 

j k  

j k  

Even i f  a l l  f a u l t s  are removed and the  

1 1 
Thus the  net torque on each ro tor  w i l l  s t i l l  be non- 

The swing curves ij.(t) w i l l  then show if t h e  ith machine loses  
1 

We are not d i r ec t ly  in te res ted  i n  the  e f f ec t s  of t h e  per tur-  

Multiple faults can be approximated i n  a simple manner. Since we 

a r e  not in te res ted  i n  the  d i s t r ibu t ion  system except fo r  i t s  e f f ec t s  

onthetransmission system, a l l d i s t r i b u t i o n b u s e s  whichare t o  be fau l ted  

may be connected together.  Equivalently, w e  represent a l l  faul ted 
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dis t r ibu t ion  points  by a s ingle  bus on which one f a u l t  i s  placed. 

bus i s  designated by D . )  

network t h a t  are t o  be connected t o  fau l ted  d is t r ibu t ion  l i n e s  axe 

modeled by connecting each T. t o  D with a charac te r i s t ic  impedance Zi. 

The model i s  i l l u s t r a t e d  i n  Fig. 11. 

then be calculated i n  t h e  same manner as described above. 

(This  

Then the  various points  Ti of t h e  transmission 
N 

N 

1 
The e f f ec t  on Ti by fau l t ing  :can 

I n  par t icu lar ,  A number of important parameters must be specified.  

we must ascer ta in  what points on t h e  transmission network should be 

connected t o  faul ted d is t r ibu t ion  systems, i .e.,  which transmission 

buses should be included i n  the  s e t  Ti. Both t h e  number of f a u l t s  per 

un i t  area within the  fau l ted  area, as wel l  as the  geographical extent 

of t h e  perturbed region, must be specified.  We re fe r  t o  t h i s  compli- 

cated var iable  as the  f a u l t  density function, P ( r ' ) .  The density i s  

specified by the  number of f a u l t s  within the  fau l ted  area per un i t  area, 

not by the  t o t a l  number of f a u l t s  averagedoverboth faul tedand unfaulted 

areas. 

The f a u l t  densi ty  function p(?) depends on the  sever i ty  of t he  EMP- 

- 
Thus p(?) i s  zero outside the  fau l ted  area. 

induced currents, which, as pointed out ea r l i e r ,  i s  d i f f i c u l t  t o  estimate. 

The density was estimated i n  t h e  following manner. Within the  perturbed 

area of the  transmission network (such as t h e  TVA network) we f irst  

a r b i t r a r i l y  assumed t h a t  a l l  major buses having a load of 100 megawatts 

o r  more would be connected t o  fau l ted  d i s t r ibu t ion  systems. 

specified the  set Ti, thus speciming a par t icu lar  f a u l t  density. 

calculations were done using d i f fe ren t  dens i t ies  i n  order t o  determine 

the change i n  t h e  system's response. 

determined by the  height of burst  of t he  detonations. 

determine 'the importance of the  geographical extent of t he  perturbations,  

several  s t a b i l i t y  runs were made with the  perturbation applied t o  increas- 

ingly la rger  areas.  

These buses 

Then, 

The s i ze  of the  perturbed area i s  
I n  order t o  

Another important parameter s e t  which must be specified i s  the  

impedances, Zi, connecting each T 

e f fec t ive  f a u l t  impedance, Z(?) .  

was determjmed by the  following procedure. 

as equal and f ixed a t  the  impedance of a typ ica l  major substation 

t o  6. We re fe r  t o  t h i s  s e t  as the  i 
The dependence of the  response on Zi 

F i r s t ,  a l l  Z . ' s  were chosen 
1 
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transrormer . 
calculations f o r  d i f fe ren t  values of the impedance were made. Finally, 

t o  be ce r t a in  that using the  same impedance f o r  a l l  Z ' s  i s  a reasonable 

approximation, Z. w a s  randomly chosen between specif ied l i m i t s  with t h e  

average of the  set corresponding t o  a previously used value. 

son of t he  calculated responses ( i .e . ,  of t h e  swing and voltage curves) 

then allows one t o  determine t h e  dependence of the  response on the  

impedances. 

(The impedance i s  very nearly purely react ive.  ) Then 

i 

1 
A compari- 

Repetit ive sets of multiple f a u l t s  were eas i ly  modeled by reapply- 

ing the s ingle  set model a f t e r  t he  desired t i m e  delay from the previous 

pulse. The duration of t h e  r epe t i t i ve  f a u l t s  was chosen t o  correspond 

t o  typ ica l  d i s t r ibu t ion  re lay  times as i n  t h e  non-repetitive f a u l t  case. 

A de ta i led  discussion of t h e  importanceofrelay times f o r  multiple pulses 

i s  given i n  Chapter IV. 
separating the  pulses gives an addi t ional  degree of freedom. 

t r ia l  calculations using d i f fe ren t  time separations, it was found t h a t  

t h e  response was not strongly dependent on t h i s  time separation. A 

representative double pulse was then chosen f o r  fur ther  study of t he  

e f f ec t s  of r epe t i t i ve  pulses.  

used a re  discussed i n  Chapter I V .  

For two or more r epe t i t i ve  pulses, t he  time 

After many 

The detai led charac te r i s t ics  of the  pulses 

B. THE MODELING OF OTHER PEXCURBATIONS 

Many of t h e  ather  EMP-induced perturbations mentioned i n  Chapter I, 

Section 4, can be incorporated i n  the  s tabi l i ty  s tudies  using t h e  digi-  

t a l  program. Lock-out of d i s t r ibu t ion  relays caused by multiple pulses 

w i l l  a f f ec t  t h e  transmission system chief ly  by reducing t h e  load on 

those buses feeding the  affected d i s t r ibu t ion  system. I n  order t o  simu- 

la te  t h i s  e f f ec t  and ascer ta in  the  importance of load shedding, t h e  load 

on the  buses T. was reduced. Several s t a b i l i t y  runs were made with t h i s  

load reduced by 10 

t i o n  occurred was a l so  varied.  

1 
t o  5@, and the  s i ze  of t h e  area i n  which load reduc- 

The s t a b i l i t y  program could a l so  model both the  opening of t rans-  

mission l i n e s  (caused by e i the r  proper or  f a l s e  operation of re lays)  and 
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generator t r ipp ing .  However, as discussed earlier, it w a s  assumed i n  

t h i s  study t h a t  EMP would - not i n i t i a l l y  cause t h e  transmission c i r c u i t r y  

t o  open. 

An estimate of the  magnitude of reduction i n  generation needed t o  

counteract t he  increase i n  system frequency accompanying multiple f a u l t s  

and load shedding can a l s o  be made. The r e s u l t s  and procedural details 

are discussed i n  t h e  next chapter. 

The computerized t i e - l i n e  and load-flow cont ro l  systems were not 

modeled because of l imi ted  time and resources. However, t he  e f f e c t  

which t i e  l i n e s  have on connecting systems w a s  studied. The s t a b i l i t y  

program allows one t o  model opening of t i e  l i n e s  a t  any time during the  

s t a b i l i t y  run. We wished t o  determine whether s ign i f i can t  e f f e c t s  are 
introduced because of t he  t i e  l i n e  connections and a l s o  i f  the  opening 

of t h e  t i e  l i n e s  before or shor t ly  a f t e r  t he  EMP-induced per turbat ion 

occurs s ign i f i can t ly  affects the response. 

I n  Chapter IV we present t he  r e s u l t s  and analyses from scores of 

s t a b i l i t y  runs which were made i n  order t o  determine the  importance 

of the  parameters discussed i n  t h i s  chapter and elsewhere. 
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CHAPTER I V  

RESULTS OF NUMERICAL STABILITY CALCULATIONS 

A. INTRODUCTION 

This chapter discusses the  r e s u l t s  of t he  s t a b i l i t y  calculations 

using the  model previously described. 

r e s u l t s  fo r  perturbations consisting of s ingle  se t s  of multiple f a u l t s .  

Perturbations consisting of r epe t i t i ve  sets a re  discussed i n  Section 

C .  By calculating the  response from a wide var ie ty  of perturbations 

I n  Section B we present the 

one can determine both the  possible range of Em-produced e f f ec t s  on the  

system's t rans ien t  response and the  important parameters specifying the  

EMP pulse. 

specify a unique and universal  EMF' perturbation. 

This approach i s  necessary since one cannot quant i ta t ively 

The unmodified transmission network used throughout t h i s  study for  

t h e  base case was a projected peak summer power flow network fo r  1977, 
provided by the  Tennessee Valley Authority (TVA). 

2600 l ines ,  and 300 generators were modeled. 

calculated using t h e  t rans ien t  s t a b i l i t y  program and the  solved base 

case of t he  projected 1977 power flow. 

Over 1500 buses 

The t rans ien t  response was 

Several tes t  runs of t he  model i l l u s t r a t e d  i n  Fig. 11were  made t o  

ascer ta in  whether o r  not t he  connection of t h e  transmission buses T i  

t o  t he  bus D representing t h e  d is t r ibu t ion  system through the  impedances 

Z .  would introduce a f a l s e  perturbation even when no f a u l t s  were applied. 

No s ignif icant  perturbation was i n  f a c t  introduced. 

N 

1 

The network was modified as specified,  and the t rans ien t  response was 
N 

then calculated without fau l t ing  the  d i s t r ibu t ion  bus D. No s igni f icant  

deviations from equilibrium were produced, so t h a t  t he  c i r c u i t  modifica- 

t i ons  of the model do not perturb the  system by s igni f icant ly  modifying 

the  load flow. 

Several "representative pulses'' f o r  both the  s ingle  s e t  and the  

r epe t i t i ve  s e t s  of pulses were chosen and defined by specifying t h e  impe- 

dances, f a u l t  densi t ies ,  area of coverage, and duration. Table l l i s t s  



Table 1. Several of t h e  Representative Sets of Faults,  Each Comprising a Perturbation 

Number of Buses 
Number Label Faulted i n  t he  

Perturbed Area 

Geographic Area 
Covered by 

Perturbat ions s . r , y b u u r r r  b 

Effect ive 
Tmnnilrrnno 

Comment 

- 
1 F Approximately 1/3 Area 10 only ,  (TVA) 

(78 out of 264) 

2 

3 

4 

F '  A s  i n  No. 1 above Areas 10, 12 (MO & 
plus 58 addi t ional  AR), and 13 ( I L  & 
i n  areas 12  and 13 MO) 

F ' I  A s  i n  No. 2 but 24 A s  i n  No. 2 plus  4 
more buses on 4 more networks 
addi t iona l  neigh- 
boring networks 

N 

F A s  i n  No. 1 A s  i n  No. 1 

1% 

1% 

Zi chosen randomly 
between 10 t o  2@ 
with average Z =15% 

A l l  buses with 
100 MW or more 
load on TVA were 
fau l ted .  

Approximately same 
density i n  a l l  of 
fau l ted  area as i n  
above. 

Same density i n  
areas fau l ted  i n  
No. 2, but with 
lower densi ty  i n  
4 added areas. 

A s  in .  No. 1 

w cn 
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four of the single-set  pulses and a l so  gives the  notation w e  use i n  

identifying each. 

i n  the  study. These representative pulses were selected because they 

i l l u s t r a t e  the  d i f f e ren t  system responses f o r  d i f fe ren t  perturbations as 

outlined i n  Chapter I, Section D, and Chapter 111. The pulses were 

selected as "representative pulses" after scores of s t a b i l i t y  runs were 

This i s  by no means a complete l i s t  of a l l  pulses used 

made using many d i f fe ren t  pulses. 

Four d i f fe ren t  groups of machines were chosen t o  i l l u s t r a t e  t yp ica l  

swing curves i n  order t o  f a c i l i t a t e  t h e  comparison of the  responses from 

d i f f e ren t  perturbations.  Table 2 l i s t s  the  d i f fe ren t  groups of machines, 

t h e i r  locations, and t h e i r  power outputs a t  equilibrium. The machine 

locat ion names and area designations are given f o r  t he  convenience of 

those familiar with current Tennessee Valley Authority (TVA) names. 

The d is t r ibu t ion  relays are an important consideration i n  determin- 

Typical d i s t r ibu t ion  relays take about 0.133 t o  

(One 

ing t h e  e f f ec t s  of EMP. 

0.25 second (8 t o  15 cycles) t o  open when clearing a fau l ted  l i n e .  

cycle i s  1/60 of a second.) 

0.25 second (15 cycles) a f t e r  opening. 

they w i l l  again open i n  an addi t ional  0.133 second and remain open for  

about a second before reclosing. If, a f t e r  reclosing, t h e  l i n e  i s  s t i l l  

faulted,  or i f  the  l i n e  i s  refaul ted within the  next minute o r  so, t he  

re lays  open and remain opened u n t i l  manually reclosed. 

be locked open. 

burs t s  occurring shor t ly  after t h e  i n i t i a t i o n  of t he  clearing sequence 
which a l so  r e fau l t  t h e  l i n e s  w i l l  cause t h e  relays t o  respond i n  the  same 

manner as i f t h e l i n e s  hadremainedunclearedandconsequently w i l l  lock the  

relays open. 

f au l t s ,  since EMP merely i n i t i a t e s  t h e  f a u l t s  which then remain u n t i l  t he  

l i n e s  a re  cleared. Since EMP w i l l  not f a u l t  a d i s t r ibu t ion  l i n e  which 

has no voltage, open l i n e s  w i l l  probably not be affected by EMP. Thus, 

a second EMP pulse a r r iv ing  a f t e r  t he  opening of a re lay  removing t h e  

l i n e  w i l l  not a f f ec t  t h e  l i ne .  There w i l l ,  therefore,  be about 15 cycles 

when a second EMP pulse w i l l  have l i t t l e  e f f ec t .  

t i o n  of double pulses, but t h i s  s implif icat ion should have no s ign i f i -  

cant effect .  

The open relays w i l l  then reclose i n  about 

If the  l i n e  i s  s t i l l  faulted,  

They are sa id  t o  

A s  a r e s u l t  of t h i s  programmed sequence, r epe t i t i ve  

The relay time sequence w i l l  determine the  duration of t h e  

We ignore t h i s  limita- 
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Table 2. Machine Groups Used f o r  Comparison 

Group Machine Bus 
N o .  Number Area - Machine 

Location 

1 1639 Generator #1 
1639 Generator #2 
1606 Generator #1 
1606 Generator #2 
1756 (System R e f .  ) 

2 1546 Generator #1 
1546 Generator #2 
1666 
1668 
1756 (System Ref. ) 

3 1088 

1441 
1447 
1485 Generator #1 

4 8 
40 

2 5 1  
803 
1756 (System Ref. ) 

5 1666 
1669 
1676 
1699 
1702 

10 - TVA' 
10 - TVA 
10 - TVA 
10 - TVA* 
14 - AEP 

10 - TVA 
10 - TVA 
10 - TVA 
10 - TVA* 
14 - AEP 

15 - Carolina 
and Virginia 
10 - TVA 
10 - TVA 
10 - TVA 
1 - EDE 
6 - KGE 
1 - EDE 
8 - Miss. 
14 - AEP* 

Paradise 
Paradise 
Bull  Run 
Bull  Run 
Ohio 

Paradise 
Paradise 
Kingston C 
Cumberland 
Ohio 

URQ 
KY HY 
SHAWE 
COLBT 

ASBRY 
GILL 
SEMPP 
WILSN 
Ohio 

10 - TVA Kingston C 
10 - TVA CUMBF 
10 - TVA ER FYG 
14 - AEP* KAM 
14 - AEP* TLD 

535 
535 
443 
443 
1369 

675 
675 
195 
12 68 
1369 

2 60 
190 
294 
527 

2 00 
319 
450 
400 
1369 

195 
12 68 
965 
800 
600 

* 
American E l e c t r i c  Power 



B. THE RESPONSE FROM A SINGLE SET OF MULTIPLE FAULTS 

c 
We f i r s t  discuss the  t rans ien t  response obtained from a single 

application of multiple f a u l t s  (corresponding t o  the  perturbation caused 

by a s ingle  EMP pulse) .  The time duration of t he  f a u l t s  was chosen t o  

be t h a t  of t he  opening time of typ ica l  d i s t r ibu t ion  system relays.  A l l  

f a u l t s  were applied simultaneously since the  difference i n  a r r i v a l  time 

of t he  EM€' pulse over the  network's area i s  only a small f rac t ion  of a 

cycle, and such a time delay i s  of no consequence. 

The typ ica l  s ingle  f a u l t  duration was chosen t o  be 0.2 second. 

Each of t h e  representative sets of f a u l t s  given i n  Table l w a s  applied 

fo r  t h i sdu ra t ion  and the  network then returned t o  i t s  o r ig ina l  configu- 

ra t ion.  The f a u l t  durationtimewasthenchangedinorder t o  determine the  

dependence of t h e  response upon t h i s  parameter. All f a u l t s  applied were 

3-phase f a u l t s  ( the  most severe case) since it w a s  much eas ie r  t o  deter-  

mine an e f fec t ive  impedance fo r  t h i s  s i tua t ion .  
assumption because 3-phase f a u l t s  may typica l ly  occur i f  EMP induces 

f a u l t s  a t  geometrical discont inui t ies .  However, i f  the  voltage on one 

of the  three l i nes  i s  near a voltage node, it i s  possible tha t  t he  EMP 

pulse may f a u l t  only two of t h e  three l i nes  of t he  3-phase system, 

creat ing a two-line-to-ground f a u l t .  

such a perturbation w i l l  not d i f f e r  i n  pr inciple  from the  3-phase f a u l t .  

This i s  a reasonable 

But t h e  basic charac te r i s t ics  of 

The system response from f i v e  d i f fe ren t  s ingle  pulse perturbations 

w i l l  be separately discussed with emphasis on the  e f fec t  of changing t h e  

various pulse parameters. We again remindthe reader t h a t t h e  f ive  cases 

a r e  only representative of scores of pulses used i n  t h i s  study. 

t ies '  (a per un i t  quantity multiplied by 100). 

typ ica l ly  near 1 per un i t .  

Al lvol tages  andimpedances are given as per un i t  orpercent  quanti- 

Equilibrium values a re  

1. Faults  Applied t o  t h e  TVA Area Only 

The perturbation F of Table 1 was applied fo r  0.2 second. The per- 

turbed area w a s  r e s t r i c t ed  t o  t h a t  of t he  Tennessee Valley Authority 
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(TVA-Area 10). 

first  applied, t he  network was returned t o  i t s  normal configuration, 

i .e.,  t h e  T .  l ines ,  t he  f au l t s ,  and the  bus D were removed. Calcula- 

t i o n s  of t h e  t r ans i en t  response was continued t o  1.25 seconds. 

After 0.2 second from t h e  time t h a t  t he  f a u l t s  were 

N 

1 

The swing curves of several  machines a re  shown i n  Figs. 1 2  through 

15. 
1756, which is a far away reference machine located i n  Ohio (see Table 

2 ) .  

connected. 

and Fig. 14 shows a t y p i c a l  group. 

t o  be out of s t ep  when i t s  machine angle 

120° from the  e l e c t r i c a l l y  "close" machines. 

remained i n  synchronism with t h e  reference machine 1756, as shown i n  

Fig. 15. Note t h e  tendency f o r  t h e  TVA machines as a group t o  separate 

from non-TVA machines. Furthermore, TVA generators at  bus 1639 l o s t  

synchronism w i t h  t h e  remainder of t h e  TVA system, and the  swing curves 

of Fig. 13 a l s o  ind ica te  t h a t  t he  two generators a t  bus 1546 l o s t  

synchronism. Thus two e f f e c t s  can be observed. F i r s t ,  machines within 

A l l  machines of Fig. 1 2  are i n  t h e  TVA network except t h a t  labeled 

The numbers refer t o  t h e  bus numbers t o  which t h e  machines a r e  

Most TVA machines remained i n  synchronism with bus 1606, 

Recal l  that a machine i s  considered 

d i f f e r s  by more than about 

Most non-TVA machines 

t h e  TVA system l o s t  s t a b i l i t y  and second, t h e  e n t i r e  group of TVA 

machines have swing curves whichdiffer  i n  s lopefromthe non-TVAmachines. 

We present ly  discuss t h i s  l a t te r  e f f e c t .  

An increase i n  machine angle 6 ( t )  implies that t h e  frequency of t he  

pa r t i cu la r  machine has increased which can be estimated i n  t h e  following 
~ manner. A change i n  frequency A f  w i l l  r e s u l t  i n  S ( t )  increasing l i n e a r l y  

i n  t i m e  as 

6 ( t )  = 6, + 360 Af t , (4.1) 

where angles are measured i n  degrees and fl i s  the  increase i n  frequency 

i n  her tz .  

tend t o  become l i n e a r l y  increasing as t h e  system damps t o  a new equ i l i -  

brium frequency. They a r e  only approximately l i n e a r  not only because 

t h e  t r ans i en t  o s c i l l a t i o n s  take severa l  seconds t o  damp out, but a l s o  

because t h e  power t r a n s f e r  does not depend l i n e a r l y  on 6. However, by 

After t h e  f a u l t  per turbat ion i s  removed, t he  swing curves 
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Fig. 12. Swing Curves for  a Single Occurrence of Fault  
Set of Table 1 f o r  Machine Group No. 1 of Table 2. 
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averaging many swing curves together, an approximate M can be obtained 

from t h e  "average slope" of the  swing curves. 

It i s  ins t ruc t ive  t o  compare the  change i n  frequency of t he  per- 

(which i n  t h e  present case i s  t h e  TVA network), w i t h  turbed area, Af 

t h a t  of t he  unperturbed area, A f u .  

l o s t  synchronism with t h e i r  adjacent neighbors (as w i l l  always be done 

i n  calculating A f ) ,  A f  3 0.75 her tz  while Mu - 1.1 hertz .  I n  t h i s  
P 

case, A f  

and therefore  reduced the  t o t a l  TVA power output. The increase i n  A f u  

shows t h a t  there  i s  a s ignif icant  coupling between the  perturbed areas, 

and it w i l l  be shown l a t e r  t h a t  t h i s  coupling i s  qui te  important. 

P 
Ignoring t h e  machines which have 

c Mu, probably because several  TVA generators l o s t  synchronism 
P 

The uniform increase i n  frequency of a l l  machines i s  somewhat pecu- 

liar t o  multiple-fault  perturbations.  

primarily due t o  t h e  change t o  a predominantly react ive load, resu l t ing  

i n  a great  decrease i n  power absorbed by t h e  load, even though la rge  cur- 

ren t  surges are produced, and there  i s  a widespread decrease i n  voltage 

on t h e  transmission l i nes  connected t o  D. 

cause large current surges, t h e  voltages decrease g rea t ly  (by as much as 

60% a t  many machine buses) resu l t ing  i n  a grea t ly  decreased power output 

of t h e  generators fo r  t h e  duration of t he  faults. 

que of t h e  machines i s  not decreased i n i t i a l l y ,  t he  machines accelerate .  

The system frequency increases 

N 

Thus, although t h e  f a u l t s  

Since t h e  applied to r -  

Unless  t h e  generator governor systems can handle t h e  increase i n  

frequency, t he  e n t i r e  system affected w i l l  speed up excessively, possibly 

resu l t ing  i n  t h e  t r ipp ing  of overspeed relays which then disconnect t h e  
generator from the  network. 

perturbation considered above are  i n  t h e  b a l l p a r k ,  t h e  governor systems 

may be able t o  handle t h e  overa l l  frequency increase and prevent l o s s  of 

synchronism. I n  any case, t yp ica l  governor systems begin t o  have an 

e f f ec t  a t  about one t o  two seconds after t h e  i n i t i a l  perturbation occurs. 

However, i f  t h e  estimates of A f  fo r  t he  

I n  summary, t h e  t r ans i en t  response t o  a perturbation covering only 

t h e  TVA network area r e s u l t s  i n  (i) several  TVA machines losing s t a b i l i t y ,  

(ii) an increase i n  frequency of TVA machines, and (iii) a somewhat 

greater  increase i n  the  frequency of t he  unperturbed networks. 
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2. The Effect of Increasing the  S i z e  of t h e  Perturbed Area 

I n  t he  f i rs t  case considered, t h e  f a u l t  perturbation was applied 

rather  uniformly over t h e  TVA transmission network. Generally, t h e  

transmission system consis ts  of several  groups of transmission networks 

(of which TVA i s  but one). 

e l e c t r i c a l  connection but are less strongly connected t o  adjacent net- 

works. 

t he  TVA network. Not a l l  networks of t h e  base case are shown. The 

power flow between t h e  d i f f e ren t  networks i s  given fo r  t h e  equilibrium 

case. 

area 

In te rna l ly  these networks have a strong 

Figure 16 p i c t o r i a l l y  shows some groups of networks close t o  

(The number i n  each c i r c l e  i s  used t o  designate t h e  pa r t i cu la r  

and corresponds with tha t  given i n  Table 1 and 2.)  

I n  order t o  determine t h e  e f f ec t  of increasing the  extent of t h e  

perturbation, t he  s i ze  of t he  perturbed area was increased as specif ied 

by f a u l t  set F '  of Table 1, and was applied for a duration of 0.2 sec- 

ond, t h e  same duration as i n  case 1. The per turbat ion was extended t o  

areas 12 and 13 of Fig. 16. Area 13 (Il l inois-Missouri  exported about 

1090 megawatts t o  TVA through connecting t i e  l i n e s  i n  t h e  equilibrium 

load flow, while Area 1 2  (Missouri-Kansas) exported about 550 megawatts 

t o  Area 13. The th ree  areas, 10, 13, and 12,comprising t h e  perturbed 

area form a connected l i nk .  

perturbed area was about the  same as case 1. 

typ ica l  swing curves. 

The average f a u l t  density i n  t h e  e n t i r e  

Figure 17 and 18 show 

The in t e re s t ing  difference between t h e  responses of t h i s  case and 

the  former i s  t h a t  t h e  perturbed and non-perturbed area  machines 

remained i n  synchronism much be t t e r  when the  per turbat ion covered t h e  

la rger  area.  

did not lose synchronism f o r  t h e  la rger  area perturbation. 

only one small machine (not shown) l o s t  synchronism as compared t o  more 

than half a dozen machines losing synchronism i n  t h e  f i rs t  case. 

for t he  second case, even though t h e  per turbat ion was more severe, 

covering a much l a rge r  area and consisting of about 7% more f au l t s ,  

t h e  system remained more s tab le  i n  t h e  t r ans i en t  time in te rva l .  

For instance, the  four machines a t  buses 1639 and 1546 
I n  f ac t ,  

Thus 
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A t  1.26 seconds a f t e r  applying the  perturbation, t h e  change i n  6 

(not A f )  of t h e  TVA buses was nearly t h e  same i n  case 2 as i n  case 1, 

but t h e  reference bus angle changed by about 504'0 more i n  case 2. 

a l so  t h a t  t h e  swing curves for  t he  second case are much more l i n e a r  than 

i n  t h e  f i r s t .  

i n  case 2 a r e  no longer accelerat ing and have somewhat s t ab i l i zed  a t  a 

'hew equilibrium" system frequency. 

i n  the  f irst  case, even after one second, would ind ica te  t h a t  t h e  per- 

turbed and unperturbed areas were s t i l l  in te rac t ing  or i n t e r f e r ing  with 

each other. The net change i n  frequency, Af,calculated by l i n e a r l y  

extrapolating the  la te  time pa r t  of t h e  swing curves, i s  about t h e  same 

fo r  both cases. 

Note 

From Eq. (4.1) t he  l i n e a r i t y  would imply t h a t  t h e  machines 

The continued accelerat ion observed 

The difference i n  response of t h e  two cases given so far can be 

I n  case 1, t h e  perturbed area p a r t i a l l y  understood i n  a simple way .  

(TVA) i s  strongly connected in t e rna l ly  and less strongly connected with 

i t s  neighbors, as p i c t o r i a l l y  i l l u s t r a t e d  i n  Fig. 16. Consequently, 

when t h e  per turbat ion i s  applied so le ly  t o  TVA, t h e  frequency of t h i s  

area tends t o  separate from the  adjoining areas causing t h e  perturbed 

and unperturbed synchronous regions t o  i n t e r f e r e  or beat with each 

other.  

turbed, t h e  interference i s  strong. The r e s u l t  i s  t h a t  machines 

within the  perturbed area lose  synchronism. 

the  perturbed area i s  increased t o  include adjacent areas, t h e  connect- 

ing perturbed networks hang together much be t t e r  since there  i s  less 

adjacent unperturbed areas with which t o  in t e rac t .  
t h i s  phenomenon when t h e  r e s u l t s  f o r  double pulses are given. 

Since there  are so many,ties with other areas which are unper- 

However, as the  s i ze  of 

We s h a l l  re turn  t o  

3. Faul ts  Applied t o  a More Extensive Area 

I n  order t o  f'urther ver i fy  t h a t  t h e  difference i n  response observed 

i n  the  previous two cases was t h e  r e s u l t  of increasing the  s i z e  of t he  

perturbed area, t h e  s ize  was increased s t i l l  fur ther  t o  include four 

addi t ional  areas, a l l  connecting TVA. Because o f p r a c t i c a l  l imi t a t ions the  



f a u l t  density i n  the  four added areas was considerably l e s s  than on 

areas 10, 12 ,  and 13, but t h e  'major loads were s t i l l  faul ted.  Figure 

19 shows t h e  response from such a per turbat ion ( f a u l t  set F '  defined 

i n  Table 1). 

The e f f ec t  of t h e  addi t ional  f a u l t s  was minimal. The swing 

curves of the TVA machines shown and the  other machines were qui te  

similar t o  case 2.  The change i n  frequencies was nearly the  same as 

t h e  previous two cases: Afu = 1.1 hertz  and A f  = 0.6 her tz .  The 

response of t he  TVA network ' i tself  i s  therefore  not strongly dependent 

on very far-away perturbations once the  adjoining areas a re  perturbed. 

Thus as the  s ize  of t he  disturbed area i s  increased, t he  e f f ec t  on the  

i n t e r i o r  of t he  perturbed area "saturates" so t h a t  t he  response there  

does not change great ly .  

P 

4. Dependence of t he  Response on t h e  Effectfve Impedance Z 

I n  t h e  examples presented above, t he  e f fec t ive  impedance Z from i 
the  d i s t r ibu t ion  bus 5 t o  - each transmission bus Ti was s e t  a t  1%. 
Other s t a b i l i t y  calculations were made both with d i f fe ren t  averagevalues 

of t h e  e f fec t ive  impedance and with a l l  Zi randomly chosen between fixed 

limits. There w a s  minimal difference between t h e  responses of cases with 

randomly selected Zi, and cases with a l l  equal Zi when the  average of t he  

Z.  of t h e  former case was t h e  same as Z of t h e  l a t t e r .  

Figures 20 and 2 1  show t h e  swing curves fo r  fault s e t  F g i v e n  i n  
1 

Table 1. The f a u l t  duration t i m e  w a s  0.2 sec, and the  f a u l t  density and 

area were iden t i ca l  t o  i n  case 1, except t he  Z i ' s  were chosen randomly 

between 10 and 20% with t h e  average value of 15%. Comparison should be 

made with Figs. 12  through 15. 
All of the  machines remained i n  synchronism during the  t rans ien t  

period, including those which l o s t  synchronism i n  case lwhen  Z wasequal 

t o  1%. Note, however, the  very large amplitude of osc i l la t ions  of some 

machines, e.g., on bus 1546, indicat ing t h a t  these machines were strongly 

affected and nearly l o s t  s t a b i l i t y .  

unperturbed area was about the  same as case 1 ( A f u  = 0.95 her t z ) .  

The change i n  the  frequency of t h e  
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For a s ingle  pulse perturbation, the  e f fec t ive  impedance strongly 

a f f ec t s  the  system response, a s  one would expect. By changing Z from 

10 

i f  EMP produced f a u l t s  only on the  very low voltage l i n e s  (which have a 

much greater  impedance t o  the  transmission l i n e s )  and not close t o  t h e  

major substations, then the  e f f ec t s  of EMP on the  t rans ien t  s t a b i l i t y  

would cer ta in ly  be less severe. 

e f f  
t o  15$, the  system kept i n  synchronism much be t t e r .  Consequently, 

5. Dependence of the  Response on the 
Time Duration of the  Faults 

The duration of EMP-induced f a u l t s  should be about 0.2 second since 

t h e  d is t r ibu t ion  relays take t h i s  long t o  i n i t i a l l y  open. 

s t a b i l i t y  run was made with f a u l t  s e t  F of Table 1 applied fo r  only 0.12 

second i n  order t o  determine t h e  dependence of t h e  response on the  f a u l t  

duration time. A t yp ica l  s e t  of swing curves are shown i n  Fig. 22. The 

machines remained i n  synchronism much be t t e r  than for  the  longer f a u l t  

duration a s  one would expect fo r  t h e  shorter f a u l t  time. Yet some of the 

machines had large amplitude osc i l la t ions ,  indicat ing t h a t  they nearly 

became unstable. Clearly, a rapid clearing of f au l t s  i s  desirable;  unfor- 

tunately,  t h e  longer (0.2 second) f a u l t  duration time corresponds more 

closely t o  present ac tua l  re lay  times. 

ond) was used i n  the  remaining calculations.  

However, one 

The more r e a l i s t i c  time (0.2 sec- 

C .  THE RESPONSE FROM REPETITIVE SETS OF MULTIPLE PULSES 

I n  t he  previous section the  response t o  a s ingle  set of multiple 

f a u l t s  was calculated.  We presently tu rn  t o  r epe t i t i ve  s e t s  of multiple 

f a u l t s .  

introduces several  new variables  such as the  number of pulses and the  

time separation of t h e  pulses, t h e  problem must somehow be simplified.  

If our study i s  limited t o  the  t rans ien t  response of the  network, then 

qui te  natural  r e s t r i c t ions  can be applied t o  the  parameters. 

instance, with t h i s  l imi ta t ion  we are  not in te res ted  i n  two or more 

Since the  occurrence of two or more s e t s  of r epe t i t i ve  f a u l t s  

For 
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pulses separated by a t ime,grea te r  than the  t rans ien t  and dynamic 

response times, i . e . ,  i n  pulses separated by a time greater  t h a n  t h a t  

fo r  t h e  system t o  return t o  equilibrium. The react ion of t he  system t o  

such widely separated pulses would be no d i f fe ren t  from i t s  react ion t o  

individual s ingle  pulses. 

Multiple pulses a l l  occurring within t h e  t rans ien t  time period w i l l  

produce the  most serious perturbations, and w e  w i l l  henceforth l i m i t  

t h i s  study t o  such cases. 

The mechanical design of t h e  d is t r ibu t ion  relays provides a similar 

l imi ta t ion  on t h e  new parameters introduced by t h e  multiple pulses.  The 

re lay  design was previously discussed i n  d e t a i l  i n  Section A. 

noted t h a t  a second EMP pulse occurring after the  i n i t i a l  reclosing of 

It w a s  

t h e  re lays  could r e fau l t  t h e  l i nes .  

reopen a second time about 0.133 second a f t e r  t he  occurrence of t he  sec- 

ond set of f a u l t s .  They would remain open f o r  about one second before 

again reclosing. A t h i r d  EMP pulse occurring short ly  a f t e r  t h e  second 

closing would lock t h e  relays open u n t i l  manually reclosed. 

pulseoccursbefore  t h e  second reclosing, t h e  relays w i l l  already be open 

so the  l i n e s  probably w i l l  not r e fau l t .  We fur ther  simplif'y t he  problem 

i n  studying t h e  t rans ien t  behavior by representing multiple pulses by a 

2-pulse model, with each pulse occurring within a second of each other.  

Such a simplification i s  necessary since the  s t a b i l i t y  program cannot 

f a i t h f u l l y  calculate  t h e  system response much beyond 1 .5  seconds af%er 

the  i n i t i a l  perturbation unless t he  dynamical controls are  modeled which 
w a s  beyond t h e  scope o f t h i s  study. However, t h i s  2-pulse model should 

determine the  primary disturbance from multiple pulses, and t h e  pulse 

parameters are then conveniently r e s t r i c t e d  so t h a t  they are within man- 

The relays would then ac t iva te  and 

If t h e  t h i r d  

ageable ranges. 

Using t h e  above simplifications,  a representative double pulse was 

chosen t o  model t h e  primary e f f ec t s  of multiple pulses.  

was chosen t o  have a time duration of 0.2 second (for  t h e  same reasons 

as i n  t h e  s ingle  pulse  cases, i .e. ,  t he  relays take t h i s  long t o  i n i t i a l l y  

open). 

second set of f a u l t s  was then applied (after 0.5 second from the  i n i t i a -  

t i o n  of the  perturbation) for  a duration of 0.15 second. 

The f i r s t  f a u l t  

Then the  network was l e f t  unfaulted fo r  t he  next 0.3 second. The 

The second f a u l t  



\ 

duration time i s  shorter  than the  f i rs t  because t h e  re lays  respond more 

rapidly on t h e  second opening. In  summary, a double pulse of chosen 

f a u l t  densi ty  and area of coverage was used. The system w a s  f au l t ed  f o r  

0.2 second, back t o  t h e  unfaulted configuration fo r  0.3 second, f au l t ed  

f o r  0.15 second, and f i n a l l y  back t o  the  unfaulted configuration (a t  

0.65 second). We r e f e r  t o  t h i s  configuration as the  standard double 

pulse. 

The intermediate time between t h e  two pulses  w a s  later var ied  t o  

see i f  the  response would d i f f e r  s ign i f icant ly .  

g rea t ly  change f o r  somewhat longer separation times between pulses .  

The response did not 

1. A Double Pulse Applied t o  t h e  TVA Area 

Fault  set F of Table 1 was used i n  t h e  standard double-pulse con- 

f igura t ion  previously described. 

Figs. 23 through 26. 
than of t he  single-pulse per turbat ion of t he  same f a u l t  set (case 1 of 

Section B ) .  Many more TVA machines l o s t  synchronism. I n  pa r t i cu la r ,  

Fig. 25 shows a much grea te r  angular spread i n  6 of t he  TVA machines 

than occurred i n  the  equivalent single-pulse case (Fig. 14 ) .  

Typical swing curves are shown i n  

The e f f e c t  of t h e  per turbat ion was much worse 

The average frequency increase of t he  s t ab le  TVA machines, AI? w a s  
P 

I n  contrast  t o  t he  frequency increase of machines 

4 her tz ,  more than four times grea te r  than fo r  the  single-pulse case: 

A f u  = 1.4 her tz .  

which remained i n  synchronism, a t y p i c a l  frequency increase of a machine 

losing s t a b i l i t y  was 15 her tz .  Such an increase would d e f i n i t e l y  t r i p  

the  overspeed re lays  of t h e  generator. 

Figure 26 shows a d i s t i n c t  separation between perturbed and unper- 

turbed area machines (see Table 2 and Fig. 16 f o r  a l i s t  of t h e  machine 

areas). 

b f  

This separation i s  merely a consequence of t h e  difference i n  

and Mu, which i s  much greater  than f o r  t he  single-pulse case. 
P 

2.  A Double Pulse Applied t o  a More Extensive Area 

I n  order t o  determine the  e f f e c t s  of increasing t h e  s ize  of t h e  

perturbed area while keeping t h e  f a u l t  densi ty  of t h e  perturbed area 
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constant, f a u l t  s e t  F '  was used i n  the  double-pulse configuration. The 

comparative single-pulse calculat ion w a s  given i n  Section B, case 2 .  

Again, as i n  t h e  single-pulse case of larger  area coverage, t h e  perturbed 

and unperturbed areas remained i n  synchronism much be t te r ,  with fewer 

generators losing synchronism (compare Fig. 30 with Fig. 2 6 ) .  

1639 badly f e l l  out of step.  

unperturbed frequencies was A f  

t ive ly ,  both nearly twice as great  as for  t h e  single-pulse case. 

A f  w a s  much smaller fo r  f a u l t  s e t  F '  than for s e t  F. 

Only bus 

The increase i n  the  average perturbed and 

= 2 her tz  and Mu = 1.4 her tz  respec- 
P 

But 

P 
I n  par t icu lar  note t h e  remarkable difference i n  the behavior of t he  

group of machines shown i n  Figs. 25 and 29. In  Section B, case 2, a 

simple explanation w a s  given fo r  t h e  improved response from t h e  per tur-  

bation of larger  areas. 
system would be more s tab le  t o  EMP-type perturbations i f  t h e  adjacent 

transmission groups were not t i e d  together.  

w i l l  be given i n  t h e  following example. 

t r o l  system must be able  t o  damp the  large frequency increases if the 

system i s  t o  remain s tab le  during t h e  dynamic time period. 

This improvement suggests t h a t  the  transmission 

A t e s t  of t h i s  hypothesis 

In  any case, t he  machine con- 

3. The Effect of Opening the  T i e  Lines Before 
Application of the  Perturbation 

- 
The o r ig ina l  set of f au l t s ,  F, was again used i n  the  double-pulse 

configuration t o  perturb t h e  TVA area as i n  case 1. 

t i e  l i n e s  connecting adjacent networks were opened before 

were applied t o  see i f  t he  perturbed a rea ' s  s t a b i l i t y  was improved. 

w a s  hoped t h a t  t he  opening of t he  t i e  l i n e s  might eliminate the  in t e r -  

ference between t h e  perturbed and unperturbed areas and improve t h e  

s t a b i l i t y .  If t h i s  interference causes t h e  loss of synchronism, then 

t h e  e f f ec t  of opening t i e  l i n e s  should be similar t o  t h a t  of perturbing 

a la rger  area as done i n  case 2 .  

However, the  major 

t he  f a u l t s  

It 

I n  a l l ,  seven major t i e  l i n e s  were opened immediately before t h e  

(It was impractical  t o  open a l l  t i e  l ines ,  perturbation was applied. 

but a l l  high voltage, 500 k i lovol t ,  connections were opened. ) Although 

some l o c a l  areas were a f fec ted  by the  t i e  l i n e  opening, i n  general, t h e  

system was not severely disturbed. 
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Figures 31 and 32 show t h e  r e s u l t s  of t he  double pulse during f a u l t  

set F, except with t h e  major TVA t i e  l i n e s  open. ' The TVA system held 

together much more strongly than i n  the  comparative case with t h e  t i e  

l i n e s  closed (compare Fig. 31 and Fig. 23  and Fig. 32 and Fig. 26).  

one major TVA machine (not shown) l o s t  synchronism. 
Only 

Both f igures  i l l u s -  

t r a t e  t h a t  the  TVA network swings separately from the  unperturbed area,  

as one would expect since the  two areas a r e  no longer connected. (This 

a l s o  shows t h a t  t h e  removal of solely t h e  high voltage t i e  l i n e s  i s  suf- 

f i c i e n t  t o  remove most of the  in te rac t ion . )  

t he  perturbed and unperturbed areas can now differ  grea t ly  since there  

i s  no in te rac t ion  between them. 

TVA machines was nf  = 4 her tz  with the  t i e  l i n e s  open. This i s  not 

too  much greater  than f o r  t h e  case when t h e  t i e  l i n e s  were closed (then 

Afp = 3 he r t z ) .  

e f f ec t  on the  perturbed area when there  are no unperturbed areas  connec- 

t i n g  and in te rac t ing  with it. 
opening of t i e  l i n e s  before EMP severely perturbes t h e  system may pro- 

vide a means of minimizing t h e  e f f ec t s  of EMP on t h e  transmission 

system. 

The frequency change Af of 

The average frequency increase fo r  t he  

P 

I n  summary, a multiple-fault  per turbat ion has a much l e s s  severe 

- 
This par t i t ion ing  of the  system by t h e  

4. The Dependence of t h e  Response on 
t h e  Effect ive Impedance 

The dependence of t h e  response on t h e  e f fec t ive  impedance w a s  dis- 

cussed i n  Section B, case 4, using a s ingle  pulse. We now present the  

r e s u l t s  for  t h e  double pulse using the  same set of f a u l t s  and e f f ec t ive  

impedances. The f a u l t  set Fprevious ly  defined w a s  used. Figures 33 
and 34 show typ ica l  swing curves. 

t h i s  double-pulse case using t h e  la rger  e f f ec t ive  impedance set 
not d i f f e r  subs tan t ia l ly  from t h e  o r ig ina l  set F. 
increases were about t h e  same for  both double-pulse cases as was the  

overa l l  i n s t a b i l i t y .  

I n  contrast  t o  t h e  single-pulse case, 

did 

The average frequency 

The single-pulse per turbat ion was probably more a f fec ted  by t h e  

impedance increase because the  system was then j u s t  on the  verge of 
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having major i n s t a b i l i t i e s ,  i .e.,  t he  higher Z perturbation was then 

about t he  most severe t h a t  t he  transmission system could experience 

without having many machines lose  s t a b i l i t y .  

consis ts  of a double pulse, it so disturbs t h e  system that it i s  unstable 

even fo r  t h e  la rger  e f fec t ive  impedance, and consequently the  response 

i s  not strongly dependent on the  impedance i n  t h i s  i n s t a b i l i t y  range. 

But when t h e  perturbation 

5. The Effect of Major Load Reduction 

I n  t he  introduction of t h i s  section, we discussed how multiple 

pulses can lock open the  d i s t r ibu t ion  system relays un t i l%hey  a re  later 

manually reclosed. With the relays open, the  load on the  i so la ted  l i n e s  

w i l l  be removed from the  transmission network resu l t ing  i n  a net reduc- 

t i o n  of load. Since t h e  generators cannot reac t  instantaneously t o  such 

a load reduction, t he  machines w i l l  accelerate.  

a f f ec t  t he  response primarily i n  the  dynamic, ra ther  than t h e  t rans ien t  

A load reduction w i l l  

time in te rva l .  However, s t a b i l i t y  calculations were made t o  determine 

i f  a major load reduction might exacerbate t h e  instabi1i t ies .produced by 

a double-pulse perturbation. The d i s t r ibu t ion  load on a l i n e  i s  removed 

whenever the  relays a re  open t o  i s o l a t e . t h a t  l ine .  Since the  clearing 

time following the  f irst  f a u l t  i s  shorter than t h a t  following the  second, 

it i s  reasonable i n  our model t o  reduce t h e  load after the  second f a u l t .  

The standard double-pulse perturbation was applied t o  t h e  network 

using f a u l t  set F, and t h e  load w a s  reduced on a chosen subset of t rans-  

mission buses after t h e  removal of t he  second f a u l t  s e t  ( a t  0.5 second). 

The important var iable  i s  the  f r ac t ion  of load reduced, and the  r e s u l t s  

do not vary grea t ly  fo r  a reduction i n  load on d i f fe ren t  s e t s  of t rans-  

mission buses as long as t h i s  reduction occurs over a reasonably la rge  

a rea  (and - not on j u s t  a f e w  buses! ) .  

swing curves fo r  a 30% reduction on bus set F' ,  i .e.,  on areas 10, 12,  

and 13 of Fig. 16. 
over a mult i -s ta te  area.  Af'ter 1.5 seconds, t he  increase i n  average 

system frequency was about t h e  same ( j u s t  a l i t t l e  more) as t h e  compara- 

t i v e  double pulse with no load shedding (Section C, case 1). 

some machines seemed t o  swing together be t t e r  than i n  the  comparative 

, 

Figures 35 and 36 show typ ica l  

About 11,000 megawatts of load was removed uniformly 

Surprisirgly 
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case with no load reduction, a rather  peculiar r e s u l t  s ince even without 

load reduction the  e n t i r e  system accelerated considerably. 

though some of t h e  machines were more stable,  about t he  same t o t a l  num- 

ber of generators l o s t  synchronism as i n  case 1. 

But even 

Apparently a major load reduction does not grea t ly  affect t h e  t rans-  

i e n t  s t ab i l i t y ,  but it may pose a serious threat t o  the  dynamic s t a b i l i t y  

which i s  beyond t h e  scope of t h i s  study t o  determine. The load reduction 

r e su l t s  i n  a frequency increase which d i f f e r s  i n  pr inc ipa l  from t h a t  

produced by the  multiple f au l t s .  The l a t t e r  i s  caused by the  extensive 

drop i n  voltage during the  duration of t h e  f au l t s ,  with the  average 

accelerat ion being reduced a f t e r  t h e  clearing of t he  faults. 

of t he  slowness of generator control  action, a uniform load reduction 

w i l l  r e s u l t  i n  a net accelerating torque on the  machines fo r  a longer 

time, so t h a t  t h e  t o t a l  net  frequency increase may be greater .  I n  case 

7 be1ow;the frequency increase caused by multiple f a u l t s  w i l l  be com- 

pared t o  t h a t  caused by a reduction i n  generation (which i s  j u s t  t h e  

opposite of, but analogous t o '  a load reduction).  

But because 

6.  Effect of Changing the  Fault  Density 

A l l  of t h e  previous calculat ions of Sections B and C were made using 

t h e  same f a u l t  densi ty  i n  the perturbed area 

of t he  perturbed areas, t h e  e f fec t ive  impedances, t he  number of pulses, 

e t c .  Many studies  using d i f fe ren t  f a u l t  dens i t ies  were a l s o  madgand we 

present ly  give an i l l u s t r a t i v e  example. The representative double pulse 

but differed i n  the  s i ze  

was used. 

of t h e  buses from fault s e t  of Table 1, thus reducing t h e  f a u l t  density 

applied t o  t h e  TVA area t o  two-thirds of t h a t  i n  case 1 of t h i s  sect ion.  

Figures 37 and 38 show typ ica l  swing curves fo r  t h i s  case. 

The f a u l t  density was reduced by randomly removing one-third 

The difference i n  responses of t h e  two cases was not surpr is ing.  

Some TVA machines remained i n  synchronism much be t t e r  f o r  t h e  reduced 

density per turbat ion (compare Fig. 27 with Fig. 23), while other machines 

(Figs. 38 and 24) s t i l l  f e l l  out of step.  

quency of t h e  TVA machines, 

The change i n  average fre- 

,was  about 1 hertz  fo r  t h e  low densi ty  
AfP 
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perturbation as compared t o  4 hertz  fo r  t h a t  of higher density. 

increase i n  frequency fo r  machines outside of the perturbed area w a s  

nearly t h e  same fo r  both densi t ies .  

But t he  

The f a u l t  densi ty  i s  cer ta in ly  an important fac tor  i n  determining 

t h e  e f fec t  of EMP on the  transmission system's s t a b i l i t y .  Unfortunately 

it i s  not presently known what range of f a u l t  dens i t ies  EMP may produce. 

The density used i n  the  majority of cases of t h i s  study should not be 

too unrea l i s t ic  i f  t he  d is t r ibu t ion  l i n e s  e l e c t r i c a l l y  close t o  major 

substations a re  faul ted.  These calculations would be more r e a l i s t i c  

i f ,  instead of t he  sharp cutoff between perturbed and unperturbed areas, 

the  density decreased gradually a t  t h e  outer boundary of t h e  perturbed 

area  ( i . e . ,  t h e  edge of t he  l i n e  of s ight  of t h e  detonation). The 

gradual change would occur near t he  perimeter of t he  c i r c l e s  of Fig. 2 

s ince t h e  EMP f i e l d  decreases there  fo r  increasing distance from ground 

zero. However, t h i s  modification of t he  f a u l t  density should not change 

t h e  response s igni f icant ly ;  t h e  important parameters a re  the  s i ze  of the  

fau l ted  a rea  and t h e  average density within t h e  fau l ted  area, as previ- 

ously discussed. 

. 

7 .  The Change i n  Average System Frequency 

Earlier,we b r i e f l y  discussed how EMP-induced perturbations r e s u l t  i n  

an increase i n  the  average system frequency. 

t he  seriousness of t h e  frequency increase during the  dynamic time period 
resu l t ing  from multiple f au l t s .  One measure of t h e  severi ty  of the  

e f f ec t  i s  t h e  decrease i n  power generation necessary t o  counteract the  

frequency increase. But t h e  present s t a b i l i t y  program cannot re l iab ly  

calculate  the  dynamic time period response. A crude estimate of t h e  

amount of generation which must be shed t o  counteract t h i s  frequency 

increase, Af, can be made by determining t h e  change i n  frequency f o r  a 
given change i n  generation, aPg, i . e . ,  by determining bf/@ . However, 

one cannot merely reduce generation by AP i n  a par t icu lar  transmission 

group (such as TVA) and measure M, for  then a la rge  amount of power 

w i l l  be supplied by the  t i e  l i nes  (as i l l u s t r a t e d  i n  Chapter 11, Section 

A, and Fig. 5 ) .  

It i s  important t o  know 

g 

g 
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We used the  s t a b i l i t y  program t o  estimate &/AP for  the  dynamical 
g 

time period i n  t h e  following manner. 

were opened. 

wattage AP were tr ipped. 

increase i n  frequency from equilibrium A f  was obtained from t h e  slope 

of t h e  extrapolated curves [see Eq. (4.1)] thus giving Of/E . One great  

di ' f f icul ty  i n  t h i s  procedure i s  t h a t  it i s  d i f f i c u l t  t o  l i n e a r l y  extrapo- 

la te  the  swing curves. After a sudden reduction i n  generation, t he  swing 

curves o s c i l l a t e  about a l i n e  of negative slope f o r  only a second or 

less ,  but then the  curves swing upward, sometimes qui te  steeply.  

swing occurs because t h e  voltage drops on the  machine buses reducing the  

e l e c t r i c a l  torque 

F i r s t ,  t h e  pr inc ipa l  TVA t i e  l i n e s  

Then a number of TVA generators w i t h  known t o t a l  mega- 
. 

The swing curves were then l inear ized  and t h e  
g 

g 

The up- 

and r e su l t s  i n  a net accelerat ing torque. 

I f  t h e  swing curves are l inea r ly  extrapolated i n  the  intermediate 

region before the  upswing (i .e. ,  before the  machine angles start  t o  

increase) and Af/@ . i s  determined as described i n  t h i s  section, t he  

following r e s u l t s  a r e  obtained. With the  major TVA t i e  l i n e s  open, 24% 

of TVA generation was t r ipped (6,200 megawatts out of a t o t a l  of 25,500 

megawatts), and the  frequency decreased by about 0.55 her tz .  

A f / A P  For a generation reduc- 
g 

t i o n  of 45% (about 11,000 megawatts) the frequency changes by about 1.1 

hertz,  which i s  reasonably proportional t o  a 24% reduction. 

g 

This gives 

equal t o  about 9 x 10-5 hertz/megawatt. 

For case 1 of Section B, Chapter IV, t h i s  approximation gives the  

frequency increase from the  EMP f a u l t  perturbations which would be 

roughly equivalent t o  a 30% decrease i n  t h e  load using the  above deter-  

mination of Af/E . Note t h a t  i n  t h i s  estimate w e  have t a c i t l y  assumed 

t h a t  Af/W 
same magnitude (and of opposite s ign)  as t h a t  resu l t ing  from a AP 
decrease i n  - load. 

mate as i l l u s t r a t e d  i n  the  following example. 

procedure t o  estimate the  equivalent decrease i n  load needed t o  cause 

the  frequency increase of case 1 (Section C, Chapter IV) where A f  
hertz,  one would need t o  terminate about 24,000 megawatts o r  nearly a,& 

of the  generation, a c l ea r ly  absurd resu l t !  However, t h e  above estimates 

g 
resu l t ing  from a reduction of AP 

g g of  peneration i s  of t he  
. 

g 

If w e  use t h e  above 

We remind t h e  reader t h a t  t h i s  i s  a very crude e s t i -  

= 4 
P . 

may give some indicat ion of t he  seriousness of t he  frequency increase i n  
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t he  dynamic time in t e rva l  resu l t ing  from simultaneous multiple f a u l t s  

over a large geographical area. 

D. A SUMMARY AND COMPARISON OF EMP-INDUCED AND 
NON-EMP-INDUCED PERTURBATIONS 

We b r i e f l y  summarize t h e  r e s u l t s  of t h i s  chapter. Both a s ingle  

set and r epe t i t i ve  sets of multiple f a u l t s  severely perturb t h e  t rans-  

mission system, the  la t ter  disturbing t h e  system much more severely 

than the  former. 

t o r s  i n  the  perturbed area may occur from expected EMP-induced 

perturbations.  

determining t h e  magnitude of t he  disturbance of t h e  system. 

ac t ion  or interference occurs between unperturbed and perturbed areas 

which tends t o  exacerbate the  i n s t a b i l i t i e s .  Consequently, t h e  system 

may be more s tab le  i f  t i e  l i n e s  between perturbed and unperturbed 

networks are opened pr ior  t o  the  disturbance i n  order t o  reduce such 
interact ions.  

t h e  t rans ien t  response are the  f au l t  density 

ances (determined by the  locat ion of t h e  faults). 

Loss of s t a b i l i t y  of a s ignif icant  number of genera- 

The s i ze  of t he  perturbed area i s  a cruc ia l  fac tor  i n  

An in t e r -  

Other important parameters of t he  perturbations affect ing 

and the  e f fec t ive  imped- 

Two examples of normal perturbations were given i n  Par t  1 of 

Chapter 11, Section A, with a discussion of t he  differences between EMP- 

induced and na tura l  perturbations presented i n  Par t  2 of t h a t  section. 

It should be clear t h a t  t he  two types of perturbations a r e  r e a l l y  qui te  

different ,  as are the  responses from the  perturbations.  Certainly EMP 

may lead t o  a cascading type of f a i l u r e  not unlike the  Northeast Power 

Failure.  However, t he  i n i t i a l  EMP-induced perturbation affect ing t h e  

t rans ien t  response i s  qui te  d i f fe ren t .  The second example of Chapter 

I1 should a l so  be contrasted with EMP perturbations.  

t h e  e f f ec t s  of t he  power d e f i c i t  resu l t ing  from the  loss  of generators 

was grea t ly  reduced by the  power t ransfer  from t h e  adjacent networks as 

i l l u s t r a t e d  i n  Fig. 5. Thus the  connecting networks help s t ab i l i ze  the  

system from t h e  l o c a l  perturbations.  However, fo r  EMP-type perturbations,  

t h e  perturbed area i s  so extensive t h a t  a s t ab i l i z ing  e f f ec t  fromadjacent 

I n  the  former case, 
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networks i s  not nearly as s igni f icant .  

destruct ive interference can r e s u l t .  Consequently, one shouldnot naively 

compare t h e  effects of EMP-induced perturbations with those of 'lnatural" 

perturbations.  

I n  fact, a s igni f icant  and 

I n  conclusion, it i s  possible t h a t  EM€' may induce a serious per tur-  

bation on t h e  d i s t r ibu t ion  networks which can cause a la rge  port ion of 

t h e  transmission network i n  the  perturbed area t o  lose  synchronism, and 

consequently r e s u l t  i n  an immediate and massive power failure. 
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CHAPTER v 

L. 

THE LIMITATIONS OF THIS STUDY AND SUGGESTIONS 

FOR FURTmR WORK 

The philosophy of t h i s  study was tode termine the t rans ien t  response 

from Em-generatedperturbations using standard calculationaltechniques. 
Because of t he  limited scope of t h i s  report, necessary l imi ta t ions  were 

made. 

discussed, and suggestions f o r  fur ther  work are made. 

I n  t h i s  chapter, many of t h e  approximations and l imi ta t ions  are 

A. DIFFICULTY I N  DETERMINING A REALISTIC 
EMP-INDUCED PERTURBATION 

Many d i f fe ren t  forms of perturbations were studied i n  t h i s  work. 

Clearly a large number of parameters a re  needed t o  specify the  pertur- 

bation, a l l  of which a re  dependent on t h e  nature of t he  EMF pulse (or  
pulses) as w e l l  as on the  coupling mechanism of t h e  EMP f i e l d  t o  the  

e l e c t r i c  power system. 

"the representative disturbance. I '  

taking any of t h e  representative disturbances used i n  t h i s  study as "the 

r e a l  thing. 

Needless t o  say, it i s  d i f f i c u l t  t o  specify 

One must therefore  be cautious about 

Because of t h i s  uncertainty, preliminary calculations were made, 

varying the  parameters s p e c i e i n g  the  perturbation over a w i d e  range i n  

order t o  determine which var iables  were important. 

t o  determine the e f fec t  on the  s t a b i l i t y  f o r  d i f fe ren t  choices of para- 

meters t o  provide some in tu i t i on  fo r  t he  possible range of e f f ec t s  t h a t  

could be produced by d i f f e ren t  types of conditions. 

eral  understanding of t he  synchronous behavior of  t he  system when 

subjected t o  the  unusual EMP-produced perturbations has been gained. 

Secondly, we hoped 

I n  t h i s  way, a gen- 
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B. LIMITATIONS OF THE STUDY AND INADEQUACIES 
I N  THE NETWORK MODEL 

Due t o  the  great  complexity i n  calculat ing the  system response, 

several  s implif icat ions were made which somewhat l i m i t  t h e  appl icat ions 

of t h i s  study. Most important, machine exc i ta t ion  and voltage regula- 

t i o n  were not modeled. The response could therefore  not be calculated 

fo r  times greater  than 1-1/2 t o  2 seconds a f t e r  t h e  i n i t i a l  perturba- 

t ion .  Consequently, t he  later time dynamic response could not be 

calculated a t  a l l .  

system, t h e  later time t rans ien t  response (between 1 t o  1-1/2 seconds) 

may a l so  be somewhat overly pessimistic.  

of synchronism found using t h i s  model, pa r t i cu la r ly  for  t h e  multiple 

pulse cases, cannot be ignored. However, one should not expect t h i s  

study t o  have prec ise ly  determined the  behavior of the  transmission 

system when subjected t o  expected EMP-induced perturbations.  

Because of the  lack of r e a l i s t i c  damping i n  t h e  

But t h e  apparent major loss  

Other insuff ic iencies  were discussed elsewhere. We again mention 

the  c r i t i c a l  need t o  determine the  e f f ec t  of EMP on (1) the  load t i e  
l i n e  and control  systems, ( 2 )  t he  generator control  systems, and (3) the  

so l id  state transmission relays.  

needed before any f ina l  conclusion concerning the  e f f ec t s  of EMP on 

the  power system can be drawn. 

Further study of these subsystems i s  

It i s  possible  that  high a l t i t u d e  nuclear detonations could occur 

without having any blast damage. 

t o  discuss various scenarios. However, i f  many low a l t i t u d e  or ground- 

burst  nuclear detonations occur causing s igni f icant  b l a s t  damage t o  a 
s igni f icant  pa r t  of t h e  transmission network, then t h e  transmission 

system w i l l  ce r ta in ly  lose  s t a b i l i t y .  Moderate physical  damage accom- 

panying EMP would only enhance the  i n s t a b i l i t i e s  calculated i n  t h i s  

paper. Consequently, t he  t rans ien t  disturbance as calculated fo r  EMP 

It w a s  not the  purpose of t h i s  paper 

perturbations alone should be considered as a minimal perturbation. 

A fur ther  d i f f i c u l t y  i n  a l l  s t a b i l i t y  s tudies  i s  t h e  d i f f i c u l t y  i n  

representing the load, which i s  frequently expressed as a constant 

impedance load, and occasionally as a constant current or a constant 



megavolt amp load. However, a l l  of these representations a re  s implif i -  

cations since the  nature of t he  load i s  not precisely known. 

study, t h e  load was modeled as a constant impedance load. 
some calculations were made using the  other two load representations 

i n  local ized areas i n  which machines l o s t  s t ab i l i t y ,  i n  order t o  see 

i f  the  d i f fe ren t  representations s ign i f icant ly  affected the  response. 
The r e su l t s  were negative. The l o c a l  response changed very l i t t l e .  

Machines which l o s t  s t a b i l i t y  fo r  t he  l o c a l  load,modeled as constant 

impedancgalso l o s t  s t a b i l i t y  when t h e  l o c a l  load was modeled as con- 

s t an t  current or constant megavolt amp load. 

In  t h i s  

However, 

If EMP perturbations produced transmission l i n e  surges of suf f i -  

c ien t  magnitude t o  open relays, the  e f f ec t  on t h e  s t a b i l i t y  would be 

severe. However, t h e  power flow i n  the  major l i n e s  i n  the  perturbed 

area was monitored i n  most of t h e  s t a b i l i t y  calculations.  

s ignif icant  power surges, but they were not la rge  enough t o  t r i p  relays. 

Consequently, t h e  transmission l i n e s  were not opened a t  any t i m e ,  

except for  t he  t i e  l i n e s  i n  a f e w  cases. If addi t ional  e f f ec t s  r e s u l t  

i n  excessive power surges, such as might occur i f  many generators were 

tripped, then the  p o s s i b i l i t y  of t h e  opening of transmission l i n e s  

should be incorporated. The limited scope of t h i s  study could not 

estimate the  l ikelihood of such events. 

There were 
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CHAF'TER V I  

GENE3f-L CONCLUSIONS 

The r e s u l t s  of t h i s  study ind ica te  t h a t  t he  e l e c t r i c  transmission 

system may be disturbed by EMP-induced perturbations su f f i c i en t ly  t o  

cause much of t he  system t o  lose s t a b i l i t y ,  resu l t ing  i n  a la rge  power 

failure. Although t h e  e f f ec t s  from EMP are complex, a model was defined 

which should reasonably represent t he  e f f ec t s  on the  transmission system 

from induced perturbations on t h e  d i s t r ibu t ion  system. 

Both a s ingle  set and r epe t i t i ve  s e t s  of m l t i p l e  f a u l t s  severely 

perturb the  transmission system; t h e  r epe t i t i ve  sets of f a u l t s  d i s turb  

the  system much more severely. Loss of s t a b i l i t y  of a s igni f icant  num- 

ber of generators i n  t h e  perturbed area can occur from expected EMP- 

induced perturbations.  

The severi ty  of EMP-type perturbations can perhaps be reduced by 

separating perturbed and unperturbed areas by opening the  t i e  l i n e s  

connecting these regions. The interference between the  two areas  would 

then be minimized. Furthermore, a perturbed area losing synchronism 

would then not r e s u l t  i n  the  collapse of t h e  areas  which were not 

d i r e c t l y  affected. However, fur ther  consideration of possible  e f f e c t s  

from such a t i e  l i n e  opening must be made before such a procedure i s  

adopted. 

A s  outl ined i n  Chapter V, fu r ther  study should be made of other 

possible EMP-induced perturbations which were not included i n  t h i s  work. 

Only  then can f i n a l  conclusions be drawn concerning t h e  sever i ty  of 

disrupt ion which EMP m a y  induce. 

c 
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