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ABSTRACT

Austenitic stainless steels have gained worldwide importance as

elevated-temperature structural materials. Often, they are used in

service situations where creep effects become important. This

investigation represents an effort to characterize the creep behavior

of type 304 austenitic stainless steel.

Using data gathered from various international sources,

generalized regression techniques were used to develop analytical

representations for various aspects of the creep behavior of type 304

stainless steel. These aspects include rupture life, minimum creep

rate, time and strain to the onset of tertiary creep, creep-rupture

ductility, and creep strain-time behavior.

All models developed included analytical predictions of

heat-to-heat variations in behavior as reflected by the ultimate tensile

strength of a given heat of material. Such expressions yield a

quantitative representation of the creep behavior of this material for

design use.
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INTRODUCTION

Austenitic stainless steels have gained worldwide importance as

elevated-temperature structural materials, particularly in nuclear

power generation systems. This popularity is due to several excellent

features of the behavior of these materials, including good elevated-

temperature strength, good resistance to sodium corrosion, excellent

resistance to superheated steam environments, excellent resistance to

carbon transfer, weldability, and relatively low cost [1,2]. Type 304

stainless steel exhibits excellent long-term stability with respect to

adverse microstructural changes caused by precipitation reactions [3-7].

The above properties make it possible to design components of

type 304 stainless steel for long-term service in temperature regimes

where creep and other time-dependent material properties become prime

design considerations. Power generation systems require operating

times up to and exceeding 100,000 hours, but actual experimental creep

data at such times are generally not available. Therefore, it is

necessary to predict long-term time-dependent behavior from the results

of relatively short-term tests. Most previous work in the extrapolation

of creep data has dealt with creep rupture, and many creep-rupture data

are available. However, inelastic analysis of actual operating systems

also requires a knowledge of the deformation behavior of the components

under the expected operating conditions. The prediction of such

behavior is a complex problem since, in general, components will be

subjected to variable (including cyclic) loads and temperatures and to



multiaxial states of stress. Specific methods have been developed for

making such predictions for types 304 and 316 stainless steel and for

ferritic 2 1/4 Cr-1 Mo steel [8-11], however. As listed in Ref. [11],

the components essential to such predictions are the following:

(1) a "flow rule" that relates multiaxial strain-rate components to the

corresponding multiaxial stress components; (2) a strain hardening [12]

law that describes the behavior under variable stresses; and (3) an

expression representing the behavior of the material under isothermal,

constant-load uniaxial conditions.

In the current investigation, constant-load isothermal creep

strain-time data for several heats of type 304 stainless steel tested

in air have been examined over a range of stresses and temperatures to

yield an expression for creep strain as a function of time, stress, and

temperature. The method presented here allows the creep equation to be

based largely upon readily available rupture life and minimum creep

rate data. In addition, the method provides a means of accounting for

the substantial heat-to-heat variations in properties which are

prevalent in this material [13]. The method involves development of

analytical expressions for rupture life, minimum creep rate, and time

and strain to the onset of teritary creep—all useful design properties

in themselves. Predictions made by the equation developed herein in

conjunction with the hypothesis of strain hardening are compared with

experimental relaxation and variable load data for type 304 stainless

steel.



Finally, the implications of the results in terms of material

behavior and design applications are discussed. Although elevated

temperature allowable stress values for this material are given in ASME

Code Case 1592 [14], it is shown that the current equations provide an

improved method of performing the complicated calculations involved in

the inelastic analysis of elevated-temperature components.





CHAPTER I

DESCRIPTION OF DATA USED

The data used in this investigation fall into several specific

categories. These are: (1) time to rupture (t ) data; (2) reported

minimum creep rate (e ) data; (3) various forms of creep ductility data

(ef> ©9> or e ); (4) data for the time to tertiary creep (t~ or t );

and (5) actual experimental creep curves. Figure 1 defines the various

quantities examined. All data were derived from constant-load

isothermal tests.

All material was listed in the original sources as annealed,

although it was not clear in all cases whether the material used was

mill annealed by the vendor (and tested by the laboratory in the

as-received condition), or reannealed in the laboratory before testing.

As-received material can contain residual cold work due to straightening

and forming operations occurring after the mill anneal. This cold work

can cause significant variations in yield strength, and as-received

material typically exhibits a 0.2% offset yield strength of about 35 MPa

greater than reannealed material [15,16]. However, heat treatment of

this material causes little significant microstructural change other than

the removal of such residual cold work and perhaps a small amount of

grain growth [17]. The ultimate tensile strength and creep properties

of type 304 stainless steel are virtually equivalent in the as-received

and reannealed conditions [15].
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Figure 1. Schematic Illustration of the Various Quantities Used
to Characterize the Creep Behavior of Type 304 Stainless Steel.



Rupture life (t ) data were derived from a variety of

international sources, which are described in Ref. [18]. Analysis has

shown that ultimate tensile strength is significantly reflected in the

creep and creep-rupture behavior of this material [13,19,20]. In fact,

it will be shown later in this report that many of the heat-to-heat

variations in the creep properties of this material can be described in

terms of variations in ultimate tensile strength. Therefore, it was

necessary to use only rupture data from heats of material for which

ultimate tensile strength data were also available. The data used

included data from British [21], Japanese [22] and American [13,23-29]

sources, including a large number of data recently generated at

Oak Ridge National Laboratory (ORNL)[13,25-28]. Table I summarizes

the rupture data. The various heats of material tested were too

numerous for each one to be described individually, although Table II

describes the various heats for the ORNL data.

Minimum or secondary creep rate (e ) data were available from

American sources only. These data were usually derived from the same

heats of material for which rupture life data were used. Presumably,

the values of minimum creep rate were all graphically determined from

experimental creep curves. These data, as were the rupture data, were

comprised of data from the American literature (US)[23,24,29] and from

the testing program at Oak Ridge National Laboratory (ORNL)[13,25-28].

Table III summarizes the minimum creep rate data.

In an effort to fully characterize the creep properties of type 304

stainless steel, various indices of creep ductility have also been

examined. These ductility quantities involve the strain incurred before



TABLE I

SUMMARY OF RUPTURE LIFE DATA USED

Data

Seta

Source

(Reference No.)

Number

of

Data

Temperature
Range
(°C)

Stress

Range
(MPa)

Rupture
Life

Range
(hr)

Tensile

Datab
Strain

Rate

(S-1)

BSCC 21 28 600-700 62-215 23-16151 c

NRIM 22 133 600-750 47-215 30-20902
-3d

1.25 x 10

US 23,24,29 146 538-816 28-345 10-65028
-4e

8.3 x 10

ORNL 13,25-28 205 482-760 52-345 10-29253 6.7 x io"4

aThe data set will be referred to by this label hereafter in this

report.

bcStrain rate at which corresponding ultimate tensile strength data
were generated.

c

Strain rate not given, but assumed to be some standard rate.

Strain rates were 5 x io~5 S"1 up to 1% extension, then
1.25 x IO"3.

e -5-1
Strain rates specified as 8.3 x io s to the determination of

the yield strength, then 8.3 x io-4 S_l thereafter.



TABLE II

SUMMARY OF CHEMICAL ANALYSIS OF 20 HEATS OF TYPE 304 STAINLESS STEEL IN ORNL TESTING PROGRAM

Heat

Symbol
Chemical Element. %

C N P B 0 H Ni Mn Cr Si Mo S Nb V Ti Ta W Cu Co Pb Sn

796 0.047 0.031 0.029 0.0110 0.0006 9.58 1.22 18. S 0.47 0.10 0.012 0.008 0.037 0.003 <0.0005 0.022 0.10 0.05 0.01 0.02
807 0.029 0.021 0.024 0.0005 0.010 0.0012 9.67 1.26 18.8 0.50 0.20 0.023 0.0015 0.012 0.002 <0.0005 0.020 0.11 0.03 0.01 0.01
797 0.059 0.055 0.028 0.0020 0.007S 0.0007 9.78 1.49 18.3 0.60 0.30 0.110 0.0050 0.020 0.005 O.OOOS 0.050 0.30 0.07 0.002 0.005
2.83 0.043 0.025 0.018 0.0003 0.0140 0.0009 9.12 1.32 18.2 0.45 0.30 0.020 0.0030 0.030 0.0010 <0.000S 0.021 0.14 0.05 0.01 0.01
926 0.053 0.041 0.020 0.C084 0.0007 9.79 1.16 19.0 0.68 0.10 0.025 0.0180 0.050 0.0100 0.0010 0.030 0.070 0.05 0.010 0.02
187 0.068 0.031 0.018 0.0042 0.0005 9.43 0.83 18.2 0.59 0.07 0.008 0.0020 0.060 0.003 <0.0005 0.015 0.15 0.05 0.01 0.02
697 0.057 0.034 0.016 0.0150 0.0005 9.38 0.91 18.5 0.50 0.05 0.037 0.0030 0.030 0.002 <0.0005 0.011 0.10 0.05 0.01 0.02
866 0.044 0.022 0.023 0.0002 0.0096 0.0010 8.98 1.51 18.5 0.47 0.2 0.007 0.0010 0.018 0.0005 0.0005 0.007 0.13 0.04 0.01 0.01
544 0.063 0.019 0.023 0.0002 0.0081 0.0006 9.12 0.99 18.4 0.47 0.2 0.006 0.0050 0.025 0.017 0.0006 0.026 0.12 0.05 0.01 0.01
330 0.068 0.031 0.018 0.O042 0.0005 9.43 0.83 18.2 0.59 0.07 0.008 0.0100 0.02S 0.002 <0.0005 0.0060 0.15 0.05 0.01 0.02
845 0.057 0.024 0.023 0.0002 0.0092 0.0013 9.28 0.92 18.4 0.53 0.10 0.006 0.0100 0.050 0.008 <0.0005 0.007 0.11 0.07 0.01 0.01
779 0.065 0.023 0.024 0.0002 0.0056 0.0009 9.46 0.94 18.1 0.47 0.20 0.005 0.003S 0.029 0.010 0.0020 0.043 0.16 0.02 0.01 0.01
390 0.066 0.086 0.018 0.0020 0.0052 <0.0001 8.75 1.57 18.6 0.60 0.30 0.006 0.0160 0.020 0.001 0.0006 0.043 0.20 0.07 0.0007 0.002
414 0.073 0.058 0.016 0.0190 0.0004 9.52 0.94 18.7 0.69 0.10 0.015 0.0100 0.025 0.002 <0.0005 0.027 0.10 O.OS 0.01 0.02
SSI 0.043 0.027 0.022 0.0010 0.0220 0.0013 9.40 1.20 18.5 0.59 0.30 0.018 0.0140 0.050 0.025 <0.0005 0.049 0.25 0.08 0.01 0.01
737 0.064 0.075 0.026 0.00005 0.0072 <0.0001 9.01 1.71 18.3 0.50 0.30 0.012 0.0140 0.031 0.001 <0.0005 0.016 0.50 0.07 <0.0003 0.0050
380 0.063 0.068 0.018 0.0260 0.0009 8.30 0.97 18.4 0.55 0.07 0.010 0.0100 0.028 0.004 <0.0005 0.016 0.10 0.05 0.01 0.02
086 0.050 0.043 0.025 0.0091 O.OOOS 9.46 1.23 18.4 0.53 0.20 0.016 0.0030 0.019 0.006 <0.0005 0.021 0.10 0.05 0.01 0.02
813 0.062 0.033 0.044 0.0003 8.95 1.87 17.8 0.48 0.32 0.004 0.0200 0.022 0.002 <0.0005 0.02
121 0.065 0.140 0.019 0.00005 0.0026 0.0011 9.19 1.92 18.1 0.30 0.14 0.010 0.0010 0.035 0.016 <0.0005 0.015 0.07 0.07 <0.0003 0.002
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TABLE III

SUMMARY OF MINIMUM CREEP RATE DATA USED

Minimum Tensile

Creep Data
Number Temperature Stress Rate Strain

Data Source of Range Range Range Rate
Set (Reference No.) Data (MPa) (MPa) (% /hr) (S_1)

US 23,24,29 82 538-816 28-345 0.000015-31.3 8.3 x I0_4a

ORNL 13,25-28 226 482-760 52-345 0.000021-15.7 6.7 x 10~4

a -5 -1
Strain rate specified as 8.3 x 10 S to the determination of

the yield strength, then 8.3 x 10"4 S"1 thereafter.
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rupture and the strain incurred before the onset of tertiary creep.

Table IV lists the heats of material for which creep ductility was

examined in detail, while Table V gives the initial specimen gage

lengths and heat treatments for those heats. Table VI defines the

ranges covered by those data.

Data for the time to the onset of tertiary creep (t ) were obtained

from the same heats of material described in Tables IV and V, plus

additional data from the ORNL heat-to-heat variations program [13,26].

Values of the time to tertiary creep were determined both by the time

to first deviation from linear secondary creep (hereinafter referred to

as t?) and by a 0.2% strain offset from the linear secondary creep

portion (hereinafter referred to as t ).

Since the principal purpose of this investigation was to develop

an analytical creep strain-time expression, an important part of the

data base was a collection of experimental creep strain-time curves.

Such curves were available in quantity only for the data from the ORNL

program. Table VII defines the ranges of the available creep data from

this program. In addition, analytical fits to experimental curves from

the data of Ref. [29] were available.



TABLE IV

COMPOSITIONS AND PRODUCT FORMS OF MATERIALS INVESTIGATED IN DUCTILITY ANALYSIS

Heat Reference Product Form
Mn

Content, wt %a

Si Cr Ni Co Mo Cu N Nb+Ta Ti

9T2796

9T2796

55697

8043813

Type 304 Stainless Steel

28 25.4-mm plate 0.051 1.37 0.041 b 0.4 18.5 9.87 0.1 0.3 0.24 0.031 b b

13,25 50.8-nun plate 0.047 1.22 0.029 0.012 0.47 18.5 9.58 0.05 0.10 0.10 0.031 b b

29 7-mm rod 0.052 1.1 0.011 0.01 0.52 18.92 9.52 0.035 0.12 0.10 0.052 b b

27 25.2-mm plate 0.062 1.87 0.04 0.0043 0.48 17.8 8.95 0.20 0.32 0.20 0.033 b b

ASTM A 240, 30,31 Plate, rod 0.08° 2.0C 0.045c 0.03c 1.0C 17-19 8-10
479

All analyses include balence iron.

Not reported.

"Maximum allowed.
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TABLE V

HEAT TREATMENTS AND SPECIMEN GAGE LENGTHS

OF MATERIALS STUDIED IN DUCTILITY ANALYSIS

Heat, Description

9T2796, 25-mm plate

9T2796, 51-mm plate

8043813

55697

Initial

Gage
Length Time Temperature
(mm) Treatment (hr) (°C)

Type 304 Stainless Steel

57.2a Anneal 0.5 1093

57.2 Anneal 0.5 1093

57.2a Anneal 0.5 1065

31.8 Anneal 1.0 1066

Cooling
Method

Air cool

Air cool

Air cool

Rapid air
cool

Some high-stress and/or low-temperature tests were run on
31.8-mm-gage-length specimens.
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TABLE VI

SUMMARY OF DUCTILITY DATA USED

Heata

Number0

of

Data

Temperature
Range
(°C)

Stress

Range
(MPa)

9T2796(25.4 mm) 58 482-816 34-345

9T2796(50.8 mm) 20 538-704 55-317

55697 45 538-649 110-345

8043813 24 538-816 117-379

See Table IV, page 12, for chemical compositions.

The number of data available for different ductility criteria
varied slightly. The number given represents the total number of tests
from which ductility data of any sort were derived.

TABLE VII

SUMMARY OF CREEP DATA USED

Heat

Number

of

Data

9T2796(25.4 mm) 67

9T2796(50.8 mm) 60

8043813 24

Temperature
Range

(°C)

Stress

Range
(MPa)

Maximum

Test Time

(hr)

538-871 34-272 13,000

427-704 14-207 46,000

593-704 41-276 3200

See Table IV, page 12, for chemical compositions,



CHAPTER II

ANALYSIS OF RUPTURE LIFE AND MINIMUM

CREEP RATE DATA

The importance of creep in elevated-temperature design is well

established. Two of the most commonly reported and used material

properties as determined from creep tests are the rupture life (total

test time to rupture) and steady-state or "minimum" creep rate (slope of

the linear stage portion of a classical creep curve such as that shown

in Figure 1, page 6). The analysis of stress-rupture data has been

widely studied for many years. Some methods have attempted to rely

upon fundamental considerations of material behavior, but the current

state of understanding of the creep behavior of complex structural

alloys requires that most methods be empirical in nature. Recognizing

this fact, a method is presented here through which standard techniques

of linear regression analysis can be applied to stress-rupture and

minimum creep rate data.

Review of Previous Techniques

Various forms of graphical, numerical, parametric, and algebraic

procedures have been proposed and used with varying degrees of success.

The most widely investigated methods have involved the so-called

"time-temperature parameters," in which some parametric combination of

rupture life, t , and temperature, T, is expressed as a function of

stress, a, only:
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P(tr, T) = f(a) . (1)

A plot of the time-temperature parameter, P, against stress then

defines the rupture behavior as a single two-dimensional "master curve,"

thus simplifying the analysis. Moreover, short-time high-temperature

data can supposedly be used to estimate long-time behavior at lower

temperatures. Time-stress, stress-temperature, and time-stress-

temperature parameters are also possible, with the total number of

proposed parameters now standing in the dozens. Several comprehensive

reviews of various parametric techniques are available [32-35].

The large number of possible analytical procedures makes the

choice of the method to use in a particular situation a formidable

task. One possible solution to this problem is the development of

flexible "generalized" parameters such as that proposed by Manson [36].

Also possible are numerical techniques based on a pointwise-defined

mesh of material properties. These techniques, such as the "minimum-

commitment method" proposed by Manson [33], or the use of finite-

difference recurrence relations [37], allow the data to numerically

determine the interrelationships among stress, temperature, and time.

Thus, the analyst is not required to specify a strict functional form

beforehand.

A standard method for selecting mathematical models to represent

phenomena in a wide range of applications involves the use of linear

regression analysis. Application of this technique to the analysis of

creep and creep-rupture data thus appears to be a logical step. In

fact, such techniques have been used for a variety of mechanical
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properties of 2 1/4 Cr-1 Mo steel [38], including rupture data.

Rummler [39] has proposed the use of regression analysis of rupture

data, although he was concerned only with fitting data and not with

extrapolation. The technique proposed here is basically similar to

that used previously for 2 1/4 Cr-1 Mo steel. The essential features

of this technique and results for type 304 stainless steel are presented

below.

Techniques of Regression Analysis

Regression analysis is widely used in science, engineering, and

industry, and many excellent summaries of the subject are available,

such as Refs. [40] and [41]. A general description of the subject will

not be given here, although a brief introduction is necessary for an

understanding of the remainder of this chapter.

It should be remembered that the term "regression analysis" does

not imply a single rigidly defined analytical approach. In a sense,

it represents more of a general philosophy toward the analysis of data.

This philosophy basically involves first the identification of the

relevant response (dependent) and predictor (independent) variables.

Then, the predictor variables are used to form a model that best

describes the variations in the response variable within the framework

of the particular problem at hand. The exact method by which the final

model is chosen can vary widely depending upon the preference of the

individual analyst. There is no single "best" method. This chapter

illustrates a few possible approaches.



The need to summarize large masses of data by simple analytical

relationships is obvious for elevated-temperature design. For the

present purposes, it will be assumed that such relationships can be

stated in the form

y. = T 6.x.. + e. , (2)
i . 3 it i

where the y. are the values of the response variable and the x.. are

the values of the predictor variables that may include combinations of

known constants, stress, temperature, or other important factors. The

3. are the coefficients multiplying the predictor variables, while e.

is an error term reflecting the random variation in y. Due to the

nature of the creep test, the rupture life (t ), or minimum creep rate

(e ), or some transformation thereof should be used as the response
v m

variable.

Equation (2) assumes that the chosen model is exactly correct and

that the 3- have some exact, though unknown, values.

In practice, this ideal situation is not found. In the case of

creep and creep-rupture data for complex alloys, the current state of

understanding of the processes involved does not allow an identification

of the "correct" physical model. Rather, the optimum empirical model is

sought, although it is not expected to be physically exact. The

coefficients 3- are then estimated by the method of least squares.

Label the estimated values of the 3- as b-. Then we have

h -1 Vi; • ™
3



19

where y^^ is the predicted value of the response variable (log t or

log em) for the ith observation. The difference between predicted and

experimental values is given by

Ei =y± - h > (4)

and is denoted the ith residual. The least squares technique seeks to

minimize the sum of squares of the residuals, RSS, given by

^i-yiJ2
i i

RSS =I e.2 =livi-yi)2 . (5)

Additionally, it is assumed that the residuals are normally distributed

about zero. As long as a model such as Eqn. 2 is linear in the

coefficients, RSS may be minimized by simple techniques, such as are

described elsewhere [40,41]. First, however, an appropriate model must

be identified.

Several specific decisions must be made during the process of

performing a regression analysis for a particular set of data. These

include the following steps..

1. The goals of the analysis must be established. For instance,

is fitting the data sufficient, or is extrapolation required? Are the

fits meant to describe individual heats of material, or is it necessary

to develop a general description of the behavior of a material based on

a multiheat set of data? What are the important variables whose

effects must be described? Is the requirement that of predicting time

to failure at a given stress or stress to failure at a given time?

2. The base of relevant data must be located, collected, and

screened. In the case of a multiheat data base, some sets of data may



20

still have to be treated separately. Data for different heats from

different sources with different thermomechanical processing histories

may display fundamentally different behavior. These differences may

preclude simultaneous treatment of the different data sets. On the

other hand, while a regression model may not precisely describe

heat-to-heat and heat treatment effects, a model that reflects these

effects at least to some degree may be of more general use than one that

ignores them entirely. Also, can future heats be expected to display a

distribution of behavior similar to that found in the heats for which

data are available?

3. A model must be selected. This step can be a complicated one

in general, especially in the case of creep and creep-rupture data,

which can be "messy" in terms of regression analysis. For example, data

at higher temperatures are generally collected at lower stresses. This

intercorrelation between stress and temperature can make it difficult

to isolate the effects of the individual variables. Also, data for

different heats are generally not available at the same stress-

temperature conditions.

4. Before actual use, the resulting model must be evaluated and

limitations placed on its application. Where appropriate, upper and

lower bounds on behavior may be established.

The goal of the current analysis is to develop design equations

for type 304 stainless steel. Thus, the analysis involves both

extrapolation and multiheat data sets. This situation can cause

problems, since many regression models can yield meaningless

predictions outside the range of available data. In the case of creep
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data, metallurgical instabilities or mechanism changes can cause

problems when extrapolating (see Chapter V). Moreover, in the ideal

limit, regression analysis assumes that scatter in the data about the

predicted mean is due only to random variation. Heat-to-heat

variations in properties introduce a new nonrandom source of variation.

These problems are not thought to be insurmountable, but they indicate

the importance of extreme caution.

The data base which will be used in the current analysis was

described in the last chapter. Note that we will be using ultimate

tensile strength (U) terms in the various predictive models developed.

However, U is not a uniquely defined property even for a given heat of

material at a given temperature, but depends upon the testing

technique used to generate the tensile data. In particular, at

temperatures where creep effects are important, strain rate is an

important variable [16]. As can be seen in Table I, page 8, of the last

chapter, four major sets of stress-rupture data were available for

analysis, labeled BSCC, NRIM, US, and ORNL data. Only US and ORNL

minimum creep rate data were available. The ultimate tensile strength

data were generated at different strain rates for each of these four

data sources. Therefore, for consistency, data from each of these sets

were analyzed separately.

The remainder of this chapter is devoted to model selection and

evaluation.
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Techniques of Model Selection

Various standard techniques for selecting optimum regression models

are available. These include the methods of forward selection, backward

elimination, stepwise regression, and several others [40]. However,

most methods have the common characteristic that they seek to isolate

a single optimum model based on statistical considerations. In the

case of creep and rupture data, such isolation is probably not

appropriate. Rather, it is preferable to isolate several potential

models and to choose one based on criteria such as physical reasonable

ness and analytical behavior when extrapolated. The most straightforward

way of determining such a list of candidate models is simply to perform

all possible regressions involving a preselected set of predictor

variables. This solution is complicated by the fact that the definition

of "best" model can become subjective. The method does, however, provide

the analyst with a variety of options.

Before choosing a list of predictor variables, one must decide upon

a choice of dependent variable. This choice has caused a surprising

amount of controversy in the case of rupture data, with some authors

favoring time as the dependent variable, and others favoring stress.

Depending upon the methods and goals of a particular analysis, perhaps

there is some question about the choice of dependent variable.

However, in performing a regression analysis, the nature of the creep

test forces time to rupture and minimum creep rate (or some

transformations thereof) to be considered as the respective dependent

variables. Here, we have chosen to use log t and log e as dependent
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variables since the logarithmic transformation appears to yield

variables that display a normal distribution about the mean at given

levels of the predictor variables. Moreover, this normal distribution

appears to have a constant variance as a function of the predictor

variables. Both of these conditions (normal distribution and constant

variance) are implied assumptions of the linear regression techniques

used here.

The important factors in determining the value of log e or log t

appear to be applied stress (a), temperature (T) , and heat-to-heat

variability. Previous investigators [13,19,20] have shown that the

elevated-temperature ultimate tensile strength can be an effective

indicator of heat-to-heat variations in creep and rupture behavior. We

have assumed that the ultimate tensile strength (U) can be used as a

third factor in order to decrease the uncertainty caused by heat-to-heat

variations in strength, since these variations can be quite large [13].

Thus, we have

y = f(a, T, u) (6)

where y is log t or log e and the function f is formed by some linear

combination of terms which are themselves functions of a, T, and U,

plus one constant intercept form. Each term is multiplied by a

coefficient whose value is determined by a least-squares fit to the

data.

This approach contains an infinite set of possible functions.

However, we are interested here in fitting large multiple heat sets of
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data for design purposes. Any final model chosen must not only fit the

data, but must yield reasonable and consistent extrapolations beyond

the range of the data in stress, time, and temperature. These

considerations greatly reduce the set of terms that must be considered.

Such practical considerations also greatly reduce the number of terms

that should be allowed to appear in any one model.

Even so, the number of models that must be considered is huge.

For example, in the present analyses, we considered a possible total of

sixteen terms, plus a constant term. (These terms will be enumerated

later.) Moreover, the models considered were limited to those

containing a constant term plus one to six terms in a, T, and U. The

total number of models thus under consideration was

where

N =
16

6

flfi] f >

16
[16]

+ + +

i> 4

16 16

1
(7)

f \

m represents the total possible number of combinations of m terms

m!m

taken k at a time, k!(m-k)!

considered was 14,892!

Fortunately, methods are available for increasing computational

efficiency in the choice of subset regression models. We used the

method of LaMotte and Hocking [42,43], as implemented by a computer

program based on their SELECT subroutine.

The program first rejects many models at each level (number of

terms) as being inferior based on statistical criteria. The remaining

models at that level are ranked according to the coefficient of

determination, R2. The statistic R2 (%) is defined by

Thus the total number of models we
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R2 =100(l -M|g.) . (8)

RSS is the residual sum of squares, given by Eqn. 5. The corrected total

sum of squares, CTSS, is given by

N

,2 «d=l

N -|2

1

CTSS= J (y.)z—±=± , (9)

2
where N is the total number of data. The value of R represents the

percentage of the variation in the experimental data that can be

described by a particular model.

Input to the computer program thus consists of the experimental

data and a list of possible terms. Output consists of a ranked list

2
(according to R ) of the ten best models at each level (number of terms)

These lists will in general not identify a single "best" model, but

will merely indicate a list of candidate models. The final model

selection can then be based on a combination of criteria, including

fits to data, simplicity, physical reasonableness, consistent

extrapolation, etc.

Identification of Candidate Models

The first step in the analysis for each of the six subject data

sets (BSCC, NRIM, US, and ORNL rupture data and US and ORNL minimum

rate data) was to use the SELECT subroutine to identify candidate models

for describing the stress-rupture behavior of this material according

to Eqn. 6. After several preliminary runs, a total of sixteen terms
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were identified for input to the computer program. They are listed in

Table VIII. These terms reflect the requirement that the final

equation be simple and extrapolable. Temperature appears in the various

terms only as 1/T, rather than as more complicated functions. Since

creep is a thermally activated process, such a temperature dependence

is certainly reasonable. The ultimate tensile strength for this

material at a given strain rate can be approximately described as a

cubic polynomial in temperature [16]. The ultimate tensile strength

terms thus provide a more flexible means of describing any temperature

dependence. Note that only first order terms in stress (a) or log a

appear in Table VIII. Graphical analysis of the current data in terms

of isothermal plots of log t or log e vs log a showed no inflections
r m °

in these plots. In fact, these curves appeared to be describable by

straight lines. If any curvature of these lines is reflected in the

data, it would be described by a model containing both a and log o

terms. Thus, the relatively simple terms given in Table VIII should

be capable of providing simple models that well describe trends in the

data, while exhibiting no inflections or analytical instabilities

when extrapolated beyond the data base.

Each of the six available data sets (four rupture and two minimum

creep rate) was individually subjected to analysis using the SELECT

procedure. In addition, the US and ORNL rupture data for type 304

stainless steel were rerun together for comparison purposes. Data from

the US, BSCC, and NRIM sources for type 316 stainless steel were also

analyzed. The results of analyses for that material are reported

elsewhere [44].
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TABLE VIII

TERMS USED IN CHOOSING CANDIDATE MODELS THROUGH SELECT

Term Number Terma

1 1/T

2 a

3 cr/T

4 log a

5 (log a) /T

6 (log a) / (TU)

7 U

8 1/U

9 U a

LO a/U

11 1/(TU)

12 U log a

13 ± log a

14 a /(TU)

15 log (a/U)

16 U/T

aT = Temperature (K),

a = Stress (MPa),

U = Ultimate Tensile Strength at Temperature (MPa).
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Since the SELECT program ranks candidate models according to the

2
R statistic, models with more terms will have inherent advantage over

those with fewer terms. Therefore, one must limit the number of terms

in the selected models based on a compromise between statistical fit to

2
data and simplicity. An example of the variation of R with number of

nonconstant terms from SELECT for the ORNL rupture data is shown in

Figure 2, where R for the best and tenth best model at each level is

plotted against the number of nonconstant terms in that model. Figure 2

2
shows that R increases very rapidly in going from one to two

nonconstant terms, but increases little more in going beyond three terms.

Another useful statistic for examining these fits is the standard error

of estimate, SEE, given by

SEE - /ir^r (10)

where N is again the total number of data and v is the total number of

terms in the model. As shown in Figure 3 SEE improves (decreases) very

little in going beyond three terms. Another interesting aspect of

Figures 2 and 3 is the very small magnitude of the statistical difference

between the best and tenth best model at each level. Based on plots

such as Figures 2 and 3, models with three nonconstant terms were

chosen for extensive study. Table IX shows the ten best three-term

models for each of the above six data sets, plus the ORNL-US combined

rupture data. The numbers in parenthesis to the right of some of the

models in Table IX indicate the number of that model as used in

subsequent analysis. Models were chosen for further study on the basis

of fits to one or more data sets and of physical reasonableness. Models
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ORNL-DWG 77-3452

T T

TYPE 304 STAINLESS STEEL

ORNL RUPTURE DATA

VARIATION OF R2 WITH NUMBER
OF NONCONSTANT TERMS FROM SELECT

©BEST MODEL AT EACH LEVEL

• 40th BEST MODEL AT EACH LEVEL

• ALL 16 POSSIBLE TERMS

I I I I I

5 7 9 11 13

NUMBER OF TERMS IN MODEL

15 17

Figure 2. Variation in the Coefficient of Determination, R , With
Number of Nonconstant Terms in Regression Models for the ORNL Rupture
Life Data.
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ORNL- DWG 77-3151

T
TYPE 304 STAINLESS STEEL
ORNL RUPTURE DATA

VARIATION OF SEE WITH NUMBER OF
NONCONSTANT TERMS FROM SELECT

o BEST MODEL AT EACH LEVEL

• 10th BEST MODEL AT EACH LEVEL
o ALL 16 POSSIBLE TERMS

8—*-

5 7 9 11 13

NUMBER OF TERMS IN MODEL

15 17

N„m*Zig¥l 5' Variation in the Standard Error of Estimate, SEE, With
Life Datl " *" Re2ression Models for the ORNL Rupture
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TABLE IX

TEN LEADING THREE NONCONSTANT TERM MODELS AS IDENTIFIED

BY SELECT FOR EACH DATA SET

Termsa R2 b

ORNL Rupture Life Data

16,12, 5 74.37 (1)C
16, 1,12 74.28 (2)
3, 4,16 74.09 (3)

16, 1, 5 73.94 (4)
4,14,16 73.91

16, 4, 2 73.88 (5)
15,16, 2 73.75

9, 4,16 73.70 (6)
15,14,16 73.64
3,15,16 73.63

US Rupture Life Data

10, 3, 1 89.92
16,14,10 89.83
9,10, 1 89.80
9, 2, 1 89.73
7,14,10 89.57

12,14,10 89.47
14,10, 1 89.46
16,12,10 89.46
16, 7,10 89.44
16, 4, 2 89.44 (5)

BSCC Rupture Life Data

11, 7,12 87.19 (7)
6, 7,15 86.89
6, 7, 4 86.73
7.11.15 86.11
1.12.16 86.09 (2)
6,12,15 86.06

16.13.15 86.05
12, 5,16 86.02 (1)
6.16.15 85.91
9,16, 4 85.84

NRIM Rupture Life Data

9, 1, 2 89.34
11.10.16 88.73
7.10.16 88.60
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aAs listed in Table VIII, page 27.

Coefficient of Determination. R2 defines the percent of variations
in the data that is described by the model.

cNumbers in parenthesis indicate the number of the given model in the
final list of candidate models, as listed in subsequent analysis.
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which lacked an explicit temperature term were exluded from further

study. Also excluded were models in which log t was linear in a, since

an extrapolation to zero stress would yield a finite rupture life from

such a model.

In selecting models for further study, it was decided to consider

rupture life and minimum creep rate models simultaneously, since the

candidate models for these two properties were generally similar in

form. Models for both types 304 and 316 stainless steel were treated

together. A total of fourteen three-nonconstant term models were

selected on the basis of the SELECT results for rupture life and

minimum creep rate of type 304. A fifteenth, two-term model was

chosen for further study because of previous use [13,19]. Model 16,

also a two-nonconstant term model, was chosen for study on the basis

of simplicity and fits to data. Models 17-27 were chosen for type 316

stainless steel in the same way that Models 1-14 were chosen for

type 304 stainless steel. Finally, Models 28-32 were chosen for

comparison, these models being forms of the common Larson-Miller (LM)

[45], Manson-Succop (MS)[46], and Orr-Sherby-Dorn (OSD)[47]

time-temperature parameters. Model 27, chosen through SELECT, is also

a form of the OSD parameter. The final list of thirty-two candidate

models is given in Table X.

Obviously, the list in Table X could have been made longer or

shorter. The SELECT results indicate that one is certainly not likely

to describe the current data sets much better than with the models in

this list, although there are several other models that could have been

included.
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TABLE X

LIST OF CANDIDATE MODELS USED TO DESCRIBE RUPTURE LIFE

AND MINIMUM CREEP RATE DATA

°S a?U1. log y = aQ +-i log a +-^ + a U log a

a U

2. log y=aQ +Oj/T +-|- +a3U log a

a a

3. log y = aQ + a log a + -±- + a3U/T

4. log y=aQ +a1 U/T +a2/T +%L log a

5. log y = a- + a log a + a a + a U/T

6. log y = a„ + a log a + a Ua + a U/T

7. log y = a + c^ /(UT) + a2U + a3U log

a2 a,
8. log y = aQ + a: log a + ^r log +^j

9. log y = an + a., log a + —* log a + —* a

"l
10. log y = a. + — a + a_ U/T + a_ U log a

0 TU 2 3 &

11. log y = aQ + a a/T + a2 U log a + a log a

12. log y = aQ + a1 log a + a2 a/T + a3 U/T

13. log y = aQ + a2a /(TU) + a2 log (a/U) + a3/T

14. log y = aQ + aj_ log (a/U) + a^/U + a3 U/T

15. log y = aQ + o^ log a + a2 U

16. log y = a_ + aj log a + a2 U/T
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TABLE X (continued)

17. log y = aQ + a.a + a2 log a + a3 log a/T

a218. log y = aQ + oija +-g- log a + a3 /T

19. log y = a + a..a + a2 log (a/U) + a., /T

a

20. log y = aQ + a log a + tjt- log a + a3a U

a321. log y = aQ + a1 log a + a2 a/T — log a

22. log y = aQ + o^ log a + a2 aU + a3 /T

23. log y=aQ + a1 log a+a2 /T +a3 a/(TU)

a a2

24. log y=aQ +yj- loS a + xTJ log a+a3 ° / (-TU-1

25. log y = a + a2 log a + a2 U/T + a3 U log a

26. log y = aQ + ax a /U + a2 log (a/U) + a3 /T

27. log y = aQ + a: log a + a2 a + a3 /T

28. log y = aQ + ai log a + a2 a /T + a3 /T

al29. log y = aQ +Tjr- log a + a2 a /T + a3 /T

30. log y = a„ + o^ log a + a2 /T

31. log y = a + a. log a + a2 T
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TABLE X (continued)

allog y = aQ + — log a + a2 /T

Note: y = minimum creep rate or rupture life; T = temperature (K)•
o - stress (MPa). U = ultimate tensile strength at temperature (MPa);
a0 - a3 = constants to be estimated by least squares.
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Evaluation of Candidate Models

The 32 candidate models were studied as follows. First, each

model was fit by a least squares technique to each of the six basic data

sets. Then, each data set was divided into two portions: rupture data

into short-term (t <_ 2000 hr) and long-term (t > 2000 hr) data, and

minimum creep rate data into high rate (e ^_ 0.001%/hr) and low rate

(e < 0.001%/hr) data. Each of the models was next fit to the short
m

time and high rate data sets. Predictions from the models thus

obtained were then compared with the long time and low rate data to

assess the extrapolability of the various models.

Tables XI and XII present the best-fit values of the coefficients

from each of the 32 models listed in Table X for the four complete

rupture life and two complete minimum creep rate data sets respectively.

Tables XIII and XIV then show the relative successes obtained in

2
fitting these models to the complete data sets in terms of R . Finally,

Tables XV and XVI show the values of the root mean square error, RMSE,

for each of the models obtained by predicting the long time and low

rate data from fits to the short time and high rate data.

RMSE =

1_
RSS]2
N

(11)

where N is the total number of data, and RSS the residual mean square.

N and RSS refer to the predicted (long time/low rate) data only. Since

the models were not fit directly to the long time/low rate data, the
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TABLE XI

BEST FIT VALUES OF THE COEFFICIENTS IN THE

CANDIDATE MODELS FOR RUPTURE LIFE

Modela ao ai
a2 a3

ORNL Data
1 0.57164E 01 -0.39149E 04 0.32601E 02 -0.73034E-02

2 0.17499E 02 -0.19782E 05 0.62477E 02 -0.21474E-01

3 0.68238E 01 -0.30856E 01 -0.30696E 01 0.11554E 02

4 0.10085E 00 0.17477E 02 0.95896E 04 -0.58833E 04

5 0.72143E 01 -0.40327E 01 -0.73095E-02 0.15262E 02

6 0.85326E 01 -0.50893E 01 -0.13614E-04 0.16734E 02

7 -0.13424E 02 0.14372E 07 0.81838E-01 -0.21507E-01

8 0.37520E 01 -0.52116E 01 0.55252E 04 -0.57080E 04

9 0.24885E 01 -0.23925E 01 0.36604E 04 -0.70614E 01

10 0.15176E 01 -0.34496E 04 0.22242E 02 -0.69045E-02

11 0.12855E 02 -0.47562E 01 0.10109E-01 -0.75057E 01

12 0.79272E 01 -0.45755E 01 -0.51099E 01 0.15888E 02

13 -0.93274E 01 -0.27193E 04 -0.29207E 01 0.11282E 05

14 -0.67699E 00 -0.43632E 01 -0.19307E 01 0.82819E 01

15 0.99715E 01 -0.64475E 01 0.21329E-01 0.0

16 0.11337E 02 -0.64000E 01 0.14755E 02 0.0

17 0.56978E 01 -0.13737E-01 -0.80948E 01 0.68691E 04

18 0.12607E 01 -0.11656E-01 -0.47263E 03 0.59133E 04

19 -0.92370E 01 0.23165E-02 -0.70631E 01 0.83044E 04

20 0.11013E 02 -0.10948E 02 0.65009E 04 -0.88710E-05

21 0.68851E 01 -0.98262E 01 -0.10745E 02 0.78241E 04

22 -0.31714E 01 -0.48628E 01 -0.26686E-05 0.14756E 05

23 -0.83205E 01 -0.23948E 00 0.12681E 05 -0.47144E 04

24 0.70545E 01 -0.10035E 04 0.60216E 06 -0.36123E 04

25 0.12188E 02 -0.69175E 01 0.12097E 02 0.17552E-02

26 -0.P0949E 01 -0.37312E 01 -0.21397E 01 0.98057E 04

27 -0.78886E 01 -0.23951E 01 -0.86600E-02 0.15324E 05

28 0.28638E 02 -0.37067E 01 -0.52129E-02 -0.19064E-01

29 -0.14630E 02 -0.33745E 04 -0.44569E 01 0.23539E 05

30 -0.22443E 01 -0.51421E 01 0.14340E 05 0.0

31 0.31167E 02 -0.54310E 01 -0.18660E-01 0.0

32 -0.14174E 02 -0.48771E 04 0.25668E 05 0.0

US Data

1 0.48168E 01 -0.28756E 04 0.37010E 02 -0.11928E-01

2 0.12139E 02 -0.12867E 05 0.56316E 02 -0.21767E-01

3 0.76023E 01 -0.34220E 01 -0.32216E 01 0.11652E 02

4 -0.45283E 01 0.13008E 02 0.16142E 05 -0.63286E 04

5 0.79928E 01 -0.43161E 01 -0.75253E-02 0.14945E 02

6 0.88909E 01 -0.51492E 01 -0.15494E-04 0.16424E 02

7 -0.11877E 02 0.13543E 07 0.76442E-01 -0.20840E-01

8 0.66829E 01 -0.73987E 01 0.63682E 04 -0.58174E 04

9 0.55808E 01 -0.48610E 01 0.46722E 04 -0.71464E 01
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value of R for these data is meaningless—thus the use of the RMSE

statistic for these comparisons.

The next step in the analysis is the selection of an optimum model

for each of the six data sets. By virtue of the way in which the

original terms for SELECT were chosen, most of the candidate models

behave "reasonably" when extrapolated. In terms of fits to data,

several models are virtually equivalent for each data set. Thus, any

of several models could easily be chosen for each data set. There are

many ways through which an optimum model might be chosen. The simple

procedure used here for each data set was as follows. First, define

the RSS value for each model from the fit to each total data set as

RSSf and the RSS value from the extrapolation to the long time/low rate

data as RSS . Let N. be the total number of data in each total data set
e f

and N be the total number of data in each long time/low rate data

set. For each data set a new. RMSE value, RMSE*, was calculated from

RSSf + RSS
RMSE* = —r, n—- . (12)Nf + Ne

Also, in order to assess the overall applicability of each model to type

304 stainless steel, the four rupture life data sets were summed and

the two minimum creep rate data sets were summed to yield RMSE** as

J>SSf + £rss (13)
RMSE** = .

Tables XVII and XVIII show the results of these summations, including

the rankings of the models for each individual data set.
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The choice of optimum models for minimum creep rate and rupture

life for the ORNL data is particularly important. Later in this report

it will be shown that the models for e and t can be useful in
m r

developing a complete creep strain-time equation. Since most available

creep curves are from the ORNL data, the creep equation will be based

primarily on those data. Based on the above criteria, Model 1 is the

best rupture life model and the second best minimum creep rate model.

Interestingly, Model 2 is the best minimum creep rate model and the

second best rupture life model. Clearly, either of these models could

be used to describe both rupture life and minimum creep rate. Note

that based on the entire available data base, Model 1 yielded an RMSE**

value of 0.49 for e (the best of all models) and of 0.35 for t (the
m r

second best of all models). Model 2 yielded RMSE** values of 0.51 for

e and of 0.36 for t . Clearly, there is very little advantage in either

model over the other (or in fact, over several others, such as

Models 5, 6, 7). However, since Model 1 ranked ahead of Model 2 in the

overall comparisons for both properties, Model 1 was selected as optimum

for both properties for the ORNL data.

For the US data, based on RMSE* values, Model 4 ranked first for

both e and t , and thereby was considered optimum for both properties.

Note that Model 4 ranked first for t in the overall RMSE** values and
r

second for e in the overall RMSE** values.
m

Model 4 also ranked first for the NRIM rupture data, while Model 7

ranked first for the BSCC data. Conclusions based on the BSCC data may

be questionable due to lack of data (thus the wide variation in the
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successes of various models for these data), but the values RMSE* and

RMSE** contain an inherent weighting factor to take the number of data

into account.

The above individual data set comparisons indicate Models 1 and 4

as perhaps the two most outstanding from the original list of 32

candidates, which themselves came from an original possible list of

over 14,000. The properties of these two models will therefore be

described here.

First, both models predict that log a vs log tr and log a vs log em

isotherms will be linear, which is not surprising for a material with

the long-term stability of type 304 stainless steel. The slopes of

these linear isotherms are given by

3log y
[91og a

a

^- + a U , (14)
T T 3

for Model 1 (y is e or t , the a's are coefficients as in Tables XI,
m r

pages 39-41, and XII, pages 42-43). For Model 4, these slopes are given

by

oiog y
Slog a

T,U

= a3 . (15)

Thus, one immediately sees a strong difference between these two models.

For Model 4, the slope is constant for all heats at all temperatures.

For Model 1, the slope is a function of both U and T. For the ORNL

data, the value of this slope can vary from -9.05 for t and 12.44 for

e for maximum strength material at 427°C to -5.08 for t and 5.80 for
m r
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e for minimum strength material at 704°C. Maximum and minimum strength
m

refer to the valueUas will be defined in this chapter.

Constant stress plots of log t or log e vs. 1/T are also linearr & r & m

for both models. The slope of these iso-stress lines is given by

"8log t

3(1/T)
a± log a + 0(2 U (16)

a,U

for Model 1, and by

3log t

9(1/T)
= a U + a2 (17)

a,U

for Model 4. Thus, the slope is a function both of a and U for Model 1,

but is a function only of U for Model 4. Therefore Model 4 can in a

sense be viewed as a "U-modified" OSD parameter [47], since that

parameter implies such a slope to be constant.

The dependence of log t and log e upon U is also linear in both

cases, the slope of this dependence being given by

31og y
3U

a„

a,T
— + a_ log a (18)

for Model 1 and by

3log y
3U I T T

a.

(19)

for Model 4.
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While both Models 1 and 4 express log e or log t as functions of

a, T, and U (as they should), those models can be solved directly for

stress. For Model 1, this solution yields

(log y - a - a2-)

10«° - (.,/T «°.JJ) • (20)

(log y - a. - a. U/T - a/T)

^° -<^h — • (21)
Effects of Ultimate Tensile Strength

Of the 32 candidate models listed in Table X, page 35, only

Models 17, 21, 27, 28, 29, 30, 31, and 32 lack terms reflecting ultimate

tensile strength. The first three of these were obtained from a

separate analysis of type 316 stainless steel data [44], while the last

five were chosen for study simply because they are forms of widely used

parametric models. It is not surprising that none of these models fare

very well in comparison to the entire list of models. In terms of fits

to the six total data sets, the best any of the above "non-U" models do

for R2 is Model 29, which ranks 14th best for the US minimum creep rate

data. For rupture data, the best non-U model is Model 17 which ranks

19th for the NRIM rupture data. For the extrapolated data the best

non-U model, Model 29, ranks 7th among the models for the ORNL low

minimum creep rate data, while Model 32 ranks 18th for the NRIM long

rupture life data. Table XIX illustrates the comparisons between the

best models with U terms and the best non-U models for each data set.



TABLE XIX

COMPARISON OF RESULTS OBTAINED USING MODELS WITH AND WITHOUT
ULTIMATE TENSILE STRENGTH TERMS

Best U Mndpla
Fits

—

Extrancilations
..

Data Set

Model

No. R (%)

Best Non-U Modela

Model

No. R (%)

Best

Model

No.

U Model a

RMSE

Best Non-

Model

No.

-U Modela

RMSE

ORNL(t ) 1 74.37 28 57.42 7 .617 28 .808

USft ) 5 89.44 28 81.74 4 .415 28 .648

NRIMft 1 8 88.28 17 83.73 4 .329 32 .395
Cn
in

BSCC(t ) 30 87.19 28 28.32 7 .483 32 1.16

ORNL(e )
*• mJ 2 84.61 29 73.96 2 .644 29 .830

US(em) 32 95.79 29 94.56 4 .560 32 .747

From the list of candidate models given in Table X, page 35.



56

Figure 4 compares results obtained for the ORNL data using Model 1

(with U), and using Model 27, a leading non-U model.

Two conclusions can be drawn from the above comparisons. First,

the models with U terms are in general superior to those without U

terms. This superiority is particularly pronounced for the ORNL data,

which is not surprising in view of the fact that these data were

specifically generated to study heat-to-heat variations in properties

[13]. Also, it is certain that the ORNL U data were all generated at

a constant strain rate, while this fact is not as clear for the other

data—particularly the US and BSCC data. As will be discussed below,

the success obtained with models containing U terms is largely

attributable to the fact that the heat-to-heat variations in U provide

a measure of heat-to-heat variations in creep and creep-rupture

properties. A second conclusion is that our technique identified models

much better than the standard time-temperature parameters studied,

although the three standard parameters considered here form a small

subset of the total number of parameters that have been proposed.

Interestingly, both Models 1 and 4 predict a linear relationship

between log e or log t and U, consistent with the results given in

Refs. [19] and [20]. The predictions of Model 1 concerning this

relationship for the ORNL data are compared with the actual data in

Figures 5-7. These figures show considerable scatter, but it appears

that the model does accurately describe trends in the data. (Included

in these figures are data for laboratory reannealed, as-received, and

aged data, although only the reannealed data were used in the actual

modeling.)
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The improvement in predicting e and t for individual heats can be

seen in Figures 8-15, where data for individual heats are compared with

the predictions of Model 1 (with a U term) and of Model 27 (a leading

model with no U term). Figures 16 and 17 further present comparisons

of the behavior of heat 8043813, an unusually strong heat [27] with the

behavior of heat 972796 (the so-called ORNL "reference heat"), which is

weaker than average [25]. Clearly, the model with an ultimate tensile

strength correction significantly decreases the uncertainty in these

predictions caused by heat-to-heat variations. However, it is also

clear that the model cannot precisely describe the behavior of every

individual heat. This expected result is due partially to experimental

uncertainty and scatter in measuring U, e ,and tr, and partially to the

fact that ultimate tensile strength does not totally describe the

complex results of heat-to-heat variations.

Prediction of Mean, Maximum, and Minimum Behavior

Using the above models for minimum creep rate and rupture life as

functions of stress, temperature, and ultimate tensile strength, one

can estimate the behavior of an average heat, or of a minimum or maximum

strength heat if one can first estimate the average minimum, and

maximum ultimate tensile strength at each temperature. The models

provide a prediction not only of mean values of em and tr> but of the

spread that can be expected in these values due to heat-to-heat

variations in properties.

Reference [16] presents an analysis of ultimate tensile strength

as a function of temperature for the ORNL data, while Ref..[18] presents
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Ultimate Tensile Strength (u) for Several Heats of Type 304 Stainless
Steel.
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such an analysis for the US, NRIM, and BSCC data. For all four data

sets, U can be described by a model of the form

U= Bo + 6XT + 62t2 + %t3 (22)

where the constants BQ, BP B2, and B3 were estimated by methods of

least squares. Table XX presents the values of these constants for

each data set, as well as the number of data and SEE value from

Eqn. 22 for each data set. The equation for the ORNL data is expressed

for temperatures in °C, while the other equations are expressed for

temperatures in °F. The so-called maximum and minimum values were

obtained by adding or subtracting twice the value of SEE from the

predicted mean. These values do not, of course, represent strict

physical maxima or minima.. Neither do they represent rigorous limits

in a statistical sense. They give a convenient measure of the width

of the scatter band for engineering purposes. However, this method

of defining limits shows reasonably good agreement with statistical

upper and lower central tolerance limits [48] for these data sets. At

a confidence level of 95%, one expects only 5% of all observations to

fall below the lower tolerance limit. Another 5% would be expected to

fall above the lower limit. For instance, Table XXI compares the

currently defined limits with these more rigorous statistical limits

for the ORNL data. The current method is preferred here for convenience

and simplicity in application. Figures 18 and 19 illustrate the

variation in U with temperature and the two methods for defining limits.

Figures 20-25 illustrate results obtained by inserting the above

mean, maximum, and minimum values of U into the optimum model for each
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TABLE XX

BEST FIT VALUES OF COEFFICIENTS IN EQUATIONS DESCRIBING ULTIMATE
TENSILE STRENGTH AS A FUNCTION OF TEMPERATURE3

Number

of

Data Set Data B0 B Bi B? B* SEEb

ORNLC 135 88.90 -2.19 x 10"1 5.95 x 10"4 -5.65 x 10"7 3.40

US 272 91.93 -1.13 x io"1 1.59 x io"4 -7.84 x 10"8 3.98

NRIMd 99 95.44 -1.291 1.90 xio"4 -9.55 xio"8 2.79

BSCCd 218 89.09 -1.09 xio"1 1.51 xio"4 -7.40 xio"8 2.94

Ultimate tensile strength (U) and temperature (T) have been related
by U = Bq + B]T + B2T2 + B3T3 strength values are given in Ksi by these
equations. To convert to MPa, the strength is multiplied by 6.895.

b
Standard error of estimate for U (Ksi) by the equation in note a.

Temperatures in °C.

Temperatures in °F.
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TABLE XXI

COMPARISON BETWEEN LOWER CENTRAL TOLERANCE LIMITS

ON ULTIMATE TENSILE STRENGTH FOR THE ORNL

DATA WITH CURRENT LIMITS

"Lower Limit" Value

of Ultimate Tensile Strength (MPa)
Lower

Central Mean Value

Temperature Tolerance Minus
(°C) Limit 2 x SEE*

100 441 452

200 383 397

300 366 377

400 361 369

500 341 349

600 288 296

700 165 183

aMean value given by the equation in Table XX (converted to MPa).
Then twice the standard error of estimate is subtracted to give an
empirical lower limit.
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data set to predict the corresponding creep behavior. Again, these

models are Model 1 for the ORNL data, Model 4 for the US data, and

Model 7 for the BSCC data. These figures yield two obvious results.

First, the predictions of average behavior depict the variations in

the data quite accurately. Second, the predictions of maximum and

minimum behavior correspond very closely to the upper and lower limits

of the scatter bands of the data.

Strain Rate Effects

As discussed above and in detail in Ref. [16], the ultimate

tensile strength of a given heat of material is a function of the

tensile strain rate, at least for temperatures of 538°C or greater.

The U values used in establishing the above models were therefore

obtained at a constant strain rate for each data set. Unfortunately,

this fact appears to limit the applicability of the models. For

instance, the ORNL models apply to U values obtained at a constant

nominal strain rate of 6.7 x 10" sec" . If one knows the value of U

for a given heat at some other strain rate, the models cannot directly

predict creep behavior using this value of U.

Fortunately, the strain rate dependence of U at a given

temperature can be simply quantified as

U = UQ + B log e (23)

where e is the tensile strain rate, Uq is the ultimate tensile strength

at a strain rate of unity, and B is a temperature-dependent constant.
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As explained in Ref. [16], U differs for different heats, but B should

be relatively free of heat-to-heat variations.

Knowing the value of U at any strain rate, e, one can use Eqn. 23

to calculate the corresponding value, U*, at a strain rate of

6.7 x io"4 sec-1 by the relation

U* = U + B log(6.7 x 10"4/e) . (24)

Figure 26 shows results obtained by comparing Model 1 from the ORNL

rupture data to the NRIM rupture data, after correcting the NRIM U

-4
values to the corresponding values for e = 6.7 x 10 by the above

procedure. The agreement between predictions and data is excellent.

Therefore, this simple procedure appears to provide a simple, effective

means of extending the applicability of the current models to various

strain rates.

The above models are extremely useful in predicting rupture life

and minimum creep rate behavior for type 304 stainless steel. It will

be shown in the following chapters that these models can also provide

a means of predicting creep ductility and creep strain-time behavior.



85

ORNL-DWG 76-10544R

400

2000

- 200

1 1 nii| 1 l|MII| 1 i mini | i iinni 1 i r 11 hi

-

NRIM DATA
-

TYPE 304
-

— TEST TEMPERATURE

!T~ ^

-•^.^

600'C(in2*F)

~

- -^^ ~-~^ ~—. -

-

^^^od o o*x. op 0 ^~
••^^» 0 ^O© CD

<

— "'•^

" 1 i 1 Hll >l 1 1 1 >< 1 1 > Inn

1000

z
- 500

200 -

100 -

- 100

50

1000i i i i ;i[111—I I |||||||—I I l|llll|—I I l|llll|—I I I]11 I
TEST TEMPERATURE

650*C (1202*F)

10

100

50 t
(0
(0
UJ
tn
t-
cn

20

-5 50°
a.

s

S3
£ 200

100

Jo)

(c)

~ i i iinni i i iinni i i iinni I i iiniil [.i iliirri to
•M-IM^J ' ' I,1"1! I ' ' Itfst 'temperatureI1111! "°

^^•. so oovc

200

100

- 50

CE

6;

20

10

(cP

Iff) MAXIMUM U

(0) AVERAGE U

(c) MINIMUM U

ITEST TEMPERATURE'
TOO'C (1293*F)

20

10 ;

' I I I IMill | I I iml I I Ihull I I lllllll I I Mill
10° 10s10' 10' 10'

TIME TO RUPTURE (hr)

Figure 26. Comparison of NRIM Stress-Rupture Data at 600, 650, and
700°C (1112, 1202, and 1293°F) for 9 Heats of Type 304 Stainless Steel
in As-Received Condition With Predicted Maximum, Average, and Minimum
Curves from Rupture Model With Elevated-Temperature Ultimate Tensile
Strength (U).





CHAPTER III

ANALYSIS OF CREEP DUCTILITY DATA

Many of the previous investigations into the interpretation and

analysis of creep data have focused only on the time to rupture, and

many methods for the correlation and extrapolation of rupture life data

have been proposed. Current elevated-temperature design rules [49], also

require a knowledge of the time to the onset of tertiary creep and time

to reach a specified strain. These design rules also include an

inelastic strain limit which forbids the accumulation of more than 1%

total inelastic membrane (through-thickness) strain. This limit is

independent of stress and temperature history and of material; however,

a strain limit based on actual material ductility could be very useful.

Knowledge of time-dependent ductility can be useful in various

applications, such as optimizing design conditions or materials

selection. Ductility can also give fundamental insights into material

behavior.

Booker et al. [50-52] studied techniques for the quantitative

analysis of creep ductility data for types 304 and 316 stainless steel,

ferritic 2 1/4 Cr-1 Mo steel, and nickel-base Inconel alloy 718. The

type 304 stainless steel data examined in those studies are

characterized in Table IV, page 12, Table V, page 13, and Table VI,

page 14. Three ductility criteria will be discussed here: (1) the
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creep strain to rupture, e ; (2) the creep strain to the onset of

tertiary creep, e3; and (3) the plasticity resource, eg = e^.

The quantities e , e_, and e all exhibit considerable scatter.

However, based on a concept introduced by Smith [53] for rupture

ductility, average strain rates corresponding to each of these ductility

criteria were defined as

e = e /t (25)
r r r

e3 = e3/t3 (26)

e = e /t (27)
m s r

where t, is the time to the onset of tertiary creep. As described in

Chapter I and shown in Figure 1, page 6, t3 may be either t or t2

and e, is the corresponding strain. The quantities er> tr, e3, t3, and

e all exhibit much less scatter than the above ductility criteria and
m

therefore can be analyzed with more confidence. Knowing those

quantities e , e , and e can then be calculated indirectly, since

e„ = e t (28)
r r r

and so on.

The analyses in Refs. [50-52] employed two techniques, both

based upon the above concept of average strain rates. The first

procedure, given in Ref. [50], is similar to the parametric analysis

introduced by Goldhoff [54] for rupture ductility. This procedure

involves separate analysis of the appropriate time (t or tr) and of
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the appropriate strain rate (e , e _, or e ) by some parametric or

other procedure such as those commonly used in the analysis of rupture

life data. These analyses yield the time and rate as functions of

stress and temperature, after which they can simply be multiplied

together to yield the appropriate ductility as a function of these

variables. Booker et al. [50] applied this procedure only to single

heat data sets (Table IV, page 12), although the use of ultimate tensile

strength in developing multiheat creep models appears to be promising.

The second technique, described in Refs. [51,52], involves

empirical relationships among various criteria. In particular, those

results used relationships of the form

em =Ft/X (29)

e, =Bema (30)

-Y
r

e3 = D t„"Y (31)

e = C e p (32)
r m v J

and

er =Etr"6 (33)

where F, A, D, y, E, and 6 are temperature-dependent constants, while

B, a, C, and p are independent of temperature. Note that Eqn. 29 is

merely the widely used Monkman-Grant [55] equation, except that F and

X are temperature dependent.
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Equations 29-33 allow one to calculate the various strain rates

e . e , and e from either e or t . Knowledge of the values of t and
m 3 r m r L

e or e then yields e or e . Additionally, Ref. [56] presents an
m r s r

equation of the form

t3 =At/ (34)

where A and B are temperature independent constants, and t3 is either

t or t . Thus, a knowledge of t can be used to estimate t,, which
2 ss r •*

can be combined with e3 to yield e3. Tables XXII-XXVII present the

results obtained in Refs. [51,52, and 56] by fitting Eqns. 29-34 to

data for the four above-mentioned materials. Those references include

additional details, including attempts to analytically model the

temperature dependence of Eqns. 29, 31, and 33.

The models developed for e and t in the last chapter directly

yield a model for the plasticity resource, e , as a function of

stress (a), temperature (T), and ultimate tensile strength (U). For

instance, using Model 1, e and t can be described by
m r

log t = 5.716 -•^A log O+ 32.60 U/T - 0.007303 Ulogo (35)
6 r T

and

log e =-2.765 +-5-^- logo - 51.84 U/T +0.01616 Ulogo . (36)
in-

Then, since log e,, = log em + log tr, e^ is described by a model of the

same form:

log e=2.951 --^p-log a-19.24 U/T +.008857 Ulog a.. (37)
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TABLE XXIII

RELATIONSHIP BETWEEN MINIMUM CREEP RATE

AND AVERAGE CREEP RATE TO TERTIARY CREEPa

Data Set

Number

of

Points B a RMSb R2C

Temperature
Range of
Data (°C)

304 Stainless 138 1 110 0.974 0.050 99.3 482-816

316 Stainless Gd 120 1 602 0.995 0.269 95.6 593-816

316 Stainless He 38 1 092 0.991 0.0235 99.6 538-760

Inconel 718 Tf 18 0 684 0.86 0.254 92.2 538-760

Inconel 718 Cg 26 1 40 0.985 0.322 96.2 538-704

2 1/4 Cr-1 Mo 117 0 637 0.854 0.241 90.2 482-677

Minimum creep rate, e , and average creep rate to tertiary creep,
e7, have been related by e_ = Be a.
3' '3m

RMS = ZY2/(n —v), where n = number of data points and v = number
of coefficients in the model (here v = 2); ZY2 = sum of squared residuals
ZY2=EClne ' ' ~° " " ' " r "®3,pred_ln ^exp^2 where ln ®3pred =ln LPredicted rate CVhr)] and

= rn ^experimentally observes rate (%/hr)].In e„
3eff

R2 = coefficient of determination; Rz describes how well a
regression model describes variations in the data. R2 = 100 signifies
complete description, R2 = 0.0 signifies no description. / Rz/100 = R,
the linear correlation coefficient.

Data for total strain.

Data for creep strain only.

f
Data for total strain.

§Data for creep strain only.
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TABLE XXIV

RESULTS OF CORRELATION BETWEEN AVERAGE CREEP RATE

TO TERTIARY CREEP AND RUPTURE LIFEa

Number

Temperature of b
R2CData Set (°C) Points D Y RMS

304 Stainless 538 24 4.899 1.030 0.174 94.4

593 37 22.571 1.198 0.202 96.2

649 44 25.091 1.089 0.172 97.3

704 14 33.882 1.099 0.124 98.5

760 11 33.115 1.034 0.048 99.3

316 Stainless G 593 36 30.265 1.078 0.020 99.6

704 48 49.383 1.081 0.030 99.6

816 36 42.921 1.103 0.023 99.6

316 Stainless H 538 7 7.131 1.154 0.174 93.5

593 12 12.783 1.038 0.171 96.5

649 12 23.220 1.005 0.027 99.6

760 7 31.690 1.004 0.014 99.6

Inconel 718 Tf 593 4 2.044 1.048 0.339 94.4

649 6 27.859 1.442 0.121 97.4

704 4 0.081 0.710 0.00406 99.5

760 3 2.545 1.125 0.0566 97.0

Inconel 718 Cg 538 6 32.394 1.429 0.491 97.0

593 6 3.968 1.218 0.0636 99.3

649 8 1.212 1.020 0.0259 99.7

704 6 6.640 1.232 0.103 98.8

2 1/4 Cr-1 Mo 538 23 3.531 0.903 0.422 73.1

593 41 51.761 1.280 0.699 77.2

649 26 18.168 1.185 0.411 83.8

Rupture life, t , and average creep rate to tertiary creep, e_,
are related by e_ = Dt ~Y .

RMS EY2/(n — v), where n = number of data points and v = number
of coefficients in the model (here v = 2); ZY^ = sum of squared residuals,

e )2 where ln e3 d= ln [predicted r;
ln Xexperimentally observed rate (%/hr)].

ZY2 = Z(ln e3 d- ln e )2 where ln e3pred= ln [predicted rate
(%/hr)] and i£ a

3exp

CR2 = coefficient of determination; R2describes how well a
regression model describes variations in the data. R2 = 100 signifies
complete description, r2 = 0.0 signifies no description. /R2/100 = r,
the linear correlation coefficient.
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Data for total strain.

eData for creep strain only.
f
Data for total strain.

gData for creep strain only.
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TABLE XXV

RELATIONSHIP BETWEEN MINIMUM CREEP RATE
AND AVERAGE CREEP RATE TO RUPTUREa

Data Set

Temperature
Range of
Data (°C)

Number

of

Points C <5 RMSb R2C

304 Stainless 482-816 142 2.20 0.927 0.251 96.4

316 Stainless G 593-816 120 3.18 1.026 0.044 99.3

316 Stainless H 538-760 37 2.52 0.899 0.290 94.8

Inconel 718 T 538-760 19 4.20 0.756 0.413 71.0

Inconel 718 C 538-704 27 1.71 0.813 0.062 94.5

2 1/4 Cr-1 Mod 482-677 126 1.34 0.650 0.741 64.6

Minimum creep rate, e , and average creep rate to rupture, e , have
been related by e„ = Ce P m

m

RMS in terms of ln(e ).

'Coefficient of determination.

Data in this case represent total strain.
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TABLE XXVI

RELATIONSHIP BETWEEN AVERAGE CREEP RATE
TO RUPTURE AND RUPTURE LIFE*

Number

Data Set

Temperature

(°C)
of

Points E 6 RMSb R2C

304 Stainless 538

593

649

704

760

24

40

45

14

11

66.67

43.26

46.41

61.98

52.28

1.225

1.165

1.103

1.139

1.081

0.098

0.095

0.130

0.140

0.100

97.7

98.3

98.0

98.4

98.7

316 Stainless G 593

704

816

36

48

48

11.64

85.73

127.29

1.022

1.030

1.151

0.127

0.099

0.031

97.3

98.6

99.6

316 Stainless H 538

593

649

760

8

11

12

6

121.04

39.34

52.05

81.05

1.292

1.087

1.027

1.042

0.026

0.051

0.048

0.0006

99.2

99.1

99.3

99.9

Inconel 718 T 593

649

704

5

9

5

1.30

4.29

7.34

0.763

1.154

0.844

0.084

0.076

0.086

92.6

97.6

89.0

Inconel 718 C 538

593

649

704

7

7

7

7

2.28

3.28

3.50

8.79

0.124

0.954

0.939

0.978

0.063

0.C09

0.066

0.066

98.6

99.7

98.1

96.9

2 1/4 Cr-1 Mo 538

593

649

29

47

27

143.45

185.17

147.16

1.151

1.213

1.198

0.086

0.103

0.128

95.6

95.9

94.9

aAverage creep rate to rupture, er, and rupture life, tr, have been
related by e = Et ~°\

J r r
K •RMS in terms of ln(er).

Coefficient of determination.
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TABLE XXVII

RESULTS OF CORRELATION BETWEEN TIME
TO TERTIARY CREEP AND RUPTURE LIFE*

Data Set

Number

of

Points A a RMSb R2C

Temperature
Range
Data (°C)

304 Stainless, t
ss

277 0.752 0.977 0.090 96.6 482-816

304 Stainless, t2 233 0.685 0.968 0.117 93.6 538-649

316 Stainless, t- 183 0.526 1.004 0.071 93.5 538-816

2 1/4 Cr-1 Mo, t
' ss

126 0.334 1.046 0.067 96.1 482-677

Inconel 718, t
ss

63 0.424 1.045 0.080 98.2 538-704

Inconel 718, t? 52 0.285 1.049 0.142 94.3 538-704

Time to tertiary creep, t and rupture life, t , have been related
by t3 = Atr ; t3 may be tgs (0.2% offset time to tertiary creep) or
t2 (time to first deviation from linear secondary creep).

b ?
RMS = ZYz/(n - v) where n = number of data points and v = number

of coefficients in the model (here v = 21; ZY* = sum of squared
residuals, ZY2 = Z(ln t .- ln t )2 where ln t- .= ln [predicted
rate (%/hr) and ln t3 p= Tn [experimentally observed rate (%/hr)].

Rz = coefficient of determination; R2 describes how well a
regression model describes variations in the data. R2 = 100 signifies
complete description, R2 = 0.0 signifies no description. /r2/100 = r,
the linear correlation coefficient.
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Figures 27 and 28 illustrate results obtained using this model to

predict e for heats 9T2796 and 8043813 of type 304 stainless steel. As

expected, the amount of scatter is large, but the model describes trends

in the data well. Note that the predicted (and observed) magnitude of

heat-to-heat variation in eg is smaller than in either em or t^. This

decrease is caused by the fact that stronger heats have larger values

of t and smaller values of e . These opposing effects tend to cancel
r m

out, thus decreasing the variation in eg = e^. This effect appears to

be generally true for creep ductility data, i.e., scatter is large for

a given heat, but the differences between different heats are relatively

small. Since Eqn. 36 is the result of an exhaustive modeling procedure

for e , it is felt to be superior to Eqn. 29 in describing e .
m '"

The above procedure may also be used to model variations in er and

e? by separately modeling e , t 63, and t3. By way of illustration,

only e3will be treated here.

The modeling procedure described in the last chapter resulted in a

list of 32 candidate models that appeared to be equally applicable to

data for e or t . The approach here has been to use these same models

for examining the quantities t and e3 for the ORNL data. The source

of these data is described in Chapter II. Table XXVIII gives the values

of the coefficients appearing in these 32 models (see Table X, page 35),

and Table XXIX shows the values of the coefficient of determination

(R2) obtained by fitting each model to the available data for tgs and

ev Interestingly, Model 1, chosen as optimum for em and tr, again

ranks first (in terms of R2) for the e3 data, and ranks very close to
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ORNL-DWG 77-3142

STRESS (ksi)

20 30 40

LINES PREDICTED FROM

loges= 2.951- 569/ T logcr-l9.24U/ T
+ 0.0088576* logcr

CT = STRESS (MPa)

T= TEMPERATURE (K)

(/•ULTIMATE TENSILE STRENGTH (MPa)

HEAT 9T2796

HEAT 8043813

TYPE 304 STAINLESS STEEL

593°C (HOOT)

POINTS ARE EXPERIMENTAL

DATA

o HEAT 9T2796 25-mm AND

51-mm PLATE

» HEAT 8043813 25-mm PLATE

150 200 250

STRESS (MPa)

300 350 400

Figure 27. Comparison of Experimental Data With Predicted Values
of the Plasticity Resource, e = e t , at 593°C (1100°F). Shown are
predictions for heat 8043813 (a strong heat) and for heat 9T2796 (a
weak heat).
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STRESS (ksi)
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ORNL- DWG 77-3145

30

LINES PREDICTED FROM

log«>s =2.951-569 7"/logcr - 19.24U/T +
0.008857 U logo-

0--STRESS (MPa)

T 'TEMPERATURE (K)

U -- ULTIMATE TENSILE

HEAT 9T2796

HEAT 8043813

50

STRENGTH (MPa)

/ TYPE 304 STAINLESS STEEL
/ 649°C (1200°F)

POINTS ARE EXPERIMENTAL
DATA

o HEAT 9T2796 25-mm AND

51-mm PLATE

a HEAT 8043813 25-mm _
PLATE

100 150

STRESS (MPa)

200

Figure 28. Comparison of Experimental Data With Predicted Values
of the Plasticity Resource, es = emt , at 649°C (1200°F). Shown are
predictions for heat 8043813 (a strong heat) and for heat 9T2796 (a
weak heat).
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TABLE XXVIII

BEST FIT VALUES OF THE COEFFICIENTS IN THE CANDIDATE MODELS

FOR TIME TO TERTIARY CREEP

Modela ao ai «2 a3

1 0.47303E 01 -0.33313E 04 0.29834E 02 -0.68761E-02

2 0.14418E 02 -0.16397E 05 0.54669E 02 -0.18847E-01

3 0.71040E 01 -0.36322E 01 -0.19533E 01 0.11837E 02

4 -0.97089E 00 0.15355E 02 0.95432E 04 -0.52157E 04

5 0.74497E 01 -0.42867E 01 -0.44594E-02 0.14150E 02

6 0.82664E 01 -0.49384E 01 -0.81747E-05 0.15032E 02

7 -0.14409E 02 0.16267E 07 0.76245E-01 -0.18900E-01

8 0.40715E 01 -0.56332E 01 0.54624E 04 -0.48132E 04

9 0.29965E 01 -0.32582E 01 0.38980E 04 -0.59650E 01

10 0.11494E 01 -0.28765E 04 0.21604E 02 -0.68717E-02

11 0.12351E 02 -0.29968E 01 0.93408E-02 -0.72904E 01

12 0.78299E 01 -0.45899E 01 -0.31933E 01 0.14553E 02

13 -0.93286E 01 -0.19720E 04 -0.31541E 01 0.10615E 05

14 -0.12016E 01 -0.44049E 01 -0.12342E 01 0.80315E 01

15 0.85925E 01 -0.57054E 01 0.19802E-01 0.0

16 0.99444E 01 -0.57208E 01 0.13837E 02 0.0

17 0.64401E 01 -0.10283E-01 -0.83883E 01 0.65008E 04

18 0.46788E--01 -0.10380E-01 -0.41681E 03 0.62397E 04

19 -0.89119E 01 0.32643E-02 -0.66724E 01 0.77624E 04

20 0.10771E 02 -0.10560E 02 0.60665E 04 -0.45144E-05

21 0.72062E 01 -0.96574E 01 -0.82486E 01 0.72573E 04

22 -0.23935E 01 -0.48361E 01 0.14585E-05 0.13604E 05

23 -0.78617E 01 -0.67610E 00 0.12460E 05 -0.38462E 04

24 0.62990E 01 -0.10332E 04 0.66663E 06 -0.32364E 04

25 0.10940E 02 -0.63270E 01 0.10758E 02 0.20425E-02

26 -0.76056E 01 -0.28541E 01 -0.24310E 01 0.95635E 04

27 -0.64713E 01 -0.29363E 01 -0.55245E-02 0.14441E 05

28 0.27869E 02 -0.41160E 01 -0.23728E-02 -0.17998E-01

29 -0.13838E 02 -0.36105E 04 -0.22989E 01 0.22775E 05

30 -0.28988E 01 -0.46843E 01 0.13831E 05 0.0

31 0.29014E 02 -0.48963E 01 -0.17819E-01 0.0

32 -0.13600E 02 -0.43791E 04 0.23857E 05 0.0

Table X, page 35, Time to Tertiary Creep.



p
H P c
r

i—
•

C
D

r
t
.

P O
Q C
D

O
l

t
n

C
D

•i P O
q C
D

n C
D

C
D

JO P r
t

C
D

-
3

C
D

4 P "-
v

n H C
D

C
D

T
3

W
W

W
M

N
M

N
N

J
M

W
W

I
s
J
N

H
H

M
N

)
H

O
1

0
0

0
s
1

O
U

1
*

W
M

M
O

«
3

0
0

-
«

J
O

M
n

J
-
W

M
H

O
l
O

O
O

N
l
C

T
i
W

J
-
W

M
P

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
O

O
I

I
I

1

o
o

o
o

o
o

o

r
tC

»
tn

r
t^

-^
r
tr

t^
(^

r
tO

O
-^

r
tC

O
r
t^

C
^
^
N

o
lo

iD
--

J
C

O
r
tN

J
W

lf
lH

H
*

H
O

M
n

W
J
iC

M
v
)J

il
O

(O
H

tO
(O

0
0

*
.C

>
W

h
'w

!-
'W

?
l
!
S
?
2
2
!
l
^
!
^
y
W
H
^
O
S
O
O
O
s
)
N
)
o
(
»
O
N
i
o
i
D
H
t
D
o
o
M
w

m
m
m
r
n
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
m
g
m

P
.
S
P
P
0
0
0
0
0
0
0
°
o
o
o
o
o
o
o
o
o
o
o
o
o
o

N
O

r
tr

tM
r
tr

tN
O

N
O

r
tr

tM
r
tr

tN
O

r
tN

J
O

r
tr

tN
O

r
tr

tr
tr

tN
O

r
t

M
W

M
N

W
H

N
J

C
O

O
O

N
O

0
0

N
O

H
i
o

m
W

H
i
n

h
o

»
o

w
A

l
O

W
W

O
v
j

N
J

tn
r
a

r
n

tn
tn

tn

o
o

o
o

o
o

N
O

N
O

r
t

N
O

N
J

N
J

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

I
I

o
o

o
o

o
o

o

t
n

O
n

C
o

t
n

C
O

t
n

O
l

O
l

r
t

O
S

t
n

t
n

o
o

O
n

t
n

t
n

o
j

W
O

v
l
l
O

W
W

M
^

-v
l

t
n

c
o

i—
'

0
0

W
N

O
N

O
tn

tn
tn

tn

o
o

o
o

I-
.

.f
c.

I_
J

l_
a

w
o

>
H

H
N

J
N

O
C

O
-v

l
O

l
l
n

w
o

o
N

O
•[

-
0

0
O

.
O

i
t
n

o
i

tn
t
n

t
n

tn

o
o

o
i—

•
i—

•
-f

c.

O
n

(-
•

o
n

o
i

-P
.

c
o

N
O

0
0

O
0

0
t
n

t
n

o
o

t-
1

t
o

I
I

l
l
l
l

o
o
o
o
o
o
o
o
o
o
o
o

C
fi

M
W

N
)

M
-P

-
0

\
O

O
N

-P
*

O
H

s
l

W
O

J
.

^
4

-
H

H
C

D
H

s
|

i
n

M
tn

tn
tn

tn
tn

i
i

o
o

o
o

o
U

l
H

W
H

K
)

v
|

W
M

H
H

W
M

O
O

M
n

O
N

O
O

H
H

r
t

v
j

o
O

0
0

-P
-.

0
0

O
O

O
C

O
C

O
O

r
t

(
n

H
M

C
>

C
O

t
o

W
tn

tn
tn

tn
tn

tn
tn

i
i

O
O

O
O

O
o

o
N

O
(-

•
N

O
v
j

c
n

tn
N

O

r
t

O
l

t
n

v
j

W
O

l
t
n

c
o

N
J

O
N

t
n

m i

o
o

N
O

N
O

t
n

t
n

N
O

N
J

C
O

0
0

O
O

N
t
n

t
n

I
I

o
o

o
i

t—
•

-f
c-

o

M
M

n
I
M

O
N

M
W

O
>

C
D

N
)
C

T
>

O
iH

C
iH

W
O

M
O

O
O

M
U

l
f
.
M

W
O

O
^
s
J
J
i
W

W
»

t
O

N
(
/
l
(
/
1

0
>

O
l
T

i
C

T
i
(
/
1

*
-
H

1
0

0
0

W
s
l
N

^
.J

-
i
O

-
P

'W
H

l
o

W
U

l
N

W
l
O

_
0

\
H

«
^
H

M
C

>
^
0

0
O

-
4

l
n

M
0

0
H

C
T

>
t
n

m
m

m
m

m
t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

t
n

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

r
t
r
t
r
t
.
l
i
.
r
t
o

-
P

-
-
r
t
r
t
v
j
r
t
r
t
N

O
r
t
c
n

.
p

-
.

1
I
I

I
I

I
I

I
I
I
I

o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o
o

C
O
0
0

I
*

(
-
•

1
—
•

N
O

O
N

-p
*.

i
—
•

I
-
-

O
l

O
N

0
0

1
—
•

•p
*.

N
O

1
—
'

•
v
j
O
N

,
P
-

O
l

-
P
-
C
O

N
O

C
O

O
N

K
-
"

v
j

O
l

N
O

v
j

O
l

N
O

o
C
O

v
j

v
j

0
0

0
0

-
P
a

O
-P
--

v
j

o
-f
a.

v
j

v
g

O
N

-
p
»
O
l

-
P
-
v
j

t
n

t—
'
0
0

t
n

O
l

1
—
•

o
r
t

C
O
v
j

1
—
•

O
v

t
n

-P
-.

-
P
*
O
l

r
t

0
0

0
0

o
t
n

O
N

0
0

O
l

t
n

C
O

-
p
-

o
h
-
-
C
O

C
O

O
N

i
—
•
O
l

v
j

•p
>.

t
n

1
—
'

-
P
>
C
O

O
n

C
O

C
O

0
0

r
t

N
J

i
—
•

v
j

t
n
t
n

t
n

t
n

r
a

m |
m

m
m

m
m

m
m

t
n

m
t
n

m
m

m
m

o
o

o
o

o
o

o
o

o
o

o
o

o
o

1 o

i o
o

o
o

o
-p
->

»
-
•
O
l

N
O

N
O

i
—
>

(
-
•

i
-
-

i
—
•

r
t

N
J

-P
-.

•f
c.

o
t
n

N
J
t
n

o
N
O

N
O

I
I
I

I
I

I
I
I

o
o

o
o

o
o

o
o

o
o

o
o

o
o

o
o

i
l
l

i
l
l

O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

a
•

a
•

a
•
.
.
.
.
.
.
.
.
.
.

O
O

r
t
r
t
r
t
r
t
r
t
v
j
o

i
N

O
N

O
r
t
O

N
r
t
h

O
r
t

r
t
t
n

c
0

O
0

a
r
t
v
j
o

i
O

C
0

0
N

0
0

-
f
c
.
N

0
O

N
-
fc

-
O

N
tn

O
N

O
iv

jc
o

o
tn

tn
O

N
O

ic
o

N
O

r
tC

O
O

O
C

O
v
J
r
tv

jo
O

O
N

C
O

O
O

lO
N

M
H

H
H

s
l
O

N
O

l
O

M
H

W
H

O
N

W
t
n

t
n

t
n

t
n

t
n

t
n

m
t
n

t
n

t
n

t
n

t
n

m
t
n

•
i

i
i

O
O
O
O
O
O
O
O
O
O
O
O
O
O

N
l
n

M
t
v
)
H

M
J
-
.
H

N
)
N

J
A

M
H

H

o
o

o
O
l

N
J

N
O

N
J

O
N

I-
*

0
0

M
A

N
O

0
0

v
j

C
O

O
N

r
t

O
l

-P
-.

-P
->

N
O

r
t

•P
--

O
n

v
j

o
i

O
O

O
l

C
O
t
n

O
l

N
O

0
0

v
j

O
l

O
l

C
O

0
0

O

v
j

r
t

I
—
•
C
O

v
j

N
J

O
l

v
j

N
J

O
l

O
-
v
]

O
C
O

0
0

c
o

_
_

_
C

O
N

J
N

J
N

J
v
J
O

N
N

J
O

N
O

N
t
n

r
a
m

t
n

t
n

m
m

m
m

r
a
m

m
m

t
n

•
i

o
o
o
o
o
o
o
o
o
o
o
o
o

t
n
r
t
C
7
.
l
n
N
J
-
t
-
.
-
f
c
.
l
n
t
n
l
n
l
n
t
n
.
p
-
>

if C
L

.
C

D

P
N

J

O
l

D
O

t
n

c
n

H T
l

I
—
I

H
T
l

O
<

7
3

> t
-

>
C

<
t
n

t
n

c
n

£
o

C
"
.
T
l

t
n

r
i

X
7

3
t
n

t
n

t
n

n
H

T
3

o
>

t
n

0
3

7
3

T
l

>
T
)

tr
-1

t
n

H
r
t

t
n

n r
t

B
H

t
n

i—
i

o
z

X
H

H
C
O

t
n

7
3

i—
i

H
2

i
—
i

>
H

7
3

E
C

•
<

t
n

n
n

5
°
3
2

m
z

t
n

o
T
3

r
t

o > H t
n

2 o o t
n

f C
O

o N
O



103

the best model for the t data. Therefore, Model 1 was taken as optimum
ss

for both the e and t data as well. In particular, these models are

log e =-2.6253 +̂ iHiA log a -44.107 J-U 0. 0129634 Ulog a (38)

and

3331 3 nlog tgg =4.7303- J^1-J log a+29.834— 0.0068761 Ulog O. (39)

Alternatively, t and e can be described by Eqns. 30 and 34 as

functions of e and t , respectively. Referring to Tables XXIII,

page 92, and XXVII, page 97, these equations become

t = 0.752 t °-977 (40)
ss r *• J

and

. ., . 0.974 ,...
e, = 1.11 e (41)
3 m v J

Figures 29 and 30 illustrate the fits of these equations to available

data.

Figure 31 shows the fit of Eqns. 36 and 37 to data for t for two

heats of type 304 stainless steel at 593°C, while Figure 32 shows the

fit of Eqns. 35 and 38 to data for e,. Clearly, there is very little

difference between the results obtained using the two prediction

methods. The predictions using average values of ultimate tensile

strength appear to well estimate average behavior, while predictions

made using maximum and minimum (in the sense of mean ± 2SEE) values of

U appear to span the scatter band of the data. Since Eqns. 37, page 90,
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Figure 29. Comparison of Experimental ORNL Data for the Time to
Tertiary Creep, tgs, With Predicted Values at 593°C (1100°F).
Predictions were made both by a direct fit using Model 1 (dashed
lines) and by relating tss to the rupture life, tr (solid lines).
Predictions are shown for estimated average, minimum and maximum
ultimate tensile strength material.
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Figure 30. Comparison of Experimental ORNL Data for the Average
Creep Rate to Tertiary Creep, e_, With Predicted Values at 593°C
(1100°F). Predictions were made both by a direct fit using Model 1
(dashed lines) and by relating e_ to the minimum creep rate, e (solid
lines). Predictions are shown for estimated average, minimum, and
maximum ultimate tensile strength material.
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Figure 31. Comparison of Experimental Data With Predicted Values
of Time to the Onset of Tertiary Creep at 593°C (1100°F) and 649°C
(1200°F). Predictions are shown for heat 8043813 (a strong heat) and
for heat 9T2796 (a weak heat).
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Figure 32. Comparison of Experimental Data With Predicted Values
of Average Creep Rate to the Onset of Tertiary Creep at 593°C (1100°F)
and 649°C (1200°F). Predictions are shown for heat 8043813 (a strong
heat) and for heat 9T2796 (a weak heat).
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and 38, page 103, are simpler and rely upon the more widely available

data for e are t , they are preferred.

Analogous to the development of Eqn. 34, page 90, above, Eqns. 38 and

39, page 103, can be combined to yield a direct expression for e, as a

function of U, a, and T as

190 7 IIloge3=2.105 ^p-loga- 14.273 j +0. 0060869 Ulog a. (42)

Equations 40 and 41, page 103, yield an expression of the form

e3= 0.835 em°-974 t 0.977 . (43)

Figures 33 and 34 compare results obtained using Eqns. 35 and 36, page 90,

and 43 to estimate e withexperimental data for heats 9T2796 and8043813.

As with the plasticity resource, the predictions appear to accurately

reflect trends in the data, although the uncertainty is again large.

For type 304 stainless steel the analyses in Refs. [50-52] treated

data for creep strain only, and did not include the instantaneous

strain incurred upon loading. In many cases, however, the only available

measure of ductility is the total strain (creep plus loading) to rupture,

et- Fortunately, the quantity e can be treated in the same fashion as

was e in Eqn. 33, page 89. Thus, one can write

•L = G t„ . (44)-e

't ~ "r

where £ = e /t . Thus,
t t r '

1-e

r
et = G t . (45)
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Figure 33. Comparison of Experimental Data With Predicted Values
of Creep Strain to the Onset of Tertiary Creep at 593°C (1100°F).
Predictions are shown for heat 8043813 (a strong heat) and for heat
9T2796 (a weak heat).
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Predictions are shown for heat 8043813 (a strong heat) and for
heat 9T2796 (a weak heat).
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Sikka and Booker [18] have applied this method to data from the US,

NRIM, and BSCC data mentioned last chapter. However, since Eqns. 44

and 45 are independent of ultimate tensile strength, all NRIM and BSCC

available data were used rather than only those for which corresponding

ultimate tensile strength data were available. Table XXX summarizes

the results from Ref. [18] for type 304 stainless steel, including

separate analyses of data for individual product forms for which a

significant amount of data were available. No noticeable effects due

to product form were observed. Figure 35, taken from Ref. [18],

illustrates the results. The top row of plots in Figure 35 shows the

results obtained by fitting Eqn. 44, page 108, tothe data for e . The solid

line was determined by a least squares best fit, while thedashed lines were

determined by adding or subtracting 2 x SEE (Table XXX) in log e from

the mean values. The lower row of plots in Figure 35 shows data and

predictions for e as a function of t . Solid lines and dashed lines

were obtained merely by multiplying the solid and dashed lines in the

upper row by t . The fit to the data is quite good.

Interpretation of Ductility Predictions

Although data for rupture ductility are widely available, the

processes occurring during third-stage creep (grain boundary cracking,

etc.) that lead to rupture are highly variable. As a result, variations

in rupture data can be especially large [35,57]. If one views rupture

as a kind of instability, it is reasonable to expect that the material

condition at the onset of this stability is a more fundamental property

than the condition after its occurrence [35]. These considerations
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TABLE XXX

RELATIONSHIP BETWEEN AVERAGE STRAIN RATE TO RUPTURE

AND RUPTURE LIFEa

Number 104-hr
of Regression Creep Total

Data Data Temperature Coefficients
SEE-

r2 Elongation
Source Product Points TO (°F) G -£ (log er) (%) C*J

BSCC Tube 13 600 1112 1.69 -1.11 0.144 95.74

BSCC Tube 23 625 1157 1.81 -1.17 0.127 98.08

BSCC Tube 13 650 1202 1.82 -1.11 0.186 94.98

NRIM Tube 32 600 1112 2.19 -1.22 0.138 96.16

NRIM Tube 32 650 1202 2.46 -1.30 0.126 98.54

NRIM Tube 40 700 1273 2.41 -1.30 0.249 95.77

NRIM Tube 27 750 1383 2.20 -1.25 0.274 89.24

US Tube 22 593 1100 1.46 -1.05 0.194 92.81

US Tube 53 649 1200 1.73 -1.10 0.267 90.40

US Tube 5 732 1350 1.03 -0.93 0.248 88.71

BSCC Bar 15 550 1022 1.52 -1.14 0.105 99.11

BSCC Bar 13 600 1112 1.47 -1.05 0.256 95.27

BSCC Bar 14 650 1202 1.35 -1.00 0.111 99.17

BSCC Bar 4 700 1293 1.62 -0.92 0.154 97.56

US Bar 14 538 1000 1.73 -1.22 0.060 99.60

US Bar 5 565 1050 1.72 -1.23 0.065 99.61

US Bar 16 593 1100 1.50 -1.13 0.099 99.04

US Bar 35 649 1200 1.57 -1.06 0.159 98.49

US Bar 15 704 1300 1.52 -1.07 0.226 97.05

US Bar 12 732 1350 1.72 -1.06 0.159 96.26

us Bar 9 760 1400 1.50 -1.05 0.178 98.52

us Bar 10 816 1500 1.42 -1.04 0.178 97.67

BSCC Combined 15 550 1022 1.52 -1.14 0.105 99.11 9.12

BSCC Combined 26 600 1112 1.53 -1.08 0.202 96.13 16.22

BSCC Combined 23 675 1157 1.81 -1.17 0.127 98.08 13.49

BSCC Combined 27 650 1202 1.48 -1.02 0.170 97.17 25.12

BSCC Combined 4 700 1293 1.62 -0.92 0.154 97.56 87.10

fclRIM Combined 10 550 1022 1.90 -1.16 0.087 97.54 18.20

NRIM Combined 10 575 1067 1.74 -1.08 0.163 95.47 26.30

NRIM Combined 41 600 1112 2.17 -1.21 0.153 94.84 21.38

NRIM Combined 34 650 1202 2.49 -1.31 0.126 98.51 17.78

NRIM Combined 40 700 1293 2.41 -1.30 0.249 95.77 16.22

NRIM Combined 27 750 1383 2.20 -1.25 0.274 89.24 17.78

US Combined 17 538 1000 1.61 -1.17 0.086 99.29 8.51

US Combined 5 565 1050 1.72 -1.23 0.065 99.61 6.31

US Combined 44 593 1100 1.49 -1.08 0.181 95.86 14.79

US Combined 91 649 1200 1.60 -1.06 0.231 95.21 22.91

US Combined 26 704 1300 1.59 -1.04 0.266 95.75 26.92

US Combined 17 732 1350 1.35 -0.97 0.226 90.99 29.51

US Combined 9 760 1400 1.50 -1.05 0.178 98.52 19.95
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TABLE XXX (continued)

Number 10 -hr
of Regression Creep Total

Data Data Temperature Coefficients SEE Rz Elongation
Source Product Points X°c) (*FT G -e (log e ) (%)

US Combined 21 816 1500 1.58 -1.02 0.254 95.03 31.63

9. •

Average strain rate to rupture, e , and rupture life, t , have been
related by e = Gt ~e r

t r
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suggest the use of the strain to onset of tertiary creep, e , as a

criterion of creep ductility.

Grant et al. [57,58] have suggested the use of e3 as a criterion,

referring to it as the "true" creep elongation. Booker and Sikka [51]

have discussed the advantages of e3 for design application. The major

advantage to the use of e, in design is the prevention of tertiary

creep and the associated cracking, void formation, and other

instabilities. Also, most currently used design creep strain-time

equations are valid only for the first and second stages of creep, so

that e3 represents the maximum amount of strain that can be predicted

from these equations. The cutoff point for the validity of these

equations for a constant load, isothermal situation could also be

located simply by knowing the time to tertiary creep. However, for

variable load conditions, previous results [8,9] have shown the

behavior of this material to be adequately described by the hypothesis

of strain hardening [12]. This hypothesis assumes that, under a given

load-temperature condition, the instantaneous strain rate—and thus the

instantaneous material condition—depends only on the previously

accumulated strain. Booker and Sikka [51] present results which

indicate that e3 is indeed relatively insensitive to the effects of

variable loads—depending only upon the instantaneous stress and

temperature at the onset of tertiary creep. Therefore, the strain

to tertiary creep might be a more meaningful criterion for variable load

conditions than the time to tertiary creep. In the next chapter, the

predicted values of e. will be used in the development of a creep

strain-time equation for type 304 stainless steel. Thus, it is seen
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that a knowledge of the quantity e, can be very useful in design

applications—both as a measure of usable ductility and as a cutoff

point for creep strain-time temperature.

The plasticity resource, e , was first introduced [59,60] by Soviet

investigators who viewed it as an approximation to the creep strain to

tertiary creep, e,. This approximation was used to alleviate shortages

in available data for the quantity e3 itself. Goldhoff [61] has

disputed the general validity of this approximation, although recent

work [51] indicates that the approximation is fairly good for type 304

stainless steel. Actually, it can be shown [52] that e and e are

related by

es =̂(e3 -ep) (46)
where e is the transient creep strain (see Figure 1, page 6). The

exact relationship thus depends upon t , t-» and e .

Several investigators [62-65] have discussed the possibility that

e is a material constant, independent of stress and temperature (and

thus of rupture life and strain rate). While some theoretical work

has been done [62], the conclusion that e is constant has been largely

based on the Monkman-Grant relationship [55] . That equation, however,

is essentially empirical, although similar relationships have been

defended theoretically [66,67]. The current results however indicate a

small but significant dependence of e on stress (nonunity slope in the

Monkman-Grant equation), and a definite dependence upon temperature. A
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temperature dependence has also been observed by other investigators

[68-70]. Thus, one must conclude that e is not a fundamental material

constant, but is in some cases a reasonable approximation to e3.

Trends in Behavior

Figures 36 and 37 illustrate predicted trends in the value of e3

with variations in stress, temperature, minimum creep rate, and ultimate

tensile strength obtained using Eqn. 43 from page 108. For a given

heat of material, e, increases with increasing temperature from 482°C

to 704°C; while it decreases with decreasing stress or minimum creep

rate. Trends in e with variations in ultimate tensile strength (U)

are slightly more complex, although smaller. At a given stress, e3

generally decreases as U increases up to some high stress level, when

the trend is reversed. The relationship between U and e3 over the range

of creep at a constant minimum creep rate is a strong function of

temperature. Predicted trends in e are similar, although the values are

generally slightly higher than those for e_. The above trends are

clearly born out by experimental data, except for the variations with

ultimate tensile strength, which are so small that they are obscured

by the scatter in the data.

It will be seen in the next chapter that these predictions of trends

in e3 can be important in predicting general trends in creep deformation

behavior.
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CHAPTER IV

ANALYSIS OF CREEP STRAIN-TIME BEHAVIOR

As stated in the Introduction, elevated temperature inelastic

design requires an expression for creep strain as a function of time

(t), stress (a), and temperature (T). Such an equation can also be

used to estimate the time allowed by the ASME Code Case 1592 [49]

restriction that the inelastic strain be limited to 1% and for

inelastic analyses. Methods for relating creep strain to time under

constant load (or stress), isothermal, uniaxial conditions, include

the following:

1. The times to accumulation ofgiven amounts of creep strain (t )

can be analyzed by techniques similar to those commonly used for rupture

life data. This method was used to describe data for Incoloy Alloy 800

(Grade 2), Inconel Alloy 625 (Grade 2), and 2 1/4 Cr-1 Mo steel by Roberts

and Sterling [71]. Using a series of strain levels and interpolating

between them, one can then reconstruct an entire creep curve. This method

suffers from the fact that it does not yield an expression for the creep

strain rate, which is required in design calculations. It can be used to

generate isochronous stress-strain curves such as those given in ASME Code

Case 1592 [49]. It should be noted that the particular method used by

Sterling [72] for Alloy 800 and 2 1/4 Cr-1 Mo steel assumed an equation

relating strain level to time and thus analytically "tied together" the

various strain levels. The Sterling equation can yield an expression

for creep rate as well as for creep strain.

121
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2. A second possibility consists of using empirical relationships

among creep strain-time properties and better-established properties

such as rupture life or minimum creep rate. These relationships

generally involve equations similar to Eqns. 29-33, page 89, and 34,

page 90, except that they might relate t to^or totr [52]. Other

investigators [73-75] have proposed stress-based correlations, relating

the stress to cause x% strain in a given time to the stress to cause rupture in

that time. Such relationships again do not yield estimates ofcreep rate.

3. A method that has found some use is the parametric approach of

Rabotnov [76]. At a given level of total strain (e) (loading plus

creep), this parameter is given by

<{>(e) = a(l + at") (47)

where a and t are again the stress and time, <$> is the parameter, a is a

constant, and n is a constant whose value is about one-third. One can

use monotonic stress-strain curves (t = 0) to determine the value of <J>

at various strains, from which a can be determined from creep curves by

assuming n = 1/3 and solving Eqn. 47 to yield

a=(|- l)t 3. (48)

Since a is supposedly independent of a and t, only one point from one

creep curve should be required to determine a at each temperature.

Alternatively, the values of <j>, a, and n can be determined by least

squares fits to creep data [77].

4. The most popular method for design applications in recent years

has involved the use of creep equations, i.e. an analytical expression
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for creep strain as a function of time, stress, and temperature. Since

these equations can generally be differentiated to yield expressions

for creep rate, they are the more useful for design purposes than the

above methods. Moreover, a creep equation can be more easily related

to the actual microstructural processes occurring during creep. This

method is thus the most useful both for practical design applications

and for fundamental studies of material behavior. Therefore, it is this

method that will be adopted here.

Methods for Development of Creep Equations

In general, the creep strain, e , is given by e (a, t, T). Two

basic methods for evaluation of this function have been proposed. The

first method, discussed by Penny and Marriott [35], assumes that the

functional dependence of e upon a, t, and T is separable such that

ec = £1(a)f2(t)f3(T) . (49)

Such a separation simplifies analysis procedures, but it may place an

undue restriction upon the flexibility of the equation to describe

material behavior.

The method that has recently been applied with some success

[29,38,78] involves first describing individual creep curves by a

strain-time equation. The parameters in this equation are then

themselves expressed as functions of stress and temperature. This

approach allows considerable flexibility and will be used here;

however, a new method for evaluating the stress and temperature

dependence of the equation parameters is proposed which alleviates
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certain shortcomings in previous {29,38,78] evaluations. In particular,

the analyses for t , e , t , and e_ reported above are utilized in the

development of the creep equation. The resulting creep equation thus

allows a prediction of heat-to-heat variations in creep strain-time

behavior as it is reflected by ultimate tensile strength (U).

Choice of Strain-Time Equation Form

For the purposes of a design equation, it is necessary that the

creep equation be valid only through primary and secondary creep, since

design rules [49] preclude the onset of tertiary creep in service.

Fortunately, type 304 stainless steel exhibits almost exclusively

classical creep curves (as shown in Figure 1, page 6), further

simplifying the choice of strain-time equation form. A large number

of equation forms have been proposed as reviewed in Refs. [79-82]. Of

these, the most widely popular are listed in Table XXXI, following the

listing of Garofalo [80]. The most commonly used forms for austenitic

stainless steels have been the so-called single and double exponential

equations, given by

ec = e [1 - exp(-rt)] + e t (50)

and

ec = ex[l - exp(-st) + et[l - exp(-rt)] + ej: . (51)

Equation 50, first introduced empirically by McVetty [83] gained

acceptance for type 316 stainless steel through the work of Garofalo

et al. [84]. Subsequent investigators have applied Eqn. 50 to a variety



Equation
Name

Logarithmic

Power Law

Exponential

Linear

TABLE XXXI

SOME COMMON CREEP STRAIN-TIME RELATIONS

Equation Form

e = alnt + c

m
e = e + 3t

j
or e = e + 3t + kt

,1 -rtN. ' *= eQ + et(l - e ) + egt

or e =
-rt,= e0 + et(l - e )+ex(l - -st. • .e )+est

T/T,
m

0.05-0.3

0.2-0.7

0.4-0.6

Materials

Al,Ag, Au,Cd,Cu,Mg,
Ti-Steel, Al-10% Cu,
and Cu-3% Ag

Al,Ag,Brass,Cd, Cu,
Iron and Steel, Mg,
Mg-2% Al, Ni, Pb, Pt,
Sn, and Zn

Ferritic and Stainless

Steel

e = e„ + e t
o s

0.96-0.99 Al,Au,Cu, and 6-Fe

Cn
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of materials, and considerable attention has been given to the meanings

of and interrelationships among the parameters e , r, and e [85-95].

In fact, some investigators [90,92-94] have extended the validity of the

equation through tertiary creep by the addition of a positive exponential

term. Although Eqn. 50, page 124, has been widely applied, it often

underestimates the creep rate in the initial part of the creep curve

[29,89-95]. Blackburn [29] proposed Eqn. 51, page 124, where the second

exponential term (the so-called "fast transient" term) was added to increase

the accuracy ofthe equation in the initial stages. It should be noted,

however, that Wilshire and co-workers [89-94] fit Eqn. 50 to experimental

data in the form

e = eL + et[l - exp(-rt)] + e t (52)

where e is the instantaneous strain incurred upon loading and thus

corresponds to the strain at zero time. In fitting this equation, eT

was generally overestimated, resulting in the situation shown

schematically in Figure 38. The curve fitting procedure used by

Blackburn [29] suffers from a similar shortcoming. On the other hand,

if one subtracts the loading strain and fits creep strain only using

Eqn. 51, the equation form itself forces a better fit in the initial

stages, since e is always zero at t = 0. Thus, the problems incurred

with fitting the single exponential equation were probably due as

much to the particular curve-fitting procedures employed as to

shortcomings in the equation form. For design applications, any

additional precision obtained by adding the second exponential term is

probably not justified by the increase in the complexity of the model.
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It should be noted the "double exponential" equations developed by

Blackburn [29] for types 304 and 316 stainless were used to develop the

isochronous stress-strain curves in ASME Code Case 1592 [51]. These

equations have several shortcomings which are alleviated by the current

results, as will be shown below.

Recent results for 2 1/4 Cr-1 Mo steel [38] indicate the

applicability of a rational polynomial equation, which can be written as

e =t^T +emt (53)
c 1 + pt m

where e is again the creep strain, t the time, e the minimum creep
c m

rate, and C the limiting value of the transient primary creep strain.

The parameter p is related to the sharpness of the curvature of the

primary creep region. Preliminary results in the current analysis

indicated that Eqn. 53 could also beused todescribe individual creep curves

for type 304 stainless steel. Subsequently, an analysis for type 316

stainless steel [78] found the rational polynomial equation to be superior

to the exponential equations. Significantly, although both single and

double primary term exponential equations and single and double term

rational polynomial equations were studied, it was found in Ref. [78] that

the single rational polynomial equation was preferable due to its

inherent simplicity. At any rate, it appears justified to examine both

the exponential and rational polynomial equations in detail.

The Exponential Creep Equation

The exponential creep equationformwas first introduced [83,84,89-94]

on an empirical basis merely because its mathematical properties resemble
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those of primary and secondary creep curves. Differentiating Eqn. 50,

page 124, one obtains an estimate of the creep rate, e , as

ec =etre"rt +em . (54)

Thus, the initial creep rate, e is given by

e = e r + e , ess")
o t m L DJ

but e decreases exponentially and asymptotically approaches the minimum

creep rate. The contribution of the primary term approaches a maximum

value of e . The parameter r, often called the time constant, controls

the rate of decay of the transient contribution and thus is related to

the sharpness of curvature of the primary region of the creep curve. It

can easily be seen that these same basic comments apply to the double

exponential form of the equation.

Recently, this same equation has been derived by several

investigators on a phenomenological basis. Webster et al. [95] begin

by assuming that primary and secondary creep obey first-order kinetics,

de

dlT = " (*c " Vr ' c56)

Integrating this expression twice yields Eqn. 50. Equation 51, page 124

can be derived upon the assumption that two separate mechanisms operate

independently, each obeying its own first-order kinetics.

Mejia et al. [96] recently presented a similar phenomenological

approach through which a variety of equation forms can be derived.
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Their basic equation was

o^ =-8Ce)Cec-en) . (57)

It should be noted that Eqn. 56 is merely a form of Eqn. 57 with

g(e) = r.

Soviet investigators [87,88] have also derived arelationship from an

independent phenomenological approach. They assumed that amaterial

contains randomly distributed sources of deformation, each of which requires a

certain stress for activation. Once activated, a source produces a mean

amount of deformation J in a mean time of t. Each source then ceases to

act due to the buildup of internal stresses or work hardening. At high

enough temperatures, the source can recover in a mean time T, after which

it can be reactivated. Next, it was assumed that both source activation

and source recovery obey first-order reaction kinetics, so that

.Jl = _vN +W(N - N) (58)
dt v o J

where v = 1/t, w = 1/t, N is the number of sources initially present and

N is the number of sources available for activation at a given time.

Equation 58 can be integrated with N = N for t = 0 to give

N=N -JL_ [1 - e-(v+w:,t] +N e-(v+w)t . (59)
O V + W J 0

The total number of sources actually activated in a time, t, is then

given by

N = / t r Ndt . (60)
3. O
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Noting that the total creep strain, e , occurring in time, t, is given

by 6N , Eqn. 59 can be integrated to yield
cl

ec = el
vw t+_rl_(i_e-(v+w)t)

v+w , -.2
(v+w)

(61)

where e, is the maximum strain that could be incurred in the absence of

any recovery (i.e. e, = 6N ). Equation 61 is clearly of the same form

as Eqn. 50, page 124, except that the equation parameters are now explicitly

defined in terms of e,, v, and w.

The Rational Polynomial Creep Equation

The properties of the rational polynomial creep equation given in

Eqn. 53, page 128, are reviewed in detail in arecent report by Hobson and

Booker [97], but will be briefly described here for completeness. While

not as widely used through the years as the exponential equations, the

rational polynomial equation is not new. In fact, an equation

equivalent to Eqn. 53 but without the linear secondary term was used by

Freudenthal more than forty years ago [98]. The equation was introduced

in its present form by Oding more than twenty years ago [99]. The current

popularity of the equation began with the analysis reported in

Ref. [38] for 2 1/4 Cr-1 Mo steel.

Clearly, the parameter C in the national polynomial equation is

analogous to e in the single exponential equation, while e is the

minimum creep rate in both cases. Differentiating Eqn. 53 one

expresses the creep rate, e , as

e = CPt +em , - (62)
(i+ptr



132

while the initial creep rate is given by

e = Cp + e . (63)
o r m *• •*

The parameter p is related to the rate of approach of the creep rate from

e to e . Figure 39 summarizes the properties of the rational polynomial

equation.

Equations 50, page 124, and 53, page 128, being ofdifferent form,

cannot bemade identically equal, but they canbe made to approximate one

another within the accuracy of engineering creep data. To do so, one first

lets e be the same in each equation, and then lets c = e . Then, the

two equations can be set equal at any point along the curve to determine

the relationship between p and r. A logical choice of this point is

the point at which half the transient strain has been exhausted. Calling

the time at this point t*, it can easily be verified from Eqn. 53 that

t* = — . Equating Eqns. 50 and 53 at t = t* yields

p = 1.44r . (64)

Thus, the single exponential and rational polynomial equations can be

used almost interchangeably. Interestingly, Eqns. 63 and 64 imply that

the rational polynomial equation yields a slightly higher initial creep

rate than the exponential equation, other things remaining the same.

The rational polynomial creep equation is probably best viewed as

a simple, flexible means of empirically representing experimental creep

data. However, it too has been derived from various formulations of

creep behavior. Oding [81,99] derived the equation form based on a

self-diffusion theory of creep. The equation was also derived [81]

on a phenomenological basis, as follows.
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The creep rate was assumed to be proportional to the number of

mobile dislocations, W(t), so that

de

-^- =AW(t) . (65)

Then, a simple but general form of the time dependence of W was chosen,

yielding

de

-i-£- = AW (1 + at)m (66)
dt o^ v J

where W is the initial number of mobile dislocations, and a and m are
o '

constants which may depend upon material, stress, temperature, and

possibly other factors. If m = -2, integration of Eqn. 69 yields Eqn. 53,

page 128, where now C = AW /a and p = a. The similarity of the rational

polynomial and exponential equations also means that interpretations

involving the parameters in the exponential equation, e.g. the work of

Morchan et al. [97,98], can also be applied to the rational polynomial

equation.

Equation 53 can be solved explicitly fcr time, yielding

ecP - Cp - em ♦ /(Cp + em - ecp)2 + 4ecpem
t = —„ (67)

r m

Thus, the equation can be easily applied to variable stress situations

involving strain hardening analyses.
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The analytical flexibility and simplicity of the rational polynomial

equation give it a definite advantage over the exponential equation.

Moreover, the equation is much more economical to apply in terms of

computer time used in performing design calculations. Our analyses

showed that the equation does very good job of fitting experimental creep

data. Therefore, the rational polynomial form was chosen as the basic

strain-time equation to use in developing a creep equation for type 304

stainless steel.

Fits to Experimental Curves

The rational polynomial equation can be fitted to experimental

curves by various least-squares and graphical techniques, as described

elsewhere [97]. In general, the least-squares techniques will yield the

most objective fit. However, in the current analysis, many low-stress

and low-temperature tests were used in which the amount of strain incurred

was so small compared to the accuracy of the strain-measuring equipment

employed that a great deal of scatter occurred in the data. In order

to avoid drawing wrong conclusions fromleast-squares fits due to this

scatter, the semigraphical approach described by Bunatyan [81,100] was

employed.

Bunatyan [100] showed that if one chooses three points (t,,e,),

(t2,e2), (t,,e_) from an experimental creep curve, the values of p and

e can be found by
m

"l-^K e2J +
t3- h^H \ ^2 *1p = " - — (68)

12, a,
tZ=t7 Ce2 " e3> + 61 " 62
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and

1
e =
"m (t, - t_)

ei e2
+ e, — e.

[pt, pt2 1 2
(69)

The value of C can then be determined by setting the prediction of Eqn. 53,

page 128, equal to the experimental strain at any point on the curve. In

the current analyses, we determined C at each of the above three points

and then averaged those values, although they did not vary greatly.

Figures 40-44 illustrate fits to experimental curves obtained using

this method.

Stress and Temperature Dependence of Equation Parameters

In other analyses [29,38,78] the stress and temperature dependence

of the creep equation parameters were evaluated as follows. First,

available experimental creep curves are individually fit using the chosen

equation form to yield a set of parameter values for each test. Then,

the individual equation parameters are themselves directly expressed as

functions of stress and temperature. Although this method has met with

some success, it suffers from several shortcomings, enumerated below,

and hereafter referred to as Objections 1-4.

1. The number of available creep curves is often quite small in

comparison to rupture and other data. The number of creep data can be

too small to adequately identify the dependence of the equation

parameters upon stress and temperature.

2. Experimental variations and complex interrelationships among

equation parameters can cause considerable scatter in the values of

these parameters. As a result, the correlations between these parameters
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Figure 40. Fit of the Rational Polynomial Creep Equation to an
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and the test conditions (a, T) can be very poor. This problem becomes

particularly large when extrapolation in one or more of the independent

variables is necessary.

3. Separate analysis of the equation parameters as functions of

stress and temperature can cause problems when the parameters are

recombined into a unified equation, since they are actually strongly

interrelated.

4. It is extremely difficult to account for heat-to-heat

variations using this method.

In the present investigation, an alternate method has been devised

to help overcome the above objections. One of the advantages of the

current equation form is the explicit minimum creep rate term. While

analytical fits of Eqn. 53, page 128, to experimental curves will in general

yield slightly different values of e than will graphical measurements, this

difference is insignificant in comparison to the overall uncertainty

in creep strain-time predictions. The approach used here has been to

use the analyses of minimum creep rate data from Chapter III of this

report to express e as a function of stress and temperature. Since

the creep curves were primarily from the ORNL data (Table VII,

page 14), the ORNL equation for e was used. Reiterating the results

of Chapter III, this equation is

log em =-2.765 +^|^log a-51^,84U +0.01616U log a (70)

where e is the minimum creep rate (%/hr), T the temperature (K), a the

stress (MPa), and U the ultimate tensile strength (MPa) at temperature

for a given heat of material at a tensile strain rate of 6.7 x io" sec ,
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From Figure 39, page 133, it can easily be verified that the value

of C is given by

C = e - et, , (71)
3 mo

where e_ and t, are the strain and time to the onset of tertiary creep

(first deviation from linear secondary creep). Again reiterating

results previously mentioned in this report, t_ and e_ can be found from

t, =0.685 t°'968 (72)
3 r

and

where

,-,-,- 0.974 ,7^
e3 =V^ = 1'11 6m » (73)

logt =5.716 -~^ logo* 3you _0.007303Uloga (74)

with t = rupture life and a, T, and U as in Eqn. 70. Equations 71-74

in turn yield

a -.en" 0-974 0.968 r7cne, = e_t, = 0.760 em t^ (75)
3 3 3 m r

and

C-O.eSSt0-96^!.!!^0-974-^ • (76)
r m m

Many previous investigators [84-87, 89-96], using the single

exponential creep equation, found the initial creep rate, eQ, to

be a constant multiple of em for a variety of materials. The time
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constant, r, was also found to be a constant multiple of e except
r m r

at low stresses in iron [95] and type 316 stainless steel [84].

Several such relationships were examined in the current analysis, the

one chosen as optimum being

, ., • 0.80
e = 3.43 e , (77)

as illustrated in Figure 45. Since eQ is given by Cp + e , the

parameter p(hr_1) is given by

P=!2"P?L ' (78)

With the aid of Eqns. 70, page 140, 76-78, it is possible to evaluate the

entire creep equation from a knowledge of e and t for a given material,
m r °

Predictions of Creep Behavior

The method described above allows an evaluation of the dependence

of the parameters C, p, and e upon stress, temperature, and relative

strength of a given heat of material (as reflected by the ultimate

tensile strength). Figure 46 illustrates the predicted behavior of

these parameters for the 51-mm thick plate of heat 9T2796 [25], a weak

heat. The predictions were made using values of ultimate tensile for

these heats of material from Refs. [25] and [27] respectively. The

experimental points represent values obtained by fitting individual

creep curves using the method described above.

Several points are apparent from Figures 46. First, the scatter

in the data is large (thus the second objection above to previous

evaluation procedures). Second, although the current equations were
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developed from a large multiheat data base, the predictions still appear

to capture the trends in the behavior for a given heat and thus to

reflect to some degree the effect of heat-to-heat variations. The

data shown in Figure 46 are primarily from long-term, low-stress creep

tests which had not entered the tertiary creep region. Thus, in the

current method, the data from most of these tests were not actually

used in determining C or e . The comparisons in Figure 46 are

primarily extrapolations. Considering this fact, the comparison is

quite good. Predictions for em and t are described in Chapter III of

this report, while predictions for e3 and t3 are described in

Chapter IV.

It is obvious that the current models cannot yield precise fits

to every individual heat of material. Moreover, the scatter and lack of

reproducibility in creep data are such that no one curve even for a

single heat can be predicted precisely by any technique. The method

employed here is an attempt to reduce the uncertainty in such predictions

as much as possible for engineering applications. Still, the most

meaningful criterion for judging a creep equation is its ability to

predict reasonable values for creep strain for a given heat of material

under a given loading condition.

Figures 47 and 48 illustrate predictions of individual creep

curves for heats 9T2796 (51-mm plate) and 8043813 from the current

equation. Also shown are predictions from the equation developed by

Blackburn [29]. Clearly, the current equation more accurately depicts

the strain-time behavior of these heats, mainly because it does
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Figure 47. Comparison of Predictions With Experimental Creep Curves for Type 304 Stainless Steel,
Including Predictions of Average Behavior from the Current Equation and from the Blackburn Equation.
The testing conditions were temperature = 593°C, stress = 207 MPa.
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Figure 48. Comparison of Predictions With Experimental Creep Curves
for Type 304 Stainless Steel, Including Predictions of Average Behavior
from the Current Equation and from the Blackburn Equation With the
Testing Conditions: Temperature = 649°C, Stress = 69 MPa.
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reflect heat-to-heat variation whereas the Blackburn equation does not.

Figure 49 illustrates the ability of the current equation to predict

the range in creep behavior for this material.

Finally, the data used in establishing the current predictions

were almost exclusively from tests conducted at temperatures of

538°C (1000°F) and above. However, creep in this material has been

recognized as important in design [49] at temperatures down to

427°C (800°). The predictions must therefore be extrapolated downward

in temperature. Creep data at such low temperatures are primarily

from heat 9T2796. Comparisons between the predictions and data at

482°C (900°F) for this heat yielded generally good results at high

stresses, with the equation tending to underpredict the amount of

creep strain as the stresses were lowered. At 427°C (800°F) only

relatively low stress data were available. The creep strain occurring

under these conditions is significantly underpredicted by the current

equation. In fact, at these low stresses and temperatures the

dependence of creep strain on temperature appears to be markedly

reduced. As shown in Figure 50, this material can creep as much or

more at 427°C than at 482°C for the same stress. A close look at

Figure 17, page 71, indicates a possible trend toward a downward break

in the log a-log em isothermals (less stress dependence in e ) at low

stress even at 593°C and 649°C. These trends toward decreased stress

and temperature dependence at low stresses and temperatures may be

indicative of changes in creep deformation mechanism. This possibility

will be addressed in the next chapter.
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Figure 49. Heat-to-Heat Variations in Creep Curves of Several
Reannealed Heats of Type 304 Stainless Steel, (a) Creep tests at
241 MPa (35 ksi) and 593°C (1100°F). (b) Creep tests at 207 MPa
(30 ksi) and 593°C (1100°F).
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Variable Load and Relaxation Behavior

Actual design applications will seldom involve simple constant-load

situations. Various system transients and other effects will result in

repeated changes of stress or temperature or both. Also, many loading

situations involve constant strain stress relaxation rather than constant

load creep straining. To be of full use, a creep equation must provide

some means of accounting for such situations. Little study has been

done of variable temperature behavior, but some data from variable load

tests are available.

It is beyond the scope of this investigation to undertake a study

of schemes for treating variable load creep behavior in this material.

Currently used constitutive relationships [8,9] suggest that the

hypothesis of strain hardening [12] be used to describe the variable

stress creep behavior of type 304 stainless. This hypothesis assumes that

the instantaneous strain rate at any stress and temperature is given

uniquely as a function of the stress, temperature, and accumulated

strain. Current rules [8,9] specify that this accumulated strain

includes creep strain only. Since the rational polynomial equation

can be solved explicitly for time as a function of strain [Eqn. 67,

page 134], it is a simple matter to apply the strain hardening approach.

Knowing the accumulated creep strain, one can solve the equation for

time at the given stress and temperature, thus locating a point on the

predicted creep curve for that stress and temperature. Creep then

proceeds along that curve until the stress or temperature changes again.

Figure 51 illustrates a prediction made from the current equation for

a variable load creep test for heat 8043813 [27], while Figure 52
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illustrates results obtained in predicting relaxation behavior for the

25-mm plate of heat 9T2796 [101]. The predictions show good agreement

with the experimental data.

Isochronous Stress-Strain Curves

One of the most useful forms of displaying creep strain-time

behavior is the isochronous stress-strain curve. Various methods exist

for the construction of such curves, such as that summarized in

Ref. [71].

Equation 50, page 124, with the constants e, C, and p defined by

Eqns. 70, page 140, 76, page 141, and 78, page 142, respectively, can

beused tocalculate the creep strain accumulated in a given time at a

given stress and temperature. Thus, from an estimate ofthe instantaneous

strain incurred upon loading, one can develop isochronous stress-strain

curves from the equation. This loading strain can be determined from

monotonic tensile stress-strain curves.

The monotonic tensile stress-strain behavior of this material can

be described by:

C'p'e
(a - an) = - 5— + h e , (79)
^O-'i+pemp' K J* p *

where a is the stress (MPa), e the plastic strain (cm/cm), and a corresponds

to the proportional limit. The value of aQ can be well estimated as

0.5 a ,where a is the 0.002 strain offset yield strength. The constant

n is approximately equal to 2586 MPa, while p is given by 500 C'. The value

of C" is determined by the criterion that o = a for e = 0.002.
y P

Interestingly, Eqn. 79 is of the same form as Eqn. 53, page 128,
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reflecting the great flexibility of this equation. Since a knowledge of

stress and Young's modulus yields the magnitude of the elastic strain,

Eqn. 79can be used to calculate the total strain corresponding to a

given stress. A full description of our analysis of stress-strain

behavior is given elsewhere [102].

Equations 53,page 128> and 79 were combined to calculate isochronous

stress-strain curves as shown in Figure 53. Average, maximum, and

minimum creep strength curves were calculated by using the corresponding

values of tensile strengthfrom Eqn. 22, page 72, for the ORNL data.

For all cases shown in Figure 53, the loading strains were calculated

using average yield strengths from Ref. [16] for as-received material,

to allow comparison with the results of Ref. [29]. Thus, all variations

shown are due to the effects of creep strength only.

Figure 53 shows that there are considerable differences between

the current results and those of Ref. [29]. Since the current method

allows one to calculate a series of isochronous curves for different

heats of material, it is generally expected to be more accurate for a

given heat of material. At 538°C (1000°F) and below, the results of

Ref. [29] sometimes fall even below the current minimum predictions.

However, based on available low temperature data (427-538°C),

our results are the more realistic of the two.

Finally, for comparison purposes, two alternate methods were used

to construct isochronous curves for the heat 9T2796 51-mm plate.

First, the times to accumulation of given amounts of creep strain

were analyzed by parametric techniques similar to those commonly used

for rupture data. This method is similar to the one described in
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Ref. [71]. No extensive modeling was attempted, although we did fit

several standard time-temperature parameters to data for 0.1, 0.25, 0.5,

1, 1.5, and 2% creep strain. The best results were obtained by a simple

Larson-Miller [45] parameter of the form

oij log a a2
log tx = aQ + ^ + — , (80)

where aQ, o^, and a2 were estimated by least squares methods at each of

the above levels of creep strain. Equation 80 allows one to calculate

the stress that will cause a given amount of creep strain at a given

time and temperature. Using this stress, one can then use Eqn. 79,

page 154, and Young'smodulus to calculate isochronous stress-strain curves.

Finally, isochronous curves at 593°C (1100°F) were constructed using

a form of the Rabotnov parameter [76]. At a given level of strain

(loading plus creep), this parameter is given by

♦00 = o(l + at ' ) , (81)

where a and t are again the stress and time, (J) is the parameter and a is

a constant. We used stress values obtained from the above-mentioned

monotonic tensile stress-strain curves for <J>, and assumed a time exponent

of 1/3. Attempts at determining <j> and the exponent by least squares

methods, such as was done in Ref. [77], yielded poor results due to

insufficient data. Once the values for cf> and the time exponent

were determined, the value of a for a given stress was calculated from

a
fo .11/3

. (82)
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Applying this equation at various points along the experimental creep

curves showed that a varied both with stress and strain, rather than

being constant. We used an approximate average value of a = 0.01 for

use in our calculations.

Figure 54 compares the results obtained by each of these three

methods at 593°C (1100°F) for this heat of material. The monotonic

tensile curve used to construct the isochronous curves in Figure 54 was

based on Eqn. 79 using the yield strength for reannealed material from

this heat. Reannealing generally lowers the yield strength of type 304

stainless steel by about 35 MPa from that in the as-received condition,

although the tensile strength and creep strength are not greatly

affected [15,16]. Reannealed tensile properties were used in

Figure 54 since the Rabotnov parameter always involves total strain,

not separate analysis of creep and loading strain. For this reason,

the tensile and creep properties should be obtained from the same

material condition. The three methods illustrated in Figure 54 yield

similar results, although the creep equation is preferred since it has

a wider range of uses than the other methods.

Analytical Limitations

The design lifetimes of operating systems are typically of the

order of 30 years, making it necessary to make many design calculations

based on extrapolations beyond the time-stress-temperature regime where

experimental data are available. Such extrapolations must be made with

caution, however. Specific analytical limitations on the applicability

of the creep equation presented here are:
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1. time < the time to the onset of tertiary creep;

2. temperature in the range 427oC(800°F)-704oC(1300°F);

3. ultimate tensile strength within 42.8 MPa of the average

strength at temperature defined by Eqn. 22 on page 72.

Figure 46a, page 144, shows that the parameter C exhibits a maximum with

stress; the stress at the maximum (a ) is smaller for weaker heats or at

higher temperatures. This behavior is consistent with previous results

for both type 304 [27] and 316 [78,84] stainless steels. To avoid any

possible analytical difficulties, the value of ac can be taken as the

maximum applicable stress. Table XXXII gives the values of a^ at

various temperatures. The ranges shown are for minimum (lower values)

to maximum strength material in terms of ultimate tensile strength, with

the value of a increasing with material strength. Otherwise, the
c

ultimate tensile strength of agiven heat is the maximum applicable stress

for that heat. Equation 73, page 141, predicts em >e3 for values of

e > 55.36%/hr. However, this anomaly occurs at stresses higher than
m

those cited above and does not affect the stated limits. The creep

equation is analytically valid to zero stress as the lower limit.

"Analytical" validity unfortunately does not necessarily imply

physical validity. Implications of extrapolating the current equations

are given in the next chapter.

Advantages

The creep equation presented herein has several important advantages

for design applications. First, the rational polynomial equation from
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TABLE XXXII

STRESS VALUES CORRESPONDING TO MAXIMUM VALUES

OF THE PARAMETER C

Temperature Stress, ac (MPa)
(°C) (Minimum Strength to Maximum Strength)

427 >414

482 >414

538 365 to >414

593 241 to 407

649 138 to 255

704 41 to 124
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itself has distinct advantages over other popular forms. These

advantages were mentioned briefly above and are described in more detail

elsewhere [97].

The analysis of stress and temperature dependence used here clearly

alleviates the first objection to previous methods, since the results

depend largely upon rupture life and minimum creep rate data. Creep

curves are still needed, of course, to supply data for e , t , and e ,

and for verification of results. However, the current technique allows

utilization of all available information, rather than using available

creep curves only.

The empirical relationships [Eqns. 72-73, page 141, and 77, page 142,

used in developing the current equation are simpleand describe well the

experimental data. Therefore, fewer data are required to evaluate these

relationships than to develop direct expression for the parameters C and

p as functions of stress and temperature. The fact that the

relationships appear to closely reflect trends in the data lessens the

chance of obtaining misleading results, especially in the extrapolated

region, and avoids Objection 2.

The method used here inherently involves interrelationships among

the various equation parameters. Thus, the third objection is

eliminated.

Perhaps the most unusual and potentially useful feature of the

current equation is its ability to account for heat-to-heat variations,

alleviating Objection 4. It is not possible to predict the behavior

of every individual heat precisely. Still, an ability to reflect the
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variation in strength from heat-to-heat can greatly decrease the

uncertainty involved in modeling elevated temperature mechanical

behavior. At the very least, the current approach gives a clear idea

of minimum and maximum strength, indicating the expected range of

behavior.

The method presented here is extremely flexible, and many

variations are possible. For instance t? may be modeled directly, as

were rupture life and minimum creep rate. Various methods for

predicting eg, including that used here, are presented in Ref. [51].

For instance, in some cases it may be possible to approximate eg by the

plasticity resource, e t . In that case, there would be even less
r J m r

reliance on actual creep curves than in the approach given here. An

alternate method for predicting heat-to-heat variations might be to

model t and e for given individual heats, which are known beforehand
r m 6

to be strong, weak, medium, etc.

It is recognized that the current method also has some

disadvantages. These are primarily (1) that the predictions are

largely indirect, and (2) that the data bases used in different steps

may be different, yielding possible inconsistencies. The second problem

could easily be solved by using data from the same tests in every step,

but this approach limits the analysis to those tests for which all data

are available. The empirical relationships used are really

normalization procedures, so any inconsistencies should be small. In

short, we feel that the great advantages of the current approach far

outweigh any disadvantages.





CHAPTER V

EXTRAPOLATION OF RESULTS

An unavoidable problem incurred in the development of creep models

for design applications is the necessity to extrapolate results to

regions of time, stress, and perhaps temperature beyond the range of

experimental data. For example, a typical power plant operating life

is of the order of 300,000 hours (about 30 years), whereas the longest

experimental rupture life available in this investigation was 65,000

hours. Operating stresses and temperatures are chosen such that the

actual rupture life would be longer than the plant service life in

order to prevent component failures. Two specific examples illustrate

this situation.

First, a common problem in elevated temperature components is that

of "creep-fatigue," or cyclic deformation interspersed with periods of

monotonic creep or relaxation. Elevated temperature design rules [49]

specify a life fraction approach to the prevention of creep-fatigue

failures, based on the analysis proposed by Campbell [103]. This method

suggests that creep-fatigue failure be prevented by specifying that

P Q

I (n/JO, + I(^H < D* ' (83)
j=l J k=l a K

where

D* = a specified "damage factor,"

167



168

n = the number of cycles applied under loading condition j,

Nn = the number of design allowable cycles under loading

condition j,

t = time duration of loading condition k,

Tn = allowable time under loading condition k.

T is calculated as the lower limit time to rupture at the temperature

of interest under a stress given by the stress from load k divided by

a factor K", which is defined as 0.9 for type 304 and 316 austenitic

stainless steels and for Incoloy Alloy 800H.

Since the quantity T is a lower limit estimate of rupture life,

design conditions are generally such that the evaluation of Eqn. 83
7 8

requires predictions of rupture lives to perhaps 10 or 10 hrs.

Second, a creep strain-time formulation is used to estimate the

magnitude of time-dependent (i.e. creep and relaxation) deformation

incurred in components during service. For example, it is expected

[104] that type 304 stainless steel will be used extensively as a

structural material in the reactor vessels and the intermediate heat

exchanger pressure boundaries for the Liquid Metal Fast Breeder

Reactor (LMFBR)[105]. Design conditions vary with the particular

application, but the maximum expected operating temperature for this

material in LMFBR service will be about 538°C (1000°F)[104]. In such

an application, the stresses on the material will be somewhere below

the allowable stress levels given in ASME Code Case 1592 [49].

Figure 55 compares this limited region of stress-temperature operating

conditions (for an operating life of 3x IO5 hours) with the region of
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the experimental creep tests used in the current evaluation. Estimation

of behavior for these operating conditions again can require

extrapolation to regions of stress and temperature well outside those

available experimentally.

A large number of data for type 304 stainless steel are available

over a large range of stress-temperature conditions. The material

appears well-behaved in this range, and its behavior can be adequately

described by simple empirical models. The problem with extrapolating

the results beyond the range of the data has two facets. First, there

is the possibility of long-term metallurgical instabilities such as

the formation of embrittling phases. Second, there is the possibility

that deformation and fracture mechanisms may be different in the

extrapolated stress-temperature region than in the region where data were

available. Otherwise, the amount of available data is sufficient to

warrant considerable extrapolation, and all of the models proposed

herein behave well analytically when extrapolated. Thus, it is

desirable to consider these two possibilities in more detail.

While there have been some indications [106] of sigma-phase

formation in long-term tests on type 304 stainless steel, available

data indicate that metallurgical stability is not a significant problem

for most practical applications [1]. The only change in fracture mode

appears to be the transition from transgranular to intergranular

fracture which occurs at short rupture times. Since most data reflect

this latter intergranular fracture mode, no problems should be incurred

in this respect as far as extrapolation is concerned.
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The remaining uncertainty in extrapolating the current equations

beyond the range of data concerns possible changes in deformation

mechanism. A few low stress-low temperature tests which are still in

progress at ORNL indicate that such changes may occur. A detailed

fundamental investigation of creep deformation mechanisms is beyond the

scope of this report; however implications of mechanism changes on

predictive equations will be considered in the next section.

Possible Effects of Changes
in Deformation Mechanism

Creep deformation can occur by a variety of mechanisms within the

same material at different stresses and temperatures. A convenient form

for presenting the deformation mechanisms that occur for a given

material is through the use of "deformation maps," recently devised by

Ashby [107,108]. These maps are plots on axes of stress versus

temperature, which show the areas in cr-T space where different creep

mechanisms are dominant. (Actually Frost and Ashby plotted normalized

shear stress a /u vs T/T where u is the shear modulus and T the melting

temperature. This choice was mainly to reduce variations among

materials and is not mandatory.)

Due to the many approximations and simplifications used by Frost

and Ashby in constructing their maps, the maps probably cannot be used

for quantitative design calculations. Nevertheless, the construction

contains useful qualitative information that can be helpful in defining

possible areas of uncertainty in predictions and in identifying areas

where more data are needed.
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At high stress values, the dominant creep mechanism should involve

flow by dislocation glide. These stresses are higher than most of

those seen in the current data and are certainly higher than those of

interest in design applications. Therefore, this mode of deformation

will not be discussed here.

Virtually all of the currently available creep data fall in the

region where deformation is expected to be controlled by dislocation

creep (with the possible exception of a few of the ORNL low stress

creep tests that are still in progress). Creep in this region occurs

primarily through the motion of dislocations by both glide and climb.

Theoretical considerations [109] dictate that the steady-state creep

rate in this region should be given by

e -AD g-
m v kT G

V. J

(84)

where A and n are material constants (n % 4), G is the shear modulus,

b is the burgers vector and k is Boltzmann's constant. Dy is the bulk
-O/RT

diffusion coefficient, given by D = D e v/ . Equation 84 suggests

that a log e — log a plot should be linear, which is born out by the

current results. However, the current data show a slope of this

curve which decreases with temperature but is considerably larger than

4; also the observed activation energy appears to be somewhat larger

than that for vacancy self-diffusion in this material. Both of these

observations are common for creep-resistant engineering alloys. Many

investigators, for example Refs. [94,110-116], have attributed these
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effects to the existence of an internal stress, o*, which opposes the

effects of the applied stress. Thus the creep rate is determined by

the magnitude of (a - a*)4 rather than by a4.

At lower stresses, the dominant creep mechanism becomes that of

vacancy diffusion through a crystal or around the grain boundaries.

Following Raj and Ashby [117], Gittus [118] gives the steady-state

creep rate due to diffusion as

r D '
ail 1 „ L HfLJl

d D
v-

e = 14 iiH • —Dem KT d2 v
(85)

where ft is the atomic volume, d the grain size, Dy the bulk diffusion

coefficient, and 6 the effective cross section of a grain boundary for

diffusion. Thus, the creep rate is projected to vary linearly with

stress. Equation 85 neglects the effects of grain boundary

precipitates, which can be important [119]. Roughly, such precipitates

introduce a threshold stress, a , below which no diffusion creep occurs.

The term io - o ) then replaces a in Eqn. 85, and may make the slope of

a log e - log a plot greater than unity, analogous to the effects of

a* on dislocation creep.

Note that the above changes in deformation mechanisms imply an

accompanying change in the slope of a log a - log em plot. The

existence of "breaks" in plots of log em vs.log a has been observed for

a number of materials, including some niobium-stabilized austenitic

steels [120]. Unfortunately, the present data for type 304 stainless

steel are not sufficient to define a quantitative estimate of the exact
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point where the break occurs, or of the sharpness of the break. The

data merely indicate the possible existence of such a break. The current

minimum creep rate model (and thus the creep equation) will significantly

overestimate the creep strength of this material in the low stress region

if such a break does occur. Thus, it is important to consider the

possible implications of such a change in slope even though a detailed

quantitative analysis awaits additional data.

One cause of such breaks could be the occurrence of a metallurgical

instability, but this explanation does not appear likely in the case of

type 304 stainless steel. Thus, a change in deformation mechanism

appears to be a likely cause.

Figure 56 displays the minimum creep rate data from ORNL for heat

9T2796, estimated through fits of the rational polynomial creep equation

by the method of Bunatyan [100]. Many of these tests are still in

progress, and the values of e in Figure 56 are approximate (thus the

large amount of scatter). At low stresses, there appears to be a

possible break in the plots of log e vs. log a indicating a decrease in

the value of n (the slope of these curves). In Figure 56, the slope

below the break has arbitrarily been chosen as 4, but appears to be

consistent with the data.

The data do not permit a detailed analysis of the break in

Figure 56. However, two possible explanations can be given. First,

the break may indicate a transition from dislocation creep to diffusion

creep. The slope of 4 is perhaps too high for diffusion creep, although

this inconsistency may merely indicate that the transition is not yet

complete.
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A second explanation is that of Lagneborg and Bergman [116], who

based the following analysis of such breaks on the internal stress.

Their analysis was strictly applicable to classical precipitation-

hardened alloys, where a uniform dispersion of particles is precipitated

within the matrix. The case of an austenitic stainless steel, where

precipitation occurs preferentially on dislocations and at grain

boundaries, is more complicated, but analogies can be drawn. According

to Lagneborg and Bergman, the stress dependence of the creep rate

should be proportional to (a - a )4, where a is the internal stress

due to the resistance to dislocation motion caused by the precipitates

within the matrix. Above the break point, a is a constant whose value

strongly depends upon the size, shape, and spacing of the precipitate

particles. In this region, dislocations move past the particles either

by cutting through them or by the Orowan mechanism. The net effect is

to make the slope of a log a vs. log e plot somewhat larger than 4.

Below the break, Lagneborg and Bergman propose that dislocations surmount

the particles by a climb mechanism. In this region, they predict that

a should be proportional to a. Thus, the creep rate is proportional to

(a — Ka)4 = (1 - K) a ,again yielding a slope of 4 in a log a- log em

plot. Incidentally, a in this region is almost independent of the

size, shape, and spacing of the precipitate particles. Available data

do not permit a clear identification of the cause of the breaks shown

in Figure 56, and the fact that the slope below the break has been drawn

as 4 in that figure does not indicate a preference for the

Lagneborg-Bergman explanation on the part of the author. If the
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Lagneborg-Bergman explanation is correct, another break may occur at

still lower stresses indicating a change to diffusional creep.

There is sound physical basis for believing that the break shown in

Figure 56, page 175, might be real. Consideration of a numerical

example points out the importance of a further study of these slope

changes. First, assume that the break is drawn in the proper place in

Figure 56. Now choose a possible design condition for temperature and

stress, say 593°C (1100°F) and 20 MPa (2.9 Ksi). The current analysis

of minimum creep rate data Eqn. 36, page 90, yields (for heat 9T2796)

an estimated value of e = 5.7 x io"11 %/hr. Assuming a slope of 4
_7

below the break in Figure 56 yields a value of e = 3 x 10 %/hr.
m

Assuming that the break is due to a change to diffusion creep and taking

the slope below the break to be 2 requires a slight alteration of the

placement of the break point in Figure 56 to remain as consistent as

possible with the data. This reconstruction yielded a value of

e =10 %/hr. Thus, such breaks can cause underestimates of the value
m

of e by Eqn. 36 by a factor of over 10 ! (On the other hand, the

net deviation in 10 hr would only be perhaps 0.1% strain.)

A second point that can be noted from Figure 56 is the decreased

temperature dependence of the minimum creep rate at lower temperatures

(< 538°C). This decrease could have several causes. First, at these

temperatures there appear to be very few carbides precipitated within

the grains or at the grain boundaries. Thus, the strengthening effect

of these particles is lost at these low temperatures. A second possible

cause involves the often observed phenomenon, e.g. Ref. [121], of a

lower activation energy for creep at lower temperatures. Robinson and
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Sherby [122] have attributed such a decrease to the increasing dominance

of dislocation core diffusion as a deformation mechanism at these low

temperatures.

Finally, Figure 56, page 175, presents the data for the minimum

creep rate only since that is one of the few quantities analyzed in the

current report that can be estimated from the continuing ORNL long-time

creep tests. The other quantity that can be estimated is initial

creep rate, e . In fact, these long-time data were used in developing

Eqn. 77 (page 142). There is no definite indication of a break in the

relationship of log e with log e . However, Eqn. 77 does indicate an

increase in the ratio of e to e as e (and thus a) decreases. For
o m m

example, if e is IO"2 %/hr, eQ/em would be predicted to be 8.6. If

e is IO"6 %/hr, e /e would be predicted to be about 54.4. There is
m ' o m r

some evidence that grain boundary sliding contributes more to the creep

strain in the earlier stages of creep [123], due to the development of

ledges or other obstacles to sliding as deformation proceeds. Since

grain boundary sliding is an especially prominent feature of diffusional

creep [117], the increase in e0/em with lower stress could indicate a

relative increase in the importance of diffusional creep as a

deformation mechanism. However, a full explanation of this phenomenon

awaits further study.



CHAPTER VI

DISCUSSION OF RESULTS

Many of the results presented in this report require no further

explanation. Others have been discussed as they were presented. This

chapter presents a further discussion of some of the more important

points made in the report.

Regression Analysis of Creep and Rupture Data

Regression analysis is a standard, widely used technique, and

the usefulness of the method in a large variety of situations is

indisputable. The advantages of a regression approach for the analysis

of creep data will be discussed below, with specific comparison being

made with the common time-temperature parameter approach.

References [32-35] present comprehensive reviews of parametric

analysis techniques, especially with application to creep rupture

data. The use of such parameters is primarily based on two factors.

First, the technique collapses data at different temperatures onto a

single master curve to simplify the analysis. Second, high temperature

low-stress data can be used to estimate lower temperature (and thus

longer time) data at these same stresses.

Unfortunately, neither of these supposed advantages of parametric

analysis is real unless the parameter chosen is correct, i.e. unless

the true a — T — t relationship is at least approximately that implied

by the parameter. The choice of the "correct" or "best" parameter can

179



180

be somewhat complicated. Dozens of distinct parameters have been

proposed. When the various possible stress dependences are considered,

the total number of parameters climbs into the hundreds.

It must be realized that even though a given parameter fits the

available data, that same parameter may not yield accurate

extrapolations. The last chapter indicated some of the problems that

can occur in the extrapolation of creep data. Parametric prediction of

low-stress, low-temperature data by higher temperature data at those

stresses represents an extrapolation and should only be done with

extreme caution. Figure 57 illustrates this situation schematically.

Thus, even though a point may lie within the range of the "master

curve," it can still represent an extrapolation and should be treated

accordingly.

Another problem incurred with time-temperature parameters is their

lack of flexibility. Larke and Inglis [124] presented an analysis of

the restrictions imposed by various commonly used parameters. Also,

variables other than stress and temperature may be important (such as

ultimate tensile strength). Within the form of a given parameter, the

flexibility with which new variables can be added is severely restricted.

Finally, it is often difficult to estimate the constants in the

parametric equations with accuracy except by the use of regression

techniques, especially for large multiple-heat data sets. Many of the

common parameter forms can be rewritten as linear regression models

with log e or log t as the dependent variable, although some become
m r

nonlinear models when written in this way. Thus, if one is essentially

reduced to using regression analysis anyway, it is a logical extension
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shaded region lie within the range of experimental data.
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to consider a generalized set of models rather than restricting the

analysis to a small subset which also happen to correspond to

time-temperature parameters. Regression will in general yield a single

well-behaved mathematical model with clear statistical implications.

Thus, such a technique is particularly useful for analyses whose results

are intended for design applications.

Once regression analysis has been selected as the technique to use,

a variety of options still remain. In particular, the final "optimum"

model can be selected by a number of techniques. In the case of creep

data, the method used here has the advantage that several candidate

models are output from the statistical selection procedure so that some

physical judgment can be applied in the choice of a final model. If one

merely wishes to represent a set of data and is not interested in

extrapolation, it would be sufficient to use a procedure (such as

stepwise regression) which might yield only one optimum model based

solely on statistical considerations.

No representation is made that the current technique is the best

possible. This technique is, however, very useful and easily applied.

It allows considerably more flexibility than a parametric analysis, and

the results are easily applied to design. Perhaps the most controversial

aspect of the particular results given here is the use of ultimate

tensile strength as an indicator of heat-to-heat variations in creep

strength.



183

Relationship Between Ultimate Tensile Strength
and Creep Properties

One of the more powerful features of the current formulation is

the ability to predict heat-to-heat variations in creep behavior from

a knowledge of the ultimate tensile strength of a given heat of material.

The models presented herein also embody a much sought after relationship

between short-term tensile properties and long-term creep properties.

Therefore, it is desirable to examine the validity of this relationship

in more detail.

The use of U to aid in predicting creep behavior is not a totally

novel approach. For instance, Conrad [125] proposed an equation of the

form

tr =Dexp ffl exP aQ(T) (86)

where D is a constant, H the activation energy of self-diffusion, R the

gas constant, and a is some measure of variation of strength with

temperature. Our use of ultimate tensile strength is a similar concept.

Various American [126-129] and Soviet [130-132] investigators have

related either hot-hardness or ultimate tensile strength at temperature

to creep and creep rupture strength. These investigations are summarized

in Ref. [20].

Analytically, the ultimate tensile strength, U, can be considered

as the stress corresponding to a rupture life of the duration of a

tensile test or to a minimum creep rate of the tensile strain rate.
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Therefore, the ultimate tensile strength for a given heat of material at

a given temperature effectively determines the location of the short

time/high rate end of the stress-rupture or stress-minimum creep rate

isotherm for that heat at that temperature.

Sikka et al. [20] have discussed the metallurgical factors involved

in relating ultimate tensile strength to creep behavior. For

completeness, their arguments will be reproduced here. Perhaps the

main objection to the use of ultimate tensile strength to predict creep

behavior is the possibility that metallurgical changes which occur

during long-term creep may sufficiently alter material behavior so as to

destroy any correlation between ultimate tensile strength and long-term

creep or creep rupture strength. For type 304 stainless steel, the

metallurgical changes are limited primarily to precipitation of carbides

at grain boundaries and in the matrix. ORNL data for test times

approaching 40,000 hr show the weak or strong character of a heat to be

retained during a long-term test, which indicates that metallurgical

changes have comparatively little influence on factors controlling the

relative creep strength of various heats. There is evidence [1] that

thermal aging for a period of 100,000 hr (11.4 yr) at 565°C (1050°F)

causes essentially no changes in the creep properties of type 304

stainless steel. The apparent linearity in log a vs. log tr and

loe a vs. log e isotherms for the current data extends to test times
& ° m

of 65,000 hr, indicating thereby the absence of any significant

metallurgical changes in this period of time [133].

Another question which should be addressed concerns possible

effects of differences between creep and tensile modes of deformation.
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However, several substructural studies [134-137] on tensile and creep

tested specimens of types 304 and 316 stainless steel have shown that

the dislocation structures were independent of deformation mode.

Dislocation cell formation occurs at temperatures below which the

deformation is primarily glide controlled, whereas subgrains form when

the deformation is climb controlled. The cell or subgrain size is

related simply to the true creep stress or true ultimate tensile

strength by [137] .

Acell * MaT/E)-2 (87)

and

a , . « biojE)-1 (88)
subgrain v T

-4
where b is the burgers vector (about 2.54 x 10 um), a„ is the true

creep stress or true ultimate tensile strength, and E is Young's

modulus.

Gittus [138] described a statistical theory of creep in which the

mean stress required to overcome obstacles to creep deformation could

be related to ultimate tensile strength, providing further support for

the current techniques.

Finally, the fracture mode for type 304 stainless steel is

generally transgranular for short-term tensile tests, while creep

fractures are primarily intergranular. Therefore, a relationship between

ultimate tensile strength and creep rupture strength tends to imply that

the factors which control intragranular strength also at least partially

determine the grain boundary strength. Manjoire [139], in describing
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flow and fracture, suggested that the same factors influence the

relative strengths of both the grain matrix and the grain boundary.

There is much evidence that grain boundary sliding and intragranular

deformation during creep are related [139]. Additional support for this

contention can be found in the work of Rhines and Wray [140] and Sikka

et al . [141], who have studied the minima in tensile ductility

with temperature exhibited by austenitic stainless steels. Figure 58

shows the tensile reduction of area as a function of test temperature

for the weakest and strongest (in terms of ultimate tensile strength)

heats in the ORNL testing program for types 304 and 316 stainless steel.

As noted in Ref. [141], the weak heats show a drop in ductility at

temperatures which are in the creep range. Rhines and Wray [140]

offered an explanation for such ductility minima. At the lower

temperatures, failure occurs by a transgranular crack propagation

mechanism, and ductility is high. As temperatures approach the

temperature of the minimum in ductility, some deformation occurs by

grain-boundary shear, resulting in rapid growth of intergranular voids

formed at triple points, causing a drastic loss in ductility. As the

temperatures become still higher, recrystallization occurs along with

the intergranular void formation, continuously breaking up the

intergranular fracture path and causing the ductility to again increase.

Figure 58 indicates that the ductility minimum associated with

intergranular cracking occurs in the weak heat of type 304, but is

either absent or postponed to higher temperatures in the strong heat.

This effect can be explained in terms of the increased grain boundary

strength of these strong heats. Since these same heats have high
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values of U, their matrix strength is also relatively high. These

observations support the proposition that inter- and intragranular

strengths are related and are perhaps controlled by similar factors.

The use of ultimate tensile strength in predicting creep and

creep-rupture strength for type 304 stainless steel is justified both

by an empirical, statistically based modeling procedure and by more

fundamental metallurgical considerations. An alternative might be to

use some direct measure of the property being modeled as an indicator

of the strength of a given heat. For instance, the stress to cause

2
rupture in 10 hours at the temperature of interest or the stress to

-2
cause a minimum creep rate of 10 %/hr might be used as variables

rather than ultimate tensile strength. However, the use of ultimate

tensile strength appears adequate and is easier to apply.

Predicted Trends in Ductility Data

Although these analyses were done primarily on an empirical

basis, the results appear consistent with those that would be expected

from a physical model. The predictions of the variations in creep

ductility in Chapter III illustrate this point. It is generally accepted

that the observed creep strain consists of the strain occurring within

individual grains (e ) and the deformation occurring by grain boundary

sliding (e,). Thus,

e3 = eg + eb ' (89)

where the values of e and e, depend on the relative strengths of grain



189

matrix and grain boundaries. Since the annealing treatment in the type

304 stainless steel does not cause the formation of strengthening

phases, applied creep stress can produce deformation both in the matrix

and at grain boundaries. The matrix deformation causes the formation of

a subgrain or dislocation cell structure; meanwhile, the grain boundary

deformation causes stress concentrations. For test temperatures below

about 649°C, carbide precipitates deposited at the grain boundaries

during testing are continuous and thus inhibit [142] both grain boundary

sliding and migration. As a result, the stress concentrations generated

at triple points can nucleate cracks [143] causing onset of tertiary

creep after only small strains at low temperatures. Precipitates at

higher temperatures are larger and make possible both grain boundary

sliding and migration. Grain boundary migration can relax stresses,

thus allowing a greater intergranular deformation before the initiation

of enough cracks to cause onset of tertiary creep. There is a great

deal of evidence that an increase in stress results in a decrease of

the contribution of grain boundary sliding to the total strain [123].

Thus, the amount of matrix deformation incurred before the occurrence

of intergranular cracks increases as stress increases. The effect of

strain rate is similar. Equation 40, page 103, predicts a decrease in

the ratio of t, or t within increasing time (decreasing strain rate),

due to the larger contribution of grain boundary deformation and

faster cracking under these conditions.

The predicted variations in creep ductility due to ultimate tensile

strength can also be explained. A given applied stress is effectively

lower for a strong heat than for a weak heat. Thus, the isostress
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effect of increasing strength (U) is similar to the effect of decreasing

stress, i.e., a decrease in ductility. However, at very high stresses,

the increased strength of strong heats begins to dominate and stronger

heats can withstand more deformation before cracking and the onset of

tertiary creep. At a constant strain rate, the increased grain boundary

strength of stronger heats results in an increased contribution of

intragranular deformation to the total strain. Therefore, more strain

occurs before grain boundary deformation is sufficient to cause

extensive cracking and the onset of tertiary creep. At a constant

strain rate, 63 is thus generally larger for stronger heats. In

short, all of the trends predicted by the current empirical calculations

are consistent with the metallurgical features of this material.

Comparison With ASME Code Case 1592
Allowable Stress Levels

The current results can be directly compared with the results

given in ASME Code Case 1592 [49] in terms of the time dependent

allowable stress levels, S , for elevated temperature applications.

The value of S is defined as the lowest of the three following

criteria:

1. 2/3 of S , the minimum stress to cause rupture in time t;

2. 80% of S3, the minimum stress to cause onset of tertiary

creep in time t;

3. Sl0, the minimum stress to cause 1% total strain in time t.
1 ~h

Values of S and S are tabulated directly in ASME Code Case 1592

[49]. For the current results S , S7, S,0, and S^ were calculated at
L J r 3 1%' t
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3 5
times of 10 hours and 10 hours. Values of S,<^ were taken directly

from the minimum strength isochronous stress-strain curves from

Figure 53, pages 156-158). Values of S were determined using Eqn. 35,

page 88, and evaluating at minimum values ofultimate tensile strength

(mean minus two standard errors). Values of S3 were calculated

similarly, using Eqn. 40, page 103, to estimate t from t •

Table XXXIII compares the current results with those of the code

case. Considering the large differences in data bases and analytical

techniques, the two sets of values correspond quite closely. The

current minimum values are in general slightly lower than those of the

code case, perhaps reflecting the large variations in strength displayed

by the current ORNL data. As explained above, many uncertainties

remain in the extrapolated regions. The current results do not in

themselves indicate any alarming problems in the results of ASME Code

Case 1592 [49].



TABLE XXXIII

COMPARISON BETWEEN ESTIMATED TIME-DEPENDENT ALLOWABLE STRESS LEVELS
CALCULATED FROM THE CURRENT RESULTS AND THOSE GIVEN

IN ASME CODE CASE 1592a

Temperature

Sl9. Minimum Stress
"to 1% Strain

S3, Minimum Stress Sr, Minimum Stress
to Tertiary Creep to Rupture

S c Allowable
Dependent Stre

10-* hr 10

Time-

ss

5 hr(°C) 10-* hr IO15 hr 10s hr 10S hr 10-* hr 103 hr

Current Results

538

593

649

144

105

51

108

65

30

156(125) 81(65) 166(111)
115(92) 57(46) 123(82)
74(59) 34(27) 79(53)

ASME Code Case 1592

88(59)
62(42)
37(25)

111

82

51

59

42

25

538

593

649

213(143)
140(94)
92(62)

114(77)
70(47)
43(29)

143

94

62

77

47

29

S .
r .

aAll stress values are given in MPa.

Values in parenthesis represent adjustment by standard safety factors of 0.8 on S^ and of 2/3 on

S+. is the lowest of S,0, 0.8S,, and 2/3 S .
x. i *g o r

(D
ro



CHAPTER VII

CONCLUSIONS

A large base of creep and creep-rupture data for type 304 austenitic

stainless steel has been subjected to an analytical treatment in order

to develop a mathematical representation of the properties of this

material for design applications. Specific conclusions of the current

analysis are:

1. Standard techniques of linear regression analysis can be

applied to develop analytical models for rupture life (t ) and minimum

creep rate (em). These models fit the data well, including the

prediction of heat-to-heat variations in properties through the

inclusion in the models of terms involving the ultimate tensile strength

of a given heat of material at the temperature of interest. However,

extrapolation of these models is only valid so long as no significant

metallurgical changes (instabilities or deformation mechanism changes)

occur. The final equations used were:

log tr =5.716 -^M- logo +1^U -0.007303 Ulog a (90)

log em =-2.765+^- log a--il^4" +0. 01616 Ulogo . (91)

2. The use of variations in ultimate tensile strength to estimate

variations in creep and rupture strength is consistent with available

data and appears to be reasonable based on metallurgical considerations.
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3. Simple empirical relationships can be used to estimate the

time to tertiary creep, t3, from the time to rupture. The average

creep rate to tertiary creep, e3 = e3/t3 (e3 is the creep strain at the

onset of tertiary creep), can be estimated from the minimum creep

rate. These relationships are:

t, = 0.686 t °"968 (92)
3 r

and

e =1.11 em0-974. (93)
3 m

Thus, the creep strain to tertiary creep, e3, can be estimated by

„ ,,., „ 0.968 . 0.974e3 = 0.761 tr 94)

Alternatively, e3 and t3 can each be separately modeled by regression

analysis and then multiplied to yield ey Other creep ductility criteria

(e.g., the strain to rupture) can be similarly estimated. Predicted

trends in creep ductility appear consistent with the metallurgical

characteristics of type 304 stainless steel.

4. Type 304 stainless steel generally exhibits classicial three

stage creep. The shape of the strain-time creep curves in the primary

and secondary stages can be adequately modeled by the single rational

polynomial creep equation,

e = CPt + et , (95)
c 1 + pt m '
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where e is the creep strain, t the time, and C, p, and e are equation

parameters (e = minimum creep rate).

5. The parameter C corresponds to the total amplitude of the

primary term in the rational polynomial creep equation. It can be

shown that C = t_(e_ — e ), so that the equations given in conclusion

(3) above yield

C = 0.686 t°-968(l.ll e0-974 -e ) . (96)
r v m mJ K J

The initial creep rate, e = Cpte , can be estimated by

. 0.80
e = 3.43 e , (97)
o m ' v J

so that the parameter p can be estimated by

(e - e )

P =-2-^ • (98)

Thus, the entire creep equation can be estimated from a knowledge of

e and t alone. The above models (Eqns. 90 and 91,page 193) thus yield a

prediction of the strain-time behavior which reflects heat-to-heat

variations in creep strength through variations in ultimate tensile

strength. (Equations 92-94, 96, and 97 appear to be relatively

insensitive to heat-to-heat variations, since they are normalization

procedures.)

6. The occurrence of metallurgical instabilities 'does not appear

to be a significant problem for type 304 stainless steel. However,

available low-stress creep tests from Oak Ridge National Laboratory

(many of which are still in progress) appear to indicate a change in
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deformation mechanism at low stresses. As a result, the above

equations would be valid only to the point where this change occurs.

The data do not permit an exact determination of the nature of this

change, but metallurgical considerations show that it is reasonable to

expect such a change. A quantitative analysis of behavior below the

break requires more data than are currently available. In particular,

there is no information about heat-to-heat variations in properties

below the break. The creep process appears to display a lower

activation energy at lower temperatures.

7. By using an estimated minimum value of ultimate tensile

strength in the predictive equations, the behavior of minimum strength

material can be estimated. These results can be compared with the

allowable stress levels for this material given in ASME Code Case 1592,
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