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ASSESSMENT OF THE RADIOLOGICAL IMPACT OF *32U AND
DAUGHTERS IN RECYCLED “°°U HTGR FUEL

John E. Til1

ABSTRACT

This paper provides an evaluation of the potential radiation expo-

232U and daughters

sures to man resulting from the operational releases of
from a hypothetical HTGR fuel reprocessing plant. These estimated expo-
sures are compared to those from the other radionuclides which could
comprise the airborne releases from an HTGR fuel reprocessing plant. A
hypothetical source term involving both particulate and volatile releases
from an HTGR fuel reprocessing plant (450 metric tons of heavy metal
annual capacity) is given assuming radionuclide inventories and decon-
tamination factors from the literature. Radionuclides in the source

term are ranked according to the magnitude of dose to total body, bone,
and lungs for individuals at a distance of 1.5 miles from the stack.

232

Although U and daughters account for only 0.1% of the total particu-

late activity, the total-body dose from these radionuclides is greater

134

in magnitude than the dose from all other radionuclides except Cs,

137Cs, and 9OSr. The dose to the lungs from 232U and daughters 1is
greater than that contributed by any radionuclide other than 13765 and
]34Cs. Only five radionuclides, 9OSr, ]3765, ]34Cs, 238Pu and 244Cm,

deliver a greater dose to bone. Uranium-232 and daughters account for
approximately 4% of the dose to each organ due to particulates. An

analysis of the volatile releases indicates that if the decontamination

220 4 220

factor for Rn is between 103 and 107, the dose commitment from Rn



at 1.5 miles will not exceed the dose commitment from the other radio-

nuclides released from the plant.

In view of the high radiotoxicity of the 232

233

U present in the

U HTAR fuel, a comparison is made of the dose commitment
-12

recycled
to bone resulting from inhalation or ingestion of 10 g of either
freshly separated HTGR fuel, LMFBR fuel, or LWR fuel. The results of
this comparison indicate that the HTGR uranium fuel and LMFBR plutonium
fuel are significantly more radiotoxic than LWR uranium fuel, and that
the LMFBR fuel is approximately 500 times more radiotoxic than HTGR
fuel for inhalation of equivalent masses of each fuel soon after
release to the atmosphere. In addition it is shown that the dose
commitment to bone from inhaled recycle HTGR uranium fuel increases
with time after release. The dose commitment to bone from HTGR fuel

232

may increase by a factor of approximately 7.5 due to buildup of U

daughters.
INTRODUCTION

This report focuses on three principal areas. First, an assessment

32

is made of the radiological impact of 2 U and daughters relative to

other radionuclides which are released to the environment from an HTGR
fuel reprocessing plant. A hypothetical reprocessing plant is assumed
using source terms and decontamination factors from the literature.

The second area discussed in this study reviews the effect of

232

increasing U concentrations on dose commitment to bone resulting from

inhalation of 233

232

U HTGR fuel. Finally, this report evaluates the impact

of U daughter buildup in the environment on the dose commitment to



- of

bone resulting from inhalation and ingestion of equal masses of LWR
uranium fuel, HTGR uranium fuel, and LMFBR plutonium fuel.

232U and

The conclusion summarizes the radiological impact of
daughters in each area; routine releases to the environment, radio-

toxicity of recycled HTGR fuel, and potential for long-term dose to

man.
232
PRODUCTION AND DECAY OF 232y IN
RECYCLED 233y HTGR FUEL
233

Uranium-232 is produced in thorium-bred U fuel by several

interactions (Fig. 1). The most important production mode originates

230Th (n,Y) radiative capture reaction which has a cross

2 £ 230

in the

Th present in
232

section of 23.2 b at 2200 m/sec. The content o

232

fertile Th significantly affects the concentration of U which

233,, 234, 235 36

is ultimately mixed with u, U, U and 2 U in recycled HTGR

230

fuel. Estimates of Th in 232Th range between 0.01 ppm in typical

thorite-vein ore to 100 ppm, which is an upper 1imit for raw material

3 232Th result

4

thorium for commercial HTGR's. These levels of 230Th in

in 232y concentrations at equilibrium recycle of 360 ppm to 1160 ppm.

o 232

Th U decay chain is a member of the 4n or thorium series.

In this decay chain there is no long-lived "stopping” nuclide such

238 239 240 241

as exists in the Pu, Pu, Pu, or Pu chains. This property

implies that the effective absorbed energy per disintegration, ZEF(RBE)n,
232U is high when compared to most other radionuclide chains.
Figure 2 illustrates TEF(RBE)n to the bone for several chains as reported

in Publication 2 of the International Commission on Radiological
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Figure 1. Production and Decay of U.
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Protection.5 The effective absorbed energy per disintegration to bone

232

for U is 1200 MeV and is approximately 4 times greater than that

for any of the plutonium radionuclide chains. The first two daughters

232, 2 224

of U, 28Th and Ra, also result in relatively high values of

TEF(RBE)n. A high value of ZEF(RBE)n does not necessarily imply that
resulting doses from inhalation or ingestion are also high. Other
factors such as biological half-time and absorption into the body
through the GI tract may also affect dose.

The importance of gamma radiation emitted by the 232

212Pb, 2]281, and 208

U daughters
T1 has been reviewed by Arno1d6 for in-plant

operations. Buildup of 232 233

U daughters in U fuel following separa-
tion at the reprocessing plant creates special handling problems

for the next step in the fuel cycle, fabrication into elements.

These difficulties can be overcome with two possible alternatives.
First, fuel may be fabricated within a short time after separation

at the reprocessing plant before significant daughter buildup has
occurred. Second, shielding and remote fuel handling may be incorpo-
rated into the fabrication facility design.

External exposure may also result from 232

U gamma emitting
daughters which are released to the environment and deposited on
ground surfaces. Exposure via this pathway is evaluated in the next

section of this report.

232

RADIOLOGICAL ASSESSMENT OF U AND DAUGHTERS

232

An evaluation of the radiological impact of U and daughters

is made for a hypothetical HTGR fuel reprocessing plant. This study



232

examines the dose from U as related to other radionuclides released

from the stack of the model plant. This assessment presents doses cal-
culated on the basis of information derived from the literature, there-

fore use of these data should be limited to a relative indication of

232

radiological impact from U. This study is not intended as an absolute

assessment of the dose to individuals near an HTGR fuel reprocessing

facility.

Analysis of Dose Commitment Factors for

232U and Daughters

Table 1 T1ists dose commitment factors for total body and bone per
uCi of radionuclide inhaled or ingested. These factors were obtained
from the INREM computer code.7 It is evident from this table that only

four radionuclides are of major concern for the inhalation pathway;

232, 228 224 228 224

U, Th, Ra, and 2]2Pb. Uranium-232, Th, and Ra are of

significant importance via the ingestion pathway. INREM dose factors
do not include environmental transport and therefore should not be
considered as final indicators of relative potential dose; however, a
very small INREM dose factor implies that the resulting exposure will
be negligible unless very large quantities of isotopes are present.

220

The noble gas Rn can create a potential effluent treatment

problem unique to reprocessing plants which handle recycled 233U fuel.

Radon-220 is produced in the reprocessing plant from the decay of

224Ra almost as rapidly as it is removed by the off-gas system. Because

220Rn is a gas with a short half-1ife (54.5 sec) the most economical



Table 1.
and Daughters Calculated for 50 Years

Dose Commitment Factors for

with the INREM Code

232U

Inhalation Dose

Commitment Factor

Ingestion Dose

Commitment Factor

Radionuclide ren/uCi rem/uCt
Total Body Bone Total Body Bone
232y 7.3 E0 1 E2 2.9 E-1 JE0
2287Th 4.2 £ 1 .3 E3 1.6 E-2 .9 E-1
22%Ra 2.7 E-1 .JEQ 2.0 E-1 .6 EO
216pg 9.8 E-8 .6 E-7 2.1 E-8 .2 E-8
<12pp 1.1 E-2 .5 E-1 3.0 E-3 .8 E-2
212p4 9.5 E-4 .4 E-3 3.7 E-5 .4 E-5
¢12pg 6.2 E-14 .3 E-13 1.3 E-14 .7 E-14
2087 9.0 E-7 .3 E-7 8.5 E-7 .1 E-7




O

effluent treatment is probably to delay its release to the environment.

220

However some Rn gas will still enter the atmosphere.

The dose from inhalation of 220

212

Rn primarily results from the decay

8,9

of daughters - particularly Pb (10.6 hr). The short half-1ife

of 220

Rn implies that it will decay shortly after it is released to
the environment, therefore most of the radiological impact in the
vicinity of the reprocessing plant is a result of inhalation of the

2]sz daughter.

Source Terms for a Model HTGR Fuel
Reprocessing Plant

The radiological impact was calculated for 232

U and daughters in
addition to fission products and transuranium elements released from
a model HTGR fuel reprocessing facility. With the exception of ]46,
theoretical source terms were computed using curies per metric ton
heavy metal (Ci/MTHM) inventories at 150 days after removal from the

10 14

reactor reported by Blomeke, et al. The source term for " 'C was

assumed to be 11.1 Ci/MTHM or, with a decontamination factor of 1,

11

5.0 x 103 Ci/year. The model plant reprocesses 450 metric tons of

heavy metal annually which is sufficient to accommodate the requirements
of approximately 50 HTGR reactors.]2
The inverse of the decontamination factor gives the fraction of
the radionucliide inventory within the reprocessing plant that is
released to the environment each year. Decontamination factors for

this study are based upon those used in analysis of the Allied-General

Nuclear Services fuel reprocessing facility near Barnwell, South



10

Caro11na.]3 A decontamination factor of 5 x 108 was selected for par-

ticulates with the exception of uranium and thorium isotopes. Uranium

and thorium were given a decontamination factor of 1 x 108. These

elements receive more handling in the plant and therefore more oppor-

tunity exists for their release to the environment.14 Decontamination

3 14 85

factors for volatile elements were as follows: c, 1; Kr, 1;

129 131 220Rn, 104.

H, 1;

I, 20; I, 40; and

10

Radionuclide inventories reported by Blomeke, et al., =~ do not

account for the production of daughters from precusors in the fuel
after it is removed from the reactor. Therefore, a nuclide formation

rate correction factor must be introduced to compensate for daughters

95 228 224

continuously being formed. This is necessary for ““Nb, Th,

220

Ra,
and particularly Rn. The correction factor represents the number
of curies derived annually for each curie present at any time, i.e.,

1 220

the decay constant in year '. For example, Rn with a 55.6 sec

haif-1ife has a decay constant of 3.93 x 105 year_]. This implies

3.93 x 105 curies of 220

Rn are produced in 1 year for each curie present
at steady state. The nuclide formation rate is expressed as curies
formed per curie present at secular equilibrium.

Source terms for the model 450 MTHM/year HTGR reprocessing plant
are listed in Tables 2 and 3 for particulates and gases, respectively.
Radionuclides contributing less than 5.0 x 10-4% to the final total
body dose from particulates have been omitted.

Uranium-232 content is assumed to be 1200 ppm. This represents an

upper 1imit at equilibrium recycle. Twelve hundred parts per million

is approximately 5 times greater than that assumed in the report by



Source Term for Particulate Radionuclides Released

from a Model HTGR Fuel Reprocessing Plant

Table 2.

Decontamination
Factor

Factor

Nuclide Formation
Rate Correction
(year—1)

Aged 150 days

Activity in Fuel
94,271 MWd —

Radionuclide

Release Rate
pCi/sec

Ci/year

Ci/MTHM
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Table 3. Source Term for Volatile Radionuclides Released
from a Model HTGR Fuel Reprocessing Plant

Activity in Fuel

94,271 MAd — Nuclide Formation

Release Rate

Radionuclide Aged 150 days Rate Eggiiition Decopgzﬁlgation :
Ci/MTHM  Ci/year (year=?) peifsec
*H 4.18 £ 3 1.88 E 6 — 1.0E0 5.98 E 10
83Kr 6.11 E 4 2.75 E 7 — 1.0E0 8.73 E N
1291 1.25 E-1 5.63 E 1 — 2.0 E 1 8.95 E 4
1317 3.92 EO 1.76 £ 3 — 4.0 E 1 1.40 E 6
1hC 1.11 E 1 5.00 E 3 — 1.0EOQ 1.59 E 8

220Rn 1.73 E 2 7.79 E 4 3.93 E 5 1.0E 4 9.71 E 10

el
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228 224

Blomeke. Uranium-232, Th, and Ra account for approximately 0.1%

232 220

of the total particulate activity released. The U daughter Rn

represents 9.4% of the total activity from volatile elements assuming

220 4

a decontamination factor for Rn of 10°.

Assessment of Dose at 1.5 Miles

Maximum individual doses at 1.5 miles from the stack of the model
15

fuel reprocessing plant were calculated with the AIRDOS computer code.
Meteorological data for the midwestern site used by Finney, et a1.,]6 was
assumed. Stack parameters consisted of the following: height, 100 m;
diameter, 3.43 m; and effluent velocity, 16.24 m/sec. AIRDOS is used
to compute the 50 year dose commitment via all pathways of exposure for
each radionuciide released.

Table 4 lists dose commitments in mrem to total body, bone, lungs,
and kidneys for particulates. Doses are shown in decreasing order of

2

magnitude. The only significant source for the particulates 28Th and

224 232

Ra is the decay of U; consequently, these three radionuclides are

combined into a single dose. This dose is listed in Table 4 as 232U*.
The dose contribution from 232U particulate daughters other than 228Th
and 224Ra is insignificant.

Uranium-232* contributes 10% of the dose to the lungs, 6% of the

dose to the kidneys, 4% of the dose to the bone, and 0.4% of the dose

232

to the total body. Although U* ranks high in Table 4 (3rd for lungs,

4th for total body and kidneys, 6th for bone), it is concluded that

effluent control sufficient to keep doses from Sr and Cs at acceptable

232

levels also provides satisfactory treatment for U and particulate



Table 4.

Ranking of Significant Particulate Radionuclides by Annual Dose
to Reference Organs at 1.5 Miles from Stack

Total Body

Bone

Radionuclide

Dose (mrem)

Radionuclide

Dose (mrem)

Radionuclide

Dose (mrem)

Radionuclide

Dose {mrem)

I3HCS
137CS

SOSr
232u*
IOGRU
ZHMCm
ISHEU

2

NN WPRrOOWOW —-NNW— — NN WE PO —
e e s 8 e s e 4 e s = e e e e s s s e e e e e
WO UUITNOOUITOON~UITEEy—0O0 WP

1 I AR A RN N R B |
OO TN OO PEERWNNMNDNMNONMPODNONN — —w O

rnmmmmmmmmmmmrpmmmmmmmmmmmm

.93 EOQ

903r
137CS
13sz

238pu
ZRHCm

232u*
895p
LOGRU
233pa
lSkEu
lkkce
957y
Zulpu
25N
ZMOPU
233U
91Y
127mTe
ZMZCm
239pu
23HU
ZhlAm
129mTe
243Am
103Ru

!

SN WL~ ——w NN ——WWPN— DO OW-— —O

Pt O~ HEINWOION =00 ONNOOOOMNM WX

mMMmmMmMMmMmMmMmMmMmMmmmMmMmmmmmmmmmmmm
1

[ R I T T T TR TR B B |
DB LPLPHLWWWWWWMNMNMNPRMNONN -t o OO0

B9 E T

137CS
13MCS
232u*
SOSr
ZMMCm
15uEu
Ahbce
957r
238Pu
233Pa
®SNb
835p
106Ru
91y
242Cm

103Ru
233U

127mTe
23kU

129mTe
2k0pu
Zklpu
239pu
ZHIAm
2%3Am

1

— LW HB O —NONO —2HS O=—=TTOMNWWPOITNMN O~
WWOW— 00—~ WRWO—LON 000 WOoOUINAPEODONO
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137Cs
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NOTE: 232P* js the combined dose from 232U, 22%Th, and 2%“Ra.

Each of these radionuclides has a source term

listed in Table 2; however, the only significant mechanism for the production of ?28Th and 2%“Ra is

from the decay of %32(.

Since the purpose of this study was to evaluate the radiological impact of
232 and daughters in 23U fuel, the doses from 232y, 228Th, and *?“Ra are combined to give a single dose.

Al
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232

daughters. However, the high position of U* in Table 4 indicates

potential significance for exposure from these particulates. The

232

position of U* also suggests that a more thorough evaluation of

these radionuclides, especially long-term effects, may be necessary.

A breakdown of percentage of the dose from each component in

232U* is given in Table 5. The dose to total body and kidneys is due

232 (50%) and 224

232

Ra (45%). Radium-224
228

almost entirely to exposure from

U, 20%; and
2

contributes 64% of the dose to bone; Th, 16%. The

dose to Tung is more evenly divided between 32U (35.3%), 228Th (37.5%)

224

and Ra (27.2%).

The radiological impact for volatile radionuclides at 1.5 miles
1s summarized in Table 6. Doses are listed in decreasing order of
magnitude. Radon-220 accounts for only 0.3% of the dose to total body,

2% of the dose to the bone, and 3% of the dose to the lungs. In each

220

case, more than 99.99% of the Rn dose results from inhalation of the

212

daughter, b.

220

The effect of varying the decontamination factor for Rn vs dose

commitment from all radionuclides to total body and bone at 1.5 miles

220

is demonstrated in Fig. 3. This graph shows that release of Rn without

effluent treatment would be unacceptable. Figure 3 also points out that

if doses, as calculated in this report, from particulates and volatiles

220

other than Rn are acceptable, then a decontamination factor of approxi-

mately 103 would be optimum. Increasing the decontamination factor for

22ORn above 103 has little effect on reducing the dose.

232

Table 7 1ists the percent exposure via each pathway from U,

224 220 212P

228 Ra, Rn, and

Th, b. Surface exposure accounts for 91%,
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Table 5. Percent of 2%2U* Dose from %32U,
228Th, and 2%“Ra to Reference Organ

Percent of 232U* Dose (%)

Radionuclide
Total Body Bone Lungs Kidneys
232y 50 20 35 45
228Th 5 16 38 9

22%Ra 45 64 27 46




Table 6. Ranking of Significant Volatile Radionuclides by Annual Dose
to Reference Organs at 1.5 Miles from Stack

Total Body Bone Lungs

Radionuclide Dose (mrem) Radionuclide Dose (mrem) Radionuclide Dose (mrem)

3H 1.6 €1 l4g 1.6 E 1 3H 1.6 E 1
14g 1.2 1 *H 1.1 E1 85Ky 1.6 E
85Ky 7.7E0 85Kr 9.4 E 0 8¢ 5.2 E 0
1291 2.2E0 1291 2.8E0 220Rn 2.1E0
1311 7.2 E-1 220pn 2.1E0 1297 1.4E0
220pn 2.8 E-1 1311 8.3 E-1 1317 6.0 E-1

Total 3.2 £ 1 4.21 E 1] 4.13 E

Ll
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Table 7. Percent of Dose Via Each Pathway for
232U, 228Th, ZZQRa, 220Rn’ and 212Pb

Reference Organ

Radionuclide Pathway

Total Body Bone Lungs

232y Inhalation 1.2 7.6 28.3
Submersion in air 0.0 0.0 0.0

Surface 91.0 43.5 65.8

Ingestion 7.8 48.9 5.9

Swimming 0.0 0.0 0.0

2287Th Inhalation 51.0 93.3 96.4
Submersion in air 0.0 0.0 0.0

Surface 47.0 3.0 3.4

Ingestion 2.0 3.6 0.2

Swimming 0.0 0.0 0.0

22%pa Inhalation 0.4 0.4 12.0
Submersion in air 0.0 0.0 0.0

Surface 0.3 0.0 0.3

Ingestion 99.3 99.6 87.7

Swimming 0.0 0.0 0.0

220pp Inhalation 100.0 0.0 99.8
Submersion in air 0.0 100.0 0.2

Surface 0.0 0.0 0.0

Ingestion 0.0 0.0 0.0

Swimming 0.0 0.0 0.0

212pp Inhalation 23.0 43.0 90.9
Submersion in air 0.3 0.1 0.0

Surface 49.2 10.5 5.5

Ingestion 27.5 46.4 3.6

Swimming 0.0 0.0 0.0
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44%, and 66% of the dose from 232U to total body, bone, and lungs, respec-
tively. Inhalation is the critical pathway for 228Th. Ingestion is the
primary exposure mode for 224Ra.

EFFECT OF INCREASING 22U CONCENTRATION ON

DOSE COMMITMENT TO BONE

232

Figure 4 shows the effect of increasing the concentration of U

233U HTGR fuel on dose commitment to bone. The dose commitment

12

in recycled

is calculated assuming 107 ' g of fuel is -inhaled. The Tower curve is

dose commitment for HTGR fuel at 90 days following separation. The upper
curve is dose commitment for HTGR fuel at 10 years following separation.

The broken horizontal line near the top of the graphs indicates the dose

-12 233 232

U fuel with no U. The

vertical broken Tine marks the maximum anticipated 232U concentration of

commitment from inhalation of 10 g of

1200 ppm at equilibrium recycle.

232

Increasing the concentration of U from 0 ppm to 1200 ppm causes

dose commitment to bone to increase by a factor of approximately 35 for

232

90 day-old fuel and a factor of approximately 185 for fuel with U and

daughters at equilibrium. Two basic conclusions may be drawn from this

figure. First, as buildup to equilibrium recycle develops and concen-

232 233

tration of U HTGR fuel

233

U become greater, overall radiotoxicity of

232

increases significantly. Second, the buildup of U daughters in U

fuel also increases fuel toxicity significantly for a given concentration

232

of u.
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COMPARISON OF THE LONG-TERM RADIOCACTIVE DECAY
AND DOSE COMMITMENTS FROM HTGR URANIUM, LWR
URANIUM, AND LMFBR PLUTONIUM

Buildup and Decay of Activity in HTGR
Uranium Fuel and LMFBR Plutonium Fuel

This section analyzes the radioactive decay of isotopes in freshly

233

separated U HTGR fuel and LMFBR plutonium fuel. The purpose is to

evaluate the persistence of each fuel in the environment, to determine

233

the effect of 232U and U daughter buildup, and to investigate the

dose commitment resulting from inhalation or ingestion of equivalent

masses of each fuel long after the fuel is released to the atmosphere.

233

Figure 5 illustrates the specific activity of recycled U HTGR

fuel and LMFBR plutonium fuel vs time after each fuel is released to

the environment. Isotopic mixtures in the fuel are the same as used

1

by Til1.  Ninety-six percent of the initial LMFBR plutonium fuel

241

activity results from Pu, a beta emitter which is not as hazardous

from a biological standpoint, as plutonium isotopes which decay by

alpha emission. During the first 100 years, decay of 24]Pu

Ty, =
15 years) causes the initial rapid decrease in LMFBR fuel activity. At

238 239

this time total activity is divided between Pu (24%), Pu (10%),

240 241 241

Pu (14%), and Pu (51%). Although the half-life of

247

Pu is rela-

237

tively short, the Tonger half-Tives of the daughters Am and

241

Np

imply that the environmental impact of Pu will be present long after

the parent has decayed. The activity of LMFBR plutonium between 1000

239 240

years and 10,000 years is due almost entirely to Pu, Pu, and

241

daughters of Pu.
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233

The bimodal shape of the curve for U fuel results from build-

up and decay of daughters from several uranium isotopes. Table 8 lists

232 233

the activity of U daughters in 1 g of U fuel at three intervals

o 232

following separation. Th U is assumed to be present initially at

233

1000 ppm. The total activity of U HTGR fuel at 90 days following

separation may be broken down as follows: 232

233 234

U + daughters, 82.1%;

U, 14.2%; and U, 3.7%. Uranium-232 reaches equilibrium with its

daughters at approximately 10 years.

The buildup of activity caused by in-growth of 232U daughters

232

accounts for the first peak in the U fuel curve. After approxi-

mately 300 years, activity from 233U and daughters 1is greater than that
from 232U. The second peak of the curve is due to the buildup of
daughters from 233U and 234U.

Interpretation of Fig. 5 results in two conclusions. First,

233 232

assessment of radiological impact from U fuel containing U must

consider the buildup of daughter radionuclides after the uranium parent

enters the environment. The second conclusion is that 233

U HTGR fuel,
if released to the atmosphere, will persist in the environment longer
than LMFBR plutonium. Figure 5 suggests that further research should
focus on the long-term implication of HTGR fuel after equilibrium is

reached with 232U, 233 234

U, and U daughters. It is also important
to note that the specific activity of LMFBR fuel is approximately
200 times greater than the specific activity of HTGR fuel for the
interval soon after separation. However, greater specific activity

above does not necessarily imply that LMFBR fuel is more hazardous.



Table 8.
Fuel at Three Intervals Following Separation

25

Activity of %*2U Daughters in 1 g of 233U

Activity (Ci)

Isotope
90 Days 1 Year 10 Years

232y 2.14 x 10-% 2.12 x 10-2 .94 x 10-2
2287 1.83 x 10-3 6.51 x 10°3 .94 x 1072
224%Ra 1.73 x 10-3 6.43 x 10-3 .94 x 10-2
220pn 1.73 x 10-3 6.43 x 10-3 .94 x 10-2
218pg 1.73 x 10-3 6.43 x 10-3 .94 x 10-2
212pp 1.73 x 10-3 6.43 x 10-3 .94 x 10-2
212p4 1.73 x 1072 6.43 x 10-3 .94 x 10-2
212pg 1.11 x 10-3 4.11 x 10-3 .24 x 10-%
2087y 6.62 x 10-* 2.32 x 10-3 .00 x 10-3
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Comparison of Dose Commitment from HTGR Uranium
Fuel, LWR Uranium Fuel, and LMFBR Plutonium Fuel

A comparative analysis was performed on dose commitment to bone

resulting from inhalation or ingestion of 10']2

g of HTGR uranium fuel,
LWR uranium fuel, and LMFBR plutonium fuel. This analysis evaluates
freshly separated fuel and does not consider fission products, acti-
vation products, transuranium radionuclides which have been produced,

or the environmental transport of each isotope. Therefore, the resulting
analysis should be regarded as estimates of fuel radiotoxicity. The
data, however, indicate relative containment requirements for fuel
fabrication facilities handling HTGR, LWR, or LMFBR fuel.

Figure 6 demonstrates dose commitment to bone from inhalation of
10—]2 g of recycled fuel vs time after the fuel is released to the
environment. Inhalation long after release most likely results from
resuspension of radicactive materials deposited on terrestrial surfaces.
Two aspects of the curve are important. First, the dose commitment to
bone from LMFBR fuel is approximately 5 x 102 times greater than HTGR
fuel and 3 x 107 times greater than LWR fuel when the comparison is
made soon after release to the atmosphere. Second, the buildup of
232U daughters increases the dose commitment from HTGR fuel by a factor
of approximately 7.5 over the dose commitment at 10_] year.

Dose commitment to bone from ingestion of 10_]2 g of recycled fuel
vs time after the fuel is released to the environment is shown in Fig. 7.
Although plutonium and uranium are not readily taken up through the

roots of vegetation, ingestion may prove to be the critical pathway in

analysis of long-term exposures. Ingestion of an equivalent mass of
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HTGR fuel and LMFBR fuel may result in similar radiological impact. The

dose commitment from 10_]2

g of LWR uranium is substantially less than
either HTGR fuel or LMFBR fuel. The environmental transport of uranium,
plutonium, and daughters is important in completing this assessment.
Research projects to provide additional information on uptake and
transport through the food chain will provide opportunity for a more
in-depth study.

The data in Figs. 6 and 7 are summarized in Fig. 8 using LMFBR and
HTGR fuel dose ratios. The dose ratio is calculated by dividing dose

from inhalation or ingestion of 10712

g of LMFBR plutonium fuel by the
dose from inhalation or ingestion of an equivalent mass of HTGR uranium
fuel. A dose ratio of 1 indicates equal radiotoxicity. Uranium fuel
for light water reactors is not included in Fig. 8 because the toxicity
relative to LMFBR plutonium and HTGR uranium is very low. The minimum
inhalation dose ratio is 39; this occurs at approximately 40 years. If
equivalent masses of LMFBR plutonium fuel and HTGR uranium fuel are
inhaled at 40 years after they are released to the environment, the

resulting dose from LMFBR fuel is 39 times greater than the dose from

HTGR fuel.

SUMMARY AND CONCLUSIONS

The radiological assessment presented in this paper leads to several

232

conclusions. As specified in this analysis, U and daughters released

to the environment as particulates from a nuclear fuel reprocessing

plant do not impose significant health hazard in terms of dose to man.

232

The high position of the dose from U and daughters relative to other
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particulates indicates that more research may be needed to understand
fully the metabolic and environmental behavior of high specific activity

220

uranium. Release of Rn must be delayed to permit decay before the

220

radionuclide enters the atmosphere; an adequate Rn decontamination

3 4

factor falls within the range of 10~ and 10°.

233

Analysis of increasing 232U concentrations in U HTGR fuel reveals

232

that U will substantially alter the toxicity of the fuel. Also, for

a given level of 232

U, toxicity becomes greater with time due to daughter
buildup. This greater toxicity must be considered in the design of a
fuel handling facility.

Comparison of the dose commitment to bone resulting from inhalation
or ingestion of equal masses of LMFBR fuel, HTGR fuel, and LWR fuel
leads to several conclusions. The inhalation hazard of HTGR fuel is
significantly greater than the ingestion hazard. The inhalation hazard
for LMFBR fuel relative to HTGR fuel is greater by a factor of 400 for
periods soon after release to the environment, decreases to a value of
39 at 40 years, and increases to approximately 4000 at 100 years, after
which a slow decrease is observed. It is noted, however, that inhalation

doses calculated long after the fuel has entered the environment would

likely be very small.
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