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A STUDY OF THE EFFECT OF VOID SURFACE COATINGS
ON RADIATION-INDUCED SWELLING

L. K. Mansur and W. G. Wolfer*®

ABSTRACT

A theoretical investigation has been conducted into the
effects on point defect diffusion of the presence of a shell
of segregated material about a spherical void. The elastic
image interaction of the point defect with the void surrounded
by a shell of material of elastic constants which differ from
those of the matrix is first computed. The interaction, which
depends on the properties of the shell and the dilatation of
the defect, results in an energy barrier which must be over-
come when the defect diffuses to the void surface. The cap-
ture efficiency of the void for the defect is computed for a
range of parameters employing this interaction. This capture
efficiency is then used directly to obtain predicted effects
of segregation on void nucleation and growth under irradiation.
It is found that the absorption of the interstitial is reac-
tion controlled at the void. The principal implications are
that void nucleation is strongly enhanced and that the kinetics
of void growth are altered significantly. Detailed deriva-
tions supporting these results are given.

INTRODUCTION

Current experimental research has shown that impurity and alloying
element content largely control the swelling behavior of metals.!»2%
This fact has great significance for the development of low swelling
alloys to be used in structural components of future fission and fusion
reactors. To make such development systematic it is necessary to under-
stand the bases of impurity action. In light of our current understand-
ing of swelling,3 two ways in which impurities may act are by altering
the free migration of point defects in the material through trapping

reactions and by changing the relative capture efficiencies of point

*University of Wisconsin, 1500 Johnson Drive, Madison, WI 53706.
tFor List of References, see p. 2k.



defect sinks, such as voids, dislocations and precipitates. The former
effect has often been invoked in speculative explanations of differences
in swelling behavior, but has received more detailed attention recently.*®
However, we believe it is important to investigate physical mechanisms

for the latter possibility since swelling depends so delicately on small
differences in the point defect capture efficiencies of the sinks in the
swelling material.’

Solute segregation to void surfaces in stainless steels’ and alumi-
num® has been observed. Furthermore, segregation to void surfaces is
expected to occur ubiquitously based upon observations of segregation
on virtually all free surfaces. This is thought to be due to the usual
lowering of the thermodynamic free energy of the system as well as to
impurity binding with radiation-induced point defect fluxes of vacancies
and interstitials. |t is important to answer the question as to what
effects such segregation may have on the efficiency with which a void
absorbs point defects and ultimately on swelling. By altering the diffu-
sion coefficients of point defects near the void, a segregated layer may
affect swelling. This has been explored by Brailsford.® A further mech-
anism by which a segregated layer may affect swelling behavior is through
alteration of the point defect—void image interaction. The purpose of

this paper is to describe a theoretical study of this effect.

INTERACTION ENERGY .

This work employs the results of the recent derivation of Wolfer and
Mansurl0 for the elastic image interacfion'energy between a center of
dilatation and a spherical cavity surrounded by a shell of material whose
elastic constants differ from those of the matrix. The expressions for
the interaction energy when the defect is in the matrix and in the shell

are presented below.
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Subscripts s and m denote shell and matrix, T = v2 u(l + v)2/[18r(1 —v)],
where
v = point defect dilatation volume,
u = shear modulus,
v = Poisson's ratio,
Y = u/ug,
g = rm/fd, :
n= rm/rs,
- interface radius,
re = void radius,
rqy = distance of defect from center of void,
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Two special cases of these equations are also of interest. When the

thickness of the shell goes to zero, Eq. (1) yields the image interaction



between a center of dilatation and a void. Setting ro= g =0
r, =T =T, v =v =v,¢= r/r, we obtain
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This can be shown by taking Eq. (1) with the above limiting values of

the parameters. By inspection, Eq. (1) then becomes
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Writing out An gives
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With the above limiting values of parameters this can be seen to reduce

to
A= (1 —y)(2n + 1) (2n + 3)(tnZ2 = 1) (1 — V) xn(—») .

Substituting this last expression into the equation preceding Eq. (5)
yields Eq. (3).

In the opposite limit, when the thickness of the shell equals the
radius, we.obtaih the image interaction between a center of dilatation
and an inhomogeneous inclusion. Setting re = 0, ro = Mo and g = rl/rd
we thus obtain
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This result is obtained from Eq. (1) by simply noting that A
given by Eq. (5), becomes infinite as re >0, recalling the definition
n= rm/rs. Hence, only Yy — 1 remains in the curly brackets of Eq. (1).
This gives Eq. (6) directly.

Equations (3) and (6), obtained as special cases of the coated void
result [Eq. (1)],are identical with the results of Moon and Pao!l who
derived the interaction energy of a center of dilatation with a single
region inclusion. ‘ _

Figure 1 shows the interaction energies of a center of dilatation
with a coated void for the case where the shear modulus of the shell is
twice as large as that of the matrix (solid curve), and for the case
where the shear modulus of the shell equals that of the matrix [Z.e.,
no shell (broken curve)]. Table 1 gives the other parameters necessary
for these computations, together with their values selected for these
sample computations. When the shell is stiffer than the matrix, M > ﬁ
and the point defect is in the matrix, it is repelled from the interface
at short distances. When the defect is in the shell, it is attracted
toward the interface at short distances. When the matrix is stiffer than
the shell, u_ > u, (not shown) these regions of repulsion and attraction
(positive and negative interaction energy, respectively) simply occur on
the opposite sides of the interface. Near the free surface, the inter-
action energy is always negative. In this region Eq. (2) takes on the
form of Eq. (3) as shown in Fig. 1. Very close to the free surface, the
surface curvature becomes unimportant and Eq. (2) takes on the even

éimpler form characteristic of a flat surface
r/2
Ef=__/_
(rd - r)3

where, by the definitions of 4 and r, rq =" is simply the distance of

(7)

the point defect from the free surface. Equation (7) agrees with the
result obtained by Eshelby12 and Baconl3 for the image interaction of a
center of dilatation with a flat surface.

Equation (7) is derived as follows: Write £ = r/rd in the form
g=(1+ a/r)"1, where a = r, — r is the distance of the defect from

d
the surface. Equation (3) then may be written
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Fig. 1. Interaction Energy Versus lInverse of Distance to Void
Center. Coating occupies region from £ = 1 to 1.2. Energy saturation
distance parameter £.= I'/rp = 0.033. For rp = 3 nm this corresponds to
a physical distance & b/2 % 0.1 nm. When coating is softer than matrix
um/us > 1 (not shown), positions of maximum and minimum are reversed;

for uyy/us = 1, there is no region where interaction is repulsive.
r/2

£ =—2 ()2 n{n — 1) (a2 — 1)

[(V + a/r)"217"
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When the defect is near the surface, that is when a << r, we expand the
expressions containing o and neglect terms of higher order than o/r.

Thus,

T/2 ® n(n — 1) (42 — 1)
E, = ——= (1 + a/r)"2
f r3 { a/r) nzo nZ +n(l —2v) +1 —v

(1 — 20/r)"




Table 1. Parameter Values Used in Calculations

Interaction Energy

Y Vm Vg V\S/ o v? orn Hm (n/m2) Hs (n/mz)
‘ : 11
.5, 2.0 0. 0.3 0.2 Q 1.4bg 5 x 1010, 1 x 10
05 ’ 1 x 1011 5 x 10107
Capture Efficiency
' - : T (°C
re (nm) fn ™ Fs {nm) c (°c)
0.15 to 5 0.25, 0.50 _ Fas b/2 500
Nucleation
j - j -2 2, sec-! e (cm-3
ZK‘#/Di (cm™2) XKi/DV (em™%) R/D, D, (cm?: sec ) ¢, (em™3)
J j »
- f
7.5 x 10° 5 x 109 25b 0.015 exp(—E$/kT) 271 exp(1.5 — E_/KT)
E" (ev) Es (ev) ry (nm) b (nm) o (m3) G (dpa/sec) Cv/cv
v

1.b 1.6 0.125 0.21 1.1 x 10722 1.1 x 10-7 1

Because the last factor in the summation terms is near unity, only the
higher order terms in the summation contribute to Ef_since there the
terms in the summation increase in size roughly as n2. The asymptotic

form is then jusfified

' 2r
Ee v —— f n2(1 — 2a/r)"

f " n=0

However, since as already noted, the terms for low n make negligible con-
tribution, the summation in this equation is equivalent to the summation

Y(n+ 1)(n + 2) 6", with 6 given by 6 = 1 — 20/r. This summation can
n=0 ’
be expressed in closed form as 2/(1.—-6)3 (ref. 14), Substituting this

closed form into the above equation gives Eq. (7) directly.

It can be seen from Fig. 1 that in order for the point defect to
diffuse to the free surface of the coated void it must overcome the
repulsive energy near the shell-matrix interface. This is true whether

the shell is harder or softer than the matrix. This barrier hinders the



diffusion of point defects and thus decreases the capture efficiency
of the coated void for point defects. Capture efficiencies aré derivéd
and illustrated in the following section.

Before proceeding, however, a further point should be clarified.
The above calculations employ elasticity theory, with centers of dilata-
tion modeled as mathematical points. The interface and fréé surface aré
modeled as abrupt boundaries. These idealizations cause the interaction
energies to diverge at thése boundaries. This nonphysical behavior is
avoided by realizing that the point defect has a finite radius. In thesé
computations we allow the interaction energy to saturate at its valué
one defect radius away when it is nearer to an interface than oné defect
radius. This results in the plateaus and flat-bottomed wells shown in
Fig. 1. Their precise height or depth depends upon the distancé c at
which the interaction energy is allowed to saturate. Both the atomic
radius rae and one-half the {111} interplanar spacing, b/2 = a/2/§,

where a is the lattice parameter, are considered reasonable distances.

CAPTURE EFFICIENCY

In this section, the manner in which the interaction energy affects
point defect absorption at a void is determined. The effect is méasuréd
by the point defect capture efficiency of the sink. The capture éffi-
ciency is defined as the ratio of the actual point deféct cﬁrrent to thé
sink to the current to the sink if there were no interaction energy and
Cc= Ce(r) at the sink is specified as a boundary condition. We définé
C as the point defect concentration variable and Ce(r) as the thermal
equilibrium point defect concentration at the sink of radius r.

To derive the capture efficiency the void is placed in the medium
containing one type of point defect whose concentration at large distances
has a fixed value, say ¢”. In the vicinity of the void there is no net
leakage of point defects from any infinitesimal volume elémént. There
is thus a continuity conditton which can be expressed in spherical co-

ordinates as

(8)




where p is the distance from the center of the void and Jp is the
radial flux of point defects. Thus, the form for Jp is given by

e A/n2
I Alo“ (9)

where A is a constant. This must equal the flux determined by Fick's

law generalized to include a drift interaction energy E(p),

g5 = — expl— (p) /kT] é%'{DC explE(p) /kT]}, (10)

where D is the diffusion coefficient. The capture efficiency of a void
of radius re defined in words above is given by
b2
| hnrsqo(rs)

Z = = (11)
byr DC* brar DC®
s s ,

where | is the actual current to the sink and lmrSD[C°° —-Ce(rs)] is the
current to the sink without a drift interaction, assuming a boundary con-
dition of the form C(rs) = Ce(rs); In Eq. (11) Ce(rs) has been set

equal to zero, corresponding to the case where thermal point defect emis-
sion is negligible, since retaining it adds little to the derivation.
From Eqs. (9) and (11) we obtain

—A

2= Toee
S

(12)

In order to determine A we multiply Eqs. (9) and (10) by exp[E(p)/kT],

~integrate from ro to infinity, and obtain

_ DC explE(p)kT] |¥g

[~ exlEE ATl

r p?
s

(13)

The numerator at the upper limit is just DC® and at the lower limit it
.is zero since E(p) goes to zero at infinity and to large negative values

at the void surface, r_. Substituting Eq. (13) into (12) gives

Z(p) = rS foo eXP[EZ(p)kT dp . (]b)
k r
S
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Changing variables to &
from Eq. (14) .

. = =—. 2 1
rm/rd rm/p, dg rmdp/p , we obtain

Z(p) = n { {nexp[E(E)/kT]dg} ' ) (15)

Since E(£) has been given in Interaction Energy (p. 2, this report), the
capture efficiency is now detérmined.

Before illustrating computed values of the capture efficiency, we
discuss Eq. (15). A form similar in limiting cases to Eq. (15), but
not containing the necessary information for evaluating Z, can be derived
by simple consideration of boundary conditions. Consider a void with
transfer velocity w for the point defect across the void-matrix interface.
The solution to the spherical continuity Eq. (8) for an uncoated void of
radius r in steady state, allowing for no drift interaction is‘a]ways of

the form
Clp) = ¢(1 —2Z r/p) . (16)

We use the logarithmic boundary condition

Dﬁﬁﬂp=r = wC(r) , (17)

which specifies that the flux to the void as obtained from Fick's law

must equal the flux determined by the ambient concentration at the void
surface. From Eqs. (16) and (17) we find

7= [ +omrl . (18)

‘When w = D/b, where b is a lattice spaéing (which also equals the point
defect transfer velocity in the matrix far from the void), then the cap-
ture efficiency Z approximately equals unity for normal size voids, A
r > b. This is spoken of as a diffusion-controlled case since the dif-
fusion through the matrix controls the rate of point defect absorption.
If, on the other hand, the transfer velocity is low, w << D/b, the void
is a poor absorber and we find from Eq. (18) Z = wr/D. This is termed

a surface-reaction-controlled case since the point defect current is
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determined by the transfer rate at the void surface. In this case
Eq. (11) yields

Is = bmwr2c® , (19)

while in the diffusion-controlled case, w = D/b, Z = 1, Eq. (14)
yields

ID = 4gDrc® . (20)

The point defect current depends upon different powers of the void
radius in these two cases. It is on this basis that it has been deter-
mined that void growth is surface-reaction limited in .stainless steels.19,16

To see that Eq. (15) takes a similar form to Eq. (18) and therefore
produces similar limiting forms to Eqs. (19) and (20), we break the
integral in Eq. (16) into two parts,

n-¢ n -1
2(€) = n [{ explE(2) /kT] dg + [ explE(g) /kT] dg] : (21)

n-¢€

From Fig. 1 it is seen that the interaction energy is negligible outside
a small region beyond the void. The entire region where it is negligible
is expressed in normalized distance units as from 0 ton —¢ . Thus,

the value of the first integral is n—e .

Since E(£) appears in an exponential and the integration range is
small, we may replace the second integral by e exp[E(£*)kT] where E(&%)
measures the height of the barrier depicted in Fig. 1 and £ its width.
Thus, Eq. (21) can be approximated by v

Z=n{ln—¢) + ¢ exp[E(ex)/kT]}™! (22)

Substituting the definitions n = rm/rs and ¢ = (rm —-r*)/rs, where r*
is the distance from the void center to the positive energy peak, into

Eq. (22) we obtain

z =[-'”‘—*+ n/wr}'l (23)
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where

Y = D exp[—E(g*)/kT]

€ r

(24)

Equation (23) is essentially identical to Eq. (18) provided r X r*

v FgRT (i.e., for a thin coating). Thus, if E(£*) in Eq. (24) is small
or negative (no barrier) then w X D/e r giving from Eq. (23) Z % 1 and
thus reproducing Eq. (19). If E(g*) is large then from Eq. (24) w « D/er
giving Z & wr/D from Eq. (23) and thus reproducing Eq. (20). The impor-
tant point here is that by using the interaction energy E(£) derived in
the previous section we can evaluate, in the language of Eq. (18), the
transfer velocity, w, using a physical relationship, Eq. (24). However,
the derivation of Eq. (18) solely from a boundary condition offers no
information on how to determine the essential parameter w. Thus,
although its limiting forms are approximately correct, Z determined in

that way would remain an unknown parameter.

Figure 2 shows the results of numerical computations of Z as a
function of void size for the coated and uncoated void using Eqs. (1),
(2) and (15) together with the parameter values given in Table 1. Sev-
eral features merit discussion. The first thing to note is that the void
is'not a neutral sink, Z¥ = ZX = |1 (the superscript denotes void), as
has been generally assumed in the previous literature. The bare void

(broken curves) strongly prefers interstitials, Z?

> Z:’ due to the
larger dilatation volume and therefore larger attraction of the inter-
stitial. However, when the void is coated with a material which is stif-
fer than the matrix (solid curves), this preference is reversed (Z: > Zg)
due to a very large reduction in the interstitial capture efficiency,
again due to its larger dilatation volume and therefore larger repulsion,
especially at small void sizes. The upturn in the interstitial curve at
small sizes occurs because the repulsion is smaller there. This can be -
understood as fpllows. The calculations are performed by varying - but
saturating the energy at a fixed, physically based distance c from the
interface, thus giving a small £ at small roe From Eq. (1) small £
yields small Em. The reason that the vacancy capture efficiency is

slightly higher for the coated void than for the bare void is, of course,
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Fig. 2. Capture Efficiencies of Void and Coated Void for Vacancy
and Interstitial as Functions of Void Radius rg. The void prefers
interstitials, especially at small void sizes. This preference is
reversed for the coated void. Parameters used in obtaining this plot
are ry, — rg = 0.25 nm, ¢ = 0.1 nm with the remainder given in Table 1.

the attraction at the interface which does not exist for the bare void
(the repulsion for the vacancy at the oppoéite side of the interface is
negligible). '

' SWELLING

Reaction rate equations3 can be used to determine the time and

space averaged vacancy and interstitial concentrations, Cv and Ci’
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which are utilized in void nucleation and growth calculations. In a

simplified form these may be written

- = yiJ
6+ G —RCC, = ZKC, (25)
, j
G —RC C. = ZKIC, . (26)
v 1 j [

Here G is the radiation-induced point defect g?neration rate, GT = ZKiCi
is the thermal vacancy generation rate where ¢} is the thermal equilibrium
vacancy concentration at the average size sink of type j, R = ler(Di + Dv)_
is the recombination rate coefficient where r¢ is the radius of point
defect recombination volume, D denotes diffusion coefficient and sub-
scripts i and v denote interstitial and vacancy, respectively. The K's
are reaction rate constants for loss of point defects.at internal sinks

and may be approximated by
K} = 4rr.ZN.D , (27)
J J
for "'spherical' sinks* such as voids and
k) = Z0w (28)

for cylindrical sinks such as dislocations; F} is the average radius of
sink type j, 7Z? the capture efficiency of sinks of type j and L the line

density of dislocation sinks.

Void Nucleation

In order to determine the effect of surface coatings on vacancy
clusters upon the energetics and rates of void nucleation, we employ the
nucleation theory developed by Katz and Wiedersich!7 and Russell.l8
The change in the number of vacancy clusters containing n vacancies with

respect to time, 3q(n)/3t, is the difference between the number arriving

*Reference 3 gives the forms of the K's for the general case when
the sink size distribution is used rather than average size sinks.
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per unit time from size n — 1, M(n — 1), and the number leaving per unit

time to size n + 1, M(n), where

M(n) = 8,(n) q(n) — [B;(n + D+ v, 0+ Nlqln + 1), (29)
and is given by

39(n) _ w(n —1) = M) = [B;(n+ 1) + v (n+1)] qln+ 1)
at

— [8,(n) + 8;(n) + v, (M1 qln) + B,(n=1) aln—1) , (30)

where Bv,i(n) is the capture rate of vacancies, interstitials by a

vacancy cluster containing n vacancies, and yv(n) is the emission rate

of vacancies from a vacancy cluster containing n vacancies. In Egq. (29)
terms corresponding to the emission of interstitials from vacancy clusters
of size n and n — 1 are omitted since the formation energy of the inter-
stitial is much larger than that of the vacancy in materials of interest.

- Equation (30)-has two steady-state solutions corresponding to 3q(n)/dt = 0.
If M(h — 1) = M(n) = 0 there is no net flux of vacancy clusters to larger
sizes. This corresponds to the so-called constrained equilibrium distri-
bution.1® We denote the number of vacancy clusters of size n for this

constrained distribution as q%(n). Equation (29) gives
B, (Ma%(n) = [8;(n +1) +y,(n+ D] +1) . (31)

Employing this as a recursion relation we obtain

-1 g (1) q%(1)

9°(m) = =1 Bi(2+l) + yv(£¥l) (32)
This may be written as
q%(n) = q0(1) exp[—AG(n)/kT] , -~ (33)
with the definition
AG(n) = —T nil 2n By () , (34)

=1 Bi(z + ]) + Yv('q' + I)
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where AG(n) is the free energy of formation of a cluster containing n
vacancies. In these equations, Yv(n) and Bv(n) can be expressed in

terms of point defect concentrations as follows

v, (n) = 4m 01/301/32¥(n)p_cV(n)/ (4m/3)1/3 (35)
where
cz(n) = CS exp [{g%%y-— P] Q/kT] (36)

is the thermal equilibrium vacancy concentration at a vacancy cluster
containing n vacancies,  is the atomic volume, Zz(n) is the capture
efficiency of a vacancy cluster (void) of size n for vacancies, Cs is

the bulk thermal equilibrium concentration of vacancies, ¢ is the surface
energy of the void, P is the pressure exerted by any gas contained with-

in the void, and r(n) is the radius of the void containing n vacancies.

8, ;(n) = bm @1/31/3 zg L) Do e/ (bm/3)Y/3 (37)

, i,vi,v

where Ci and CV are the point defect concentrations given by Eqs. (41)
and (42) below.

The second steady-state solution to Eq. (30) is that for which
M(n) = M(n — 1) = ... = M, where M is defined as the steady-state nuclea-

tion rate. Using Eqs. (29) and (31), we find

( ) 0 (n) q(n) q(n + 1)
M=38 —_
y\ntain 0 e (38)
An expression for M in terms of AG(n) defined by Eq. (34) can be
obtained by the repeated summation of Eq. (38),
°°[ q(2) q(e + I)] _q(1) a(=) = M (39)
g=1L0%(8)  Q%e + 1)) Q%) %) - 2=18,(2)q° (2) '

We know, however, that q(=)/q%(«) + 0 and q(1)/q%(1) = 1 in analogy with
classical nucleation theory.19 Using Eq. (33) and noting that q%(1) = C,
the vacancy concentration, we obtain for the steady-state nucleation

rate,
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M = Cy L (o)

f exp[AG(n) /kT]
n=1 Bv(n)

Equations (34) and (40) are the key relations which determine the effects
of changes in void capture efficiencies on void nucleation behavior. It

is useful to derive the explicit dependence of AG(n) and M on the capture
efficiencies, Z? v(n). Equations (25) and (26) give for the point defect

1]
concentrations

.. ¢ ial/2
skizkd — G.R 4(6 + G.)zklzk]
i 'j Y T T j 'j Y,
C = 1 + -1 (l‘])
\ j .. 2 .
ZRIK [;K!;KJ —-GTRJ
J ']
. R T, R 1/2
skIzkd + G.R LRGzKI £k’
. Ij v T J' Ij v
ci = - 1 + > -1 . (42)
J . -
2RIK; [ZK!EKJ + G.R
j j i, v T

Substituting Egs. (35), (36), (37), (41), and (42) into Eq. (34) yields

AG (n) (2 + N/3z2Y (0 + 1) D;EK —
=7 = Lon - o+ Ir() Iy = =1) an (2 +T)
=1 21732V (1) D £k
v v, |
J (43)
where .
J ' 2 1/2
Ky RG, LRG RG,
==l + —] + ——— — 1 — . (4h)
2R rkdzkJ Tk zk? : Tk Kk
. eV . 1o V : s e V
~ Jo] i J
and
= _ i '
c, GT/gkv . , (45)

J
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Equation (43) reveals the explicit dependence of the free energy of
cluster formation upon the capture efficiencies ZY(n) and Z:(n) of voids
(vacancy clusters) for interstitials and vacancies, respectively. The
nucleation rate M can also be expresséd in terms of these parameters.
From Eqs. (37) and (40) we obtain

4rql/3 cgov/(uw/3)1/3

M= ’ ("*6)

exp[AG(n) /kT]
n=1 nl/3 Zz(n)

where C_ is given by Eq. (41). '

Using Eqs. (43) and (46) as the key equations and invoking the cap-
ture efficiencies obtained from Eqs. (15), (1), and (2) together with
the parameter values shown in Table 1, free energies of vacancy cluster
formation as well as void nucleation rates have been computed. The
results for AG are shown in Fig. 3 with the corresponding nucleation
rates given in the figure caption. For two values of the surface free
energy (namely, 1100 and 800 ergs/cm?) the energy of formation of a
vacancy cluster of size n versus n is plotted for botH the coated and the
uncoated void. The peaks in these curves correspond to the vacancy
cluster critical size — that size above which the system will lower its
energy as the cluster size increases further. For both choices of sur-
face energy, the coated vacancy cluster has substantially smaller critical
size and energy. Correspondingly, the nucleation rate is substantially
increased over that for the bare vacancy cluster. However, even with a
coating the vacancy cluster with a surface energy of 1100 ergs/cm?, a
typical value from the literature for a number of fcc metals, does not
have a physically realistic nucleation rate under the conditions typical
of nuclear reactor irradiation given in Table 1. Decreasing the surface
energy to 800 ergs/cmznprovides more than ample nucleation rate, with
coated vacancy clusters nucleating more than two orders of magnitude
faster than bare vacancy clusters. It is concluded that vacancy clusters
must be coated in order to nucleate at physically reasonable rates. The
coating is required both to decrease the strong preference of the bare
vacancy cluster for interstitials (Fig. 2) and to decrease the surface

energy enough to allow realistic nucleation rates.
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Fig. 3. Free Energy of Vacancy Cluster Formation Versus. Cluster
Size for Void and Coated Void at Two Values of the Surface Energy. The -
coating reduces formation energy through its effect on capture efficien-
cies shown in Fig. 2. Lowering surface energy causes. further reduction,
Corresponding nucleation rates proceeding from highest curve to lowest
are (cm~3.sec”!). 2.3 x 1076, 9.6 x 1072, 3.1 x 10%, 5.8 x 1011,

Void Growth

The rate theory of void growth has been formulated in terms of
diffusion-controlled20—22 and surface-reaction-controlled1,16 abéorp-
tion of vacancies and interstitials at voids. In accordance with our
discussion (Capture Efficiency, p. 8, this report), it is found that the
predicted swelling kinetics are quite different for these two casés.

This is discussed extensively in ref. 3. Figure 2 indicates, howévér,
that based only upon the void-point defect image interaction, the absorp-

tion rate of interstitials is surface-reaction controlled,
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z‘i’ = w,r/D; («1) , (47)

while the vacancy is diffusion controlled

2V =1 (48)

\%

We therefore investigate the predicted kinetics of void growth under
this mixed condition.
The radial growth rate of a void is expressed in terms of the net

flux of vacancies to the void

%% -% [Z:(r)ovcv —-z‘i’(r)oici —-zz(r)Dvcz(r)] . (49)

Substituting the C's from Eqs. (44) and (45) gives

LR(G + G )zKJZKJ
dr g J20(r)D Joed TPV %
o2l v |skdzk? — RG] + -1
dt r j P BPRY T o] 2
ZRZKV J TK- K, —-RGTJ
j j lj |
/j J T 2
e —— [ZK K. + RG }. 1+ 4 —1y—=2z"(r)D C (r)
2REK] j Vj i T .. 2 \Y% \YARY]
i [EK{ZKi + RGT]

jl A
(50)

To illustrate a special case of Eq. (50), we restrict the point defect
loss to dislocations and voids and neglect vacancy-interstitial mutual

recombination and thermal emission. This gives
[z‘?zv —-zde]
i“v i"v

[hnZ?(r)va + z?L][hnz:(r)va + ZSL]

Q6L
r

(51)

dr
dt

As usual, we set Z? = (1 +¢°) ZS, where e”“measures the preference of
dislocations for interstitials over vacancies. Substituting Eqs. (47)
and (48) into (51) and integrating, we obtain for ZSL >> hnzz(r)va

(i.e., dislocations the dominant sink),



QGw, D.(1 + ¢) w.r
i i i
re—— t — gn j1 - ————1
LDin(I +¢e”)(1 —p) W, (1 + ¢) D,
(52)
while for ZS <«< hnZX(r)va (i.e., voids the dominant sink),
" Di(l + ¢ )r3 D%(I + e )2r2 D?(l +¢)3 D?(l + ¢ )
—— ovmmesw  —— — — r' —
L 3w, 2w? w3 wh
i i _ i i
?wi : QGLZSt
& j1 — (53)

0, (1 + <)) (m)2(1 + p)

In these equations L (the dislocation density) may be a function of dose.
Nevertheless, it has been possible to integrate these equations with
respect to dose provided that Nv’ the vqid number density, does not change
with dose and the dislocation density varies with time according to
L= Lotp, where Ly is a constant and p is a number (experimentally, p
usually lies between 0 and 0.5).

When wir/Di(l + ¢”) «1 (as we have already assumed), Eq. (52) can

be approximated as

. 206 12 1/2
N |— t .

dislocations dominant

Similarly, Eq. (53) becomes

d _\1/5
506LZCD, (1 + ¢ )] /s

- t
w, (AN )2(1 + p)
! voids dominant

(55)

r o

These forms are obtained by éxpanding Egs. (52) and (53) and neglecting
higher order terms.

It has been shown previously3 that when both interstitial and
vacancy are surface-reaction controlled to the same extent (i.e., wv/Dv

= w./Di), then under the same assumptions as above
i
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d

QGw Z2.D.w
ro= Y — — 1t (56)
d d
Lz% (1 = p) (2% w,
vV v v dislocations dominant
1/5,.d 1/5
s 24 770 (o, 1/5 (57)
= _] t ’
w (N )20+ 0 29 .
v v iovi

voids dominant

while if both interstitial and vacancy are diffusion controlled

. 1/2 Zd 1/2 )
= [;QG——} [_i._. ]] t1/2

-
|

9.1 = p) 2¢ (58)
M v dislocations dominant
1/u(_d 1/4
) '
hﬂst(l + p) Zd t . (59)

v voids dominant

Thus, comparing Eqs. (57) and (55) we see that when the interstitial
alone is surface-reaction controlled and fhe voids are the dominant sink,
the kinetics are the same as if both defects are surface-reaction con-
trolled except that the radial growth rate is larger by the factor

(Z?/Zs — 1)-1/5, Simila}ly, by comparing Eqs. (58) and (54) we see

that when the interstitial alone is surface-reaction controlled and the
dislocations are the dominant sink then the kinetics are the same as if
both defects are diffusion controlled except that the radial growth rate
is larger by the factor (Z?/ZS —1)-i/z2, Z?/Zs is normally taken to be
1.01 to 1.1. Thus, the growth rate of a coated void is always expected
to be much larger than that of the uncoated void. Again, this is the
consequence of the repulsive image interaction produced by the void coat-
ing reducing the void capture efficiency for the interstitial while not .

significantly altering the capture efficiency for the vacancy.
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CONCLUSIONS

From the‘foregoing we conclude that the induced image interaction
between point defects and vacancy clusters or voids may have a signifi-
cant effect on swelling during irradiation. Using the accurate inter-
action energies, it is found that the void has a strong preference for
interstitials over vacancies, thus contradicting the usual assumption
that voids are neutral sinks, but that when the void is coated with a
shell of segregated material this preference is decreased or reversed
for typical parameter values. Several consequences follow from this.
The critical nucleation energy is decreased, and the nucleation rate is
increased substantially for coated versus uncoated void embryos. Nuclea-
tion computations show that void number densities of the order observed
are more likely if the embryos are surrounded by solute shells. Void
growth computations show that growth rates are significantly more rapid
for coated voids, also due to the preference of the coated void for
vacancies. .

Void coatings are expected to occur widely based on thermodynamic
requirements for adsorption at surfaces as well as impurity drag due to
radiation-induced point defect fluxes. Thus, these concepts suggest
interpretations of swelling behavior in terms of the properties of
segregated impurity shells. These ideas may be tested experimentally.
For example, by introducing into a metal or alloy, say ih the Fe-Cr-Ni
system, impurities known to segregate (e.g., carbon, oxygen, or silicon)
on the one hand, and on the other hand introducing impurities known to
trap segregants either in the matrix or-by precipitation reactions (e.g.,
Ti or Zr), one should be able to produce large differences in swelling
behavior. | '

With regard to additional implications, it is recommended that the
common practice of taking voids as neutral sinks in models of sweiling
materials be reevaluated. - In future work the present analysis could be
used in models of the evolving microstructure where solute segregation
builds up and results in dynamically changing void capture efficiencies

for point defects.
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