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ABSTRACT

Many Monte Carlo simulation problems lend themselves readily
to the application of variance reduction techniques. These techniques
can result in great improvements in simulation efficiency. This docu-
ment describes the basic concepts of variance reduction (Part I), and a
methodology for application of variance reduction techniques is presented
in Part II. Appendices include the basic analytical expressions for
application of variance reduction schemes as well as an abstracted
bibliography.

The techniques considered here include importance sampling,
Russian roulette and splitting, systematic sampling, stratified sampling,
expected values, statistical estimation, correlated sampling, history
reanalysis, control variates, antithetic variates, regression, sequential
sampling, adjoint formulation, transformations, orthonormal and con-
ditional Monte Carlo. Emphasis has been placed on presentation of the
material for application by the general user. This has been accomplished
by presenting a step by step procedure for selection and application of

the appropriate technique(s) for a given problem.
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PART I

BASIC CONCEPTS OF VARIANCE REDUCTION






EXECUTIVE SUMMARY

Monte Carlo simulationis one of the most powerful and commonly
used techniques for analyzing complex physical problems. Applications can
be found in many diverse areas from radiation transport to river basin
modeling. Important Navy applications include analysis of antisubmarine
warfare exercises and operations, prediction of aircraft or sensor perform-
ance, tactical analysis, and matrix game solutions where random processes
are considered to be of particular importance. The range of applications has
been broadening and the size, complexity, and computational effort required
have been increasing. However, such developments are expected and desir-
able since increased realism is concomitant with more complex and extensive

problem descriptions.

In recognition of such trends, the requirements for improved simula-
tion techniques are becoming more pressing. Unfortunately, methods for
achieving greater efficiency are frequently overlooked in developing simula-

tions. This can generally be attributed to one or more of the following reasons:

e Analysts usually seek advanced computer systems to perform
more complex simulation studies by exploiting increased
speed and/or storage capabilities. This is often achieved
at a considerably increased expense.

e Many efficient simulation methods have evolved for specialized
applications. For example, some of the most impressive
Monte Carlo techniques have been developed in radiation trans-
port, a discipline that does not overlap into areas where even
a small number of simulation analysts are working.

e Known techniques are not developed to the point where they can
be easily understood or applied by even a small fraction of the
analysts who are performing simulation studies or developing
simulation models.



e Appendix B, "MIRAN - A Machine Independent Package For
Generating Uniform Random Numbers, " describes a uniform
random number generator that can be used on any machine
that does not have a reliable generator or on several different
machines where identical random numbers are to be generated
for comparison and cross checking.

Before proceeding it must be recognized that a ""good" uniform ran-
dom number generator is generally assumed to be available to the user.
This is often not the case, although most computers today have uniform
random number generators included as part of the system software. Un-
fortunately, many of the uniform random number generators in current
use do not adequately approximate randomness to be sufficient for all Monte
Carlo calculations. To alleviate this difficulty, a machine independent

package for generating uniform random numbers is provided (Appendix B).



VARIANCE REDUCTION
1. INTRODUCTION

A useful feature of Monte Carlo simulation is that the analyst has
the flexibility to .dictate his simulation conditions and sampling plans to
a much greater extent than does an experimenter in a real world environ-
ment. This extra latitude provides an excellent opportunity for optimal de-
sign of simulations to obtain estimates with minimal sampling size. This
will effectively reduce the time and effort involved in computation as the
number of trials necessary to achieve a given accuracy is thereby reduced.
In view of the large number of situations where simulation results can be
substantially improved, it is fair to say that no simulation problem has been
justly treated until the possibility of applying variance reduction techniques

has been seriously considered.

The procedures which are available in the design of a Monte Carlo
simulation for minimizing the required sample size are generally called
variance reduction techniques. The intent here is to provide the analyst
with an understanding of and an appreciation for several variance reduction
techniques and to provide a useful guide for selecting and using the most

appropriate technique for his particular problem.

It is difficult to provide a complete perspective on variance reduction
techniques. This is primarily due to the fact that there are an infinite num-
ber of ways Monte Carlo simulation can be accomplished for a given problem
and each could conceivably be used to calculate the simulation objective al-
though with greatly different efficiencies. However, it appears fair to say

that the approach to improving simulation efficiency was not seriously



considered until the work on the atomic bomb during the Second World
War. (14) This work initially involved the use of "straightforward'" Monte
Carlo simulation for nuclear particle transport, but early in these investi-

gations Von Neumann and Ulam(18)

applied certain variance reduction tech-
niques. A systematic development of these techniques was presented by
Harris and Kahn about 1948. (19) Although comprehensive, this detailed work
is difficult to apply to general problems. Subsequent application and develop-
ment of variance reduction techniques has been almost exclusively carried |
out within the radiation transport community. This has resulted in limited
application in other areas where Monte Carlo simulation is used. It is the
purpose of this document to provide a mechanism to aid in a wider application
of variance reduction. This has been attempted by presenting the material

in two parts.

Part I, BASIC CONCEPTS OF VARIANCE REDUCTION, presents
the fundamental principles and relationships among several variance reduc-
tion techniques. PartI is intended to provide the reader with a background
and an understanding of variance reduction. It is recommended that the user
who is not familiar with the basic concepts review Part I before attempting to

implement variance reduction.

Part II of this volume, APPLICATION OF VARIANCE REDUCTION
TECHNIQUES, comes as close as currently practical to being a step-by-step
procedure for application of variance reduction. However, the reader should
have an understanding of the basic principles involved. In most cases con-
siderable ingenuity and insight will also be necessary. The approach here has
been to present a convenient characterization of the various methods con-
sidered for purposes of selection. This is followed by a summary of guide-

llnes on how to actually apply each method.




This volume also includes other information useful in applying vari-
ance reduction techniques to Monte Carlo problems. Appendix A presents
a summary of the pertinent analytical formulations and Appendix B is an

abstracted bibliography of useful references.






2. CHARACTERIZATION OF VARIANCE REDUCTION TECHNIQUES

In this section the general characteristics of variance reduction tech-

niques will be introduced. In Section 3 each method will be discussed in detail.
2.1 CLASSIFICATION OF TECHNIQUES

As the name implies, variance reduction is concerned with increasing
the accuracy of Monte Carlo estimates of parameters. A simulation using one
or more reduction techniques can be contrasted with what may be considered
the crude (sometimes called direct or straightforward) Monte Carlo approach
where an attempt is made to create true-to-life or actual models of the process.
In crude sampling, flows through the model and sampling probability distribu-
tions are chosen to reflect the real situation as exactly as possible. On the
other hand, variance reduction techniques attempt to increase the effectiveness
- of the Monte Carlo method by: '

e Modifying the simulation procedure
e Utilization of approximate or analytical information
e Studying the system within a different context or abstract

representation

Based on these approaches a general classification of several known variance
reduction schemes is presented in Table 2.1. Many of the techniques presented
in Table 2.1 are related and it is difficult to arrive at a completely distinct |

classification. However, the manner in which they are presented here is useful

for subsequent discussions.

Modifying the sampling process is usually achieved by using more ef-
fective sampling techniques or altering the sampling distributions. As an
example consider the problem of estimating the probability of an early failure
in a piece of electronic equipment, and suppose that the failure distribution
for this equipment is exponential with a very long mean time between failures
(MTBF). In a crude Monte Carlo evaluation the ratio of the number of early

failure to the total number of simulated failures is very small. Thus, in
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TABLE 2.1

Classification of Variance Reduction Techniques

® MODIFICATION OF THE SAMPLING PROCESS

e Importance Sampling

® Russian Roulette and Splitting
e Systematic Sampling

e Stratified Sampling

N USE OF ANALYTICAL EQUIVALENCE

Expected Values
Statistical Estimation
Correlated Sampling
History Reanalysis
Control Variates
Antithetic Variates
Regression

® SPECIALIZED TECHNIQUES

e Sequential Sampling

e Adjoint Formulation

e Transformations

e Orthonormal Functions
e Conditional Monte Carlo

order to generate confidence in an estimate for the probability of early
failure, one must simulate a very large number of failures. The num-

ber of simulated events required can be substantially reduced, however, if -
the failure distribution in the simulation is suitably modified. In particular,
if an exponential distribution with a short MTBF is substituted for the actual
failure distribution, more early failures will be observed, and thus a more
accurate answer can be derived with less simulation effort. This procedure
is referred to as importance sampling. Of course, the modifications intro-
duced in the sampling distribution must be accounted for when determining
the desired estimate since the failure processes, (actual and modified) are

not the same.
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" The above example, simulating events of very low probability, illus-
trates one area where variance reduction techniques are always beneficial, if
not an absolute necessity. If the occurrence of an event in a process is on the
order of one in a thousand, then one would expect an event to occur only once
in every thousand direct simulations of the process. Since the accuracy in
measuring an event is related to the number of times it occurs, the crude
simulation has to be run many thousands of times before much accuracy is
achieved. The common variance reduction procedure in these cases involves
altering the simulation in a known way so that the rare events can be ob-

served more frequently.

Other forms of variance reduction are based on the fact that analytic
procedures are usually preferable to simulation. Thus, reverting to simu-
lation implies the problem does not have a readily available analytic solution.
However, in many cases segments of the process may be amenable to deter-
mining a closed form solution. In other cases, the overall process or seg-
ments of the process may be closely correlated to a simpler, approximate
process with known analytic solutions.. In both situations substantial improve-
ment can be realized by taking advantage of this knowledge. This class of

techniques is described by the term ''use of analytical equivalence'.

As a simple example of the use of analytical equivalence, consider
again a piece of electronic equipment. Suppose this time, however, that the
failure distribution of the equipment is not exponential, but assume that the
exponential distribution may serve as a first approximation to it. The correla-
tion approach to variance reduction involves investigating the failure proper-
ties of this equipment by taking advantage of this knowledge and simulating
the difference between the actual and the approximate exponential failure rate
instead of simulating the actual process. The properties of the actual process
can then be inferred using the analytic properties of the exponential distribu-
tion and the results from the simulation on the difference between the actual and

exponential distribution. This approach is called control variates.
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In addition to sampling modification and analytical equivalence, there
are certain specialized techniques that can be used to achieve variance
reduction. These procedures may include the application of one or more of
the above techniques in its implementation. One powerful procedure is called
sequential Monte Carlo. In order to effectively employ variance reduction in
a simulation, some knowledge about the process and the answers to be genera-
ted must exist. One way to gain this information is through a direct simula-
tion of the process. Results from this simulation can then be used to define
variance reduction techniques which will refine and improve the efficiency of
a second simulation. In complex problems, several iterations may be called

for.

Another procedure which often proves valuable in developing variance
reduction procedures is to consider the process from various viewpoints. In
many flow processes, for example, hints for effective importance functions
can be gained by considering the process in reverse or looking at the mathe-
matical adjoint of the problem under study. However, as with many of the
specialized techniques described in Table 2. 1, it is not adequately developed

for general application.

Generally variance reduction techniques can be aimed at reducing the
variance of the estimate of only one parameter or aspect of the process
being simulated. Using variance reduction techniques on one parameter can
reduce the effectiveness of the simulation to estimate other parameters. It
is very important, therefore,to first determine all of the results which will
be desired from the simulation before searching for a technique to apply to a

given situation.

If several quantities (parameters) are to beestimated by the simula-
tion, the selection of a variance reduction technique has to be considered

from the standpoint of all of these parameters. In many circumstances it
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may be beneficial to create a different Monte Carlo method to estimate each
parameter. The goal for each simulator would be efficient measurement of

a specific parameter.

Each of the techniques or procedures introduced in Table 2.1 will be
discussed in detail in subsequent sections.
2.2 VARIANCE REDUCTION AND KNOWLEDGE OF THE PROCESS TO

BE SIMULATED

As the discussion of thé previous section suggests, variance reduction
can be viewed as a means to use known, usually qualitative, information about
the process in an explicit and quantitative manner. In fact, if nothing is known
about the process to be simulated, variance reduction cannot be directly
achieved. (However, sequential sampling may be used to generate the required
knowledge.) The other extreme from no knowledge is complete knowledge,
and in this case a zero variance simulation can be devised. Put very simply,
variance reduction techniques cannot give the user something for nothing; it
is merely a way of not wasting information. Therefore, the more that is known
about the problem, the more effective variance reduction can be and the more
powerful are the techniques that can be employed. Hence, it is always impor-
tant to clearly define as much asis possible what is known about a problem.

Knowledge of a process to be simulated can be qualitative and/or
quantitative, Both are useful. It is important to use all the information avail-
able, and in fact it may be useful to do limited crude simulations of the process
to gain some knowledge, especially if a little data might lead to extensive
insight. Selection of a variance reduction technique(s) for a particular simu-
lation is thus peculiar to that simulation, and general procedures are difficult
to establish. However, the mental exercise and the initial groundwork that
must be established in order to select or evalute the usefulness of applying

these techniques is almost always worth the effort. Searching for a technique
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forces the simulation designer into asking the basic questions of: (1) "What
answers are to be generated from the simulation,' and (2) what is known about

the behavior of the process'?

Problem definition is thus of paramount importance. Before consider-
ing variance reduction techniques it is important to characterize aspects of
the problem which might indicate which might be fruitfully applied. To evalu-
ate the usefulness of these methods for a particular problem it is necessary

to:
e List all of the parameters to be estimated from the simulation.

e Determine all the available knowledge on the internal workings
of the process to be simulated.
In fact,clearly delineating such information is the basis for the approach pre-~
sented in Part II, APPLICATION OF VARIANCE REDUCTION TECHNIQUES.

2.3 INTEGRAL REPRESENTATION

In principle a Monte Carlo procedure can be interpreted as a method
for evaluating an integral, or more graphically, the area under a curve. Since
integrals can also be evaluated by analytic or numerical methods, reverting
to Monte Carlo simulation implies either a very complex integration or,
more generally, an inability to represent the problem in integral form. Knowl-
édge that the Monte Carlo procedure-does have an integral representation and
determining the explicit form of that integral is fundamental to understanding

and developing variance reduction techniques.

An intuitive justification for the integral representation can be given
by considering how the Monte Carlo method works. The model of the process,
or simulation, is exercised numerous times. Conclusions about the process
are drawn by averaging the individual outcomes. From a probabilistic view~
point, averaging is a means for estimating particular types of integrals known

as expectations or expected values.
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Symbolically, suppose g(Xl, cee ,Xn) is the outcome or result obtained
from a simulation. The Xi values represent a particular outcome* from
each of the random processes affecting the characteristic of the system being
estimated. To simplify the presentation, let X represent the vector -

(xl, ces ,xn). I f(X) denotes the probability density function of X (i.e.,
joint probability density function of L SERRRE xn), then the objective of the

Monte Carlo simulation is to estimate the integral

I = E[g®] = [g@FR)dX . (2.1)

A crude application of Monte Carlo would obtain an estimate I by

selecting a random sample Xl’ ..., X from f(X) and compute the sample

N
mean using

N
i- I%Zg(ii) (2.2)
i=1
(14)

The law of large numbers ensures the convergence of I to I in most cases.

It is, of course, true that i is a random variable and that the expected

value of 1 equals I. That'is,
E[i] = 1 | (2. 3)

It is said that i is an unbiased estimator for I when (2. 3) holds. This is
important to keep in mind when estimators for variance reduction are con-
structed since variance reduction can lead to biased estimators unless care
is taken.

. .
Using general notation, X represents a particular outcome of the random
variable X.
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An estimate of the error in the estimator T is given by the sample

. 2
variance S°, where

N N
s* - (I\T}—l) Z [e®) -1% - Nl-l 1\112 gz(ii) -1 (2.4)
i=1 ’ i:l

82 is commonly used as an estimate for 02, the population variance,

which is defined as

2 2
o = E[{g®) -1}] (2.5)
82 is also used as a basis for evaluating the effectiveness of Monte
Carlo simulations. A basic measure for such effectiveness if E[(i -1)2]. It is
*
easy to see that
~ 2
]

E[(I-D)] = UZ/N | (2. 6)

2 % %
Note that as N » =, E[({-1)“] - 0.

Now, since 02 is estimated using Sz, an estimate for E[(f—I)z] is con-

structed using

9 N
st - - (_I\I_IT){IITI Zl g’®) -1 (2.7)
i=

The estimator s  is often used as an absolute measure of the accuracy of

a simulation.

*
It is assumed that a simulation will consist of N statistically independent
histories.

%k %k ~ . a
Since E[(I-I)z] »>0as N->«, then I is said to be a consistent estimator
for I.
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Use of the integral representation provides a convenient mechanism
to develop and apply variance reduction in simulation, and if possible, such
a representation should be established. As a trivial example of how this might
be accomplished consider the queueing system shown in Fig. 2.1. Here t
indicates time. Further it is assumed that fl(t), .o ,f7(t) are probability
density functions for the time required to go through the corresponding box.
Py and Py are respective probabilities for going along the paths indicated.
Similarly for p21 and Pyq-

It is easy to see that the average time to pass through the system

is given by

|
|

, jg £, (1) + Pyqfo(t) + Dyofalt) + 1,(1) + £ (8) + Py Fe(t) + L (D) at

7 (t)dt
IO (t)

which has the same qualitative form as Eq. 2.1. Such integral representa-
tion can greatly simplify the application of variance reduction techniques

and will be used as a basis for the discussion presented later.

P11 15(t) - P £g00)

fl(t) : f4(t) - f5(t) f.7(t)

Pgo

Pi2 f4(t)

Fig. 2.1. Schematic of a Simple Queueing System
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2.4 EFFICIENCY OF VARIANCE REDUCTION

This section presents the basic ideas and practical expressions for

estimating the efficiency of variance reduction techniques.

2.4.1 General Concepts

The measure introduced in the previous discussion that will be used
to evaluate the effectiveness of a simulationwas E[(T-I)z]. This is estimated

using s2 defined by (2.7). That is,

N
2 1 1 2 ~2
s* = ®=D) Nzgo‘ii)-r (2. 8)
i=1
32 is an estimate for the variance of i It can be shown thé.t

E[s?] = E[d -D?] = o2/N (2.9)

where 02 is the variance of g(i)) and N is the sample size or the number

of histories.

It can be seen from (2. 9) that, as the number of histories, N, in-

creases, the closer i will come to I.

Another way to consider this is in terms of intervals of uncertainty.
For example it is known from basic statistics(14) that, with high probability
the estimate 1 will fall between I - ko/J/N and I + ko/ N where k is some
constant. Thus for a fixed k, the convergence of the estimate is related

to the number of histories , N, and the variance of g(;{)).

Two approaches can be taken to increase the accuracy of the estimator,
1. One is to increase the number of histories. The other is to reduce the
variance (g) associated with each observation. The disadvantage of increasing
the number of iterations (i.e., the size of N) is obvious. For example, to re-

duce the interval of uncertainty by a factor of two, thus doubling the accuracy,
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four times as many histories would be required (for a fourfold increase in
computing time). Eventually it becomes prohibitively expensive to gain
further accuracy by increasing the number of histories. Therefore,
achieving variance reduction which reduces the variance associated with

each history, o, is highly desirable for improvements in the answers.

To evaluate the efficiency gained in the use of variance reduction
techniques it is clearly desirable to have a quantitative measure. This can
readily be established based on the ideas introduced above. Suppose two
simulation method exist for estimating the same parameter I. Let the
variance per history associated with the first simulation method be 0% and
that associated with the second be 02 It is desired that the result be known
within an uncertainty of ¢ (i.e., the estimate I fall in the interval I-¢
to I+¢). For this to happen with high probability will require N1 = kzoi 62
histories for the first method. For the second method, it will require

2 =k 02/ e histories. In general the two methods will require different
amounts of computational effort to generate each history. Let the computer
time taken per history by the first method be t1 seconds and by the second
t2 seconds. Then the total ti2m2e required for the first method to achieve the
desired accuracy would be k Ultl / e . Total time for the second method
would be k202 t2/ e . The relative efficiency of the two simulation methods

is given by the ratio of the computing times required. Thus,

-+

J—t
=t DN

o
(2.10)

efficiency = ¢ =

o ad
DN D)

20
which is the relative time advantage gained by using the second method .
In most applications a variance reduction method is being compared

to crude sampling. That is, t1 and 0? would be that obtained when crude
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sampling is used, while t2 and og refer to the computation using the vari-

ance reduction method.

2.4.2 Estimation of Variance Reduction Efficiency

The difficulty in using definition (2. 10) for efficiency is that 02 and

1

og are rarely known. However, it is reasonable to replace them by their
estimators and get an estimator for ¢,
) |
g = —'2— (2. 11)
t559
where
N ! |
2 _ 1 1 § : 2,2 a2
S1 = §alR g (Xi) I1 . (2.12)
1 1959
1=
with
Ny

—td
[y
Il
Zl._.
il
gl

(2.13)

and il’ oo ,XNI being a random sample obtained with crude Monte Carlo.
Also, '

N
Ny |1 2 2 2
2 _ '
Se = N1 N_Z g (X)) -1 (2. 14)
27129
with
Ny
A 1 —)'
I, = 5 g(X!) (2. 15)
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and Xisees ’Xi\I being a random sample obtained using variance reduction.
2
It is important to recognize that ¢ is a random variable and in practi-
cal application will be subject to random variations. In fact, as Si and Sg
are second order quantities, they will be subject to much larger variation

than first order parameters such as 1.

Note that the use of (2.12) and (2. 14) assumes that independent ran-
dom histories were available. However, the application of many variance
reduction techniques will not produce histories that are statistically indepen-
dent. This is particularly true when stratified, systematic sampling, or
Russian Roulette and splitting are used. .In some cases correlated sampling

and history reanalysis will also produce samples that are not independent .

In cases where a truly random sample is not available (or suspected
to be not available), it is convenient to use a batching process to estimate
the sample variance. The general guidelines to follow in application of batch-

ing are:

1. Obtain a sample, say g()_fl), cen ,g(iN) consisting of N his-
tories (which may or may not be independent).

2. Group the histories into batches such that the batches are in-
dependent and equivalent. For example, it may be possible
to arrange the histories so that the sample contained within
any batch will be independent from the samples in any other
batch. However, the samples within a batch may be correlated
with each other. In the case of stratified sampling, each batch
must consist of the same number of samples from the same
strata. (Typically, the number of batches, Ny, should be be-
tween 10 and 50.) ‘

3. Construct an average in each batch for the parameters being
estimated. That is, if g(i’l), ee ’g(XN ) are contained in
batch 1, then set 1

1 Nl
Il = -ﬁ‘l E 1 g(ii) ' (2.16)
1=

where it is assumed that there are N1 sample in each batch.
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4, Construct a final estimate for I using

N

P 1 B P
I = ﬁg Ii (2.17)
i=1
5. Obtain an estimate for 02 from
N N
B N B
2 1 %2 _ B 1 22 32 : '
S ‘(N_‘-T)Z GD* =g [ D5 T (2.18)
B i B B 119

In essence, each batch is being considered as a separate small simu-
lation run. Parameters are eStimaited as the average of the estimates ob-
tained in each batch. The sample variance of the different batch estimates pro-
vides a basis for estimating the variance of the final average. This technique
is completely general; it will work in all cases no matter what combination
of variance reduction techniques are being used nor what kind of parameter
is being estimated. Batching may not provide the best estimate in all cases;
usually a better estimator can be constructed for any particular techniques
being used. However, there frequently are easily-missed subtleties in en-
suring that an estimator is based on independent and equivalent samples. Tt
is generally best to avoid the analysis required to generate an estimator valid
for the particular methods employed - and also avoid the pitfall of constructing

an erroneous estimator - by using batching to calculate variances.

2.4.3 Estimation of Confidence Intervals

In some applications, it is of interest to calculate confidence inter-

vals for estimated parameters when variance reduction is used. Under the

(

from the following expression:

usual assumptions, 14) the confidence interval of size a can be obtained
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TS T T2
PI-—sIs,I+—SJE—i-f e /zdt=oz (2.19)
J2r Jop

VN VN

where a may be obtained from Table 2.2. The value of S may be obtained

using (2.4) or (2.18). Then, the interval I - TS N % is said to be
N

a 100 «% confidence interval for the estimate of I.

2.5 THE PITFALLS OF OVERBIASING AND UNDERBIASING

The goal of variance reduction is improved efficiency, that is, making
the best use of computing time to simulate everits which are most significant
to the final answer. In modifying the sampling to bring this about, it is
possible to overshoot the mark and produce a sampling scheme that is so
strongly biased as to be less efficient than crude sampling. This is termed
'overbiasing' or 'oversampling'. The opposite term, 'underbiasing' or
'undersampling’, is used to apply to the crude or slightly modified sampling
scheme when the result depends heavily on infrequent events and not enough

observations occurred for good statistics.

It is a general characteristic of both overbiased and underbiased
situations that most of the time the answers generated are too small. This
produces an apparently consistent bias in the results which can be more
troublesome than poor confidence intervals in the result. Furthermore,
variance estimates are also generally small so that the confidence intervals
calculated in the simulation will tend to indicate that the results are much
more accurate than they really are. This generates a false sense of security

and faith in results which are actually consistently bad.

As an extremely simplified example, consider a simulation in which
there are basically two classes of events. One type of event (Xl) occurs
frequently(f(Xl) =.9999) but contributes only a small amount (g(Xl) =.01) to
the final result while the other type (event X2) is rare (f(XZ) =, 0001) but
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TABLE 2.2
Table of the Standard Cumulative Normal Distribution

~

F(y) = 2m)™* J Y etngy y = 0.00 (0.01) 4.99*

—_—
s -00 -0T -02 03 -04 -03 -06 07 -08 -09
-0 5000 +5040 5080  -5120  -3160 5199 :5239 5279  "5319 5359
x i 5398 -5438 5478 5517 5557 5596 5636 5675 ‘5714 5753
2 5793 <5832 5871 5910 -5048 -5¢87  bo26  -6064  -6103 6141
3 6179 -6217 6255 6293 6331 6368 -6406 6443 -6480 6517 -
4 6554 -656T -6628 “666.4 6700 6736 6772 -6808 6844 6879
s | 6915 -6gso  -6oS3 “7034 7088 7123 7157 ‘Ig0 7224
6 | 7257 j29r 7324 -73%g 7432 7454 7486 7517 7549
7 1 7580 7611 7642 *7703 7734 7704 7794 7823 7852
-8 -7881 +7910 7039 7065 -8023 -Bost -8078 -8106 -8133
‘g | ‘8159  -8186  -B212 -8264 -828g  -8315  -8340 ‘8365 8389
10 8413 8438 8461 -8508 -8531 ‘8554 -8577 -8599 8621
11 8643 -8665 -8686 -8729 -8749 -8770 -8790 -8810 -8830
12 -8849 8869 -8888 -8g25 -8944 -8g62 -8g80 -8997 ‘90147

I3 ‘0320  -90490 90658 -gof24  -gog8S gII49  -9I309 -9I466 91621  -9I774
T4 ‘91924  :92073  -92220 ' -92364 92507 -g2647 92785 -9292z  -93056 ‘93189

I'5 | -93319 -93448 -93574 -93699 -93822 ‘93943 ‘94062 94179 ‘94295 94408
6 ‘94520 -94630 94738  -94845  -g4950 ‘95053 ‘95154 95254  °95352 ‘95449
7 | 95543 -95637 -95728 -9s818  -g5g07 ‘95994 -gboBo  -gb164  -96246  -96327
T8 | 96407 96485 -gb562 -g6638  -gb7I2 196784 96856 96926  -96ggs  -g7062
9 | -97128 97193 -97257 -97320 -g7381 ‘97441 97500 97558 97615  -97670

20 | -97725 -97778 -97831 -97882  -97932 97982 -g8030  +gBoy7  -g8124  -98169
21 98214 -gB257 -g8300 -gB341 -g8382 98422 98461  -g8500  -98537  -98574
22 ‘98610  -98645 -08679 98713 98745 -g8778  -g880g  -98840  -g8870  -gB8gg
23 | -g8g28 -98gs6 -089S3 -9*0097 9?0358  -930613 -9?0863 -Q*1106 -g*1344 '9*1576
2:4 ‘9?1802 +9*2024 -972240 -9*245I -9*2656 -922857 -9*3053 ‘9?3244 ‘9?3431 -9* 3613
2§ | -g'3790 9?3963 9?4132 -9*4297 -9*4457  -9*4614 9?4766 -9?49I5 -9?5060 -g'520I
26 | -9'5339 -g*5473 -9°5604 -g*573T -9?5855 675975 °'9*0093 926207 -9?6319 96427
27 ‘916533 96636 -926736 -g*6533 -9?6928  -g?7020 -g*jII0 -9i71g7 -g*7282 97365
28 | -9'7445 -927523 -9*7509 9?7673 9?7744 ‘9?7514 97882 -9?7948 -g?801z 928074
29 ‘9?8134 -9?8193 -9*8250 -9*8305 -9783359  -97S41r -928462 -g?8511 -928559 98605
30 ; 9’8650 -9*8694 -9*8736 -9?8777 978817  -g?8856 918893 -928g30 -9*8g65 -9*Bggg
31 ‘9?0324 930646 -gl0gsy 9?1260 931553 931836 -gl2112 -g32378 -9?2636 932886
32 9?3129 -9*3363 -933590 -9¥3610 -934024 934230 9’4429 -9*4623 -9*4810 94991
33 | 9’5166 915335 'G*5499 -g?5658 -9?S8Ir  -gi5059 9?6103 -9i6242 -976376 926505
34 | 96631 -g26752 -g°6869 -gibgB2 -gizogr 9?7197 ‘937299 9’7398 ‘927493 9’7585
35 917674 9%7759 -937842 -gi7022 -9i7059 938074 938146 -93B215 -928282 928347
36 | 928409 -g28469 -g?852; -g18583 -928637  -9*B68g -9i8739 -gi8787 9?8834 -928B879
37 ‘938922 -g°Bgbq4 -9*0030 -g*0426 -9*0709 -g*1158 -g*1504 -9*1838 -g*2159 -g*2468
38 | -gt2765 -g¢3052 -9*3327 ~g*3593 -9*3545  -G*20094 944331 -9*4558 -9*4777 -9*4988
39 | 9*51g0 -g*5385 95573 -9*5753 9*5026 91609z 96253 -9*6406 -9*6554 -9*6696

40 | 9*6833 -ge606s 947090 -g4721I 97327  -9*7439 -0*7546 '9*7649 -9'7748 -9*7843
4L 947934 -9*8022 -g*b106 -g*8166 -g¢E203 -9<8338 -9*8409 -9*8477 -9*8542 -g*8605
42 948665 948723 -9*8778 -g+8832 -9+5882 916931 -9*8978 -9s0226 -gs0655 -9*1066
43 | ‘91460 -9°1837 -9s2199 -9*2545 -g287 -953193 053497 ‘933788 -9®4066 -9S4332
44 | r9%4587 -9°4B31 955065 -gs528S -gs5502 935706 -9*5902 936089 -gr6268 -9*G439
4'5 | -9%6b0z -gs675g 936008 -gsgosT 97187 -gf7318 -gf744z 987561 97675 -9*7784
46 937888 -9s5987 -g*Bo8r -gsBrj2z -g*Eas¥ 958340 958419 -9$8494 -958566 958634
47 958099 -9s8761 -gs8821 -gs8577; -938g3x -98983 -gt0320 -g°0789 981235 -g°1661
48 ‘g®2067 -9¢2453 -g¢2822 -g¢3:73 -g¢3508 -g¢3827 -g4131 -9°4420 -gt4696 -g°4958
49 | -o*5208 ‘985446 -gt5673 -g¢5559 -gt6ogy  -0¢62Bg -gt6475 986652 -946821 -g®6981

1 T 2
*Note. e dt = 2F(T) -1

vam -1 °T

i
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makes a large contribution (g(Xz) = 100) when it does occur. In this example,

the integral I being estimated has the correct value:

—
1l

T (probability of event i)*(value of event i)
i v

(X, )g(X,) + (X )e(X,)

= .02 o - (2.20)

However, using crude Monte Carlo with a moderate (several hundred to a
thousand) number of histories, event X2 would very probably never occur
and the 'underbiased' answer would be recorded as

. - EX) = .01 | (2.21)

If it was realized that X_, events made such a heavy contribution to the re-

2
sult, one natural response would be to modify the simulation so that X

events occurred frequently (see the discussion of importance sampling 2‘1n
Section 3. 1.1 for an explanation of the formhlas used in this example) If
this modification was carried to excess, say new probab111t1es of f*(Xz)— 9999
and f*(Xl) =.0001 were used, then Xy

moderate size and the 'overbiased' estimate would turn out to be

events would not occur in a run of

f(X .
. 0001
= g(XZ) fﬁ* X 100- 9999 ~ .01 . (2.22)

The proper modification for this example is to let X1 and X2 events occur
with equal probability, f*(Xl) = f*(Xz) =.5. Then, the contribution from

each history is
f(X ) f(X ) 0001

(2.23)
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and the final estimate from a small sample would be
T=.02 (2.24)

The above example is somewhat extreme but illustrates the general nature

of most simulations where variance reduction is needed. The underlying dis-
tribution is highly skewed with the large majority of cases making little or
no contribution to the final answer while a small number o cases can make
large contributions. In both the 'overbiased' and 'underbiased' example,

the final estimates were smaller than the correct value amd this is also a
general characteristic of such cases. In the example, if a set of 100 his-
tories was simulated using crude Monte Carlo, then most likely there

would be no X2 events observed and the (incorrect) estimate would be .01.

Once in every 100 sets of 100 histories, a single X, event would be simu-

2
lated. For that set of histories the estimate would be

ir = 1/100[99..01 +1-100]~ 1.01 , (2. 25)

a number very much larger than the correct value. (Notice that this makes

the estimation average out correctly in the long run.) Unfortunately, at this
stage the human factor enters the problem. Most users confronted with several
similar runs giving values of .01 and one run giving 1.01 will decide that the
1.01 estimate was the result of some input mistake or computer error, and

throw out that run.

In this example the variance estimates produced would be zero
for all runs except the one in a hundred which had a mean value of 1.01.
For this case the relative standard deviation would be almost 100%, a sure

sign of insufficient sampling.

Therefore caution is recommended in simulations where most his-
tories contribute a small bit to the answer but a few histories contribute a
large value, and complete faith should not be placed in estimates of variance
especially when the results are smaller than expected or if the possibility of

overbiasing or underbiasing is suspected.
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3. VARIANCE REDUCTION TECHNIQUES

To provide a reasonable presentation of variance reduction, it is
imperative that some organization be given to relate the various techniques.
To this end the techniques or approaches for achieving variance reduction
were grouped in the following three classes which were introduced in the
previous section.

e Modification of the sampling process

e Use of analytical equivalence

e Specialized techniques
A summary of the specific variance reduction techniques in each of these

classes was presented in Table 2. 1.

The techniques which modify the sampling process effectively alter
the probability distributions of the random variables so that the more signi-
ficant events are observed more often. The use of analytical equivalence
exploits analytical expressions and expected values to explain or approxi-
mate the majority of the phenomena, .thus leaving only the most interesting
portions of the process to be simulated. Specialized approaches encompass

the more sophisticated techniques for achieving variance reduction.

In this section of the report, the techniques presented in each of these

three classes is discussed in detail.
3.1 MODIFICATION OF THE SAMPLING PROCESS
Variance reduction techniques in this class include:

Importance Sampling

Russian Roulette and Splitting
Systematic Sampling
Stratified Sampling
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These have several common characteristics in that they all reduce
the variance of the estimate by sampling from a probability distribution dif-
ferent from the true physical distribution. In this way more of the interest-
ing events will be observed, i.e., more of the events that contribute to the
result being estimated will be observed and less computing time will be
spent on events of no importance to the results. These techniques also pre-
serve the actual physical process of the system in the simulation mode. Only
the probabilities are altered; the flow of events remains essentially the same.

3.1.1 Tmportance Sampling 35 %12131416,17,1819,20,22,26,28.29,34,3536,37)

3.1.1.1 General Concepts

Under this scheme the sampling distributions which would be used in
the direct simulation are replaced with ones which force the sampling into
more interesting, or important regions. For instance, in tossing a pair of
dice, if one is interested in the occurrence of a three, one could weight or
bias each die toward the numbers one and two. The biasing of the sampling
distributions is done in a known fashion so that this information can be used

~ to alter the computation of the results so as to unbias the answers.

Mathematically the importance sampling idea can be illustrated by

considering a Monte Carlo estimate of a parameter I where

I = E[g(®)] = [e®i(xdx . (3.1)
The direct or straightforward Monte Carlo procedure wbuld be as follows:

e Select a random sample X_,..., from the distribution with
1
density £(x)

e Estimate 1 using

N .
I-= Wl Zg(Xi) . (3. 2)
i=1
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As indicated in Section 2. 3, the sample vafiance for this estimate is given
by

. .
- w1 oy -1 - 5| 23 Py -1 (3.3)
i=1 i=1

Now suppose the sampling was not from f(x), but rather from a

distribution f*(x). Then it is clear from (3.1) that I may be expressed as
I = j'gix)—f(x)f*(x)dx (3.4)
£*(x)
where it is assumed f*(x) does not go to zero when g(x)f(x) is not zero.

Now, if a sampling procedure were set up which selected a random

sample Xl’ .o ,XN from f*(x), then the new estimator for I would be"
given by
1 X, g(X)E(X)
3.5
le —m—rl (3.5)
1=

(X, )
Thus, when X is selected from f*(x), the sample is weighted by fT(ﬂ

in the final result. Also, the sample variance is given by

9
s 1 remix) P X
S" = {1 [ f*:ZXQ1 | s | N§ f“(—T*x -1 ¢ 3.6)
i |

It is of interest to consider the expected value of the square of the difference

between il and I. That is,
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2
N
~ g(X.)i(X)
-E[(1y '1)2] = E (% Z f*lx. - -1
\ i=1 1
2
_ —1]\;1' gf[gi(ff)f{(X)] £*(x)dx - 12} | (3.7
Now it is seen that if"

fr(x) - SR - (3.8)

I

then E[(I1 - 1)2] = 0, a desirable situation. But this implies the ridiculous
condition that I is known. (This is the extreme situation indicated previously
in that if the answer is known, a sampling scheme can be developed with ex-

pected zero variance.) However, (3. 8) does suggest that if something close

g(0f(x)
1

improvement in the simulation should be possible. For example, consider

Fig. 3.1. which qualitatively shows f(x) and g_(g{i)_f(x) . A reasonable sampling

function f*(x) which approximates gng)f(_x) is indicated. f*(x) is called the

importance sampling function since it tends to emphasize the areas where the
f(x)g(x)
I

to the form can be conveniently selected for f*(x) then a large

expression is most important. f*(x) could be something as simple
and easy to work with as an exponential or normal distribution. The aim of
importance sampling can, therefore, be to concentrate the distribution of
sample points in the parts of the interval which are most important. This
demonstrates again the utilization of knowledge of the process to accomplish
variance reduction. It is desirable of course that f*(x) be easy to work with
(i.e., integrable) which is usually a conflicting requirement to having f*(x)

(x)f(x)
1

as close to & as possible.

+Note that if g(x) ever changes sign, a zero variance sampling function is not
so easily obtained since f*(x) must be non-negative to be a density function.
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£(x) £(x)g(x)
/ I

-
0

Fig. 3.1. Illustration of the Importance Sampling Concept.

3.1.1.2 Comparison of Importance Sampling with Straightforward Sampling

Unless carefully implemented, importance sampling has the potential
of giving worse results than crude sampling. This can be seen by a com-
parison of the expected values of the sampling variances in the two situations.
That is, from (3. 3) and (3. 6),

2

E[s?-52]

- B[s?]-E[s3] = [¢’® [1 -ff—f({}—){)]f(x)dx (3.9)

There is no assurance (3.9) will be positive. Therefore, in selection of
f*(x), a worse result could be obtained from the selection of f*(x) over
f(x) as the sampling distribution. This can be avoided, however, by care-

ful selection of the importance function f*(x).
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3.1.1.3 Extensions of Importance Sampling Concepts

One extension of interest in variance reduction is in applications
involving two or more variables. To see how an importance function can

be developed in the general situation consider the integral

1= [, g@i@dX = [ g®I®) £*(X)dxX (3.10)
X x f*x

Now, if a random sample 21, ce ’XN is obtained from the importance func-

tion f*(r—c)), then the estimator for I is

N e®)IR)

I, = 1 (3.11)
1
e e

The sample variance is of the same form as (3. 6).
As in (38.7), consider

A2 1 g ERIR) i 1 (- (eRIGY Dax 12
E[(1,-D°] = E|{x Y ——— -1} |= & {[ (LX) +@ax -1
e N'g X)) N {{?(f*(z?) ) o }

(3.12)

As in (3.7), the "best" (i.e., when E[(Il-I)z] = 0) importance func-
tion to select is

(%) = g(’_‘?f(g (3.13)

The arguments for selecting f*(ﬁ is, therefore, identical to those
used for selection of f*(x). However, in practice it is generally difficult to
develop f*(i’) due to the multidimensional aspects. An alternate approach
is to try tb select some sort of conditional importance function. For example,

suppose X = (x,y). Then an importance sampling function for x, say f*(x)
can be developed as follows:




33

I = [ eg&xyikxyddy = [ gx,y)ix)(y|x)dxdy
X,y XYy
_ g(x, M)E(X) o
= Ix,y——P’k—(-is——f (x)f(y|x)dxdy . (3.14)
Now, if Xl""’XN is selected from f*(x) and Yl""’YN selected
from f(y lXi)f*(Xi), then the estimator for 1 is
R T 38 A100 &
L= ¥ X X (3.15)
i=1 !
The sample variance in this case is
2
S = N1 FX)
i=1 1
N [e(x.,Y.)f(X.) 2
g(X., Y.)IX. R
S B Y i & Y (3. 16)
N-1 N £ - (X)) 1
1=

In a manner similar to that used to arrive at (3.12) it is easy to see that

. 2
E[(II-I)Z] % { IX y[g%ij—)—y,)f(x)} x(x,y)dxdy - 12}

2
- '11\T {fx%f)yfygz(x,y)f(yk)dydx -12} (3.17)

But
E[gz(x,y) k] = [ gz(x,Y)f(Y|X)dy (3.18)

y
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so the ""best'" importance function is

}1/2

2
ey - LBy

[EEE x| fwax

(3.19)

1 1/2

which reduces (3.17) to X {:[‘Y{E[gz(x,y)lx]} f(x)dx]2 ; .

In the general multidimensional case, it follows that the importance function
for x should be

1/2
fr(x) = £(x) gE[gz(x,j—;)lx]}

[|Ele? e M=) }1/2 £(x)dx

where ; refers to all the random variables except x.

(3. 20)

The estimator for I and the sample variance are given respectively

by expressions similar to (3.15) and (3. 16).

The selection of the "best" importance function implies of course
that the answer being sought is known. Thus, it is clear that the arbitrary
selection of the best importance function would be a matter of luck. How-
ever, an understanding of the above formulations can lead to guidance to
selecting an importance function. For example consider (3. 20). In this
case it may be possible to obtain an estimate for E[gz(x, y)|x] by perforAm-
ing a simulation for fixed values of x and selecting an approximate form for
the results. This and many other variations become readily evident when
serious considerations of importance sampling are undertaken. General

guidelines for achieving such benefits are outlined in Part II of this document.
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3.1.1.4 General Areas of Applicability for Importance Sampling

Application of the importance sampling technique can be very useful
in simulations which are attempting to estimate very low probability events.
One of the major areas to which this method has been applied is in nuclear
physics in calculating probabilities concerning nuclear particle behavior.
Examples are estimating the probability of penetrating a shield or barrier or
analysis of the wandering of particles within nuclear reactors. Application
of these techniques can also prove fruitful in problems which are more oriented
towards operations research. For example, in vulnerability studies of weapons,
the number of critical hits on a target can be increased by reducing the circular
error probability (CEP) of the weapon from that normally expected. Another
application is in queueing problems where improvements in estimates for the
waiting time can be achieved by increasing the arrival rate or increasing the

service time.

The effectiveness of importance sampling techniques are, of course,
directly related to the ability to select good importance sampling distributions.
This, in turn, is related to what might be called a priori or beforehand knowl-
edge of the process being simulated. In essence, if the answers to the ques-
tions being sought are approximately or qualitatively known, then very good
importance functions can be determined. In less favorable situations, the use
of importance sampling might involve an iterative simulation procedure. For
example, results from an initial simulation might be used to generate impor-
tance sampling distributions in a second simulation. Such iterations could

proceed through several stages.

It is also worth noting that in importance sAampling, as is the case for
most variance reduction procedures, the samples obtained from the resulting
simulation may be less effective for estimating certain quantities than crude
sampling. Since the importance functions are selected to increase the ef-

fectiveness of estimating specific quantities or parameters, the estimation of
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other parameters, not involved in this selection, can be greatly impaired by
this procedure.

3.1.2 Russian Roulette and Splitting(lz’ 14,16, 19, 20, 36)

3.1.2.1 General Concepts

This technique can be very effective in problems which are charac-
terized by a series of events. Examples are random walk, random movement

~ of a submarine on maneuvers, subsystems in series, etc.

Generally, simulation of a series process of this type can be structured
such that during the simulation it can be examined at various stages. At one
or more of these stages it may be possible to establish whether or not the
process is in an interesting or uninteresting state. (Interesting means likely
to contribute to the desired result.) If the state of a given stage is not of
interest, then one might want to restrict further investigation; that is, kill
off the process with a known probability (Russian Roulette). If, however, the
process is in an interesting state, one may want to conduct additional investi-
gations; that is, increase the number of simulations starting from that de-

sirable situation (splitting).

This technique can also be particularly useful for simulations involv-
ing a large number of discrete situations. For example, consider a queueing
system in which a large number of individuals are being tracked. Then at a
certain stage in the problem, one of these individuals can be selected and
removed from the system with probability p. If this individual is not re-
moved from the system he is allowed to continue through the system with a
weight (1-p)‘1= 1/q. This can be repeated with more individuals (with the
same or different values of p) until the number of individuals being tracked

is reduced to a desired size.

Conversely the number of individuals being tracked in the system

can be increased by splitting. For example, suppose an individual
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has an assigned weight w, then he can be replaced by n individuals
each having a weight w' = w/n. The n individuals can then proceed inde-
pendently through the system, except that the weight assigned at the splitting

must be maintained.

It should be evident from the above descriptions that Russian Roulette
and splitting techniques can be useful when simulating events of low proba-
bility and thus its application can prove beneficial in many of the same situa-
tions where importance sampling may be indicated. Indeed, there is a great
resemblance between the two methods in that both force the simulation into
_interesting areas by modification of the sampling distributions. The differ-
ence between the two is the method of choosing the important areas. Russian
Roulette and splitting is an "after-the-fact' or passive approach which uses
a straightforward simulation but limits or increases the sampling as a func-
tion of the events which occur during the simulation. Importance sampling,
on the other hand, attempts to force the paths into the more interesting areas

by a prior alteration of the underlying random process.
3.1.2.2 Application to a Two-Stage Problem

To illustrate some of the more fundamental aspects of Russian
Roulette and splitting,consider the two-stage process in Fig. 3.2. Let X
denote the random observations from the first stage, and Y denote the ob-

servations from the second. Suppose the parameter to be estimated is

I = Eg(x,)] (3.21)

Crude sampling would generate pairs of values Xl’Yl 5o o ;XN, YN and

estimate I using

N
1= L D ex,v) (3.22)

i=1
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Suppose, however, it can be determined from the characteristics of
the problem that certain values of X would probably lead to more interesting
results than others. On this basis then, Russian Roulette and splitting would
be implemented by dividing the first stage into the following two mutually
exclusive sets of states:

R1: T'he set.of s.,tates yhere Rutssian Roul.e.tte is used and the

simulation is terminated with probability p=1 - q. If the

simulation continues, the estimated parameter is weighted
by 1/q. -

Rz: The set of states where splitting is employed by breaking each
simulation reaching a point in R2 into n simulations to be con-
tinued from this point in the process. The weight assigned to
each new simulation is 1/n of the weight of the original simulation.

This procedure would be then repeated for N starting situations as shown in
Fig. 3.3. It is clear the sampling process has been modified and thus the

estimator must be adjusted accordingly. In this case the estimator becomes:

SR AN S P 5.2

X.ieR1 XieR2 j=1

It can easily be shown that T is an unbiased estimator for 1.

Estimation of the sample variance iH this case is easy to accomplish.

Defining I; (i.e., Ij =0, g(X;, Y;)/q, or 'El g(Xj, Yj) as the contribution to the
estimator from history i, and since )
N _
1= LM ‘ (3. 24)
-~ N i :
i=1

then the sample variance is estimated using

N

2 N 1 § : 2 42

S = N3N Ii -1 (3. 25)
i=1

-
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Alternately, batching as described in Section 2. 4. 2 could be used, although

(3. 25) is recommended.
3.1.2.3 Application to a Three-Stage Problem

Although the basic concepts of Russian Roulette and splitting are as
simple as presented above, they can be applied to rather large multistage
problems. To illustrate this, consider the three-stage problem shown in
Fig. 3.4 where it is shown within the context of a crude sampling. Assume
Russian Roulette and splitting is applied between the first and second stages.

The procedure may be accomplished as follows (see also Fig. 3.5).

1. First generate a value for X, Xi' If XieRil, the history is ter-
minated with probability Py = 1-q 1(i. e., Russian Roulette). If the history

is killed, there is no contribution to the estimator.

2. If the history is not killed, a value for vy, Yi’ is selected. The history
now has a weight 1/q1_. If Yi€R21’ the history is terminated (Russian
Roulette) with probability Py = 1-q2. If the history is not terminated here, a
value of 2z, Zi is generated. The weight of the history is then (qlqz)_1 and
the contribution to the estimate for I is
f(Xi, Yi’ Zi)
9%

3. If the history is not killed on X (with weight 1/ ql) and Y, eR,,
then the history is split into n, histories. Next, n, values for Z;

Z R Zin are generated and assigned weights

iggeee
il 9

of this history to the estimator is

Ny

N4

j=1
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4, If X.eR then the history (with weight 1) is split into n, values

i12
Y ..., Yy and assigned weights 1/n1.

g
5. Now, each Y].(weight = 1/n1), j=1,...,n, is considered in turn.
If Y].eR21, the history is killed with probability Py = 1-q2. If killed,
there is no contribution to the estimator. If the history is not killed here
a value for Z, say Zj’ is selected. The weight of Zj is 1/(n1q2). The

contribution to the estimator in this situation is now given by

1%

Y]. eR21
6. If Y]. (weight 1/n1) Roq, this history is split into n, histories.
. 1
Then n, values of Z are selected Zjl’ ceny Zjn and a weight of 3

is assigned to each. The contribution to the estimator along this pat?i 123
n

2
E Z g(Xi’Yj’ Z]k)
Ny

Yje R22 k=1

This procedure is repeated N times as indicated in Fig. 3.5. For each Xi

selected then the contribution to the estimator is for XieR

11°
n
A g(X"Y', Z-) 2 g(X,Y,Z)
I = E LI E E L 1} (3. 26)
YieR21 YieR22 j=1
and if XieR12
%9
X.,Y. Z. X,Y., Z.
. gX;, Y5, Z)) . X, Y5, Zy) 5. 2
i - n1q2 n1n2A *
Y.€R Y.cR,, k=1
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Assuming the entire process is repeated N times (i.e.,: N starting values

for x, X_,... ,Xn are selected) the estimator is

1
N n
o 1 p_1 Z g(X., Y., Z,) zz:gx Y, Z)
. Z i N - Z qu2 Z
i=1 Xi R11 YiER21 Y €R 99 j=1
)
f g(X,, Y zk) gX.,Y.,Z.)
E ‘ LS Z 1nq] ] (3.28)
- 1°2
XieRlzleeR k=1 YjER21

The procedure, although rather complex to write down as formal ex-

pressions can be seen to be rather straightforward.

As in the two-stage case, the best estimation to use for the sample

variance is

° -1 - (3. 29)

S2 can then be used to compare the efficiency of Russian Roulette and Splitting

to the crude sampling.
3.1.2.4 Weight Standards for General Application

For a general application of Russian Roulette and splitting, it is best
to introduce the concept of weight standards. Let us presume that the problem
has been broken up into several regions, Rl’ Rz, ceey RN (These 'regions’' do
not necessarily denote geometrical volumes, but rather ranges of the random
variables that describe a state in the system being studied.) For each region,
there will be a high weight, Whp 2 low weight, Wi and an average weight,

' Now, whenever a history enters region i, the current weight, w, of

W, .-
Ai
the history is compared to the weight standards as follows:




If wew
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Li’ Russian Roulette is implemented as follows:
With probability 1 - =, the history will be killed.
Ai
With probability —- , the history will survive with a new
Ai
weight of w Ai° (Note that the expected weight surviving
from this process is w, which it must be to conserve

weights).

If wo> WHi? splitting is implemented as follows:

i
Find n such that w - nwAi < wAi‘

Create n histories which start from this point with a

weight w Aj°
) W-NWA §
With probability —w create one more daughter
Ai

history to start from this point with a weight w A" (This

procedure conserves the expected weight while making all

histories start from this point with the same weight, w A§" )

If Wi S W < W do nothing to the history.

The underlying assumption in the above procedure is that each region de-

scribes a volume of approximately constant importance. The importance

varies from region to region in a manner inversely proportional to the

average weight,

War Thus, histories moving into a region of higher im-

portance (lower weight) will be split while those moving into a region of

lower importance (higher weight) will suffer Russian Roulette. For maximum

efficiency in allocating computer time, all histories in a region of constant

importance should have the same weight. The use of a fixed average weight

standard, rather than fixed splitting parameter, n, or fixed Russian Roulette

probability,

p,

ensures this in a multiregion setting.
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The high and low weight standards, Wi and Wy, are only used to

define upper and lower limits for triggering the Russian Roulette and
splitting processes. If Russian Roulette and splitting are the only variance
reduction techniques being employed and the history weights are not other-
wise being varied, it is probably best to set Wp = Wp = Wy On the other
hand, if there are other techniques in use which are changing the history
and w. within which the

H L

weight is allowed to vary. If the spread between Wy and wr, is too small,

there will be a loss of efficiency due to computing time spent in the book-

weights, it is best to put a spread between w

keeping involved with frequent Russian Roulette and splitting actions. Con-
versely, if the spread is too large, there will be a loss of efficiency as
equal amounts of computing time are expended on histories with unequal

weight.

To estimate expected values and variances, the contribution from a

single original history is computed using
1 = X, )wX,) (3. 30)
Ii'zg(ijw(ij .
]

where the summation runs over all contributions from split histories, j,
which originated from the same initial history, i. Then the final estimate
of I for N initial histories is
A 1 N Ja)
1= x Z I, (3. 31)
i=1

1

and the sample variance is given by (3. 29).
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3.1.2.5 Selection of Criteria for Russian Roulette and Splitting

One difficulty in the application of Russian Roulette and splitting is in
the selection of values for the parameters being used, either weight standards
or Russian Roulette kill probability and number of splittings. The ideal approach
would be to select these parameters to minimize the variance in the estimate
as was done with importance sampling; however, this is generally not practical.
Consequently, intuitive information along with practical limitations (e.g., com-
puter storage) and simplifications must be resorted to. For example, if it is
felt' that a certain range of Y is twice as important than the remainder of
the range of Y, then a splitting with n = 2 of histories inside the important
range or a Russian Roulette kill factor of . 5 outside the range would be not
unreasonable. A clue to the optimum standards to be selected is given by the
results of analysis for importance sampling (3. 20) or stratified sampling (see
Section 3.1.4). In both cases the resulting weights will be proportional to

E[gz(x)] -1/ 2. Thus the weight standards in a given region should be inversely
proportional to the root mean square average of the 'pay-off' or result function
i.e., weight standards should be high in regions of low value and low in regions
of high value.
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3.1. 3 Systematic Sampling(7’ 12, 14, 20, 23, 24, 36)

3.1.3.1 General Concept

Systematic sampling is a procedure that modifies selection from the
sample space in a somewhat structured manner. This serves to reduce the
random variation that is introduced into the results when crude Monte Carlo
sampling is used. An.important characteristic of systematic sampling is that
if used it will always result in a reduction in variance from the that obtained using
crude sampling. Also, the method rarely involves any significant effort to
implemént. Unfortunately, the improvement is generally less than impressive

although as a general rule it should be used whenever the opportunity arises.

Its potential application can generally be associated with initial or
starting conditions in a problem. For example, systematic sampling could
be applied to the distribution of interarrival times of individuals entering a
queueing system, the initial position of a submarine in simulation of an ASW
exercise, etc. Generally, any Monte Carlo problem which has a probability
distribution to characterize the initial conditions can be considered as a candi-

date for application of systematic sampling.

Two methods commonly used for systematic sampling will be described
below. As will be seen, systematic sampling is similar to stratified sampling
to be described next. Stratified sampling can be considered an optional form
of systematic sampling.

In each of the methods to be presented below, the usual form of the

integral,

-]

I =f g(x)f(x)dx (3.32)

will be considered.
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3.1.3.2 Method I for Systematic Sampling

In the first method for applying systematic sampling, assume the
range of the density function f(x) is broken up into N .-equal regions each
having an area 1/N (N should typically vary between 5 and 50). This
scheme is shown in Fig. 3.6 for both the probability density f(x) and the
cumulative distribution function F(X) = j‘_)_i f(x)dx

1.0

Py 7

Area = 1/N / f(x) 2
} 1/N
— | } 1/N
X —— X ———

Fig. 3.6. Interval characterization for systematic sampling
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It is clear that

% =/f(x)dx ; j=1,...,N , (3.33)

XeL,
]

Now, assume a sequence of random numbers, R ,Rn is selected from

T
the uniform distribution on the interval (0,1). This form of systematic

sampling will then generate the following sequence of numbers

R __13'1-_*_(:‘-1) . 1
ij N N ’ i

N (3.34)

For each value of i, this procedure effectively assigns a value of Rij to

each interval j.

The next step is to determine Xjj from

i
- . i=1,...,n '
R.. —L fxydx i=1.... N (3.35)

The estimator for I is

n n N

1= 1 =L E (X.) (3. 36)

N i nN ij '
i=1 i=1 j=1
where

N

T _ 1 z : ) s

Ii " N g(Xi].) ; i=1,...,N (3.37)
=1

is the contribution from the ith batch of histories.
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The sample variance is computed using

s2 . 1/nz ;i.z _ 12 (3. 38)

3.1.3.3 Method II for Systematic Sampling

~ A second and generally better method to perform systematic sampl-
ing is to allocate N independent samples to each interval defined in Fig. 3.6
rather than scale each random number Ri into N intervals. This can be
accomplished by selecting Rij; i=1,...,n;j=1,...,N random numbers from
a uniform distribution U(0,1). Then, n random numbers are allocated to
each of the N intervals using
i-R.,

R = ij . 1
) b

., N '
i N (3.39)

1,...,
1,...,N

The values of Xij are then determined from

ij
Ri'j =/X f(x)dx (3. 40)

The estimators for the sample mean and variance in this case are given by

3.36 and 3. 38 respectively.

Of the two methods described above, the second will always give the
better answer in the sense of smaller variance. However, Method II re-
quires that a larger number of random samples be selected from U(0, 1). -
Generally it is recommended that Method II be used in spite of the slightly
additional computation effort required. In both cases, the efficiency of
systematic sampling compared to crude sampling is approximately propor-
tional to N2. |
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3.1.4 Stratified Sampling'l & T 11,12, 14,15, 20, 24, 27, 32, 33)

3.1.4.1 General Concept

Stratified sampling (sometimes called quota sampling) is similar to
systematic sampling with additional considerations directed toward structur-
ing the sampling process so that regions of large variance will receive more
samples. In this sense, therefore, stratified sampling seeks to combine
the systematic and importance sampling schemes. Alternately, stratified
sampling can be viewed as a special case of systematic sampling where opti-

mal distribution of samples is attempted.

Generally, all the problem characteristics that serve to define the
applicability of systematic sampling apply to stratified sampling. However,
if additional information on which portions of the sampling distribution tend
to contribute more to the total variance is available, additional reduction in
the variance can be achieved using stratified sampling.

Assume the sampling range for f(x) is broken up into N regions of
length Ll’ cee ’LN’ In this case, however, assume Lj is selected accord-
ing to some specified P]. where

P, =ff(x)dx : j=1,...,N (3. 41)
X

€L,.
L]

Schematically this structure is similar to that in Fig. 3.6. In fact, if
P]. = 1/N,then this structuring would be the same as systematic sampling.
A general rule to follow for selecting the P]. is to select them such that the

variation in g(x)f(x) is the same in each of the intervals.

Once the intervals L1’ ceey LN are selected, the next requirement

is to define the number of samples to assign to each interval.
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More specifically, let n]. be the number of samples assigned to inter-

val L]. where ,

The n]. samples can be assigned to interval L]. as follows:

Select R,.,...,R

from U(0, 1).

N
- Z PL

1j D.j
by ]
j-1 Xij
Ry;P, +Z P, =/f(x)dx
=1 —»
An unbiased estimate for I is
Z Z (%,
j=1 ] i= ji=1
where

1]
=n_Z

Vi=1

To see that (3. 44

E(I].) = 1]. =f

x€ L,
]

from which it follows that

f (x)
]

g(x)dx

) is unbiased consider-

Then,

(3.42)

Xi].eL]. are determined

(3.43)

(3. 44)

(3. 45)

(3. 46)

(3. 47)
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To select the nj, consider

N 2 N 2
~ 2 'S A
E(I -D°] = E PL -I}]| = E P.(I -