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A CANDIDATE CREEP-RECOVERY MODEL FOR 2 1/4 Cr-1 Mo STEEL
AND ITS EXPERIMENTAL IMPLEMENTATION

D. N. Robinson

ABSTRACT

A uniaxial, creep-recovery model due to R. Lagneborg
is recast into a form which facilitates its implementation
through a testing program which is entirely phenomenologi-
cal. The model is being considered under the High-Tempera
ture Structural Design Program at ORNL as a candidate model
for 2 1/4 Cr—1 Mo steel at high temperature. A specific
experimental program is proposed for the determination of
the several material parameters of the model. Generaliza
tion of the uniaxial formulation to that for general states
of stress is briefly discussed.

Key Words: creep, constitutive relation, high-temperature,
inelastic, deformation, reactor metals, anelastic, ORNL-HTSD
Program

INTRODUCTION

The primary objective of the High-Temperature Structural Design Pro

gram at ORNL is to develop and recommend structural design methods and

criteria for high temperature reactor system components. Recently,

recommendations arising from the program were put forth concerning the

inelastic structural analysis of 2 1/4 Cr—1 Mo steel reactor compo

nents.1'2 As indicated in Refs. 1 and 2, the methods and procedures

cited there are considered tenuous and it is recommended that they be em

ployed only on an interim basis, that is to say, until more extensive ex

perimental and theoretical investigations have been conducted concerning

the material. The present work is a part of the continuing effort under

the High-Temperature Structural Design Program to refine and update the

constitutive equations and methods of analysis for use with 2 1/4 Cr—1

Mo steel components.

In Refs. 1 and 2 the strain-hardening theory of creep has been

recommended for use in the high-temperature analysis of 2 1/4 Cr—1 Mo

steel components, and although capable of providing accurate predictions



of creep behavior in many loading situations, the theory appears to have

shortcomings in certain other situations. Two apparent inadequacies of

the strain-hardening theory relative to the uniaxial creep behavior of

2 1/4 Cr—1 Mo steel are the following:*

i) it tends to over-predict the hardening which occurs under his
tories of increasing stress (see Figs. 1 and 2), and

ii) it does not account for the significant "state recovery" which
is observed following stress reductions at high-temperature
(Fig. 3).

Each of these effects, if ignored, could lead to gross underestimates of

creep strain under loading histories not unlike those encountered by some

reactor components in service.

According to the now widely accepted hypothesis of Orowan,3 high-tem

perature, .inelastic deformation of metals occurs under the action of two

(or more) competing mechanisms; a hardening process (proceeding with accu

mulated inelastic deformation), and a recovery or softening process (pro

ceeding with time). In a simple creep experiment the hardening process

dominates during the early (primary) stage of creep with an eventual bal

ance of the two competing mechanisms finally being attained and result

ing in a steady-state (secondary) creep stage. According to this view,

the strain-hardening theory cannot predict phenomena such as the observed

softening or state-recovery cited above, since it does not embody a re

covery-like mechanism. Clearly, if such phenomena are to be accounted

for in analysis it is necessary to adopt more comprehensive creep-recovery

constitutive laws.

Several physically based theories of creep of metals have been pro

posed which follow the Orowan hypothesis. One is that of Gittus5 whose

formulation employs the density of crystal dislocations as an internal

state variable. Gittus' model predicts phenomenological effects such as

primary and secondary creep and state-recovery, however, in predicting

an ever increasing dislocation density during constant load creep, it ap

pears to contradict the results of existing microscopic observations.

*The same shortcomings of the strain-hardening theory have been
found relative to other metals as well, see for example, Marriott.4

t
"Recovery of state" is evidenced in Fig. 3 in as much as the creep

strain rate following the zero stress segment is close to a full order of
magnitude greater than that just prior to unloading.



0.50

ORNL-DWG 75-1548

ANNEALED 2V4 Cr - 1 Mo .

0.45

0.40

(HT. 20017)

538 °C (1000 •F) /
•

0.35

°I7>

b

SIKtSb Hlbl UKY

18

1 I I I I I I

/
0.30

z

<
or

/ /
/ *

oi 0.25
/ 7
I /

a.
UJ
UJ

£ 0.20

CD 4 8 12 (x102)
iimc. \nn

/

/
0.15

— CAr-c.niivit.iii

STRAIN HA RDENING <^../

0.10

??=r:r~-
<^^^

.——-. **

0.05

^*^*^
r^=^

1400200 400 600 800

TIME (hr)

1000 1200

Fig. 1. Comparison of the actual and predicted (strain-hardening)
response of uniaxial tensile specimens of annealed 2 1/4 Cr—1 Mo steel.
Prediction is based on creep-time data obtained in constant stress creep
tests.



3.5

3.0

2.5

2.0

ft

°- 1 5

$

1.0

0.5

STRESS HISTORY

_j I i i i I i i I i

4 8 12 16 (x102)
, TIME (hr)

~\ 1 !

ANNEALED 2^ Cr-1Mo
(HT.20017)

1 ! 566°C (1050°F)

EXPERIMENTAL DATA

STRAIN HARDENING

ORNL-DWG 75-1542

0 200 400 600 800 1000 1200 1400 1600 1800 2000
TIME(hr)

Fig. 2. Comparison of the actual and predicted (strain-hardening)
response of uniaxial tensile specimens of annealed 2 1/4 Cr—1 Mo steel.
Prediction is based on creep-time data obtained in constant stress creep

tests.



<
DC

a.
LU
LU

CE
O

ORNL DWG. 75-12956

0.30

0,25

0.20

/ANNEALED 2 1/4 Cr -1 Mo

( HT, 20017)

5I0°C (950°F)_^

b

ie 18

Jll
jor^

i i i i

| /

1 1

5 10 15 20 25

TIME (hr)

30 (XI0*>

I y
I /
1 y
1 s

0,15

0,10

0,05

500 1000 1500 2000

TIME (hr)

2500 3000 3500

Fig. 3. Response (solid line) of annealed 2 1/4 Cr-1 Mo tensile speci
men to a stress history including a recovery (zero stress) segment of about
800 hr at 510°C (950°F). The dotted line segment indicates the approximate
creep strain rate predicted by strain-hardening theory upon reloading.



Other authors have proposed theories of creep in the spirit of

Gittus, employing the dislocation density as a state variable; the essen

tial difference in these theories is in the form of the growth law, i.e.,

the law(s) expressing the rate of change of the state variable(s). One

work of this kind which appears attractive from several points of view

is that of Lagneborg.6 Lagneborg's model includes the concept of an in

ternal flow stress, taken proportional to the square root of the average

dislocation density, and only when it is exceeded are inelastic strains

incurred. The growth law in Lagneborg's model accounts for the reduction

in dislocation density by recovery, the recovery process being assumed

to occur through a climb-controlled growth of the mesh of the dislocation

network.

An application of Lagneborg's creep-recovery model to an austenitic

steel (20 Cr—35 Ni) has been made by Lagneborg6 and Modeer.7 The several

parameters in the model were determined on the basis of constant load

creep tests and microscopic examinations of dislocation density under

steady state creep. It is noteworthy that, in spite of the fact that

the parameters were found largely on the basis of macroscopic observa

tions, those which possess definite physical interpretations on the micro-

scale were found to have quite realistic values.

A major drawback of the Lagneborg model, from the viewpoint of engi

neering applications, lies in the necessity of performing microscopic

measurements of dislocation density to provide part of the data base.

Of course, it is desirable that the fitting of a given constitutive

model to a particular material be based solely on simple phenomenologi-

cal experiments.

It is the purpose of the present work to recast the Lagneborg model

into a form which facilitates determining the material parameters from

simple macroscopic measurements. This involves identifying the internal

flow stress, itself, as the relevant state variable, rather than the den

sity of dislocations. The growth law which results from this transforma

tion of the state variable is stated and an experimental procedure is pro

posed for determining the several model parameters.

Finally, a brief discussion is given concerning a generalization of

the present uniaxial model to a multiaxial formulation. A simple J2~form



of the theory is stated, which is analogous to the multiaxial form of

the presently recommended strain-hardening theory.

THE CREEP RECOVERY MODEL OF LAGNEBORG

6The uniaxial creep-recovery law proposed by Lagneborg13 reads

(A(a-Bpl/2)n ; a>Bp1/2
ep = \ (1)

(0 ; a < Bp1/2

in which eP is the inelastic strain rate and a is the stress. The co

efficients A and n are Arrhenius type temperature-dependent quantities;

B = abG with 0 < a < 1 a material constant; b, the Burger's vector; and

G, the elastic shear modulus. The quantity p is the average dislocation

density whose rate of growth is governed by

p = c'eP -P'p2 . (2)

The first term on the right hand side of Eq. (2) represents the hardening

mechanism which proceeds with accumulated inelastic strain, whereas the

second term represents the recovery process which proceeds with time.

The coefficients c' and D have physical origins, as discussed by

Lagneborg,6 and generally depend upon both temperature and stress.

RESTATEMENT OF THE LAGNEBORG MODEL

Phenomenologically, it is not convenient to employ p, the average

dislocation density, as an internal state variable; a more convenient

choice is the so-called internal flow stress S = Bp1/2 itself. Under

this choice Eqs. (1) and (2) may be rewritten as

(A(o - S)n ; a > S
eP =\ (3)

lo ; o- < s

and

SS - CeP - DS4 . (4)



Another way of arriving at the growth law expressed in Eq. (4) is

provided for by the work of Mitra and McLean.8 The results of their ex

periments are consistent with the Orowan hypothesis, stated in terms of

the internal flow stress S as

S - h(S)ep - r(S) (5)

in which h(S) is regarded as the coefficient of strain-hardening and r(S)

the rate of thermal recovery. Mitra and McLean have found that h and r

in Eq. (5) may be adequately described by

3l/h cc s

r « S

(6)

(7)

where n and 3 are constants. Taking, in particular, n»4 and 3"1 in Eqs.

(6) and (7) and substituting into Eq. (5), the growth law Eq. (4) results.

It is helpful for the following development to state the creep law

expressed in Eqs. (3) and (4) in the form discussed by Onat and

Fardshisheh,9 i.e., in terms of a vector growth law

q - G + H£ ,

with the following identifications made:

a"

a

LSJ

H = E

; a > S > 0

; a < S

1

(8)

(9)

(10)

(11)

(12)

(13)



In the above e is the total strain rate (elastic plus inelastic) and E

is the Young's modulus for the material.

In this representation a and S play the role of internal state vari

ables which may be thought of as the coordinates of a "state space." The

quantity q, then represents a vector in that space and q its rate of

change with time. According to Eq. (8), under rapid strain rates, the

rate of change of the state vector q essentially follows the H field.

On the other hand, in a relaxation experiment e equals zero so that q is

determined entirely by the G field. The trajectories of the G vector

field are accordingly called the "relaxation lines" by Onat and

Fardshisheh.9

The relaxation lines in (a, S) space which roughly correspond to the

austenitic steel examined by Lagneborg6 and Mod£er7 are shown in Fig. 4.

AN EXPERIMENTAL PROCEDURE FOR THE DETERMINATION

OF THE MATERIAL PARAMETERS

The image of an isothermal,* constant-stress creep test at the stress
4.

level a is shown as the path OAB in the state space of Fig. 4. The
o

state point B corresponds to steady state creep (G field vertical) at the

given stress with the creep rate at B taken to be e . The position S
° so so

of B along the line a = a is not known a priori but can be found experi-
o

mentally by determining the (rapid) drop in stress, say Aa , necessary to

bring the state point from B to F on the line a = S. Such a "stress drop

test" is similar to that employed by Parker and Wilshire.10 Once Aoq is
known, then

S = a — Aa , (14)
so o o

since it is assumed that for a "rapid enough" drop in stress the points B

and F lie on a vertical line, i.e., there is not sufficient time for the

*The present development will be restricted to isothermal conditions.
The coefficients can, if necessary, be considered functions of temperatue
and fit to date taken over a specific temperature range.

•i.

Rapid loading at a realistic strain rate would probably follow a
path such as DA' rather than OA as discussed by Onat and Fardshisheh.9
Since this has little or no bearing on the present development, however,
the question will be presently ignored.
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internal stress (or dislocation density) to alter significantly as the

stress is suddenly reduced.

The question as to when the state point F is reached, is answered by

observing the creep response immediately following the sudden drop in

stress. At F the creep-strain rate is, according to this model, instan

taneously zero following the stress reduction (Fig. 5 — curve II); it

increases thereafter and finally reaches a new steady state value. This

corresponds to a path such as FG in Fig. 4.

The creep responses predicted by the present model as the state

point is changed abruptly from B to C and from B to H, are shown in Fig.

5 as the curves I and III, respectively. These are compared with the

response corresponding to a stress reduction to state point F (curve II).

Dropping the stress from B to points lying below F (e.g., H) results in

a finite period At of zero creep rate (curve III) , the greater the stress

drop the longer the hesitation period. Dropping to points above F (e.g.,

C), on the other hand, results in no hesitation period (curve I).

What would seem, on the basis of this idealized response, to be a

reasonable procedure for determining Aa and hence Sgo, approximately, is
as follows: While under steady state creep at a , suddenly reduce the

stress from a through a succession of increasing stress drops, each
o

time reloading back to a and allowing steady state conditions to be
o

again realized. For example, the state path BCDEB in Fig. 4 might cor

respond to one such cycle. The stress reductions are successively in

creased until a critical hesitation period, say Atc, of a predetermined
duration (finite but small) is observed just following the sudden un

loading. The stress reduction necessary to produce the critical delay

period At is taken to be Aa ; correspondingly, S can be calculated
r c o so

using Eq. (14).

Several tests of this kind need to be conducted, with, for instance,

the k^ test yielding the steady state creep rate egk and the steady state
internal flow stress S corresponding to the applied stress afc. Since

by Eq. (3),

£8t - *<"* - Vn (15)
the coefficients A and n can then be determined for a "best fit" of the

generated data.
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The present model does not account for creep-strain recovery, and

its occurrence may, indeed, adversely affect the accuracy of the experi

mental procedure described above. This is not expected to cause dif

ficulties of any great consequence however, since creep-strain recovery

in 2 1/4 Cr—1 Mo steel is generally found to be quite small (see Fig. 3).

It will be assumed in the following that the material parameters C

and D in Eq. (4) may be treated as constants, at least over a limited

range of stress. How constant they remain over the stress range of in

terest is readily ascertained and if necessary they may be regarded as

functions of stress and fit to the material of interest by performing a

sequence of tests of the type described below.

Before discussing the additional experimentation, notice that under

steady state creep conditions, i.e., with S = 0 in Eq. (4), the follow

ing holds

e = (D/C) S *♦ , (16)
s s

hence, the ratio D/C can be determined using the data already collected

as described above. Also, the constancy of the ratio D/C with stress

can be evaluated using the same data.

To determine the coefficient D individually, and thus C from Eq.

(16), consider the following experiment. A uniaxial specimen is loaded

into a steady state creep condition at a given stress level, say for

convenience, the same stress as above, a . This corresponds, once again,

to the state point B in Fig. 4. However, now the coordinates of point B

are assumed known. The stress is then dropped rapidly from o , only

this time by an amount sufficient to bring the state point well below

point F (Fig. 4), say for example to point H at the reduced stress level

Oj. At H, a < S, so that from Eq. (4),

Si- -DS3 , (17)

which remains valid as long as the state point remains below a = S. Ac

cording to the present model, the state point moves (with zero accumulated

creep strain) from H toward point J at a rate dictated by the differen

tial equation Eq. (17).
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The solution of Eq. (17) corresponding to the state path H to J is

(1/S2 - 1/S2) -2D Atrj , (18)

where S„ is the internal stress at H (here, S - S ), S is the internal
n n SO J

stress at state point J (ST • a^) and Ax is the duration of the observed
J HJ

hesitation period (curve III in Fig. 5). The coefficient D can thus be

found as

(I/O!2 - 1/S2 >
D — 22_ (19)

2 Athj

C can then be determined from the known ratio D/C. In the event D var

ies significantly with aj, it may be considered a function of stress and

fit to the material of interest using several such tests, dropping the

stress in each case to a different level.

EXTENSION TO MULTIAXIAL STRESS STATES

A natural generalization of the scalar internal flow stress S is the

internal flow stress tensor with Cartesian components S.,. In terms of

this quantity, it is possible to generalize Eq. (3) as follows

VVW - (20)
which states that the components of inelastic strain rate are functions

of the so-called "effective stress tensor" (a, . — S, .). Furthermore, if

linearity in the inelastic strain rate is retained as in Eq. (4), the

growth law can, in turn be generalized as

sij-WV^ki-VV • (21)
The second term on the right hand side of Eq. (21) characterizes the re

covery process and is regarded as a function of the components of inter

nal flow stress.
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It is interesting to note the formal resemblance of the present

model, generalized in this way, to the theory of kinematic hardening in

classical plasticity; the major difference occurs as a consequence of the

recovery term in Eq. (21). Further study of the implications and inter

pretation of this observation is currently underway.

A more definite and more restrictive multiaxial representation can

be set down for the present model by adopting a (Mises) J2~form just as

is done in the case of the currently recommended strain-hardening con

stitutive equations.1'2 Such a ^-formulation may be written as

(3/2)A(a - S)n s la ; a > S

eP. =1 (22)
a < S

and

SS = dP - DSk , (23)

where S, as in the uniaxial formulation, is taken as a scalar measure of

the state, s . are the components of the deviatoric stress tensor,

and

5• A siisii (24)

gP = /I £P ^P (25)
e / 3 ij ji

SUMMARY AND CONCLUSIONS

No theory of inelastic material behavior is capable of accurately

describing the behavior of even a single metal under all circumstances.

Any physical or mathematical theory is, at best, an idealization appli

cable over a limited range of conditions. Input to the development of

an engineering constitutive theory, therefore, must come not solely from

isolated laboratory experimentation and principles of physics but from

considerations regarding service conditions as well. A theory constructed

for application under high loading rates, for example, may bear little

resemblence to one intended for use under quasi-static loading of the

same material.
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As indicated above, the theory of strain-hardening provides good

predictions of the creep response of 2 1/4 Cr—l Mo steel under many load

ing situations at high temperature. As also pointed out, however, the

theory suffers certain deficiencies in that it tends, under some stress

histories, to over-predict hardening and moreover, does not account for

the recovery of state which occurs under stress reductions. If these

effects are judged significant, in light of the supposed service con

ditions encountered by 2 1/4 Cr—l Mo steel reactor components, then they

must be taken into account in the constitutive theory used in the struc

tural analysis of these components.

The creep-recovery model considered here qualitatively predicts the

apparent reduced hardening and state recovery effects addressed above

and, furthermore, it provides for "strain-hardening like" behavior under

conditions where the strain-hardening theory is known to accurately apply.

It is expected that the present model can be implemented on the

basis of relatively simple macroscopic tests as outlined. To be sure,

the testing called for may require somewhat more sensitive and sophisti

cated instrumentation than that necessary for standard creep tests, how

ever, it seems reasonable to expect that more comprehensive constitutive

laws may necessitate more complex experimentation. The feasibility of

the proposed testing program must, of course, be demonstrated.

It is easily demonstrated that neither constant-stress creep tests

nor pure relaxation tests, in themselves, constitute the necessary tools

for complete exploration of the state space (Fig. 4) associated with the

present, or for that matter, any creep-recovery model. This is equiva

lent to saying that creep and relaxation tests alone do not provide the

basis for predicting the creep response to all possible loading his

tories. Evidently, hybrid creep-relaxation tests or recovery-like tests,

such as those described above are necessary in this regard.

In spite of the many inherent assumptions, the so-called J2 multi

axial form expressed in Eqs. (22) through (25) may well prove useful in

predicting the creep response of 2 1/4 Cr—l Mo steel under general stress

states. In fact, these equations have already been implemented in the

CREEP-PLAST computer code at ORNL by J. A. Clinard and predictions of

response of this model under uniaxial and multiaxial stress states are



17

now being obtained. Many open questions still remain with respect to

such a multiaxial formulation, e.g., the behavior under reversed stresses

etc., nevertheless, it is encouraging to note the success the analogous

J 2 form of the strain-hardening theory has enjoyed in its several appli

cations to pertinent structural problems.
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