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CRITICAL HUMAN ORGAN RADIATION DOSIMETRY FOR THE
ACTTVE BONE MARROW *

Abstract

Critical Human Organ Radiation Dosimetry (CHORD) probability
density functions for A-P, P-A, bilateral, rotational, and isotropic
incidence, plus simple depth-dose data, permit the rapid estimation of
the radiation insult to the active red bone marrow system of the ICRF
Reference Man. The CHORD concept follows the variations in the
microscopic processes of absorption, attenuation, and scattering on a
macroscopic level so that it 1is not necessary to attempt detailed
calculations for each and every case of interest. Similar techniques
have been applied to reactor criticality calculations and the general
logic of the CHORD process can be applied to any cause-response type
situation which can be described in terms of variation with distance
in the medium of interest. Doses to active bone marrow from exposures
to photons and neutrons are presented and excellent agreement was
found with the few available experimental results.

Introduction to the CHORD Concept

When a bioorganism is subjected to a radiation environment, a
critical organ or region of greatest risk usually is irradiated non-
uniformly if the linear dimensions of the critical organ are not small
or the depth of the critical organ within the bioorganismlis not large
compared with the mean-free pathlengths of the irradiating particles.

Radiation insult specific analyses are usually based on dose to cells,

*Research sponsored by the Energy Research and Development Administra-
tion under contract with Union Carbide Corporation.



a small target site or cluster of cells within an organ such as the
mandible, or a center such as the central nervous, or active bone
marrow system. For some effects, cells or sensitive sites within
cells may not be irradiated uniformly because of discrete energy 1oss
events and microdosimetric considerations (Rossi, 1975) may be
desirable. On a more macroscopic scale, chronic effects such as bone
sarcomas or even leukemia may, in some cases, be directly related to
highly localized exposures such as usually encountered in radiotherapy
of tumors and the maximum absorbed dose at a particular site {(mass of
a gram as opposed to an intercellular site) may be more meaningful
than the mean absorbed dose to the complete active marrow system
(Wilson and Carruthers, 1962; A. R. Jones, 1975) . Detailed
distribution of photon dose to specific active marrow regions for A-P,
P-A, rotational, and side (lateral) incidence have been published and
should be readily applied to many situations of interest (Jones et
al., 1973; Clifford and Facey, 1970). For radiation protection and
risk analyses from acute effects and those chronic effects where risk
is thought to be proportional to the insult to the system such as
usually assumed for leukemia, it is often not possible or desirable to
establish insult-response type correlations on a microscopic Tevel.
Therefore, it becomes necessary to assign a "mean" insult or risk to
a non-uniformly irradiated "critical organ".

One approach to the dosimetry of a non-uniformly idrradiated
critical organ, such as the red bone marrow system, is to use a
probability density distribution of length, referred to as a CHORD

length distribution. Any specific CHORD or p {£} d4& distribution is



obtained by assuming that the critical organ is simply a volume of
constant density, and for each differential unit of mass dm, chosen by
Monte Carlo techniques, the minimum distance £ to the closest
irradiated air-tissue interface is uniquely determined. This process
is continued until p {£} d& is well known statistically. Chord
usually implies a straight line through two points on the surface,
e.g., the skin; however, 1in this paper CHORD is an acronym derived
from Critical Human Organ Radiation Dosimetry and vrepresents only a
specific portion of a "true Chord". The CHORD concept is illustrated
in Figure 1 and the CHORD or p{€} dg¢ distribution provides
"weighting" factors for an integration over a specific insult such as
a "multicollision" depth-dose curve for the source geometry of
interest.

CHORD Applications to Red Bone Marrow

Figure 2 1illustrates the distribution of the active red bone
marrow in the normal adult and the corresponding analog for our Monte
Carlo transport code. In the adult reference man {ICRP, 1975) there
are 1500 grams of active red marrow and 1500 grams of yellow marrow
which are predominately fat cells. Inactive yellow marrow may be
transformed quickly into active marrow by a stimulus such as bleeding
or infection; yellow marrow in bone shafts is known to contain some
active cells but, in general, the proportion of active cells in adult
yellow marrow is usually considered to be small {Spiers, 1966). Thus,
for most situations of interest, only the red marrow receives major

consideration.
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The importance of a risk estimate based on radiation damage to
the active marrow system cannot be overstated as bone marrow damage
usually will be the major mechanism 1in radiation death and acute
radiation sickness stemming from whole body irradiation because it
occurs at much Tower levels (Facey, 1968; Wald, 1975) than death or
incapacitation due to radiation damage of the gut mucosa or the
central nervous system. For sublethal criticality accident exposure
levels, Tlevels of interest 1in radiation protection, and population
exposure levels, the most demanding recommendations of the ICRP (1964)
relate to the maximum permissible doses to the gonads and the blood-
forming organs. In radiation protection, the testes are usually
considered to be the critical organ of primary interest because of
their shallow location and because of the difficulty of estimating the
bone marrow 1insult; however, 1if the exposure level subjects an
individual to considerable risk, then an estimation of the insult to
his active marrow system could be advantageous for determining what
medical treatment should be administered promptly (Wald, 1975).

The dose at a penetration depth of 5 cm is often chosen to
describe the insult to the red bone marrow; however, for photon
irradiation the "5 cm rule" is often in error by a factor of two and
is expected to be even worse for neutron irradiation. This
approximation tends to retain popularity in spite of its inaccuracy,
because the vred marrow is distributed widely in the skeleton. The
skeletal distribution shown in Figure 2 illustrates the fact that, in

general, no specific depth can be applied for different exposure



geometries and different d{rradiating particles or even different
energies of particles having the same nature.

For internal dosimetry, especially for radionuclides deposited in
or near the skeleton, a precise calculational analog of the active
marrow system requires some postulations about cavity size variation
and the distribution of these marrow cavities within the skeleton.
However, for most situations of external exposure, the active marrow
may be assumed to be uniformly deposited in certain regions of the
skeleton. This simplification 1is possible because for external
exposure, distance versus insult (dose) variation is much Tess than
for internal radionuclide deposition where the insult (dose) wusually
varies even more rapidly than inversely with the sauare of the

j distance. There are two opposihg effects that alsc influence the
photon absorbed dose to marrow. These effects are the increased
shielding by the bone structure and the enhancement of dose near the
higher atomic number bone tissue (Spiers, 1966; Wilson and Carruthers,
1962). As demonstrated later, the net influence of these opposing
effects is usually considered to be small for external exposure
although such is not always the case for intérna] emitters.

CHORD Distribution and Marrow Doses

Figure 3 and Table 1 present CHORD density functions for active
marrow in the Reference Man Phantom (ICRP, 1975) for A-P, P-A,
bilateral, rotational, and isotropic exposure. Due to the nature of
the CHORD concept and the general convexness of the Reference Man
Phantom, there 1is no differentiation between 2w and 4« CHORD

distributions; however, depth-dose curves will reflect the different
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Table 1. CHORD p{£}af Yalues for Active Marrow in Reference Man.
2 (cm) Rotational cv A-P cv* P-A cv Bilateral ey {sotropic ov
0-0.5 00515 6 00626 3 00718 3 0.0138 2 0231 3
0.5-1 0175 3 0157 2 0252 1 0420 1 0658 2
1-2 0608 2 0412 2 0716 1 115 1 154 2
2-3 0508 3 0361 2 0791 1 114 1 126 2
3-4 0465 3 0340 2 0850 1 110 1 0944 2
4-5 0505 3 0442 2 107 1 133 1 152 2
5-6 0662 2 0730 1 126 1 173 1 179 2
6-7 0744 2 0782 1 109 1 .160 1 136 2
7-8 0705 2 0748 1 0806 1 0966 1 0586 2
8-9 0703 2 0738 1 0756 1 0359 2 0105 6
9-10 0603 2 0641 1 0626 1 00688 4
10-11 0482 3 0522 1 0440 2
11-12 0380 3 0364 2 0207 2
12-13 0311 3 0292 2 0127 3
13-14 0292 3 0549 1 0121 3
14-15 0282 3 0658 1 0119 3
15-16 0268 4 0675 1 0123 3
1617 0285 3 0643 1 0129 3
17-18 0283 3 0492 1 0130 3
18-19 0237 4 0231 2 0154 3
19--20 0241 4 0159 3 0168 2
20-21 0218 4
21--22 0169 4
22-23 0135 5
23-24 00985 6
24.-25 00866 6
25--26 00787 7
26-27 00672 7
27-28 00699 7
28-29 00545 8
29--30 00562 8
30-31 00385 9
31-32 00276 11
32-33 00194 13
33--34 00170 14
34-35 00147 15
35-36 00184 14
36--37 00126 16
37-38 00164 14
38-39 000988 19
39.-40 000341 32

*Coefficient of variation in percent,
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exposure aqeometries. The peak at 2 cm for rotational and isotropic
exposure is due to the shorter penetration distances to the side ribs
and upper arm bones while the more important peak at about & cm 1is
predominantly from the vertebrae and pelvis. The CHORD distriﬁutions
are influenced strongly by the pelvic region and the thoracic
vertebrae which contain about 36% and 28%, respectively, of the total
active marrow. In Figure 3, £ varjes to 40 cm for rotational
exposure because it was assumed that rotational CHORD dose estimates
will be obtained from broad beam depth-dose data. For bilateral and
isotropic exposures, £ varies to 10 cm because depth-dose data is
expected to be vrelated to the minimum distance to the closest
irradiated surface.

The CHORD distributions from Figure 3 were used in conjunction

with depth-dose curves (see Figure 1) according to

Dred marrow - EE: D(£) - ple} - oL
£

because all CHORD distributions were normalized to unity. Photon dose
to the active marrow as predicted by the CHORD concept is shown in
Figure 4; however, bilateral and vrotational results are not shown
because of close agreement with the results for A-P exposure.

Figure 5 provides active marrow dose relative to exposure at the
front of the chest for A-P dincidence. Alun Jones' experimental
results (1964) are included and the mean deviation between the two

methods is only 6% to 1.25 MeV which is high into the Compton range
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shown in Figure 6. Figure 6 is intended to serve as a guideline for
applications of the method of CHORDs to critical regions in or near
bone tissue. Experimental results were not available for higher
energies. Column 4 in Table 2 represents estimates from the CHORD
method and column 5 is from our Monte Carlo transport code (Jones, et
al., 1973). These values shown in column 5 were calculated at the
time of the cited reference but have not been published previously in
this form. The Monte Carlo results show excellent agreement in the
photoelectric region (see Figure 6) but seem to become increasingly
inaccurate in the Compton region. This unexpected characteristic of
the Monte Carlo results defies explanation at this time but the effect
will be investigated.

The important practical case of dose to the active marrow from
broad beam incidence on a constantly rotating phantom 1is shown in
Figure 7. Experimental results from Wilson and Carruthers (1962),
Alun Jones (1964), and Facey (1968) may have suffered slight
disfigurations due to replotting, but all appear to have been
normalized to the same ordinate at 250 keV. Much concern has been
expressed (Facey 1968) about whether marrow dose per unit exposure
should increase monotonically with energy as noted by Wilson and
Carruthers (1962) or whether it should peak at about 100 keV as noted
by Alun Jones (1964). The different shapes have been considered due
to energy degradation within the phantom and the fact that the
detector systems of Alun Jones (1964) and Wilson and Carruthers had

energy dependences in opposite directions (Facey, 1968).
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Table 2. Active Marrow Dose Relative to Dose at the Front of
the Chest.

Y -ENERGY (MARROW)
50 keV 26"
100 2
250 1.1
660 2.7
1.25 MeV 5.3
*10""" RADS/FLUENCE PHOTON

*T. D. JONES, HEALTH PHYSICS, 1973, VOL. 24, P, 248,

D+-

(CHEST)

48
57
1.47
3.61
6,14

CHORD MONTE cARLoY*
54 .ol
74 68
75 47
75 .50
. 36 .55

**CALCULATED AT TIME OF HEALTH PHYSICS, VOL, 24, P, 248, 1973, BUT

UNPUBLISHED,

ST
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At this time, it seems more probable that the different shapes
are due primarily to the fact that if one considers the shape of the
curve describing the ratio of the photon fluence per unit exposure as
a function of photon energy (Rad. Health Hbk, 1970; Fair, 1967) then
the dose response curve wmust have a shape that peaks about 100 keV
because the fluence per unit exposure varies more rapidly with energy.
than does the absorbed dose to the marrow, and secondarily to the fact
that Wilson and Carruthers assumed that 60% of the active marrow
received a dose similar to that measured in the thoracic vertebrae and
40% received a dose similar to that measured in the sternum*. The
CHORD doses are in excellent agreement with Facey's results (1968),
except for a consistent 12% overestimation. This deviation is
attributed to the facts that (a) 13.1% of the active marrow is in the
skull (see Figure 2) which Facey did not dinclude, (b) experimental
results from Facey appear to have been normalized to other
experimental results at 250 kev,’(c) experimentally obtained doses to
the active marrow system necessitate the assumption of an "effective
mass center" of each important marrow region (Clifford and Facey,
1970)** , and (d) the CHORD estimate did not allow for increased

attenuation by bone tissue shielding the marrow. As seen in Figure 6,

*

This method of averaging would tend to underestimate dose at lower
energies because as Facey (1968) points out, the "pelvis dominates

dose at higher energies followed by the thoracic vertebrae and sac-

rum down to 30 keV. There the ribs enter second place and below 30

keV the ribs dominate." Facey (1968) attempted to resolve difficulties
in the rotational case and his results are shown in Figure 7.

**For precision, this "effective mass center" would have to be "weighed"
proportionally to dose variations in the local volume of interest;
however, most experimenters appear to have used the mass centroid.



this effect is not large except for extremely low energies. At the
low energies, dose to the shallow marrow becomes dincreasingly
important, as is shown by the rapid attenuation of dose as a function
of depth, and most experimental results are expected to be somewhat
Jow because of the wmethod of averaging. CHORD dose values were
normalized per unit exposure according to the Rad. Health Hdbk.
(1970)* . In spite of factors a, b, ¢, and d, excellent agreement for
A-P estimates (A. R. Jones, 1964) and rotational estimates (Facey,
1968) compared with the method of CHORDs is observed. Figure 4, which
shows the dose to the active marrow for exposure to monoenergetic
photons, suggests that if one is concerned only about protection of
his bone marrow, he should not do the instinctive thing and turn his
back, but instead should face the hazard while backing away. The same
effect was also observed by Piesch (1968) and holds for the neutron
data in Table 3 which 1illustrates dose to the active marrow from
exposure to monoenergetic neutrons. Some of the data in Table 3 are
plotted in Figure 8 for ease of application. Bilateral and rotational
results are not shown in Figure 8 because of their close agreement
with the results for A-P exposure. Absorbed dose from neutron
produced recoil dons is usually characterized by the hydrogen atomic
density, because about 70% of the absorbed dose is due to interactions
with hydrogen atoms for neutron energies below 14 MeV (Auxier, 1968;

Jones, 1974). Standard soft muscle tissue contains about 10% hy

*
Poston's conversion values of fluence per unit exposure for the Ref-
erence Man tissue composition are, for all practical purposes, equal
to those in the Rad. Health Handbook.



Table 3. Dose to Active Marrow from Neutron Produced Recoil Ions
as Predicted by CHORD Distributions.

FREE-SPACE™

ENERGY KERMA p-A*¥ A-P BILATERAL ROTATIONAL ISOTROPIC
025 gV 2.1 2.1 1.2 1.4 1.6 .70
1 keV 1.0 3.3 2.2 2.1 2.3 1.1
10 keV 10, 4,1 2.6 2,6 2.8 1.6
100 KeV 70, 12, 7.4 9.4 q,2 5.4
1 Mev 230, 110, 67, 74, 75, 47,
2,5 MgV 340, 240, 180, 150, 190, 84,
14 MgV 690, 590, 520, 420, 540, 330,

6l

* - .
x 10 ? ERGS/ (GRAM-FLUENCE NEUTRON)
-11 ‘
**ox 10 RADS/FLUENCE NEUTRON
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weight hydrogen and has a specific gravity of unity, while bone tissue
contains about one-half the weight percentage of hydrogen as does
muscle tissue but has about twice the specific gravity of muscle
tissue so that the hydrogen atomic density is not very different for
the two types of biological tissue. Lung tissue has a specific
gravity of only about 0.3 and the hydrogen atomic density, therefore,
is quite different; however, most critical organs of interest are
either distant from the Tung tissue or closer to an irradiated surface
so that the penetration distance in grams/cm2 is less than the other
portion of the ray of travel that passes through a section of the
lungs. Based on depth-dose curves from some of our previous
calculations (Jones et al., 1973), it is believed that most regions of
variable specific gravity do not significantly influence the
application of the method of CHORDs, unless one is specifically
interested in dose to a volume of lung tissue.

Other CHORD Applications

Figure 9 illustrates a proposed dosimeter or "riskmeter" in which
the relative settings of the outer two dials select the appropriate
CHORD distribution and the inner two dials select the insult (depth-
dose) curve for the energy and type of incident radiation. Alun Jones
(1966) suggested that dosimetry should be approached by matching
variations in dose or risk ‘with scattering, absorption, and
attenuation; however, the CHORD method seems to permit this same
precision of matching variability on a simplified macroscopic Tevel.

Hopefully a schema such as incorporated into Figure 9 would

render the absorbed dose index, Dy, and dose equivalent index, HI’ for
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the standard ICRU 30 cm sphere (ICRU, 1971) even less useful than it
already 1is, because by using CHORD density functions plus standard
insult (multicollision depth-dose) curves, a health physicist or
medical technician could easily and quickly estimate exposure values
to any biological tissue at risk. It is also becoming apparent that
significant calculational and experimental efforts will soon be
directed to the estimation of tissue risk due to microwave
irradiations and the availability of p{£} df distributions should be
helpful.
Conclusions

In summary, the method of CHORDs permits rapid ‘"critical organ"
dose estimation and helps to circumvent some of the problems of
relating organ dose or risk to readings from meters or film badges.
A personal dosimeter measures exposure at the surface of the chest;
the measured exposure corresponds neither to the exposure in free
space nor to the organ or whole body dose and area dosimeters
determine only free space exposure (Piesch, 1967). Alun Jones (1966,
1964) pointed out that a survey meter or personal dosimeter may
overestimate the insult to the active marrow by a factor of 10 or
underestimate by a factor of 6. In spatially dependent radiation
fields, or for exposure to broad beam sources having an orientation
other than A-P, it is usually very difficult to have an accurate risk
estimate because of normalization to an inaccurate or shielded reading

taken at the location of the chest.
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