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THE USE OF PRESSURIZED ECCENTRIC TUBES TO STUDY
THE EFFECT OF HYDROSTATIC STRESS ON SWELLING

W. G. Wolfer! and T. C. Reiley

ABSTRACT

A technique for measuring the effect of hydrostatic stress on radiation-induced swelling is
presented. This technique is based on the nonuniform hydrostatic stress that arises when an eccentric
tube (a tube with inner and outer surfaces having dissimilar centers of revolution) is internally
pressurized. The elastic analyses of the thin- and thick-walled eccentric tube are given. The elastic
stress state is allowed to relax plastically, based on a constitutive law for deformation during neutron
irradiation. In this case, the constitutive law contains a lineatly stress-dependent deviatoric strain rate
and a dilatation rate that is linearly dependent on hydrostatic stress. Emphasis is placed on the
specimen design and experimental procedure for in-reactor experiments in which the coetficient
relating hydrostatic stress and swelling is sought. It is shown that, for the 316L stainless steel
specimens placed in EBR-{I, we may expect that any appreciable effect of hydrostatic siress on
swelling will be observable through changes in specimen curvature.

1. INTRODUCTION

During the plastic deformation of metals, the volume or density normally remains constant. Important
exceptions may be noted during the tertiary stage of thermal creep, during ductile fracture processes in
general, and during deformation under fast-neutron irradiation conditions that cause swelling. Once internal
cracks or cavitics are formed, the application of stress along with associated plastic deformation may
contribute to the growth of these defects, which leads to a decrease in specimen density. The general
relationship between applied stress and plastic strain is described herein for the situation in which plastic
strain is not volume conserving; that is, a constitutive law is developed for the case where dilatation
accompanies deformation.

The primary emphasis is on a simple device, a pressurized eccentric tube, that may allow highly accurate
measurement of the effect of stress on volume changes during plastic deformation. This device is
particularly suited for in-reactor deformations, and we shall henceforth concern ourselves only with its
application for radiation-induced creep and swelling during fast-neutron irradiation. However, the device is
also applicable for studying other deformation processes for which volume is not conserved.

A form of the constitutive law for radiation-induced deformation is discussed in Sect. 2;in Sect. 3 we
present the elastic analysis of the pressurized eccentric thin-walled tube. The more elaborate and rigorous
stress analysis for the thick-walled tube is given in Sect. 4. (The reader not interested in analytical details
may skip this section.) The final equations used for the experimental determination of stress-induced
volume changes along with the actual specimen design requirements are given in Sect. 5.

2. A CONSTITUTIVE EQUATION FOR RADIATION-INDUCED DEFORMATION

A constitutive equation for radiation-induced deformation can be derived from microscopic models
based on the climb and glide of dislocations, in association with the growth of voids. Such a derivation is
given in ref. 2, where it is shown that the constitutive relation depends on microscopic parameters that

1. Now at Department of Nuclear Engineering, University of Wisconsin.
2. W. G. Wolfer, M. Ashkin, and A. Boltax, Properties of Reactor Structural Alloys After Neutron or Partivle
Irradiation, ASTM STP 570, ASTM (1975) pp. 233--258.



describe the dislocation structure, however, such an approach will not be taken here. It is possible to
develop the constitutive relation based on mathematical reasoning and empirical macroscopic information
without recourse to microscopic models.

We assume that the strain rate tensor € (or é,-j) is a function of the stress tensor ¢ and the accumulated
strain €. Furthermore, € may also be a function of the neutron flux, ¢ the time, ¢, and the temperature, 7.
Our assumption implies that

e=€(0,€,¢,1,1). (H)

It is always possible (at least for small strains) to decompose the tensor quantities into their isotropic and
deviatoric components; that is,

e=("h) Al +e, (2)
g =oyl+s, (3)

where 1is the Kronecker tensor (5;;), A is the volume dilation, 0y is the hydrostatic stress, and e and
s are the deviatoric strain and stress respectively.

Based on the work of Rivlin® and Wineman and Pipkin,* the constitutive equation for an isotropic
material can be shown to be of the form
A=f, ©)
for the rate of dilatation, and
e=fietfrstfre? tfas? +fs (estse)tfq (es” +s%e) + [ (e*s+se’)+ [y (€5 +5%€?) (%)

for the rate of deviatoric strain, where the functions fy through f3 are functions of ¢, ¢, T, and the ten
invariants

O, tr (s57), det (5), A, tr (e?), det (), tr (se), tr (€25), tr (s2e), tr (s?) . (6)
Here the tensor product is defined as
es = 2k e;psi; s

tr is the sum of the diagonal elements of the tensor, and det is the determinant of the tensor matrix. Since
tr é == O, the following relationship must be satisfied by the functions f3 through f3:

fa (€2 fy tr(s?) + 2fs tr (se) + 2f tr (5% ) + 2f, tr (se?) + 2fs tr (s €)= 0 . @)

Equations (4), (5), and (7) form the most general constitutive law for isotropic materials when written in
the form of Eq. (1). To further simplify these equations, one must use experimental information.

3. R. S. Rivlin, J. Ration. Mech. Anal. 4, 681702 (1955).
4. A. S. Wineman and A. S. Pipkin, Arch. Ration. Mech. Anal. 17, 184--214 (1964).



First a major simplification of our constitutive law may be obtained by assuming that the previous
deviatoric deformation has no effect on the present deformation rate. This is consistent with the limited
observations on in-reactor deformation. It is a reasonable assumption, given the small deviatoric strains
imposed on reactor components during irradiation, even though they may be sccompanied by large
dilatational strains. (This is tantamount to the assumption that the small in-reactor deformation rate is
governed by a radiation-controlled microstructure rather than a deviatoric strain-controlled
microstructure.) Hence, e and A are independent of €, but not necessarily of 4, and

hH=fi=fs=fe=fH=f=0.

Then, because of Eq. (7), we must also conclude that £, = 0.1t follows that the nonvanishing terms f; and
f, depend only on the lower order invariants oy, tr (s?), det (s5), and A. Furthermore, since only linear
stress dependence of the deformation rate is normally observed, we will ignore the dependence of fy and f;
on the invariants tr (s*) and det (s). Thus, the constitutive equations become: '

A=fy : (8)
and

e=fs, ©®)
where

fi=5i0, 0, T, 04,8). (19)

A similar line of reasoning may be applied to the situation in which large deviatoric strains are imposed
on reactor components, e.g., cold-working during their manufacture, preceding placement in reactors. We
can deal with this case by treating ¢ as the strains associated with cold-working, letting e = e,. If the
material is exposed to radiation under no external stress, then Eq. (5) gives:

¢ =fre, + fre,’? ‘ (1)

and describes radiation-induced shape changes without external loads. And, together with the equation A=
fo, these are the constitutive equations for anisotropic growth.

3. THE THIN-WALLED TUBE WITH NONUNIFORM WALL THICKNESS

In this section the description of the elastic strains and curvature will be given for a pressurized
eccentric thin-walled tube. This treatment will be modified later in-Sect. 5 to allow discussion of the plastic
deformation of the tube in light of the previously developed constitutive equations.

For a thin-walled tube under an internal pressure po, the average stresses in the radial (r),
circumferential (), and axial (z) directions are given approximately by®

Gpr = ~Dol2, Ggg = PorlY, 0 = por/2v, (12)

5. See, for example D. C. Drucker, Introduction to Mechanics of Deformable Solids, p. 78, McGraw-Hill, New York,
1967.



where r is the tube radius and vy is the wall thickness. [f r/y > 1, as it must be for the above approximations
to hold, then o,, is much less than og4 or 0,,. For these conditions the elastic strains in the tube in the
radial, circumferential, and axial directions are given by

3Vpol"
€pp = — T, 13
rr E v (13)
2 v por
660:“-7—'—0' , (14)
E 2~
1 —2vper
€y = — 59_ ) (15)
E 2y

where F is Young’s modulus and v is Poisson’s ratio. One point to be noted is that if » = %, as it would be
for an incompressible medium or for plastic deformation, €,, = 0, and no axial elongation would take place.
For v <Y, an axial expansion would occur with a magnitude inversely proportional to the wall thickness,
7.

One may include the effect of a variation in wall thickness on the above expressions. For an eccentric
tube, as shown in Fig. 1, let the wall thickness change along the circumference as:

Y(0) = vo t+ 6y cos .
The cylinder expands axially more on the thinner side than on the thicker, which leads to bending of the

tube. We can compute this bending in terms of a radjus of curvature, R from simple geometric relations (see
Fig. 1). If L is the original tube length, let the length on the thinner side (AA) be L(1 + ¢,,*) and on the

ORNL-DWG 77-4630

AA=L(1+ety,)
8B=L[(1+e

ll)

Fig. 1. The eccentric thin-walled tube under internal pressure.



thicker side (BB) be L(1 + ¢,,~), where ¢,," and €,, - are the axial strains on the thinner and thicker sides.
From Fig. 1, it can be seen that:

L1 +e,;")=(R+r)A¢ ,
L{lte.; )=R-nNdp ,

and

+ -
€2z €z

= e

r 1
- T(erst € ). 16
R e Sylet e (16)

Using Eq. (15) and substituting the maximum and minimum values of v for the thicker and thinner sides of
the tube, respectively, we find

r Po T dy -t 6y ~1
L= (] WY (] e = {1+ T ) 17
R ( )E 476 \ ’Yo) « 7()) ) an

For small eccentricities, such that 8y €y, , we obtain finally:

Po b7
E 27,°

i}

{1~ 2v) (18)

1
R

In the next section a similar formula will be developed for the more complicated thick-walled tube having
significant eccentricity.

4. THE THICK-WALLED ECCENTRIC TUBE

The elastic stress analysis of the eccentric tube has been carried out by several researchers. Using bipolar
coordinates, G. B. Jeffery first obtained an exact solution of the stress distribution in an eccentric pipe.® A
detailed investigation of the location of the maximum stress was later. undertaken by Coker and Filon.” The
soluiion may also be found in a paper by Weinel,® which was then used by Wuest® to evaluate the elastic
bending of an internaily pressurized eccentric tube. In this section we summarize the resuits of the abave
papers that are pertinent to the present problem.

The complete elastic analysis is most conveniently approached by superposing two states of stress. The
first state is one of plane strain (i.e., no axial strains are allowed) in which the eccentric tube is pressurized
but is constrained to remain straight through the application of end tractions, My and Ty, at the centroid
(Fig. 2). The second state of stress is that arising from the application of the opposite end tractions, M,
and Ty, only. The detailed stress analysis is required for the calculation of the maximum shear siress such

6. G. B. Jeffery, Phil. Trans. Roy Soc. London, A221, 265--293 (1920).
7. E. G. Coker and L. N. G, Filon, A Treatise on Photo-Elasticity, 2d ed., p. 306, Cambridge University Press,
Cambridge, Mass., 1957.

8. E. Weinel, 7. dngew. Math. Mech, 17, 276~287 (1937).
9. W. Wuest, Ing. Arch. 19, 1221 (1951).
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Mg\j/ \)‘/ Mo '

i

To To

Fig. 2. The superposition of elastic states for a free-standing pressurized eccentric tube.

that, under pressurization, yielding will not occur at any point in the tube. Also, a complete understanding
of the stress state is requircd where the rate of deformation has a nonlinear stress dependence.

4.1 The Bipolar Coordinate System

The relation between Cartesian (x, ¥) and bipolar (£, n) coordinates is given by:

v=q - Sibhf (19)
cosh £ - cosn

and

)}::a

cosh § —cosn '

(20)

where a is the distance of the pole from the origin, as shown in Fig. 3. The coordinate lines corresponding
to £ = const. represent a family of circles,

(x — acoth £)® + y? =4%/sinh?f | (21)
and the coordinate lines corresponding to 1 = const. represent another family of circles,
x*+(y -acotn)? =4*/sin’n . (22)

Thus the cross section of the eccentric tube can be specified by two positive values of &, say £, and &, . If
the radii of the circles forming the eccentric annulus are ry (inner) and , (outer), as shown in Fig. 4, then,
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. £€=025 ]
3
7=~
n=-%
n=-r n=0
n=" X et
=%
ki
n=3
__asinh £
cosh§ ~ cosm
. ~a sin 7)
[ cosh £ - cos 7
=g
Fig. 3. The bipolar coordinate system.
according to Eq. (21),
ri =a/sinh 21 s 123 =a/Sinh 52 - (23)

The centers of these circles are located at x, = a coth £; and x, = a coth &,, where the distance between
the centers is given by:

b=a(coth &, —coth§,) = (r,? +a®)/? - (r, 2 +a*)/? . (24)

For a given choice of r,, 7y, and b, the value of a (the polar quantity) is determined and is given by:
1 -
a=§g [(r22 — 1 ?)? — 267 (7,? +r?)+pt 2 (25)

4.2 The Elastic Deformation Accompanying Pressurization

In this section the two states of stress shown in Fig. 2 will be examined. The first state, being one of
plane strain, is analyzed using Airy’s stress function ¥(x, y), which satisfies the biharmonic equation:

Viy=0. (26)
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2 2
b brp

o= +
2.2
o 2b ri-e

Fig. 4. Dimensional relations for the eccentric tube cross section.

In bipolar coordinates this equation is written as:

a* a* A LR & v
V.4w=g”3 [~—-—+2' 2 +2~--;+1](—>, Q@n
agt  ag?am® amt At Om g
where
g=al(cosh § —cosn) . (28)
The stresses are given by the equations:
a ? 0 3 2"
Opp =@ ! [— — sinh £ = - sinnp — * cosh E] (——) , (29)
g an’ b3 an g
. [a 7 el d ( w> o)
Opp =a |~ —sin g—*fsinn--+cosn] — 1,
" g 0 ot o g
1 9% /¢
Ogn =~ (—) : (31)
g£oson \g

Since the stress distribution is symmetric with respect to the X axis (see Fig. 3), we need a solution of the
biharmonic equation that is even and simply periodic in 1. Such a solution is given by:®

Y /g =A cosh £ + B(cosh £ — cos 1) + Csinh & + (G cosh 2§ + H sinh 2§ + Ficos (32)



where 4 through F are constants. Inserting this solution into Eqgs. (31) to (33), one finds that the C term
results in zero stress and can therefore be omitted. Furthermore, we may write

Acosh i+ Fcosn=A(cosht~cosn)+{4d+F)cosn ,
with the result that the first term again leads to zero stress, whereas the second term is simply a redefinition

of the constant F. Thus, the A term may be dropped. The remaining constants, B, F, G, and H, are now
determined from the four boundary conditions:

O = =Py (E=E1)

0 =0 (£=%&)

(33)
=0 (=%
Op =0 =5 .
One obtains the four equations:
~Bsinh ¥, cosh £+ G cosh 26, + Hsinh 28, + F=—ap, »
~Bsinh &, cosh &, + G cosh 2&, + Hsinh 2%, + £=0,
—B+2G sinh 28, + 2H cosh 2 =0,
—~B+2G sinh 28, + 2H cosh 2§, =0,
with the following solutions:
B=2aN cosh (¥, — &) , (34)
F =aN[sinh (£, — £,) + sinh 2§, cosh({ — £}, (35)
G =-—aN sinh (§, + £,), (36)
H=aN cosh(§, +£,), 37
where
N=% polsinh(§, — £,) (sinh?&, +sinh?£,)] 71 . (38)

The stresses can be expressed more conveniently in the following form:

a(Oyq +0pg) = 2F + 2G(2 cos 1 cosh £ — cos 21 cosh 2§)

+ 4H sinh &(cosh £ + 2 cosh®E cos n+ cos n - 4 cosh § cos’n) , (39)
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(0 y - Ogg) = 2(cosh £ — cos n) (Bsinh £ + 26 cos 1 cosh 2§ + 2H cos 7 sinh 2£) | (40)
aop = sin n(cosh £ — cos N)(—B + 2G sinh 2 + 2H cosh 2£) . 41

However, for the numerical evaluation it is better to write these expressions in terms of the dimensionless

parameters

B=b/(ry —r1) , (42)

Ao =rifra (43)
and

A:';S :;.'-1;<‘(si:h g)) i si:hs ’ @
where

az = ié—[(l o)~ 267 (14 207) +67 (1 -2 '/2 (45)

Another parameter, X, which locates the center of the circle for a given value of £, is used here also:

x(§) = acoth ¢ (46)
and
1
xi =x(E1)= = [T+ X =62 (1-2)] (47)
28
1
X2 =x(§2) = 2—5 [1+Xg+ g (1 —2)] . (48)

Using Egs. (34) through (38) and replacing sinh £ and cosh £ by a/X and x/A, respectively, we obtain
(Onn + 0kt) No/2aN) = x5 — X2~ 2x2 (aiXxa — &) ¥ 2 cos A [xOa1 +xa) — xaxa — &
+cos 20072 [2x(xaxe + @) — Oatxa) OF tah)] L (49)
(Oqn — Oe)No/(4aN) = (x/X — cos n){%“(xl X2 — %)
Feos T 2x0oxs o)~ G #xa) 63+l L (50
Opeho/(4aN) = sin n(x/\ — cos ) A2 (x — x1) (X — X2) (51

where

2aN/Ng = = poho 2/ [e?B(1 — o) (1 +2%)] . (52)
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To illustrate the magnitude of these stresses over the cross section, a perspective view is chosen, as shown in
Fig. 5, in which half the cross section of the eccentric tube is mapped onto a rectangular area. In Figs. 68
the values of the stresses g¢, 0y, and o are given for an eccentric tube with the geometric parameters \g
and 3 set equal to 0.5. The vertical axis in the figures is marked in units of p,, the internal pressure.

To obtain the value of g,,, the axial stress for the unconstrained pressurized eccentric tube, one must
add the values of Uzz[ and a,,", as mentioned earlier (see Fig. 2). The value of 0,,! is given by

GZZI:V(Onn+OE£) 3 . (53)

since we have plane strain conditions. To find 0., " we must evaluate T, the end traction applied to the
tube end caps (+7, for state I, —T, for state 1I). Mechanical equilibrium is the criterion used to evaluate
Ty, as given in Eq. (54):

T, = 77"12170 "‘ff"zzldA s (34)

where f dA denotes integration over the cross section of the tube. Since

Jf @ + oppyan =2m,7p,, (55)

ORNL~-DWG 77~ 4633

Fig. 5. The mapping used to show the stress distribution over the cross section of the eccentric tube.
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(r,/r,=0.5)
{b/(r,-r)=0.51

Fig. 6. The value of g¢; over the eccentric tube cross section. In units of pg, the internal pressure.

ORNL~DWG 77-4635

Tn

{r/r2=0.5)
(6/(ry~1,)=0.5)

Fig. 7. The value of 0pn Over the eccentric tube cross section. In units of pg, the internal pressure.

ORNL-DWG 77-4636
Iné

(r/r2=0.5)
(b/{ry-r;)}=0.5)

Fig. 8. The value of o, over the eccentric tube cross section. In units of pg, the internal pressure.
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Ty is given by
To =(1 —2v)mr, %py . (56)

The moment M, is found to be

(1 — 2v)ar, %, ?bp,

My = . 57
0 r, L. 121 ? ( )
Thus the stress 0,11, arising from the application of T and —M, to an unpressurized tube, is
-M,
0zzII ='T (x —xq) , ‘ (58)

where [ is the moment of inertia for bending about the y axis,

Pt -t B Pr,?
1=n< 2 o LT >’ (59)

4 r22-r12

and x, denotes the puosition of the centroid along the x axis (see Fig. 4) and is given by

732 ry? - b2 bry? (60)
Xp = + .
° 2b 7% 1y

Substituting Eqs. (57), (59), and (60) into Eq. (58),

~4(1 = 20)r; 2ry 2 pob r,2—r 2 - p? br,?
UZZII= - 4‘( ' )12 2 P02 — % |- 2 1 B 2 ' 61)
(r2” —ry")e2® — %) - 4b%r %ry 2b r2?—r?

The value of 0,; = 6;,' + 0,,'" is shown graphically in Fig. 9 for ry/r; = b/(ry —r1) = "%, in units of the
internal pressure, py. Thus, ignoring end effects, the stresses of interest are determined.

ORNL-DWG 77-4637
Sz
{rn/ry=0.5)
(b/(ry-r)=0.5)

w=1/3) ' y , / f

Y ';

0

Fig. 9. The value of 1,, over the eccentric tube cross section. In units of pg, the internal pressure.
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As in the case of the thin-walled tube in Sect. 3, the bending curvature associated with pressurization
may be given for the thick-walled tube. The initial elastic curvature, 1/R,, is directly obtainable from 0,1
in Eq. (61), since 0,,' contributes no axial strain:

A P —4(1 - 20)r, %1, %b . 62)
Ry E (r24 *"14)(’22 *”12)’“41’2’12722

When r; & r,, the above result reduces to that for the thin-walled pressurized tube, derived earlier in Eq.

(18).

5. APPLICATION OF THE CONSTITUTIVE LAW TO THE PLASTIC DEFORMATION
OF PRESSURIZED ECCENTRIC TUBES

In this section we will describe the plastic behavior of the pressurized eccentric tube. The experiments
for which this analysis is applicable are ones in which tubes are pressurized and irradiated and then
depressurized. Thus the effect to be studied is some aspect of the plastic deformation occurring during
irradiation under internal pressure. A brief analysis will be given for the plastic deformation, driven by the
previously defined elastic loading; specifically, the curvature along the length of the tube is described. Also,
specimen design criteria will be given, emphasizing the avoidance of yielding during thesc experiments.

5.1 Plastic Analysis

One may begin by writing Hooke’s law for the elastic strain in the axial (z) direction of the tube:

ezze =02z — V(Oxx + Uyy) . (63)

The elastic strain, €,,¢, may be rewritten as

TOT _ . p (64)

e _
€22 T €zz €22 s

TOT s the total strain and €,,7 is the plastic strain at any time after the initial loading. Given the

where €,,
necessary assumption that all planes remain planar, the total axial strain at any point may be described in
terms of a uniform axial strain plus a strain component that varies linearly across the cross section {in the x

direction; see Fig. 3):

EzzTOT:ezzo A (65)

where €, ° is the uniform axial strain at any time, x* {(=x — x¢) is the position coordinate specified relative
to the position of the centroid at x,, and 1/R is the instantaneous curvature of the tube. Rewriting Eq. (63)
and noting that 0, + 0,,, = 0p,, + 0g¢ in bipolar coordinates (or 6,, + 044 in the cylindrical coordinates
associated with the thin-walled tube),

*

E(e;,° —R—) ~Fe,P =6, — oy, tog) . (66)
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Here we will introduce the constitutive relation developed earlier for the plastic strain rate [see Eqs. (8),
(9), and (10)]. The strain rate component of interest, ¢,,?, is given by

. 1 1
€z = fo g +fy [0z, g(azz tOogy t UEE)] . (67)

The factors f, and f, were specified as functions of time, temperature, neutron flux, dilatation, and
hydrostatic pressure. These functions will be assumed to be of a form allowing a separation of the
hydrostatic stress dependence in the following way:

fo=fo'(1 + Pog)
f2=£'(1+Qoy) . (68)

As mentioned earlier in Sect. 2, it is consistent with experimental observations to eliminate terms having
greater than one-power stress dependence. Thus, we will set @ =0 (and in doing so, make the problem
considerably more tractable).

Equation (67) may be written as

. fo' P2 ~fo'P f' .
eﬂp:%ﬂzzz((; +—§1>~< "9 +~_;~)(onn+o££) : (69)

Letting ¥ = fo'P/9 + 2,'/3 and vP = (—-fo'PI9 + £,'13)/V,

) fo
€. = 3 L2 AP S (S 1) I (70)

where »# ‘may be considered as a plastic Poisson’s ratio.

To obtain the plastic strain called for in Eq. (66), one must make an assumption about the time
dependence of the factors ¥ and vP. Here we will assume that average values ¥ and VP may be used.
(From the data on 316 stainless steel, it appears that the incubation period plus linear time dependence of
swelling and the small transient behavior plus linear time dependence of in-reactor creep allow increased
validity for this assumption with increased time of irradiation, for ¢¢ S5 x 10%° neutrons/m?, energy >
0.1 MeV.) Therefore we may write

!

= fot — L
€227 = €77 X t=—-93— +yr [G,, ~ 9P (G + 0], (71

where all quantities having bars above them are time-averaged.
Substituting €, ,7 into Eq. (66) and taking the first moment of each quantity over the area (i.e. ffx*
ddy,

E fo! - - - -
Effezz°x*dA wﬁffx’” dA — Et 39— x*dA El,btffozzx*dA+EdJﬁ”f (G + Ogg) X* dA
=ffozzx*dA - Vf(a,m togeyx¥*dd . (72)
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The first and third terms on the left disappear, since each represents a constant displacement. From the
condition of mechanical equilibrium for small strains, it follows that

rycr b
f fozzx*d,a f f Gpx* dA —--~--‘~-i~53~ . (73)
__r1

(For the thin-walled tube, the term on the right is 12 p,57.) Thus, noting also that ff x* d4 is the moment
of inertia, /, given earlier in Eq. (59),

1 vt (7rr, bpo uﬁ) J‘f
T\ S ——5 ) + *da - *da
R <1 EI) \ ry? —rg? (O + 05 ) x fﬁ"nn +0gg ) X

(74)
The further assumption may be made that, for small strains, J‘f(om+ Ogg Jx* dA is constant and
— - 2“" Fq pob .
(Unn + Ogg)x*dA = (Oﬂﬂ + OEE)X* dA = ‘*—‘r 2"—rz . (73)
27Ty
By making this substitution and by substituting 1/R, the initial elastic curvature, into Eq. (74),
1 d/tF(l - P 1
- = ( ------------------ ) +1 -, (76)
R 1-2v . Ry,
where
1 1 — 20y 2r,%pob
h:”/( : Y1 r2"po ' 77)
Ry El(ry? —r?)

(The value of 1/R, is (1 - 2¥)pg 8¥/(2E%¥,?) for the thin-walled tube.)

Again, we invoke the requirement that strains be small, and we assume that upon depressurization
a reverse curvature will be observed that is identical in magnitude to the initial elastic curvature, 1/R,. Thus,
the residual curvature 1/R, after depressurization is given by

1 o < - > 1 s
- = pt A —
1Qr 1- 21} RO ( )

Using the fact that
1P =0 (79)

Eq. (78) may be rewritten

1 ('f"o’z>P < abri ?r,? >
—=pe\ )P : 8
R, 7'\ 3 (r2* 1 %) (2 — 1) — 4b7r, 2ry? (80)
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When 7?2 = Y% or, equivalently, when P = 0, the plastic curvature disappears; that i, linearly
stress-dependent deviatoric strain will not cause a change in curvature. Therefore, we may describe the
plastic deformation occurring during irradiation in terms of the pressure, the linear stress-free swelling, a
material constant that relates the swelling rate to the hydrostatic pressure, and a geometric factor.

5.2 Point of Maximum Shear Stress

Before an estimate may be made of the residual curvature after irradiation, the maximum internal
pressure that may be applied to the tube must be known. The criterion here for the maximum pressure is
that pressure which, if exceeded, will cause yielding at some point in the tube. In this section the maximum
shear stress in the tube will be estimated for a given internal pressure.

We will begin by examining the stresses on the internal surface at £ = £, . The stresses ogg (&1) and 0,
(&,) are, respectively,

og (81)= -po » (81

r? [(r22 ~b%) - 2(ry +2b cos )’ ,
2) (82)

omn(E1) = ~po + 2
nn(gl) Po Po( [ (r22 - rl2 A.Abz)z — 4b2r12

nltr

It may be shown® that oy, (£,) is always positive and that minimum value for oy, (§1) occurs at the
thickest point of the tube or when n = 0 (see Figs. 3, 7). The value of 0, (£, 0) is given in Table 1 for the
case where ry/ry = b/(r; — 7,) = ;. The maximum value of o, (§;) on the internal surface occurs at n = 7,
where the tube is thinnest, when b <r, [2. However, when b > r /2, the maximum value of o,, (£, ) occurs
at the two oblique points where cos n = - r, /2b. The value of 6., may be obtained from

—4(1 — 2)pory iry?h

0, ( = ‘
= () (ra* = 1 (r* = n?)— 42,0
r22"‘r12——b2 br22 ‘ ]
e 5 Ay T P Do @OT L (83)

Table 1. Calculated stresses for the
pressurized eccentric tube

The values are given for the case where rifra=bfry 1)) = 1/2
and where v = 1/3. The values shown in parentheses are those for
the tubes having ry/ry = 0.76 and b/(r5 — r1) = 0.50.

%nm Ozz otk
E=E,n=0 1.45pg 0.13pg -Po
(2.71po) (0.40pg) (-po)
£=E,m=0 0.21po ~0.05p¢ 0
(1.390) (0.16po) (0
E=t,n=n 2.43po 0.5900 -Do
(6.64p0) (2.26p0) (-po)
E=E,n=nw 2.19p0 0.87po 0

(6.5%p0) (2.62pg) ()]
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where

(r22 . r12 . b2)2 _ 4b2r12

X = ) e
2b(i? —ri? - 6%) —4b%r cosn

(84)

Assuming a Poisson’s ratio of %, the values of g,, (§,, 0) and 0, (£;, 7) may be calculated; these values
are shown in Table 1. For the points at n = 71, oy (§1) > 07,(E1) > 0 (§y). The same order applies to
these stresses on the external surface (£ = £, ). The stresses at £ = £, are given by the following:

Ot (52)=0 , (85)

2por12 |t (ry —2bcosn)? —(r ? — b?)?

7 - 86
an (§2) ry? 47, (ra? —r 2 — b?)? - 4b?r,? (86)
—4(1 — 2)pory 2r,2b ry? -7 ? - b2 bry?
0z (£2)= : X o e ot
(r2* = r ") - ri ) =4 ry%h? 2b ra?-r

tv[ogg (B2) toge (82)] . (87)

where

(ry? —r 2 + b - 4b?r,?

x =
2b(r, % — r 2 +B%) — 4b%r, cos

(38)

The values of these stresses are also listed in Table 1.

A detailed analysjs of the maxinum stress for all values of the geometric parameters is beyond the
scope of this work. For the two geometries chosen, namely for r, /r, =0.5and ri/r, =0.76 with b/{r, — )=
Y, Figs. 613 show graphically that the maximum value of stress is that of Opq atn =mw,E=£,, that is, the
interior surface at the thinnest point. As was mentioned earlier, this is not the case for all geomeiries.
Furthermore, for the cases cited, the maximum stress difference, Opn — Ogg, Occurs at the same point.
Thus, the maximum shear stress, 7,4, IS given by

1
Tmax 5 [Onn(gl > ”) — Ok (El’ ”)] s (89)

(90)

Tmax —

170’22 <’22 b* — 21’1]3"r12 )

P2t A\t bt —2rb—r?

Assuming a Tresca yielding criterion, that is, when the maximum shear stress equals one-half of the yield
stress 0y, yielding occurs when

2p0722 <r22—b2‘2r1b+r12> (91)
o, = = .
Y ontrnt A\t bt b
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Fig. 10. The value of o over the eccentric tube cross section. In units of pg, the internal pressure.
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Fig. 11. The value of oy, over the eccentric tube cross section. In units of py, the internal pressure.
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lryry=0.76)
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U
v, Vv,
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111

Fig. 12. The value of o, over the eccentric tube cross section. In units of py, the internal pressure.



20

ORNL-DWG 77-464¢

%22
(ry/r,=0.76)
(b/(ry-r,)=0.5)

Fig. 13. The value of o,, over the eccentric tube cross section. In units of pg, the internal pressure.

For a given yield stress, the maximum curvature that may be expected (for the geometries chosen in
Table 1) is found using Eq. (80):

2r,2 ry2 - b% —2bry 4+’

l> o ri2 tryt) - b - 2bry -1,
R, max

’t 4b"12r22
x 1t p | (92)
3 (r2* —r ) (ry? -1 ?) —4b%r, ry

And, letting S =f(;'t, the volumetric swelling of the material,

1

S

— =0, PK(r,,r,,b) , 93

Rr> )3 (1 2 ) ( )
max

where

_ 2br, 2(r 2 + 7y 2)[ry? — (g + 5)?)
K(ry,ra, )= =5 21 i 4 21 2 2,2, 27 ° 9
[ra® = 0% —2bry vy 2] [(r2" 1 ") (ra® — 1 2) —4b%r°ry?]

and P is the coefficient relating swelling to hydrostatic stress (see Eq. 68).

5.3 Experimental Procedure

Eccentric tubes were prepared to allow determination of the constant P, relating swelling to the
hydrostatic stress. The material chosen was a high-swelling, rather pure heat of 316L stainless steel. The



21

composition of the alloy is listed below, and the swelling behavior for this material irradiated in EBR-11 is
shown in Fig. 14,

Composition of the 316L stainless steel used in the
pressurized eccentric tubes

I'e Cr Ni Mo Mn C Si 5

Balance 17.5 14.4 2.8 0.1 0.006 0.02 0.002

ORNL-OWG 77-4643

. /«/ ] N
§

8P DENSITY DECREASE (%)

400 450 500 550 600 650
TEMPERATURE (°C)

.Fig. 14, Temperature dependence of neutron-irradiation-induced density decrease in high-purity 316 stainless steel for
a fiuence of 2 x 10%° m:utrons/m2 (£ >>0.1 MeV).

The dimensions of the tube, along with the geometry of the end caps, which were clectron-beam-welded to
the tubes, are shown in Fig. 15.

The tubes and end caps were machined from 25% cold-swaged material. The end caps were then welded
in place. One end cap had a 0.005-in. (130-um) hole into which was inserted a 0.0045-in. (110-um) wire
made from 312 stainless steel. This alloy was chosen to improve the laser welding characteristics of the end
caps. The tubes were then annealed at 800°C for 1 hr and subsequently pressurized and laser-welded at
HEDL by M. Paxton.

These tubes were included in an ORNL experimental assembly placed in EBR-II at the time of this
writing. Ten tubes will be irradiated during 1976--1977 to a fluence of about 4 X 102° neutrons/m?, F >
0.1 MeV. Five will be irradiated at 525°C and five at S75°C. The expected stress-free volumetric swelling at
both temperatures is about 23%, assuming an incubation fluence of 5 X 102% neutrons/m? and a constant
swelling rate.!©

The pressures in each of the tubes arc listed in Table 2, along with the irradiation temperature and
expected maximum stress. For control purposes, one from each set of five tubes is a concentric tube having

10. E. E. Bloom, unpublished data.
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Fig. 15. The experimental pressurized tube geometry.

Table 2. Experimental conditions for the
pressurized eccentric tubes

Fill Operating Maximum Operating

Tube pressure pressute shear stress temperature

(psia) (psia) (psi) O
AA° 574 1661 3700 575
BB 574 1661 6200 575
CC 574 1661 6200 575
DD 293 848 3100 575
EE 8 575
FF* 608 1656 3700 525
GG 608 1656 6200 52§
HH 608 1656 6200 525
15° 0 0 525
KK 8 525

%Denotes concentric tube.
Denotes leaking tube that was evacuated.

a uniform wall thickness of 0.028 in. (0.71 mm) and an outer diameter of 0.230 in. (5.84 mm). One of the
five tubes is not under pressure, also as a control. Two tubes of each set were pressurized to what was felt
to be a safe maximum, thereby avoiding yielding at the operating temperature. The yield stress for our
material was assumed to be that for solution-annealed 316 stainless steel, which has a minimum expected
yield strength at 575°C of 17,000 psi (117 MPa).' ! The fifth tube of each set was pressurized to one-half
of the safe limit (assumed to be 12,500 psi). Cornpensation was made for the hydrostatic pressure in the
reactor of 32.7 psi (0.23 MPa) and 36.7 psi (0.26 MPa) for the tubes at 525 and 575°C respectively.

Once the tubes are removed from the reactor, the detlection from a uniformly straight tube will be
measured. The deflection, 6, shown in Fig. 16, and the tube length, /,equal to about 1.5 in. (38 mm) for
measurement purposes, are related to the residnal curvature by

8=R, - (R -1/ (95)

11. Hanford Engineering Development Laboratory, Nuclear Systems Materials Handbook, vol. 1, Design Data,
TID-26666, Property Code 2102, p.1, Richland, Wash. (continually updated}.
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Fig. 16. The deflection 5 to be measured after irradiation and depressurization.

By setting the volumetric swelling to § = 0.23 and the pressure to py = 1624 psi (11.2 MPa) and by using
the experimental geometry given in Fig. 15, one may find the expected deflection by combining Eqs. (80)
and (95):

5=841X 107%P 1 _[(841 X 107%P )2 ~2.25)1/2 | (96)

For a value of 2= 5 X 1077 psi~! (which corresponds to an increase in the rute of swelling by 0.05% per

1000 psi), the value of § is measurable:

8(P=5%X10"7 psi1)=6.9X 107% in. X))

The resolution for the optical measurement of the deflection should be at least 0.0001 in., thereby allowing
a measurement of P down to a value of about 1077 psi™!, Below this value P becomes a malter of
academic importance rather than a matter at all critical to reactor design.

6. SUMMARY

In the preceding sections a constitutive law for deformation of materials being neutron-irrndiated was
applied to the pressurized eccentric tube. It was shown for the linear stress dependence chosen that, if the
hydrostatic stress affects the dilational strain (swelling, in this case), a plastic bowing of the tube will
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%

develop. Upon depressurization the curvature of the tube may be used to determine the value of the
coefficient P that relates hydrostatic stress to swelling:

1 S

=P Pg(r . b), 98
g P03 (r1,72,0) (98)
where 1/R, is the residual curvature after depressurization, pg is the internal pressure, S is the volumetric
swelling, g(r,7,,b) is a geometric constant [see Eq. (80}]. Other deformation modes having hydrostatic

stress-dependent dilatation associated with them may be tested using this technique. For example, the onset
of tertiary creep could be monitored using pressurized eccentric tubes.
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