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A ONE- AND TWO-DIMENSIONAL LEAST-SQUARES SMOOTHING AND 


EDGE-SHARPENING METHOD FOR IMAGE PROCESSING 


Mozelle R. Bell 

ABSTRACT 

A rapid method is developed for two-dimensional smooth
ing and edge-sharpening by the least-squares fitting of a 
function to a limited area of the data. This convolution or 
matrix weighting is applied at each point of the data set to 
yield a smoothed or a sharpened image. Weighting matrices 
for 3 x 3, 5 x 5, and 7 x 7 point fitting areas are provided 
for polynomial function fits of all degrees up to the high
est degree determinable. For the 7 x 7 point fitting area 
weights for fitting functions of up to the quartic in both 
dimensions are supplied. Application of the 5 x 5 point 
quadratic fit smoothing to a nuclear medicine image"is 
shown as an example. 

INTRODUCTION 

Data smoothing is used extensively in nuclear medicine and other dis

ciplines that employ images for analysis. Smoothing is needed to permit 

the use of isometric images, multicycle images, and color coded images, 

all of which suffer greatly from excessive raggedness of the data. Excess 

high frequency noise lying outside the frequency range defined by the sys

tem point source response reduces the readability of the image without con

tributing useful information. The smoothing methods generally employed in 

nuclear medicine are simple averages of neighboring points, of a 3 x 3 

square area, or at best a simple Gaussian shaped weighting function" These 

methods are chosen for speed or simplicity of application and have little 

or no theoretical justification. The methods of least-squares two dimen

sional fitting give better results and have sound statistical justification 

but when applied in the usual straightforward manner are too time consuming 

for routine application to the large nuclear medicine images. 

One-dimensional smoothing methods that provide least-squares fitted 

polynomials to noisy data are widely known. These yield good smoothing by 

a simple and rapid convolution or weighting method. Each entry in a short 
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llist of numbers derived from the Gram orthogonal polynomials or directly 

from least-squares methods2 is multiplied by successive data values. The 

sum of these products yields the least-squares fitted value at the mid

point of the range. The list of multipliers is then advanced along the 

data list by one point and the operation is repeated to provide a fitted 

value at the next position of the mid-point and so on. The method is rapid 

and well suited for use in small computers. 

The method is here extended to two dimensions to provide a rapid two

dimensional smoothing method. 

Another procedure, of value especially to nuclear medicine where im

ages have necessarily both poor resolution and bad statistical fluctua

tion, is that of boundary sharpening. The method of sharpening an edge 

where there should be a sudden transition, but where the transition has 
3been. broadened by inadequate resolution, is an old one . It has frequently 

been applied to Beta ray or scintillation spectra. It consists in the sub

traction of a certain amount of the second derivative of the data curve 

from the curve to yield sharper transitions. Extending this method to two 

dimensions requires the generation of the directionally averaged second 

derivative of the image at each data point and the subtraction of the re

sultant correction image from the original to produce a resultant image 

with sharpened organ boundaries. 

The "same methods that provide the least-squares fitted value at the 

central point of the weighting matrix area can be extended to provide sim

ilarly the directionally averaged second derivative of the fitted two

dimensional function at the central point of the range. Weighting tables 

for 3 x 3, 5 X 5, and 7 x 7 point fitting regions are provided to 

smoothing and second derivative values for fitted functions of various 

degrees. The degree extends to a quartic in both dimensions for the 7 x 7 

point area. The 7 x 7 point smoothing or second derivative procedures 

require about 3 minutes .to process a 16,000 point nuclear medicine image 

ana PDP-8/E computer without EAE. 
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I. One Dimensional 

A. 	 Orthogonal Polynomial Method 

The use of the Gram orthogonal polynomials to calculate the least

square formulas for nth degree polynomials using 2M + 1 points has been ex

pounded in great detail in F. B. Hildebrand's "Introduction to Numerical 

Analysis"l in sections 1.11 through 1.14 (see pages 288 through 302). [For

mula numbers with H given in the remainder of this memo refer to this book]. 

Formulas are given there for the smoothed central value for cases up to 

n = 5 and M = 3 (i.e., fifth-degree seven-point formulas), For the sake of 

completeness we develop and repeat these formulas here and also include the 

companion formulas for the second derivative at the central point, since 

these will later be found to be useful for edge-sharpening of the data, 

1. Five Point Formulas for Polynomials of Degree < 3. For M = 2 

(5 points) the highest order orthogonal polynomial needed is of third de

gree, P3(t,4); a 4th degree polynomial would fit the data exactly. Here t 

represents the distance from the mid-point of the range in units of the 

spacing. 

IA.1.1 

Substituting the values for the orthogonal polynomials given by for

mulas 7.2.lH we have 

IA.1.2 

whence 

lA.1.3 

For the central point, t = 0, 


y(O) = a - a IA.1.4
o 2 

and 

y"(O) = a	 IA.1. 52 
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We note that at the central point the cubic term in the original equa

tion makes no contribution. The quadratic and cubic fits give the same re

sults at the central point. 

Applying equations 7.11.14H and 7.11.13H and noting that PO (t,4) = 1 

(t2 _ 2)
and P2(t,4) = 2 we have 

t=2 
2 

YO = E Po (t,4) 
t=-2 IA.1.6 

t=2 2 
= E P2 

2 
(t,4) 

. 
= (!) [(2)2 + (_1)2 + (_2)2 + (_1)2 + (2)2 J = 1Y2 

t=-2 
2 2 

lA.1.7 

t=2 1 
~ E f ( t) Po ( t ,4) = - [f + f -1 + fO + fl + .f2 JaO = lA.1.8YO t=-2 5 -2 

t=21 2 
a = -- E f(t) P2(t,4) = - [f - 1/2 f - f - 1/2 f + f J2 2Y2 t=-2 7 -2 -1 0 1 

lA.1.9 

Here f_ 2 , f_
l 

, ... , f2 represent the data values at t = -2, -1, ... ,2. 

Hence for a polynomial fit of either degree 2 or degree 3 

y(o) lA .1.10 

and 

lA. 1.11 

2. Seven Point Formulas for Polynomials of Degree < 5. For M = 3 

(7 points) the highest order least squares fit possible is 

y(t) = a (t,6) + al Pl(t,6) + a2P2(t,6) + a (t,6)OPO 3P3

+ a4P4(t,6) + a 5P5(t,6) lA.2.1 
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Evaluating formulas 7.11.10H with M = 3 to obtain the orthogonal polynomi

als for this case and substituting into (2.1), 

2 3 	 4 2= t (t - 4) (t - 7t) (7t - 67t + 72)yet) ao + al 3 +,a2 5 + a3 6 + a4 36 

IA.2.2 

whence 

IA.2.3 

For 	the central point, t = 0, 

4a
2y( 0) = a - - + 2a	 IA.2.4o 5 4 

and 

y"(o) = 	 IA.2.5
5 

Again applying equations 7.11.14H and 7.11.13H we have 

t=+3 
Y = k (1)2 = 7 IA.2.6 
o 	 t=-3 


t=+3 2 2 9 16 9 84 

Y = k [t - 4] = 1 + 0 + 25 + 25 + 25 + 0 + 1 = 25 IA.2.7 

2 t=-3 5 

1 + 49 + 1. + 4 + 1. + 49 + 1 = 154 
9 9 9 9 9 

IA.2.8 

t=+3 
aO = ~-L fet) (1) = ! [f + f_2 + f_l + fO + f1 + + f ]

3YO t=-3 7 -3 

IA.2.9 
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t=+3 21 - 25 3 4 
::= - E f( t) [t 4J = 84 [f_3 + 0 - - f - - fa2 5 5 -1 5 0Y2 t=-3 IA.2.10 

3 - - f + o + f3 J5 1 

t==+3 4 2 

a == ~ E f(t) [Tt - 67t + 72

J - 9 [f 7 
- - f4 36 - ~15 3 -2Y4 t=-3 _L'J4 
IA.2.ll 

+ 1. f + 2f + 1. f - I f + f ]
3 -1 0 3 1 3 2 3 

For a polynomial fit of degree 2 or degree 3, a4 and a do not occur and
5 

4
y( 0) = a O - 5" 

IA.2.12 

and 

3- - IA.2.
5 

For a polynomial fit of degree 4 or degree 5, 

IA.2.14 

and 
2a 

y"(O) :: _2 _ 67 
5 18 IA.2.15 
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B. 	 Least Squares Solutions Using a Symmetrical Grid with Equal Spacing 

Let us determine our experimental data points in the following symmet

rical 	types of grid: 

-2 -1 0 1 2 for 5 points
------------------------+> x-axis 

and 

-3 -2 -1 o 1 2 3 for 7 points 
~ x-axis 

n n n 	 n odd·3We then have I: x. = I: x. = I: 5 = = I: x. = O. 
1

i=l 	 1 i=l 1 i=l i=l 

As we shall now show this fact allows us to make such great simplifications 

in the set of least-square equations that the solutions thereof may be ob

tained directly. This provides an alternate method of solution in which 

the use and knowledge of orthogonal polynomials is not needed. 

Let us represent a general fitting polynomial of degree ~ 5 by 

IB .1 

Then y(O) = b	 lB.2l 

and y"(O) = 2b lB.3
3 

We can reduce this from a quintic to a quartic to a cubic to a quadratic 

by setting b6 = 0, bS = 0, and b4 = 0 respectively. 

The least-square equations are obtained by minimizing 

where f. is the experimental data. 
1 

Differentiating F with respect to bl , b2 , b , b4, b ' and b6 in turn,
3 S 

oddsetting each of the six equations equal to 0 and remembering that I: x. 
1 

= 0, 	we get the following set of least-squares equations. 
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aF 	 2 4 
1:: f. = nb + b 1:: 	 x. + b I: x. lB.5

3bl 
Cl 1 l 3 1 5 1 

aF 	 2 4 6c - 1:: f.x. = b2 I: xi + b4 I: x. + b I: x. 	 lB.6
ab 2 1 1. 	 1. 6 1.

2 

aF 	 2 2 4 6c 1:: f.x. = 	 I: x. + b z; x. + b z; x. lB.7db . 3 1. 1. 
bl 1. 3 1 5 1

3 

aF 	 3 4 6 8 
- 2: 	 f.x. = b E x. + b4 L. x. + b L x. IB.8db

4
. C4 1. 1. 2 1 1. 6 1. 

4 4 6 8~. C 2: f.x. b E x. + b 2: + b 2: x. 	 IB.93b . 5 1 1 
= l 1 3 5 1

5 

aF 	 5 6 8 10
C - L = b	 L + b4 1:: x. + b6 1:: x. lB.lO3b . 6 2 	 1 16 

For determining central values only the three equations B.5, B.7, and 

B.9 	need be considered. 

The solutions of the least-squares equations will be given as linear 

functions of Cl , C
3 

, and C , which are themselves linear functions of f 
i 

.
5 

We will use these facts to find a set of weights, w., such that our answers 
1 

n 
may be written as 	Z; w.f., an easily calculable form. 

i=l 1 1 

l. 	 Five Point Formulas. 

For n = 5 : = -2, x = -1, x3 = 0, x = I, = 2, whencexl 2 	 4 x5 

2 4 6 	 8
2: x. = 10; 1:: x .. = 34 ; 1:: x. = 130; 1:: x. = 514. 

1 1 1 	 1. 

1.1. Quadratic or Cubic (highest possible degree for n = 5). For a 

quadratic or cubic (b = b 0) the set of equations to be solved becomes
5 6 

+ lOb	 lB.l.1= 5blCl 	 3 

= lObI + 34b3 	 IB.l.2C3 
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The solution of this 	pair of equations gives 

1y{O) = b = 35 (17C1 	 - 5C ) IB.1.31 3


1
y"(O) = 2b = - (C 	 - 2C ) IB .1.43 7 3 1 

Applying the definitions of C and C
l 3 

IB .1.5 

and 

IB .1.6 

in agreement with equations lA.l.lO and lA.l.ll, where f with a subscript 

means the value of the data at the x point which is the subscript. 

2. 	 Seven Point Formulas. 

For n = 7: Xl = -3; = -2; x3 = -1; 0; x5 = 1; x6 = 2;x2 	 x4 = 

x = 3 whence 
7 

2 4L x. = 28; L X. = 196; E x.6 =1588; E x.8 = 13636. 
1 1 1 	 1 

2.1. Quadratic or Cubic. For a quadratic or cubic the set of equa

tions to be solved is: 

= + 28b	 IB.2.1.1Cl 7bl 3 

C = 28b + 196b IB.2.1.2
3 1 3 

The solution of this pair of equations gives 

y(O) = b = 
1 

IB.2.1.3
1 

IB.2.1.4 
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Expressed in terms of the experimental data these are 

IB.2.1.5 

and 

IB.2.1.6 

in agreement with equations IA.2.12 and IA.2.13. 

2.2. Quartic or Quintic (highest possible degree for n = 7). For a 

quartic 	or quintic the set of equations to be solved is 

C = 7b + 28b + 196b IB.2.2.1
l l 3 5 

C = 	28b + 196b + 1588b IB.2.2.2
3 l 3 5 

C = 	196b + 1588b + 13636b IB.2.2.3
5 l 3 5 

Although the arithmetic involved is more tedious than in previous cases, 

the solution is straightforward and gives 

= = 524Cl - 245C3 + 21C5yeo) 	 IB.2.2.4bl 924 

and 

IB.2.2.5 

Expressed in terms of the experimental data these are 

1
yeo) 	 = 231 

IB.2.2.6 

and 

IB.2.2.7 

in agreement with equations IA.2.14 and IA.2.15. 
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II. Two Dimensional 

1. Determination of Central Value of Function and Second Derivative. 

We shall here generalize the symmetric grid procedure described. in 

Section I, Part B. 

Let us represent a general fitting polynomial of degree ~ 5 in two 

dimensions by 

f(x,y) 

2 2 	 4 3 2 2 
+ bSx y 	+ b XY + bllx + b12x Y + bl3x y 

9 11.1.1 
3 4 43223

+ 	b14xy + b
15Y + bl7x y + blSx y . + b19x y 

4 5+ b + b20XY 21y 

Then 

II.1.2 

We can 	reduce 11.1.1 from a quintic to a quartic by setting b throughl6 
b 0; to a cubic by additionally setting b through b = 0; to a quad21 ll 15 
ratic by additionally setting b through b = O.

7 lO 

t . I 	 d . t . df tThe d'lrec lona erlva lve ds a any point (x,y) taken in the direction 

of a straight line making an angle a with the x-axis is 

df(x,y) af af . = - cos a + - Sln a - f cos a + f sin a 	 ILl.3ds ax ay x y 

The second directional derivative is 

II.I.42 a[f cos a + f sin a] a[f cos a + f sin a]
d f x y. 	 x y.2 (x,y) = cos a + 	 sin a ax 	 ayds 

or 

2
d f 2 	 22 (x,y) = f cos a + 2f sin a cos a + f sin a 11.1.5xx yx 	 yy
ds 
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since f = f We take the average of f"(x,y) over a by noting that 
yx xy 

2 2 1 2STI 2 1 2STI sin2a 
2

, and (sinacosa)av___ = 1
(cos a) = (sin a) cos ada = 

av av 2TI 0 2TI 0 

1 2TI- - S sinacosada = O. Thus- 2TI o 

f" (x y) =1.. (f + f ) II.l.6 , av 2 xx yy 

From equation II.l.l 

f"(O 0) = b + b II.l.7'av 4 6' 

When comparing one-dimensional answers as special cases of the two

dimensional results, note that since the two-dimensional result is an av

erage it gives only 1/2 the one-dimensional results in the x and y direc

tions, respectively. 

2. Least-Squares Equations. The equations are obtained 

by minimizing 

n n 

F - L: L: [f .. - (b + b X + b Y + b4x 2 

+ b xy + b6y 2 

lJ l 2 3 5i=l j=l 

3 2 2 4 3 2 2 + b X + b8x Y + b xy + blOy3 + bllx + b12x y + b13x Y 7 9
I1.2.1 

3 4 5 . 4 3 2 2 3 
+ b

14
xy + b y + b x + b x y + b

18
x y + b x Y

15 16 17 19

245+ b xy + b y ]
20 2l

where f .. is the experimental data. Differentiating F with respect to
lJ 

bl , b
2

, b , ... , b in turn, each of the 21 equations equal to
3 2l 


odd Odd
o and remembering that L:Yi = 0, we get the following set of 

least-square equations. 
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4 
+ n[Y b	 11.2.2

j 15 

4 2 6~~2: k2 	 f j fijxi = n[Xi2b~ + n[Xi b7 + EXi2[y j b9 + nLxi b16 

4 ~ 2 4 
+ LXi Ly LXi 	 II.2.3

j b18 + 	 LYj b20 

dF 	 2 2 2 4 4 2 
db

3
: k3 = f ~ f ijYj = nLYj b3 + LXi [Y j b8 + nEYj blO + [Xi LYj b17 

2 4 4 
+ [xi [Y	 b + nEY 11.2.4

j I9 	 j 
b2I 

2 2 4 2 2E-. 	 nEx b + n[x [x. [Yo + nLx 6bdb
4

. k4 = r 3fijxi = i l i 
b4 + 

1 J 
b6 i u 

4 2 + 2 4+ LXi LXi 	 II.2.5LY j b13 LYj bl5 

2 2 4 2 2 4lL. 
kS -	 E L f ..x.y. = LX. Ly. b + LXi EYj Ex. 'i..Yj 

b 11.2.6
db

S 	 i j lJ 1. J 1 J S 
bl2 + 

1 I4 

11.2.7 

·II.2.8 
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aF 
db . 

aF 
ab . 

9 

aF-_.

ab ' 

10 

14 

2 2 2 
k8 z L f .. x. y. = Ex. Ey. b

3i j lJ 1 J 1 J 

6 2 
+ LXi "iYj b17 + 

4 4
LXi LYj b19 + 

4 2 
+ Ex. "iy. b

8I J 

2 6
EY

j 
b21 

2 4 
+ LXi "iY j b10 

I1.2.9 

k9 L "i f ..X.y. 
2 2 = "ix. "iy.

i j lJ 1 J I J 

+ l: 6E 2b + 4 4 
xi Yj 16 l:x

i 
l:Y

j 
b

18 

4 2 
+ l:x. l:y. b

7I J 

2 6 
+ EXi EYj b20 

+ 
2 4

l:x. Ey. b
91 J 

I1.2.10 

k10 

+ 

=I ~ fijYj3 = nl:yj 
4 

b3 + "iXi2EYj4b8 + nl:Yj6bl0 

4 4 + 268
l:Yj bIT LXi EYj b19 + nLYj b21 

I1.2.11 

4 4 646 
kll = I ~ fijX i = nLXi b1 + n"ixi b4 + LXi EYj b6 

+ nl:xi 
8

b11 + EXi6EYj2b13 + l:Xi4l:Yj4b15 I1.2.12 

4 4
+ LX..; Ey. b14~. J 

II.2.13 

k13 = l:
i 

2 2 
E f ..X. y.
j lJ 1 J 

= 

I1.2.14 

k
14 

-",,"" 3= ~ ~ I •. X.y.
i j lJ 1 J 

= 

I1.2.15 




4 _ 4 +L L f, ,y. - nLy. b
i j l.J J J 1 


11.2.16 


II.2.17 

4

k17 = L L f. ,x. y,

i j l.J 1. J 

II.2.18 

~ II.2.19 

_ 2 3 2 4 4 4 2 6 

k19 = f f fijxi Yj = LXi LY j b3 + LXi LYj b8 + LXi LY j b10 


6 4 4 6 + 2 8
+ EXi EYj b EX EYj b EX EY II.2.20
17 + i 19 i j 

b21 


II.2.21 

II. 2 .22 


http:bEXEYII.2.20
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From this set of equations we see that the variables are split into 

the following independent groups: 

b
l 

, b4 , b
6 

, b
ll 

, b
13 

, - occur· only in equations 2,5,7, 12,14, 

and 16 

b2 , b , b , b
16

, b
18

, b occur only in eq~ations 3, 8, 10, 17, 19, 
7 9 20 


and 21 


' b
8 

, bH , b
19 

, b - occur only in equations 4, 9, 11, 18, 20,b3 blO ' 21 
and 22 

occur only in equations 	6, 13, and 15. 

Since we are interested only in central values and equations 11.1.2 

and 11.1.7 show that these are functions of bl , b4 , and b6 only, we now 

consider only the six equations determining these values. 

We again point out that - as in the one-dimensional case - all of the 

k values are linear combinations of f .. and that our smoothing value (b )
lJ l 

and second derivative value (b4 + b6) will be some linear combination of 

the "k IS" • Hence to determine a weighting factor w.. at any point we need
lJ 

only use the contribution of that point to each of the summations involved 

in the "kit values in the formulas. (Another way of saying this is that to 

determine the weight at each point we consider f .. to be a delta-function;
lJ 

1 at the point and 0 elsewhere.) 

3. 	 For n x n = 3 x 3: 


2 2
= Y3 = +1 whence L Xi = 2: y. :;;:: 2. 
J 

3.1. Linear. For a linear fit (b = b = = b = 0) the set of4 5 21 
equations to be solved becomes 

11.3.1 

kl 
Hence f(O,O) = b_ = 9 and the smoothing matrix of weights is 



3.2. guadratic. For a quadratic fit (b = = = = 0) the
7 

bS 
set of equations to be solved becomes 

kl = 9b + 6b4 + 	6b 11.3.2.1l 6 

k4 = 6bl + 6b4 + 4h6 11.3.2.2 

11.3.2.3 

The solution of this set of equations gives 

f(O,O) 11.3.2.4 

and 

11.3.2.5 

Applying the definitions of kl , k4' and k6 the matrix of weights for 

f(O,O) 	 is 

2 
[ -11:. 2 5 	 -~ ] I1.3.2.6

9 

-1 2 -1 


and for f"(O,O) 	 the matrix is 

-1 
1 

-4 	 II. 3.2.7"6 [-~ 
av 

-~ ]
-1 

4. 5 x 5 Point Formulas. For n x n = 5 x 5: xl = = -2; x =Yl 2 Y2 

= -1 ; x3 = = 0', x4 = Y4 = +1 ; x5 = = +2 whence r X. 
2 = L y. 

2 
= 10;Y3 Y5 1 J 


4 4 6 6 8 S 

L x. = L = 34 ; 1: x. = L = 130; L x. = L y. = 514. 

1 Yj 1 
Yj 1 J 


kl 

4.1. Linear. The linear fit f(O,O) = hI = 25' a uniform 

weighting for each element in the smoothing matrix . 

. :.:. ,.,.:. 
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4.2. Quadratic or Cubic. For a quadratic or cubic fit (b = b = 
11 12 

= b = 0) the set of equations to be solved becomes21 

11.4.2.1 

II.4.2.2 

II.4.2.3 

The solution of this set of equations gives 

II.4.2.4 

and 

f" (0 0) = b 4 + b = ~ (-4k + k4 + k6) II.4.2.5 , av 6 70 1 

Applying the definitions of k1 , k4' and k6 the matrix of weights for f(O,O) 

is 

-13 2 7 2 -13 

2 17 22 17 2 
1 

175 7 22 27 22 7 II.4.2.6 

2 17 22 17 2 

-13 2 7 2 -13 

and for f"(O,O) the matrix is . av 

4 1 0 1 4 

1 -2 -3 -2 1 
1 

0 -3 -4 -3 0 11.4.2.7
70 

1 -2 -3 -2 1 

4 1 0 1 4 
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4.3. Quartic or Quintic. For a quartic or quintic fit the set of 

equations to be solved is 

k4 = 50b + 170b4 + lOOb 650bll + 340b13 + 340bl 6 + 15 

k6 = 50bl + lOOb4 + 170b6 + 340bll + 340b13 + 650b
15 II.4.3.1 

kll = lrObl + 650b4 + 340b 2570b l300b13 + 1156b6 + ll + l5 

ki3 = IOOb + 340b4 + 340b6 + l300bll + 1156b13 + 1300bl 15 

k15 = l70bl + 340b4 + 650b6 + l156bll + 1300b13 + 2570b
lS 

It is helpful to combine the above set of six equations into 

kl = 25b + SO(b4 + b ) + lOOb13 + 170(bll + b )l 6 15
 

(k4 + k6) = lOOb + 270(b4 + b ) + 680b )
l 6 13 + 990(bll + blS II. 4.3.2 

(k k ) = 340b + 990(b4 + b ) + 2600b + 3726(b )ll + 
lS l 6 13 ll + blS 

k13 = lOOb1 + 340(b4 + b ) + 1156b 1300{bll + b )6 13 + lS 

Then by solving the last of this group of equations for b in terms13 
of the other unknowns, substituting that quantity into the first three 

equations and simplifying we get: 

289kl - 25k = (5)(945)b + (170)(3S)(b4 + b ) + (2)(83l 5)(bll + b )
13 l 6 15 

l7(k + k6) - lOk :: (5){140)b + (170 ){7)(b4 + b6 ) + (2)(191S)(bll + blS )
4 13 l 


289(kll + k ) - 650k13 :: (5)(6652 )bl + (170)(383)(b4 + b6 )

15 

II.4.3.3 
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The solution of this set of equations gives 

1I.4.3.4 

and 

f"(O,O)av = b4 + b6 = 70~60 [-41040k1 + 37523(k4 + k6) 
1I.4.3.5 

- 7595(k11 + k15) - 1440k1~ 

Applying the definitions of k1' k4' k6' k11' k15' and k13 the matrix 
of weights for f(O,O) is 

51 -99 96 -99 51 


-99 -24 246 -24 -99 

1 

96 246 541 246 96 II.4.3.61225 
-99 -24 246 -24 -99 


51 -99 96 -99 51 


and for fll ( 0 ,0 ) the matrix is av 

-1734 2925 -3117 2925 -1734 

2925 4344 -2778 4344 2925 
1 -3117 -2778 -10260 -2778 -3117 1I.4.3.717640 

2925 4344 -2778 4344 

-1734 2925 -3117 2925 -1734 

5. 7 x 7 Point Formulas. For n x n = 7 x 7: xl = = -3; =Y1 x2 Y2 

= -2;x3 = -1; = Y4 = 0; x5 = Y = 1; x6 = Y6 = 2; x = Y = 3= Y3 x4 5 7 7 

2 6whence Ex. 2 
= Ey = 28; Ex.4 = Ey. 4 = 196; LX. = Ly. 6 = 1588; Ex. 8 = 

1. j 1. J . 1. J 1. 

8 . 2 2· 2 4 4 2 2 6Ey. = 13636; Ex. Ly. = 784; LX. Ey. = Ey. = 5488; ~x. ry. = 
J 1. J 1. J J 1. J 

6 2 4 4Ex. [y. = 44464; Ex.· Ly. = 38416. 
1. J 1. J 
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kl 
Linear. The linear fit gives f(O,O) = = 49' a uniformbl 

weighting for each element in the smoothing matrix. 

5.2. suadratic or Cubic. For a quadratic or cubic fit (b = b = 
ll 12 

= b = 0) the set of equations to be solved becomes
21 

196b + (7)(196 )b (4 )(196 )b 11.5.2.1k4 = 4 +
1 6 

196b + (4)(196 )b + (7 )(196 )bk6 = l 4 6 

The solution of this set of equations gives 

1
f(O,O) = b 147 (11kl - k4 - k6) 11.5.2.2l 

and 

b4 b6 
1

f"(O,O)av = + =51r8 (k4 + k6 - 8kl ) II. 5.2.3 

Applying the definitions of k1' k4' and k6 the matrix of weights for 

f(O,O) is 

-7 -2 1 2 1 -2 -7 

-2 3 6 7 6 3 -2 

1 6 9 10 9 6 1 
1 

147 
2 7 10 11 10 7 2 11.5.2.4 

1 6 9 10 9 6 1 

-2 3 6 7 6 3 -2 

-7 -2 1 2 1 -2 7 

and for f"(O,O) 
av 

the matrix is 

10 5 2 1 2 5 10 

5 0 -3 -4 -3 0 5 

2 -3 -6 -7 -6 -3 2 
1 

588 
1 -4 -7 -8 -7 -4 1 11.5.2.5 

2 -3 -6 -7 -6 -3 2 

5 0 -3 -4 0 5 

10 5 2 1 2 5 10 
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5.3. Quartic or Quintic. For a quartic or quintic fit the set of 

equations to be solved is 

kl = 49b + 196b4 + 196b6 + 1372b 784b + 1372bl ll + 13 15 


k4 = 196bl + 1372b4 + 784b6 + 11116bli + 5488b13 + 5488b
15 

11.5.3.1 

= 1372b + 11116b ~ 5488b
6 + 9545~bll + 44464b + 38416bl 4 13 15 

k = 784b + 5488b 5488b6 + 44464b 38416b + 44464b4 +
13 l ll + 

13 15 

k15 = 1372bl + 5488b4 + 11116b6 + 38416bll + 44464b13 + 95452b15 

It is helpful to combine the above set of six equations into 

11.5.3.2 

Then by solving the last of this group of equations for b in terms
13 

of the other unknowns, substituting that quantity into the first three 

equations, and simplifying we get: . 

49k - k = (147)(11)b + 4116(b + b ) + (84)(271 )(b b )
l 13 l 4 6 ll + 

15 

7(k4 + k6) - 2k = (147)(8)b + 4116(b + b ) + (84)(325)(b b )
13 l 4 6 1l + 

15 

343(k + k ) - 794k = (147)(2168)b + (4116)(325)(b4 + b6 )
ll 15 13 l 

11.5.3.3 
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The solution of this 	set of equations gives 

1
f(O,O) = = 19404 [3452k - 911(k4 + k6) + 63(k11 + k15)b1 	 1 

11.5.3.4 
+ 44k ]13

and 

1
f"av(O,O) = b4 + b6 = (4)(38808) [-14576k1 + 5457(k4 + k6) 

- 469(k11 + k ) - 176k ]15 13

Applying the definitions of k1' k4' k6' k11 , k15' and k13 the matrix of 

weights for f(O,O) is 

206 -174 -24 89 -24 -174 206 

-174 -279 36 204 36 -279 -174 

-24 36 450 651 450 36 -24 
1 

4851 89 204 651 863 651 204 89 II. 5 .3.6 

-24 36 450 651 450 36 -24 

-174 -279 36 204 36 -279 -174 

206 -174 -24 89 -24 -174 206 

and for fIt (0,0)av the matrix of weights is 

-1646 1134 -12 -863 -12 1134 -1644 

1134 ·2814 1008 -63 1008 2814 1134 

-12 1008 -1194 -2397 -1194 1008 -12 
1 

38808 -863 -63 -2397 -3644 -2397 -63 -863 II. 5 .3.7 

-12 1008 -1194 -2397 -1194 1008 -12 

1134 2814 1008 -63 1008 2814 1134 

-1646 1134 -12 -863 -12 1134 -1646 



24 

III. Example of Application* 

The 5 x 5 point quadratic smoothing matrix was applied to a nuclear 

medicine image with a low counting rate area to demonstrate the effective

ness of the least-squares processing when compared with a standard gaussian 

weighting method. The gaussian weight used is shown below. It is a "sharp" 

averager with one standard deviation per element spacing . 

. 003 

.060 
Gaussian Weight _ 

.022 .101 .162Matrix 

The image was an ordinary clinical scan with 67Ga made on an Ohio 

Nuclear dual 8" rectilinear scanner. Only one 4K section of this large 

scan is illustrated. The liver is at the upper edge of this section with 

the abdominal area in the lower part of the image. 

Three processes were used in succession. The first pass was a bound

ing action in which the smoothing matrix was applied with weight 1. The 

smoothed value was compared with this data point. If the point within 

the smoothed value ± the square root of the smoothed value. the value was 

unchanged; if it lay outside the range, it was replaced by the smoothed val

ue. The purpose is to remove bad points or statistically improbable val

ues. 1 shows Z cuts of the raw data and the least squares bounded 

image at the line marked in the image. After the bounding pass the images 

were smoothed once with weight 4 and once with weight 1. Figure 2 shows 

the same line on the left with the simple gaussian weight and on the right 

with the least square quadratic fit. Note that the least squares process 

produces a smoother while at the same time the ascending colon has 

*Supplied by P. R. Bell, Medical Instrumentation Group. 
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a greater relief from the region around it. The mean counting rate in 

this region is about 6 counts per picture element. Figure 3 shows a Z 

cut across the lower part of the liver. Note the steeper rise of the 

least squares lines and its rise to a higher value. 

The time required for processing this image by the two methods was 

the same. 



PHOTO 	 B-10 31185... 

. 1. 	 Left is an unprocessed section of a 67Ga image. The liver is 
at the top. The z-cut crosses the ascending colon on the left 
central part of the image. The activity at the extreme left 
and right are the patient's arms. The count density near the 
ascending colon is about 6 counts/picture element. 

The right image is that following bounding with the 5 x 5 point 
quadratic matrix. Note the reduction of the " It 

due to points with large statistical deviation in the 
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PHOTO B-10 31186 

Fig. 2. 	 Left image was produced by bounding followed by weight 4 smooth
ing and weight 1 smoothing all with the gaussian smoothing ma
trix. The right image was similarly processed using the 5 x 5 
point least-squares quadratic smoothing matrix. Note the greater 
difference between the ascending colon and the region around it 
in the least-squares smoothed image. This is due to the greater 
suppression of this feature by the gaussian smoothing. Note the 
overall somewhat better smoothness of the least-squares process
ing. 
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Fig. 3. 	 Same images as in Fig. 2 with the z-cut across the tip of the 
liver. Note the steeper and higher rise produced by the least
squares processing. 
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APPENDIX 

Once we have determined a least-squares fitting function (in either 

one or two dimensions) we can also give two other quantities of interest 

to image processing: the location and magnitude of the extreme (maximum 

or minimum) value of the function. We will give formulas for these quan

tities for quadratic fitting functions. 
2

In the one dimensional case, y = b + b2x + b X so that the location
l 3

of the extremum is given by setting y' = 0, i.e. 

-b
2 

A.I~XT = 2b 
3 

and the extreme value of the function is 

b 2 

2 


A.2
4b

3 

If y", i.e. 2b , is positive, the extremum is a minimum; if y" is negative,
3 

the extremum is a maximum. The values of b and 2b are given by I.B.I.5l 3 
and I.B.l.6 for a 5 point fit and by I.B.2.5 and I.B.2.6 for a 7 point fit. 

2From equation I.B.6 we find b = L /L x. . Hence for the 5 point case
2 i i J.. 

+ 2f ) A.32 

and for the 7 point case 

I 
= 28 (-3f_ - 2f_2 - f_l + fl + 2f2 + 3f3 ) A.4b2 3 

2
In the two dimensional case, f(x,y) :;;; b + b2x + b

3
y + b4X + b xy

l 52 

6


+ b y. The location of the extremum is given by the solution of the sim

ultaneous equations 

~= b + 2b4X + b
3Y = 0 A.5dX 2 

and 

af 
dy 

:;;; 

3 5 6
b + b X + 2b Y = 0 A.6 
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This solution is 

XEXT A.7 

and 

-2b b4 + b2b
3 5Y = A.S

EXT _ b 2 4b4b6 5 

The extreme value of the function is then given by 

Call the common quantity in the denominator of the above three expressions 

D., i.e. D. = 4b4b - b 2 • The function will have a maximum value if D. > 06 5 
and either b4 or b < 0; the function will have a minimum value if D. > 0

6 
and either b4 or b > O. If D. < 0 (which is necessarily the case if b

6 4 
and b6 have opposite signs or are 0) the function has neither a maximum nor 

a minimum but rather .a saddle point. Hence whenever there is the possibil 

ity of a maximum or a minimum b4 and b6 have the same 

For a 7 x 7 point fitting area for a quadratic, the value of the 

weighting matrix to be convolved with the experimental data to give b is
l 

given by equation 11.5.2.4. Equation 11.5.2.3 gives b4 + b = 5~8 (k4 + k66 
- 8k ) and it can be shown thatl 

A.10 

and 

A.ll 

Equations 11.2.3, 11.2.4 and 11.2.6 separately give the following solutions 

for b2 , b , and b
5

,
3 

A.9 
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b ::: ({: ~ f .. x. )/n E x. 2 	 A.12
2 1 J 1.J 1. i 1. 

2 
= (E E f ..y.)/n E y. 	 A.13 

i j 1.J J j J 

2 2
b = (E E f ..x.y.)/E x. E y. 	 A.

5 i j lJ 1. J i 1. j J 

The weighting matrices to give these additional values are given 

below 

-3 -2 -1 0 1 2 3 

-3 -2 -1 0 1 2 3 

-3 -2 -1 0 1 2 3 
1 

W for b2 = 196 	 -3 -2 -1 0 1 2 3 


-3 -2 -1 0 1 2 3 


-3 -2 -1 0 1 2 3 


-3 -2 -1 0 1 2 3 


3 3 3 3 3 3 3 

2 2 2 2 2 2 2 

1 1 1 1 1 1 1 
1

W for b 0 0 0 0 0 0 0
3 = 196 

-1 -1 -1 -1 -1 -1 -J. 
-2 -2 -2 -2 -2 -2 -2 

-3 -3 -3 -3 

-9 -6 -3 0 3 6 9 

-6 -4 -2 0 2 4 6 

-3 -2 -1 0 1 2 3 
1

W for b 0 0 0 0 0 0 0
5 = 784 

3 2 1 0 -1 -2 -3 

6 4 2 0 -2 -4 -6 

9 6 3 0 -6 -9 
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1 
W for b4 = 588 

5 
5 

5 
5 ,. 

5 

5 

5 

0 

0 

0 

0 

0 

0 

0 

-3 

-3 

-3 

-3 

-3 

-3 

-4 
-4 
-4 

-4 
-4 

-4 

-4 

-3 

-3 

-3 

-3 

-3 

-3 

-3 

0 

0 

0 

0 

0 

0 

0 

5 
5 

5 
5 
5 

5 

5 

1 
W for b6 = 588 

5 

0 

-4 

-3 

0 

5 

5 

0 

-3 
_4 

0 

5 

5 

0 

-3 

-4 

0 

5 

5 

0 

-3 

-4 
-3 

0 

5 

5 

0 

-4 
-3 

0 

5 

5 
0 

-3 

-4 
-3 

0 

5 

5 
0 

-3 

-4 

-3 

0 

5 
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