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THE USE OF PRESSURIZED ECCENTRlC TUBES TO STUDY 
THE EFFECT OF HYDRQS'TATIC STRESS ON SWELLING 

W. G. Wolfex' and T. e. Keiley 

ABSTRACT 

A technique for measuring the effect of hydrostatic stress on radiation-induced swelling is 
presented. This technique is based on the nonuniform hydrostatic stress that arises when an eccentric 
tube (a tube with inner and outer surfaces having dissimilar centers of revolution) is internally 
pressurized. The elastic analyses of the thin- and thick-walled eccentric tube are given. The elastic 
stress slate is allowed to relax plastically, based an a constitutive law for deformation during neutron 
irradiation. In this case, the constitutive law contains a linearly stress-dependent deviatoric strain rate 
and a dilatation rate that i s  linearly dependent oti hydrostatic stress. fimphasis is placed on the 
specimen design and experimental procedure for in-reactor experiments in which the coefficient 
relating hydrostatic stress and swelling i s  sought. It i s  shown that, for the 316L stainless steel 
specimens placed in EBK-11, we may expect that any appreciable effect of hydrostatic stress on 
swelling will be observable through changes in specimen curva!ure. 

1. INi'KODUCTION 

Ihr ing the plastic deformation of metals, the volunie or density nornially remains constant. Important 
exceptions niay be noted during the tertiary stage of thernial creep, during ductile fracture processes in 
general, and duriiig deformation under fast-neutron irradiation conditions that cause swelling. Once internal 
cracks or cavities are formed, the application o f  slress along with associated plastic deformation may 
contribute to  the growth of these defects, which leads to a decrease in specimen density. The general 
relationship between applied stress and plastic strain is described herein for the situation in which plastic 
strain is not volume conserving; that is, a constitutive law is developed for the case where dilatation 
accompanies de formation. 

The priniary emphasis is on a simple device, a pressurized eccentric tube, that may allow highly accurate 
measurement of the effect of stress on volume changes during plastic deforrnatioii. This device i s  
particularly suited for in-reactor deformations, and we shall henceforth concerii ourselves only with its 
application for radiation-induced creep and swelling during fast-iieutron irradiation. I-Iowever, the device is 
also applicable for studying other deformation processes for which volume i s  not conserved. 

A form of the constitutive law for radiation-intlut:eil deformation is discussed in Sect. 2; in Sect. 3 we 
present the elastic analysis of the pressurized eccentric thin-walled tube. The more elaborate and rigorous 
stress analysis for the thick-walled tube is given in Sect. 4. (The reader not interestzd in analytical details 
may skip this section.) The find equations used for the experimental determination of stress-induced 
volume changes along with the actual specimen design requirements are given in Sect. 5 .  

2. A CONSTITUTIVE EQUATION FOIC ~ ~ ~ ~ ~ T ~ ~ ~ - ~ ~ ~ U C ~ ~  DEFORMATION 

A constitutive ecluat.ion for radiation.-induced deformation can be derived frotn microscopic models 
based on the clinib a n d  glide of dislocations, in association with the growth of voids. Such a tlerivation is 
given in ref. 2,  where i t  is shown that the constitutive relation depends 1x1 microscopic parameters that 

1. Now at Department of Nuclear Eriyineering, University of Wisconsin. 
2. W. G.  Wolfer, hl. Ashkin, and A. Boltax, Properties of Keu:actur Structmd A k y s  After IV~IILIWFI OT Purticlc 

hadia t io~i ,  ASTM STP 570, ASTM (1975) pp. 233---258. 
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describe the dislocation structure; however, such an approach will not be taken here. It is possible to 
develop the constitutive relation based on mathematical reasoning and empirical macroscopic information 
without recourse to microscopic models. 

(or iij) is a function of the stress tensor o and the accumulated 
strain E .  Furthermore, i may also be a function of the neutron flux, @ the time, t ,  and the temperatuae, T. 

Our assumption implies that 

We assume that the strain rate tensor 

I t  is always possible (at least for small strains) t o  decoinpose the tensor quantities into their isotropic and 
deviatoric components; that. i s ,  

where 1 is thc Kronecker tensor (ti,;), A is the volume dilation,’oH is the hydrostatic stress, and e and 
s are the deviatoric strain and stress respectively. 

Based on the work of Rivlin3 and Wineman and Pipkin: the constitutive equation for an isotropic 
material can ‘be shown to be of the form 

A = f o  (4) 

for the rate of dilatation, and 

for the rate of deviatoric strain, where the functions fo through fs are functions of 4, t, T ,  and the ten 
invariants 

O H ,  t r  (~‘1, det (s), A, tr (e’), det (e ) ,  tr (se), tr (e*s), tr (?e), tr (2s’) . ( 6 )  

Here the tensor product is defined as 

t r  is the sum of the diagonal elements of the tensor, and det is the determinant of the tensor matrix. Since 
tr k 3 0, the following relationship must be satisfied by the functions f 3  through fs : 

Equations (4), (5), and (7) form the most general constitutive law for isotropic materials when written in 
the form of Eq. (1) .  To further simplify these equations, one must use Pxperimental information. 

3. R. S .  Rivliii,J. Ration. Mech. Anal. 4, 681-702 (1955). 
4. A. S. Wineman and A. S .  Pipkin, Arch. Ration. Mech. Anal. 17, 184--214 (1964) .  
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First a major simplification of our constitutive law may be obtained by assuming that the previous 
deviatoric deformation has no effect on t h  present deformation rate. This is consistent with the limited 
observations on in-reactor deformation. I t  is it reasonable assumption, given the sinall deviatoric strains 
imposcd on reactor components during irradiation, even though they may be accompanied by large 
dilatational strains. {This is tantamount to the assumption that the small in-reactor deformation rate i s  
governed by a radiation-controlled microstructure rather than a deviatoric strain-controlled 
nricrostructure.) Hence, e and are independent of e, but not necessarily of A, and 

f ,  = f 3  = f s  = fs =f, =fs = 0 . 

Then, because of Eq. (7), we must also conclude that f4 = 0. It follows that the nonvanishing termsf, and 
f i  deperid only on the lower order invariants UH, tr (s2j, det (s), arid A. Furthermore, since only linear 
stress dependence of the deformation rate is normally observed, we will ignore the dependence off, arid fi 
on the invariants tr (s2) and det (s). Thus, the constitutive equations become: 

A similar line of reasoning may be applied to the situation in which large deviatoric strains are imposed 
on reactor coinponents, e.g., cold-working during their manufacture, preceding placement in reactors. We 
can deal with this case by treating e as the rtrains associated with cold-working, letting e = cp I f  the 
material is exposed to radiation under no external stress, then Eq. ( 5 )  gives: 

and dcscribes radiation-induced shape changes without external loads. And, together with the equation A = 

f , ,  these are the constitutive equations for anisotropic growth. 

3. THE THIN-WALLED TUBE: WITH NONUNIFORM WALL THICKNESS 

In this section the description of the elastic strains and curvature will be given for a pressurized 
eccentric thjn-walled tube. This treatment will be modified later in Sect. 5 to allow discussion of the plastic 
deformation of the tube in light of the previously developed constitutive equations. 

For a thin-walled tube under an internal pressure p o ,  the average stresses in the radial (r) ,  
circumferential (81, and axial (2) directions are given approxirnalely by5 

5. See, for example D. C. Drucker, ItltrO&c61~1 lo Mechanics of Defntmublr Solids, p. 78, McGratv-Hdl, New York, 
1967. 
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where r is the tube radius and y is the wall thickness. If r/r S- 1 ,  as it must be for the above approximations 
to hold, then F,,, is much less than or u,,. For these conditions the elastic strains in the tube in the 
radial, circumferential, and axial directions are given by 

... 

1 ~ 2c,por 

E 2 y  
- 

E,, - - - , 

where E is Young's modulus and v is Poisson's ratio. One point t o  be noted is that if v = as it would be 
for an incompressible medium or for plastic deformation, E , ,  = 0, and no axial elongation would take place. 
For v < 'I2, an axial expansion would occur with a rnagnitirde inversely proportional to the wall thickness, 
7. 

One may include the effect of a variation in wall thickness on the above expressions. For an eccentric 
tube, as shown in Fig. 1, let the wall thickness change along the circumference as: 

The cylinder expands axially more on the thinner side than on the thicker, which leads to bending of the 
tube. We can compute this bending in terms of a radius of curvature, R from simple geometric relations (see 
Fig. 1). If L is the original tube length, let the length on the thinner side (AA) be L(l + E,,') and on the 

ORNL-DWG 7 7 - 4 6 3 0  

A 

A 

Fig. 1 .  The eccentric thin-walled &ube under internal pressure. 
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thicker side (BB) be L ( l  t eZz--) ,  where e Z Z +  and E , ,  --. are the axial strains on the thinner and thicker sides. 
From Fig. 1 ,  it can be seen that. 

and 

- 
r E,,+ --- E,, 1 

-= ”v - ( € z z +  ..- € z z - ) ,  
R 2 t  E z z + + E z , -  2 

Using Eq. (1 5) and substituting the maximum and minimum values of y for the thicker and thinner sides of 
the tube, respectively, we find 

r r 6y - 1  6y - 1  

R E 47, Y O  Yo 
- = (1 --- 2v)p” - [(I --- --j 

I_ ( 1  .t -) 3 , 

For small eccentricities, such that Sy 4 r0, we obtain finally: 

P o  6Y - = ( 1  ___ 2v) I - 
R E 2y,2 . 
1 

In the next section a similar formula will be developed for the more complicated thick-walled tube having 
significant eccentricity. 

4. THE THICK-WALLED ECCENTRIC TUBE 

The elastic stress analysis of the eccentric tube has been carried out by several researchers. Using bipolar 
coordinates, G .  B. Jeffery first obtained an exact solution of the stress distribution in an eccentric pipe.6 A 
detailed investigation of the location of the maximum stress was later undertaken by Coker and F i l ~ n . ~  The 
soluiion may also be found in a paper by Weinel,’ which was then used by Wuest3 to evaluate the elastic 
bending of an internally pressurized eccentric tube. In this section we summarize the results of the above 
papers that are pertinent to the present problem. 

The complete elastic analysis is most conveniently approached by superposing two slates of stress. The 
first state is one o f  plane strain (Le., no axial strains are allowed) in which the eccentric tube is pressurized 
but is constrained to remain straight through the application of end tractions, M ,  and T o ,  at the centroid 
(Fig. 2) .  The second state of stress is that arising from the application of the opposite end tractions, --Mo 

and -To, only. The detailed stress analysis is required for the calculation of the maxirnum shear stress such 

6 .  G .  B. Jeffery, Phil. Z’rans. Roy Sur. London, A221, 265 293 (1920). 
7. E. G. Coker and I-. N. G. Filon, A Peatisr ON Photo Elustrclty, 2d ed , p 306, Cambridge UniverWy Piess, 

8. E. Weinel, Z. Angew. Math Mech. 17, 276-287 (1937). 
9. W. Wuest,Zn& Arch. 19, 12-21 ( 1  951). 

Cambridge, Mass, 1957. 
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Fig. 2. The superposition of elastic states for a freestanding pressurized eccentric tube. 

that, under pressurization, yielding will not occur at any point in the tube. Also, a complete understanding 
of the stress state is required where the rate of deformation has a nonlinear stress dependence. 

4.1 'The Bipelar Coordinate System 

The relation between Cartesian (x, -y) and bipolar ( E ,  q)  coordinates is given by: 

and 

- sin 77 

cosh E -  c o s q  ' 

where a is the distance of the pole from the origin, as shown in Fig. 3 .  The coordinate lines corresponding 
to 4 = const. represent a famlly of circles, 

(x - a coth Q2 + y 2  = a2/sinh2E , 

and the coordinate lines corresponding to r) = const. represent another family of circles, 

xz + O, ~a cot qI2 -u2/s in2q . (22) 

Thus the cross section of the ccccntiic tube can be specified by two positive values of E, say t1 and E 2 .  I f  
the radii of the circles forming the eccentric annulus are rl (inner) and r, (outer), as shown in Fig. 4, then, 
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Fig. 3. The bipolar coordinate system. 

according to Eq. (21), 

rl  = a/sinh 5 ,  , r2 =alsinh t2 . 

The centers of these circles are located at x1 = u coth 4, and x2 = a coth t2 ,  where the distance between 
the centers is given by: 

b =a(coth t2 -- coth E , )  = ( r z2  f a2 j1 I2  -- (rl  t a 2 ) 1 / 2  . (24) 

For a given choice of r 2 ,  r I  , and b, the value of a (the polar quantity) is determined and is given by: 

4 112 - r1 ')' - 2b2 (tZ2 t r 1 2 )  + b ] 
1 

Q = -- [(r2 
2b 

. 

4.2 The Elastic Deformation Accompanying Pressiirization 

In this section the two states of stress shown in Fig. 2 will be examined. The first state, being one of 
plane strain, is analyzed using Airy's stress function $(x, y), which satisfies the biharmonic equation: 

V V = O .  
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ORNL-DWG 77-4642  

Fig. 4. Dimensional relations for the eccentric tube cross section. 

In bipolar coordinates this equation is written as: 

+ t -  -2 0 4  $ " f 3  

where 

g := u/(cosh ( -~ cos r ) )  . 

'The stresses are given by the equations: 

a a a 
av 

- sinh ( .--- - sin r)  - + cosh [ 

Since the stress distribution is symmetric with respect to the x axis (see Fig. 3) ,  we need a solution of the 
bibarmonic equation that is even and simply periodic in q. Such a solution i s  given by:6 

$ /g  = A cosh < + B(cosh [ - cos o) + C sinh 4' 3- (6 cosh 2g + H sinh 2( + f lcos Q , (32)  
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where A through F are constants. Inserting this solution into Eqs. (31) to ( 3 3 ) ,  one finds that the C term 
results in zero stress and can therefore be omitted. Furthermore, we may write 

A cosh t + F cos q = A(cosh COS 77) t (A  + F) COS 77 , 

with the result that the first term again leads to zero stress, whereas the second term is simply a redefinition 
of the constant F. Thus, the A term may be dropped. The remaining constants, B, F, 6, and H, are now 
determined from the four boundary conditions: 

One obtains the four equations: 

-B sinh cosh (,t G cosh 281 + I €  sinh 2t1 i- F =  -aPo 9 

- B  sinh t2  cosh t2  + G cosh 212 + H sinh 2{2 f F = 0 , 

-B t 2G sinh 2E1 + 2H cosh 2t1 = 0 , 

-B t 2G sinh 2t2 + 2H cosh 2 E 2  = 0 , 

with the following solutions: 

G = --aNsinh (E1 t t 2 )  , 

where 

The stresses can be expressed more conveniently in the following form: 
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u(ulla - -  u t t )  = 2(cosh 4: - -  cos q )  (Bsinh 4: + 2C cos 7) cosh 24: + 2H cos q sinh 2E) ~ (40) 

au,[ = sin q(cosh $ -- cos q)(-B + 2G sinh 24: f 2H cosh 2$) . (41) 

However, for the numerical evaluation it is better to write tiiese expressions in terms of the dimensionless 
paraine ters 

and 

r a n 
= .-.. = .__ .- 

r z  r: ((sinh E) )  - s i n h  E ’ 

where 

a 1  
a = -- = -----[(I + X 0 ) Z  - 202 ( 1  i- hoZ) +/34 (1 - hOZ)] 1 / 2  

rz 28 

(44) 

(45) 

Another parameter, x, which locates the center of the circle for a given value of E, is used here also: 

x(E) = a coth E (46) 

and 

Using Eqs. (34) through (38) and replacing sinh and cosh E by a/X and x/h,  respectively, we obtain 
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To illustrate the magnitude of these stresses over the cross section, a perspective view is chosen, as shown in 
Fig. 5 ,  in which half the cross section of the eccentric tube is mapped onto a rectangular area. In Figs. 6 8 
the values of the stresses u , ) ~ ,  and U ~ E  are gven for an eccentric tube with the geometric parameters h, 

and p set equd to 0.5. The vertical axis in the figures IS marked in units ofp,, the internal pressure. 
To obtain the value of uzt ,  the axial stress for the unconstrained pressurized eccentric tube, one must 

add the values of oZzr and uZz1', as mentioned earlier (see Fig. 2). The value of' o,,' IS given by 

since we have plane strain conditions. To find crZzt1 we must evaluate T o ,  the end traction applied to the 
tube end caps (+To for state I ,  -To for state 11). Mechanical equilibrium is the criterion used to evaluate 
To,  as given in Eq. (54): 

whereJJd4 denotes integration over the cross section of the tube. Since 

JJGJrlq + 0th) U'A = 2nr1 z P o >  

ORNL-DWG 77-4633 

\ 
\ 
\ 

I 
I 
I ! 

\ 

Fig. 5. The mapping used to show the stress distribution over the cross section of the eccentric tube. 

(55) 
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O R N L - D W G  77-4634 

Fig. 6 .  The value of 0 5 5  over the eccentric tube cross section. In units of PO, the internal pressure. 

O R N L - D W G  77-4635 

Fig. 7. The value of or)? over the cccenlric tube cross section. In units of PO, the internal pressure. 

ORNL-DWG 77-4636 

Fig. 8. The value of ~~5 over the eccentric tube cross section. In units of po. the internal pressure. 
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To is given by 

The moment Mo is found to be 

(1 - 2v)trr, 2 r 2 2 b p ,  

rZ2 - r I 2  
n40 = 

Thus the stress uZz1’, arising from the application of ---To and ---Mu to an unpressurized tube, is 

where I is the moment of inertia for bending about t hey  axis, 

r Z 4  - r 1 4  b 2 r r , 2 r , 2  
--. 

4 

and xo denotes the position of the centroid along the x axis (see Fig. 4) and is given by 

(57) 

(59) 

Substituting Eqs. (57), (59), and (60) into Eq. CSS), 

The value of o;;. = oZz1 + uZz1’ is shown graphically in Fig. 9 for rl/r2 = b/(r2 .. r l )  = ‘4 ,  in units of the 
internal pressure, p o .  Thus, ignoring end effects, the stresses of interest are determined. 

ORNL-OWG 77-4637 

Fig. 9. The value of %z over the eccentric tube cross section. In units of PO, the internal pressure. 
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As in the case of the thin-walled tube in Sect. 3, the bending curvature associated with pressurization 
may bc given for the thick-walled tube. The initial elastic curvature, l/Ro, is directly obtainable from uZz1' 
in Eq. (61), since u,,I contributes no axial strain: 

2 :: Po . 
R,, E ( r Z 4  - r 1 4 ) ( r Z 2  - r I 2 ) -  4 b 2 r , 2 r 2 2  

-4(1 ... - 2v)r Izr , 'b  

When r l  x r z ,  thc above result reduces to that for the thin-walled pressurized tube, derived earlier in Eq. 
(18). 

s. APPLICATION a F  THE CONSTITUTIVE LAW TO THE PLASTIC DEFORMATION 
OF PRESSURIZED ECCENTRIC TUBES 

In this section we will describe the plastic behavior of the pressurized eccentric tube. The experiments 
for which thus analysis is applicable are ones in which tubes are pressurized and irradiated and then 
depressurized. Thus the effect to be studied is some aspect of the plastic deformation sccurring during 
irradiation under internal pressure. A brief analysis will be given for the plastic deformation, driven by the 
previously defined elastic loading; specifically, the curvature along the length of the tube is described. Also, 

specimen design criteria will be given, emphasizing the avoidance of yielding during these experiments. 

5.1 Plastic ,4nalysis 

One may begin by writing Hooke's law for the elastic strain in the axial (z) direction of the tube: 

The elastic strain, may be rewritten as 

where E , , ~ ' ~  is the total strain and E , , ~  is the plastic strain at any time after the initial loading. Given the 
necessary assumption that all planes remain planar, the total axial strain at any point may be described in 
terms of a uniform axial strain plus a strain component that varies linearly across the cross section (in the x 
direction; see Fig. 3): 

where E, ,  is the uniform axial strain at any time, x* (= x - xo)  is the position coordinate specified relative 
to the position of the centroid at x,, , and 1/R is the instantaneous curvature of the tube. Rewriting Eq. (63) 
and noting that uxx t oYy = uV7 -t in bipolar coordinates (or u,.~ i- 0 8 8  in the cylindrical coordinates 
associated with the thin-walled tube), 

.. * 
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Here we will introduce the constitutive relation developed earlier for the plastic strain rate [see Eqs. (8), 
(9),  and (lo)]. The strain rate component of interest, izzp,  i s  given by 

(67) 
1 1 
3 3 i z r P  = f o  - + f z  [Q,, -. --(% + @,ill + 4 1  . 

The factors fo and f2 were specified as functions of time, temperature, neutron flux, dilatation, arid 
hydrostatic pressure. These functions will be assumed to be of a form allowing a separation of the 
hydrostatic stress dependence in the following way: 

As mentioned earlier in Sect. 2 ,  it is consistent with experimental observations to eliminate terms having 
greater than one-power stress dependence. Thus, we will set Q = 0 (and in doing so, make tlie probleni 
considerably more tractable). 

Equation (67) may be written as 

where u p  may be considered as a plastic Poisson’s ratio 

To obtain the plastic strain called for in Ey. (66), one must make an assumption about the time 
dependence of the factors J /  and up. Here we will assume that average values 3 and V p  may be used. 
(From the data on 316 stainless steel, it appears that the incubation penod plus linear time dependence of 
swelling and the small transient behamor plus linear time dependence of in-reactor creep allow increased 
validity for this assumption with increased lime of irradiation, for @t > 5 X IOz6 neutrons/m2, energy > 
0.1 MeV.) Tlierefoie we niay write 

k 

where all quantities having bars above them are tirne-averaged. 
Substituting ezZP into Eq. (66) and taking the first moment of each quantity over the area ( i s .  JJx* 

d A ) ,  



16 

The first and third terms on the left disappear, since each represents a constant displacement. From the 
conditioii of mechanical equilibrium for small strains, it follows that 

(For the thin-walled tube, the term on the right i s  i-r’r2p06y.) Thus, noting also that j j  x *  d24 is the moment 
of inertia, I ,  given earlier in Eq. (S9), 

The further assumption may be made that, for small strains, uqv+ ott)x* dA is constant and 

By making this substitution and by substituting l /Ro ,  the initial elastic curvature, into E q .  (74), 

where 

(The value of l/Ko is ---( 1 
Again, we invoke the requirement that strains be small, and we assume that upon depressurization 

a reverse curvature will be observed that is identical in magnitude to the initial elastic curvature, l / H o .  ‘rhus, 
the residual curvature 1 /K ,  after depressurization i s  given by 

2v)p0 6y/(X;yO2) for the thin-walled tube.) 

Using the fact that 

Eq. (78) may be rewritten 

1 4br, ’ r2  

( r Z 4  - r 1 4 )  ( r 2 2  - rl  2 ,  - 4 b 2 r ,  2 r 2 2  
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When F p  = 'I2 or, equivalently, when Y = 0, the plastic curvature hsappears; that is, linearly 
stress-dependent deviatoric strain will not cause a change in curvature. Therefore, we may describe the 
plastic defornia tion occurring during irradiation in terms of the pressure, the linear stress-free swelling, a 
material constant that relates the swelling rate to the hydrostatic pressure, and a geometric factor. 

5.2 Point of Maximum Shear Stress 

Before an estimate may be made of the residual curvature after irradiation, the maximum internal 
pressure that may be applied to the tube must be known. 'The criterion here for the maximum pressure is 
that pressure which, if exceeded, will cause yielding at some point in the tube. In this section the maximum 
shear stress in the tube will be estimated For a given internal pressure. 

We wl l  begin by examining the stresses on the internal surface at t = t l .  The stresses 0 5 5  ( E l )  and uvV 
(t1 ) are, respectively, 

q{ ( t l )  = -Po f (81) 

It may be shown6 that on,, ( 4 , )  is always positive and that minimum value for uvq (E1) occurs at the 
thickest point of the tube or when r) = 0 (see Figs. 3,7).  The value of uqq ( t , ,  0) is given in Table 1 for the 
case where r1  / r2  = b/(ra - r l )  = 1/2. The maximum value of o,,,, (tl) on the internal surface occurs at = n,  
where the tube is thinnest, when b < r l  / 2 .  However, when b > r 1 / &  the maximum value of  uVv (t1) occurs 
at the two oblique points where cos r) = . -  r l / 2 b .  The value of u,, may be obtained flom 

-4(1 - 2 v ) p 0 r l 2 r Z 2 h  

( r Z 4  r l 4 ) ( r Z 2  r I 2 > -  ~ x I 2 r z 2 b 2  
0 2 2  ( 4 1 )  = 

Table 1 .  Calculated stresses for the 
pressurized eccentric tube 

The values are given for the case where r i h z  = b / ( r z  r l )  = '/2 
and where u = '/3. The values shown in parentheses are those for 
the tubes havinyri/r2 = 0.76 andh/(rz - r l )  = 0.50. 
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where 

( r 2 2  - -  r I 2  - b2)’ - 4bzr l z  

2b(rZ2 ~ r 1 2  - -  b 2 )  -4b’r cosq 
X =  . ._ 

Assiiining a Poisson’s ratio of ‘ I3 ,  the values of uzz ( t l ,  0) and uzz ( i l ,  r )  may be calculated; these values 
are shown in Table 1. For the points at  ‘q = ir, unTl (tl) > oZz(<, )  > 0 5 ~  (tl). The same order applies to 
these stresses on the external surface ( E  = i 2 ) .  The stresses at $ = t 2  are given by the following: 

r2 (r2 ~ 2b cos q)’ ~ (r l  - b2)2  
U q q  @ 2 )  = 2 2  

rz +r1 (r2 - r 1 2  - b2)’ - 4b2r12 
2por12  I 

-4( 1 ~ 2v)p0r1 ‘ r 2  ’ b  

(r24 -- rl 4 ) ( r22  ~.~ rl  2 ,  4 r l  ’ r 2  2b2  

[ r Z 2  -;;’ - b2 br, 
. -- x - + 

0 2 2  ( t 2 ) =  
r 2 =  - r l  

where 

The values of these stresses are also listed in ‘Table 1 .  
A detailed analysis of the maximum stress for all values of the geometiic parameters is beyond the 

scope of this work. For the two geometries chosen, namely for r ,  / r 2  = 0.5 and r l / r2  ~ 0 . 7 6  with b/(r2 ~ rl  ) = 
Figs. 6-13 show graphically that the maximum value of stress is that of unn at 77 = T ,  t = t I ,  that is, the 

interior surface at the thinnest point. As was mentioned earlier, this is not the MSC for all geometries. 
.~. Furthermore, for the cases cited, the rnadrnurn stress difference. uqn 

1 hus, the maximuni shear stress, r ,3 ,ax,  is given by . 7  

Assuming a Trescn yielding criterion. that is, when the maximum shear stress equals one-half of the yield 
stress uy , yielding occurs when 

2p0r2’ ( r 2 ’  - b2 - 2r1b + r I 2  

l b  - r I 2  r Z 2  ~ b2 ~ 2.r OY = ___ r I 2  +r2’  
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DRNL-DWG 77-4638 

Fig. 10. The value of ut[ over the eccentric tube cross section. In units o f  P O ,  the internal pressure. 
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( r,/rr = 0.76) 
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Fig. 11. The value of uVq over the eccentric tube cross section. In units of P O ,  the internal pressure. 

ORNL-DWG 77-4640 
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Fig. 12, The value of u , , ~  over the eccentric tube cross section. In units of P O ,  the internal pressure. 
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ORNL-DWG 77 -464!  

( r,/r2= 0.761 
( b/( r2- r, I = 0 . 5 )  

3 

2 

1 

Fig. 13. The value of oZZ over the eccentric tube cross section. In units of PO, the internal pressure. 

For a given yield stress, the maximum ciirvature that may be cxpccted (for the geometries chosen in 
Table 1) is found using Eq. (80): 

1 .... .. ._ 
' t r z 2 )  r z 2 - b 2  - - 2 b r , - r l Z  

2r2 r z z  -- b2 - 2br, t r l 2  

x fo't p 
3 . (92) 1 ___ 4brp ' r Z z  

_I_ 

(rz -- r l  ') (rz - - -  r ,  2 ,  - 4b2r1 2rz 

And, letting S =fo't, the volumetric swelling of the material, 

S 

where 

2 b r l Z ( r l Z  + r z 2 ) [ r 2 2  - ( r l  +b) ' ]  
.......... K(r, , r 2 ,  6 )  .= 

[ T ~ ~  - b2 -2br l  + r 1 2 ]  [ (rz4  r 1 4 ) ( r 2 2  - r l z ) - 4 b z r l Z r z z ]  ' 

and P is the coefficient relating swelling to hydrostatic stress (see Eq. 689. 

(93) 

(949 

5.3 Experimental Procedure 

Eccentric tubes were prepared to allow determination of the constant P, relating swelling to the 
hydrostatic stress. The material chosen was a high-swelling, rather pure heat of 316L stainless steel. The 
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composition of the alloy is listed below, and the swelling behavior for this nlaterial irradiated in EUK-I1 is 
shown in Fig. 14. 

Composition of the 316L stainless steel used in the 
pressurized eccentric tubes 

- 
Pe Cr Ni Mo Mn c Si S 

Balance 17.5 14.4 2.8 0.1 0.006 0.02 0.002 

ORNL-WK; 77-4643 

a'(.- 

2 

0 
400 450 500 550 600 650 

TEMPERATURE ("C 1 

Pig. 14. Temperature dependence of neutron-irxadiation-induced density decrease in high-purity 316 stainless steel for 
a riuence of 2 x neutrons/m2 (K >O.I M~v). 

The dimensions of the tube, along with the geometry of the end caps, which were electron-bearn-welded to 
the tubes, are shown it1 Fig. 15. 

The tubes and end caps were machined from 25% cold-swaged material. The end caps were then welded 
in place. One end cap had a 0.005-in. (130-prn) hole into which was inserted a 0.0045-in. (1 10-pm) wire 
made from 3 12 stainless steel. This alloy was chosen to improve the laser welding characteristics of the end 
caps. The tubes were then annealed at 800°C for 1 lr a i d  subsequently pressurized and laser-welded at 
HEDL by M. Paxton. 

These tubes were included in an ORNL experimental assembly placed in EBK-I1 at the time of this 
writing. Ten tubes will be irradiated during 1976---~ 1977 to a fluence of about 4 X 10" neu trcms/rn2, E > 
0.1 MeV. Five will be irradiated at 525'C and fivc at 575°C. The expected stress-free volumetric swellirig at 
both temperatures is about 23%, assuming an incubation fluence of 5 X neutrons/m2 and B constant 
swelling rate." 

The pressures in each of the tubes are listed in Table 2, along with the irradiatioti temperature and 
expected maximum stress. For control purposes, one from each set of five tubes i s  3 concentric tube having 

10. E. E. Bloom, unpublished data. 
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1.075 
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OANL-OWG- 77-4644 

4 

Fig. 1.5. The experimental pressurized Lube geometry. 

Table 2. Experimental conditions for the 
pressurized eccentric tubes 

.... ~ .......... ....... ___- 
Fill Operating Maximum Operating 

Tube pressure prcssure shear stress temperature 
("C) -. ...... ...... .- (psi4 (psis) (psi) 

A A" 
BB 
cc 
DD 
EE 

GG 
HH 

KK 

FFn 

J J ~  

574 
574 
5 74 
29 3 

8 
608 
608 
608 

0 
8 

1661 
1661 
1661 

848 

1656 
1656 
1656 

0 

- ......... __ 
"Denotes concentric tube. 
bDenotes leaking tube that was evacuated. 

3700 515 
6200 515 
6200 575 
3100 575 

575 
3700 5 25 
6200 525 
6200 525 

525 
525 

a uniform wall thickness of 0.028 in. (0.71 I n m >  and an outer diameter of 0.230 in. (5.84 mm). One of the 
five tubes is not under pressure, also as a control. Two tubes of each set were pressurized to what was felt 
to be a safe maximum, thereby avoiding yielding at the operating temperature. The yield stress for our 
material was assumed to be that for solution-annealed 316 stainless steel, which has a minimum expected 
yield strength at 575°C of 17,000 psi (1  17 MPa).' 'The fifth tube of each set was pressurized to one-half 
of the safe limit (assumed to be 12,500 psi). Compensation was made for the hydrostatic pressure in the 
reactor of 32.7 psi (0.23 MPa) and 36.7 psi (0.26 MPa) for the tubes at 525 and 575°C respectively. 

Once the tubes are removed from the reactor, the deflection from a uniformly strai&t tube will be 
measured. 'The deflection, 6 ,  shown in Fig. 16, and the tube length, I, equal t o  about 1.5 in. (38 mrn) for 
measurement purposes, are related to the residual curvature by 

11. Hanford Engineering Development Laboratory, Nuclear Systems ,Wutwiuls Handbook, vol. 1, Design Data, 
TID-26666, Property Code 2102, p.1,  Richland, Wash. (continually updated). 
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ORNL-DWG 77-4645 

____ p .___ ......._.-... t I 
Fig. 16. The deflection 6 to be measured after irradiatioii and depressurization. 

By setting the volumetric swelling to S = 0.23 and the pressure to  p o  = 1624 psi (1 1.2 MPa) and by using 
the experimental geometry given in Fig. 15, one may find the expected deflection by combining Eqs. (80) 
and (95): 

6 = 8.41 X 10-4P-' - t(8.41 X 10-4P--')2 - 2.25]"* . (96) 

For a value of P = 5 X 1 V 7  psi-. ' (which corresponds to an increase in the rute of swelling by 0.05% per 
1000 psi), the value of 6 is measurable: 

(97) 6(P= 5 X IO-' ,psi-') = 6.9 X in. 

The resolution for the optical nieasurenierit of the deflection should be at least 0.0001 in., thereby allowing 
a measurement of P down to a value of about EO-7 psi-'. Below this value P becomes ;I matter of 
academic importance rather than a matter at all critical to  reactor design. 

6.  SUMMARY 

In the preceding sections a constitutive law for deformation of materials being neutron-irradiated was 
applied to the pressurized eccentric tube. It was shown for the linear stress dependence chosen that, if the 
hydrostatic stress affects the dilational strain (swelling, in this case), a plastic bowing of the tube will 
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develop. Upon depressurization the curvature of the tube niay be used to determine the value of the 
coefficient P that relates hydrostatic stress to swelling: 

wheie 1/R, is the residual curvature after depressurization, p o  is the internal pressure, S is the volurnetric 
swelling, g(rl,r2,b) is a geometric constant [see Eq. (SO)]. Other deformation modes having hydrostatic 
stress-dependent dilatation associated with them may be tested using this technique. For example, the onset 
of tertiary creep could be monitored using pressurized eccentric tubes. 
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