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ABSTRACT

A theoretical and experimental study of radiative heat transfer in
arrays of parallel cylinders is presented, Attention is primarily
directed toward two geometries common in the nuclear industry: square
arrays of cylinders on a square pitch and hexagonal arrays of cylinders
on an equilateral triangular pitch.

Configuration factors for cylinders on square and equilateral trian-~
gular pitches are derived using Hottel's crossed-string method. Theoreti-~
cal equations are presented for configuration factors between rods up to
four rows apart for cylinders on triangular spacings and between rods up
to three rows apart for cylinders on square spacings.

The usefulness of a formulation of the radiant energy exchange equa-
tions in terms of dimensionless variables is demonstrated for the case in
which the heat generation rates of the cylinders are known and the tempera-
tures are sought. Each of the major theories for treating radiation
exchange within a diffuse-gray enclosure--net radiation, Gebhart's, and
Hottel's methods—~igs examined and compared for utility in handling the
steady-state and transient solutions for this case. It is shown that the
net radiation method is most convenient for the steady-state problem,
while either Gebhart's or Hottel's equationg are superior for the tran-
sient problem.

Computer programs are presented and described for obtaining both
steady-state and unsteady-state solutions for the temperatures of cylin-
ders in hexagonal arrays of cylinders on an equilateral triangular pitch
and for square arrays of cylinders on a square pitch. In the particular

instance of uniform surface emissivities and uniform heat generation
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rates in each of the cylinders, steady-state center-rod temperatures are
given in terms of dimensionless plots which obviate the necessity of using
the computer algorithms.

Experimental measurements were made of the steady-state temperatures
in two 217~-tube hexagonal arrays having pitch~to-diameter ratiocs of 1.240
and 1.367 at heat generation rates corresponding to center tube lLempera-
tures of 800 and 1000°F. The tests were carried out with the tube bundle
in a vacuum to minimize the effects of gaseous conduction and natural
convective heat transfer between tubes.

Thecretical calculations based on the assumption of uniform radiosity
around the periphery of each tube yielded tube temperatures which were in
poor agreement with the experimental observations. Replacing the assump-
tion of uniform radiosity over the entire tube with the assumption of
uniform radiosity over 30° segments yielded theoretical temperature pro-
files across the arrays which differed no more than 7% from the experi-

mental profiles.
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LIST OF SYMBOLS

2
surface area or area normal to heat flow, ft

A

B radiosity, Btu/(hr—ftz)

c specific heat capacity, Btu/(lbm~°F)

D diameter of a cylinder, ft

F black body view factor, dimensionless

G Gebhart's absorption factor, dimensionless

H incident radiation energy flux, Btu/(hr—ftz)
k thermal conductivity, Btu/(hr-ft-°F)

£ length of path for heat flow, ft

m number of cylinder surfaces

n total number of surfaces, n =m + 1

PDR pitch~to~diameter ratio, dimensionless

Q rate of heat generation or rate of energy transfer, Btu/hr
R radius of a cylinder, ft

S cross~sectional area, ft2

t time, hr

T absolute temperature, °R

v volume, ft3

W dimensionless shroud temperature parameter

X dimensionless heat flux

Y dimensionless temperature function

Z dimensionless temperature function

F Hottel's gray body view factor, dimensionless
o absorptivity, dimensionless

Y reflectivity, dimensionless

§ Kronecker delta function

€ emissivity, dimensionless

€] dimensionless time

o) density, lbm/ft3

g Stefan-Boltzmann constant, 0.1712 x 10_8 Btu/(hr-ft2-°R4)






CHAPTER 1

INTRODUCTION

Radiative heat transfer among tubes or rods in arrays is important
in many applications such as gas~fired multitube stills for heating petro-
leum and in the boilers of steam plants. The motivation for the work
reported here arose from the need to estimate temperatures in spent
nuclear fuel assemblies. These fuel assemblies are constructed either
of a square array of fuel rods on a square pitch or of a hexagonal array
of rods on an equilateral triangular pitch. After withdrawal from a
nuclear reactor, the rods continue to generate fission product decay
heat: which must be dissipated to prevent the assembly from reaching exces-
sive temperatures. The greatest concern occurs when the assembly is han~
dled in a stagnant gas atmosphere since heat transfer by gaseous conduc-
tion and convection is relatively poor. Under such conditions, radiation
is often the dominant mode of heat transfer, and an estimate of the tem—
peratures can be obtained from an analysis of the radiative heat transfer.

Only a few analyses have appeared in the literature for radiative
heat transport in rod clusters, and most of these were made using specific
arrays of small size. Therefore, they are not adequate for treating
larger arrays in a general manner. The work reported here was undertaken
in order to treat the problem of radiative heat transfer in parallel rod
arrays in a more definite manner and, in particular, to study two geome-
tries of special interest in the nuclear industry. The following results

are presented:



The view factors for radiative heat transfer between infi-
nitely long parallel cylinders in both triangulaxr pitch
and square pitch arrays are derived. Tabulated results
cover the range of spacings of most importance in appli-
cations such as heat exchangers and nuclear fuel rod
assemblies.

The problems under consideration are treated using the
theory of radiant exchange among diffuse-gray surfaces.
The results are presented in terms of dimensionless var-
iables so they will be in a form as general and useful
as possible.

An algorithm is developed for solving the problem of
radiant heat exchange within hexagonal arrays of cylin-
ders on an equilateral triangular pitch — a complex
geometry of particular interest in the nuclear industry.
The algorithm is capable of handling an array of any
size. Computer programs are presented for both the
steady-state and unsteady-state solutions.

A calculational scheme is evolved for treating radiative
heat transfer in square arrays of cylinders on a square
pitch for an array of any size. Again, computer solu-
tions for both steady-state and transient cases are
given.

A comparison is made of theoretically predicted and
experimentally measured temperature distributions as

a test of the theoretical model.



CHAPTER 2
THEORY OF RADIATION EXCHANGE AMONG DIFFUSE-GRAY SURFACES

The radiant heat exchange within an enclosure composed of diffusely
emitting and diffusely reflecting gray surfaces may be determined by
standard calculational methods. Possible formulations include the net
radiation method, Hottel's method, and Gebhart’s method. These different
approaches are, however, based on an ildentical set of baslc assumptions
and yield identical numerical results. Convenience of application to a
particular problem is the determinant of choice of approach. One of the
goals of this study was to determine the calculational methods best

sulted to the classes of problems covered by this report.
I. BASIC ASSUMPTIONS AND DEFINITIONS

Five basic postulates underlie the standard calculational methods
(30, 31). First, each of the surfacss considered is isothermal. This
does not mean that all the surfaces are necessarily at the same tempera-
ture, but only that each one has a uniform temperature over its area.

In practice, this condition may be approached by subdividing any noniso-
thermal surface into smaller sections, each of which i3 approximately
isothermal.

Second, the surfaces are gray; that is, the emissivity £ and absorp-
tivity a of eacn of the surfaces are independent of wavelength. Thus,
the surfaces have no special preference with regard to their abilities
to absorb or emit energy at a particular wavelength. No real materials

are gray over the entire range of wavelengths. However, for practical



calculations, many materials can be considered gray because the energy
that is being exchanged is concentrated in a wavelength band for which
the emissivity and absorptivity are nearly independent of wavelength.

The third postulate is that radiation reflected from any surface is
diffusely distributed in accordance with Lambert's cosine law (28, p.
17) . No matter from what direction an incident ray strikes the surface,
the reflected energy in any direction per unit of projected area normal
to that direction, and per unit time and solid angle, is uniform for all
angular directions. Thus, there is no need to keep account of specific
rays as they interreflect between surfaces since the previous history of
the radiation is completely obliterated when it strikes and is reflected.
This is in contrast to specular reflection where the angle of reflection
equals the angle of incidence.

Fourth, it is assumed that the energy emitted by any surface is
diffusely distributed. Together, this postulate and postulate two define
a diffuse-gray surface, a surface for which emissivity is independent of
both wavelength and direction of emitted radiation. Application of

Kirchoff's law (28) then gives

where €, o, and vy {(y = reflectivity) are functions only of the temperature
of the surface.

As both the emitted and reflected radiation are diffusely distributed,
there is no need to make a distinction between these energy fluxes as they
leave a surface. Instead, it is convenient to deal with their sum, which

represents the total radiant flux leaving a surface. This sum is called



the radiosity and will be denoted by the symbol B with units of energy per
unit time per unit of surface area.

The fifth assumption is that of uniform radiosity over each individ-
ual area. This requirement permits the use of view factors in the calcu-
lational methods. 1In the derivation of view factors between finite sur-
faces, the assumption is made that the energy leaving a surface — the
radiosity — is constant over the surface. It will be shown later that
this assumption is equivalent to assuming that the reflected energy flux
is the same at every point on the surface.

A concept necessary in the following derivations is that of the view
factor (alternatively designated the configuration factor, angle factor,
shape factor, or geometrical factor). The view factor Fij is defined as
the fraction of the radiation leaving a surface i that is intercepted by
surface j. The characteristics of view factors and their evaluation will
be treated more comprehensively in Chapter 4. At this point, it is suf-~
ficient to state certain fundamental properties that are needed in subse-
guent derivations. The first property is the reciprocity rule, which
relates the configuration factor for radiant energy traveling from surface
i to surface j to the configuration factor for radiant energy traveling
from surface j to surface i. The mathematical statement of the reciproc-

ity rule is
A, F,, = A, F,, (1)

where Ai and Aj denote the areas of surfaces i and j, respectively.
Another useful property of view factors follows from the conservation

of energy. Any surface can be considered to be completely surrounded by



an envelope of other solid surfaces or open areas. This envelope, termed
an enclosure, accounts for all directions surrounding the surface. The
radiant energy leaving any surface, i, in an enclosure must impinge on
the various surfaces making up the enclosure. It follows that

n
=1

where n is the number of surfaces in the enclosure. Note that the summa-
tion includes the term Fij' which represents the fraction of the radiation

leaving surface i that is intercepted by surface i1 itself. This term is

not zero when surface i is concave.
IT. NET RADIATION METHOD

The net radiation oxr radiosity method first devised by Poljak will
now be presented (28, 3, 17). Egquations will be developed for both the
steady-state and unsteady-state cases.

The cutgoing energy flux Bi from surface i is composed of directly
emitted energy plus the reflected portion of the incident energy flux Hi'

Thus

4
B, = ¢, gT, + vy, H =1¢g.0 T.4 + (1 - g,) H, (2)
i i i i i i i i i

where Ti is the absolute temperature of the surface and o is the Stefan-

Boltzmann constant, 0.1712 x J_O”8 Btu/(hr—ft2~°R4) or 5.669 x 10

-12

, 2 .4 o . .. .
watt/(cm ~-°K7). The flux incident upon surface 1 is made up of contri-
butions from all the surfaces within the enclosure that can see i,

including surface i itself if it is concave. The energy incident on sur-

face i1 for an enclosure containing n surfaces is then



n n n
A H, = > A, Py By = 2 A Fi. B, = A, > Fiy By (3)
n
H o= 2 F,. By, (4)
jop 133

where the reciprocity relation, Equation (1), has been employed in the
simplification of Equation (3). Use of Eguation (4) eliminates the term
Hi in Equation (2) to yield
4 )
B, =g, T, + (1L~ ¢g.) 2: F,, B.. (5)
i i i i’ ij 73
=1
The net heat Qi transferred per unit time from a surface is the dif-

ference between the emitted radiation and the absorbed portion of the

incident radiation:

4 4
. o= A, . T. - A, . , = . . - . . .
Q1 i 890 Al gl Hl (61 o Tl €i Hl) Al (6)
Solving for Hi gives
H. = T 4 Qi/A'
i 9 i e,
i

B, =g - [—=) L, (7)

Elimination of Bi from Equation (5) by using Equation (7) gives



n n
Q./A. 1 - €.\ 0Q.
P e S Y Fio o Tj4 - L F.. SU) N (8)

£. = . 1 £, Z—\:v—
i i j=1 J=1 J i 3

After combining terms and allowing the index i to take on values from 1

to n, the following set of eguations is obtained:

n 4 bs! 1 - €, Si. Q.
(Fyy = 8,0 o1 = 3 il DI gj Xj—,i=1,
S 371 j 3/

J 3

where é'j is the Kronecker delta function defined as
i
14if i =73
S, . Ce . .
ij 0 if i # j
Equations (9) are the general steady-state equations for determining
radiation exchange in a gray, diffuse enclosure of n surfaces by the net
radiation method. The only assumptions are the five postulates stated
. " . . . . 4 .
previously. Equations (9) are a set of n linear (linear in T ) algebraic
equations containing n surface temperatures and n heat fluxes. Once any
combination of n temperatures and fluxes has been specified, the remaining
n unknown quantities may be obtained by simultaneous solution of the
resulting equations.
For transient problems, the steady-state energy balance (Equation
(6)) must be replaced by the unsteady-state energy balance:

Rate of energy accumulation = Rate of heat generation + Rate
of absorption of incident energy ~ Rate of energy emission.

If the thermal conductivity of the material is great enough that the
volume-averaged temperature and the surface temperature do not differ

significantly, the energy balance for body i can be written:



da T,
i

=0, + g, H. A, - g, . .
i i i dt Ql 0L:L i A El o TL Al (10)

where p = density,

V = volume,
¢ = gpecific heat capacity,
t = time,

and Q can be interpreted as the rate of heat generation or the rate at
which energy is supplied to the body by other means. Rearranging Equation

(10) to the form of Equation (&), one obtains

d Ty 4
= T - . H, A, . 11
i i i %1 at (e; 0 Ty € Hy) Ay (1)

The remainder of the development is analogous to that for the steady-state
case. The resulting set of eguations for the unsteady-state problem, using

the net radiation method, is

n 4 n l~€j 6i. gi. pj Vj cj d Tj
S o, .-8 . dor. =3[, —F- 2 - ,
i i i €, €. f\A. A, dt
=1 ] J J j=1 Y 3 5 : J
i=1, ..., n. (12)
da T,

To integrate these equations, n of the 3n variables ’ Ti' and Qi must

dt

be known for all time. An additional n variables must be known at time

zero to fix the initial conditions.
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IIT. GEBHART'S METHOD

A second method of analyzing radiative exchange within a diffuse-
gray enclosure is that originated by Gebhart (7-10). Gebhart introduced
the concept of the absorption factor Gi' which is the fraction of the
emission from surface i that reaches surface j and is absorbed. This
includes all the paths by which radiation may reach Aj after emission
from Ai’ that is, the direct path, paths by means of one reflection, and
paths by multiple reflections. The absorption factor Gij is similar to
the view factor Fij except that it represents the fraction of the energy
absorbed by Aj from the emission of Ai, rather than the fraction of the
energy incident on Aj from Ai' For all black surfaces, the two quanti-
ties are the same.

The steady-state energy balance for a typical surface is
4

4 Y 4
Q. =A,. €, 0oT -~ ! A, e. oT., G,, {(13)
1 1 i 1 =1 3 73 ] Ji

n
where Qi is the net energy loss from surface i. The first term on the
right-hand side of Equation (13) is the energy emitted by Ai' while the
second term sums the energy absorbed by surface i from all sources.
There remains the problem of finding the absorption factors.

The total emitted energy from Aj is Ajgj OTj4. The portion absorbed

. . . 4
as a consequence of direct radiation to Ai is Aj g, OT, F o, or

J 73 31 i
A. €. 0T, F., €,, since for gray surfaces €, = a,. All other radiation
j 73 j o 3i i i i
from Aj absorbed by Ai will have first undergone at least one reflection.

The emission from Aj that arrives at a typical surface A and is then

4
reflected is A, €, oT. F. (l-e, ), where the reflectivit has been
i 73 1 Jk ) Y Vg
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replaced by (l—ek). If the incident energy is uniformly distributed and
diffusely reflected, the fraction of the radiation reflected from surface
k that is absorbed at Ai is the same as the fraction of emitted energy
from Ak that is absorbed at Ai. Of the energy originating by emission

from Aj, the portion ultimately absorbed at Ai is

4

n
A, €. 0T, F,, . + Z A, €. O'T-4
R

ij(l—e ) G

J 3 J ji 3 k ki~

Dividing this energy by the emission from Aj yields the fraction:

(14)

ki”®

n
Gji = FjiEi + ggi ij(l—ek) G

Upon rearranging the above equation and letting j take on all values from

1 to n, the following set of equations is obtained:

n
B - -8 = =-F. e, j = ce- .
z: [_jk(l Ek) jk} Gki jlel 3 1, , N (15)
k=1
Simultaneous solution of Equations (15) for Gki’ ¥ k=1, ..., n, provides
the values of the absorption factors required in Equation (13). Since

surface 1 may be chosen as any one of the n surfaces of the enclosure,
the set of n equations represented by Equations (15) must be solved
successively for i = 1, ..., n to provide the required absorption fac-
tors. Thus, there are a total of n2 values of Gij' the same as the num-
ber of view factors Fij'

If Qi+j is defined as the rate at which energy is radiated from sur-

face i to surface j,
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4
Q. . = A, &, 0T, G,.
1] i 1 i 1j
and
4
Q. . = A, €. OT, G.. .
j7 J 3 J Ji
Since there is no net heat transfer between i and j when Ti = Tj, it
follows that Qiﬁj = Qj*i' which can only be satisfied if
A €. G,,=A. €, G, . (16)

A second relationship among the Gij is found by noting that all the energy
emitted by surface i must ultimately be absorbed within the enclosure.

Thus
n
2., Gi.o=1. (17)
=1

Substitution of the reciprocity relation, Equation (16), into the

energy balance yields

n
4
Q. = A, €, OT,4 - Z A, £, oT, G... (18)
i i 1 i ) i i j ij
1=1

Equation (17) can be used to rewrite Equation (18) in a form which will be
found useful later:

- 4 4

= P2y ) . - \ .
0, = 2. A e, Gy otry” - 5 (19)

j=1

Rearranging Equation (18) and allowing the index i to take on values from

1 to n yields the set of eqguations:
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n
_l(ei Gij - Sij ei)GTj = - ] , 1i=1, ..., n (20)

]

for the steady-~-state problem.

The unsteady-state energy balance for body i is

p.l V., c. = Qi + E: A. e, oT. G,, - A, €, GTi (21)

if it is assumed that the surface temperature does not differ materially
from the average temperature of the body. Rearranging Equation (21) with
the aid of Equation (16) and letting the wvalue of i range from 1 to n
gives

a T, A Q.
. =

A,

1

4
. ..o =8, . )oT, i=1, ... . 22
dt p, V., c, (61 Gl] i al)g j vt r B (22)

n
J=

1

IV. HOTTEL'S METHOD

The analysis of radiative exchange within a diffuse—-gray enclosure
may also be carried out using a method developed by Hottel (14, 15).
The net rate of energy outflow from surface i to surface i, Qij' is

defined in terms of an exchange quantity 31j as

4 4
Qij = A, ’E’ij c(Ti - Tj ). (23)

The guantity 31j may be regarded as a composite view factor which includes
the effects of multiple reflections. The net loss Qi from surface i may

be found by summing Qij over the surfaces of the enclosure. Thus
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& s 4 4
0. = Ll Qij = j% A, 7}’ij o(r,” - 1, ). (24)

]

i}

Obviously, the values of the gray-body view factors'glj must be known in
order for Equation (24) to have utility.

It is simplest to determine the BZj by relating them to the absorp-
tion factors already presented in Gebhart's method. Comparison of

Equation (24) and Equation (19) indicates that

€. G,. =F .. (25)

Furthermore, from Egquation (16} it is clear that the reciprocity relation

for 3?j becomes
i

A, ¥, =Aa, F. (26)
i 7ij j T3i
and from Equation (17) that
n
Tfi. = e, (27)
j=1

The matrix of 31j values may now pe computed by substituting the relation

G = i -] oo i by sult:
i 3Li/€k inte Egquation (15) to yield the resul

n l~€k é.k
3 [ij s By = Fsy g0 =1, oo mpdi=1, o, n. (28)
k=1L k k

Combining of Equation (27) and Equation (24) and letting i range from

1 to n yields the following set of steady-state equations:
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0

n

4 i

Y (F, -8, e)or. =-==,i=1, ..., n. (29)
puc] ij ij i 3j Ai

Equations (29) could also have been derived by direct substituticon of

Equation (25) into Eguations (20). Following this procedure for the

transient problem by inserting Equation (25) into Egquations (22) gives

d Ti A, fQi n i
B . l ‘—‘“‘" Z("})l - 6 El)UT]:l ’ i o= l' ve., N, (30)

V. COMPARISON OF THE METHODS

As noted previously, the net radiation approach, Gebhart's method,
and Hottel's formulation yield identical numerical results since they are
based on identical assumptions. However, the differences in computational
detail may cause one of these to have greater application to a particular
problem. Frequently, steady-state problems are most conveniently analyzed
using the net radiation method because it does not require calculation of
the G or 3 matrix. On the other hand, either Gebhart's or Hottel's method
is generally more useful for unsteady-state problems because the deriva-
tives appear explicitly. Once the Gij or sz matrix has been determined,
Equations (22) or Egquations (30) may be numerically integrated simply by
stepping in time. On the other hand, integration of Equations (12)
regquires simultaneous solution for the derivatives at each time step

because of the implicit occurrence of the derivatives.



CHAPTER 3
APPLICATION OF THEORY

In this chapter the general equations that were developed for radia-
tion exchange within a diffuse~gray enclosure (see Chapter 2) will be
specialized to the class of radiation problems of interest in which a
surface n of known temperature surrounds m = n - 1 surfaces of known heat
loss. Formulations will be developed in terms of dimensionless variables

which will reduce the number of independent variables considered.
1. STEADY STATE

Temperature levels in a fuel rod array after withdrawal from a nuclear
reactor core are often controlled by radiative heat transfer between rods.
At steady state the net heat loss from each of the rods must equal the
heat generated within the rod by radiocactive decay of fission products.

The temperature of the shroud Tn can be found by an energy balance equating
the total heat generated within the array of fuel rods to that dissipated

by the shroud to the surroundings.

Net Radiation Method

The qguantity

may be subtracted from the left-hand sides of Equations (9) to give

16



17

(31}
Equations (31) are made dimensionless by dividing through by the heat
flux of one of the surfaces. Choosing the surface designated k (Qk # 0)

as the reference,

and

j 0 /A,

Obviously, Yrl = 0 so the summation on the left-hand sides of Eguations
{32) may be reduced to j = 1 to m, where m = n -~ 1. From the conserva-

tion of energy,

hence,

10
H
§

i s
O

For a nuclear fuel assembly, this equation is a statement that the energy

absorbed by the shroud from the rods within the array is equal to the sum
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cof the heat losses from these rods. A relation for Xn in terms of Xj'

j =1, ..., m, can now be developed as follows:
< m
- 2 il o) A
X e QH/A”, - i1 Qj /An - - g i\.l .:,J‘/_il - - r}n, _J. X (33)
noQ/A O/ By j=1 A OWE J=1 A J

With X given by EBEguation (33), the number of unknowns in Equations (32)
1

is reduced by one. The final set of equations (also reduced by one) is

Il ’ .
Eow,. -8, 0y, = 2 r .- Lo A, i =1, .., m. (34)

The unknowns are m values of Y., that is, m values of temperature.
J

Gebhart's

In this case, the quantity

9! 4 4 n n

% (e, G,. - &,. €.)oT =z, gl = .21 G, . - 2§ .|=0

= . J=1 13 j=1"1]

is subtracted from the left-hand sides of Eguations (20) and both sides
are divided by Qk/Ak. The resulting equations in terms of dimensionless

variacles are

M
—~
™

|
o
U]
o

i

{
»
-

il

i, ..., . (35)

The walue of Xn is determined independently from Equation (33).

Hottel's Method

n

o . 3 4
In a similar manner the subtraction of j%l(gij -8 E.)gTq from the
- i

ij i

left-hand sides of Equations (29) and formulation in terws of dimensionless
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O

variables gives

)
.

(3, - 8, e)¥, = X, 5 =1, ..., m (

Discussion

Clearly, of the setz of equaticns for the calculation of the Y.,
Sgquations (34) are most easily solved since they obviate the need For
prior calculation of aither the Gij or'%iﬁ matrix. This is a signifi-

et

cant savings in computational efforit since it avoids solving the n sabs

A

of n eguations (a total of n” egquations)

)]

oy (28).

The ¥, can be seen to ke functions of the geome

of the surfaces, apd the dimensionless heat fluxess. Note that, even if

l

the wvalue of the reference nheat flux Qv/A} iz changed, the ¥, will remalin
Xk i i
all the heat losses are changed proportionally. For exemple,

zration rates of each of the rods

in a nuclear fusl

alue

cr

.

of the shroud to

neat geneva-

tion rate without resclving the eguations. This iz in contrast to the

the T,. A new solution we
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Reformulation of the Net Radiation Method

It will now be shown that the net radiation equations can be reformu-—

lated to remove the dependence of the dependent variables upon the emissiv-

ities of the surfaces. Equations (32) can be rearranged to the form:
n 1 - €. n

(F,. -6, ) |v. (—+) x|=- > 6. %x =-x,1i=1, ..., n.
; i i £, : i i
3=1 J ] ] i J j=1 J 3

l—en n
The gquantity |———] X z:(F,. - §..) = 0 can be added to the left-
€, n o ij ij

hand side of this equation without affecting the equality:

n 1l -« 1 - €,

(F . -8 Y. - —— e ) x| = -x, 1 =1, ..., n.
j=1 J J J 3 ] n
The summation can be reduced to j = 1 to m since the term in brackets is

zero for j = n. Further, Xn can be eliminated as an unknown by Equation
(33), thus reducing the number of unknowns and the number of independent

equations from n to m. The final set of equations is

m
(F.. - 8..)72. = -X,,1=1, ..., m (37)

; ij 13773 i
j=1

where

l"E. l"En m A
z.=Y.————~J—x.~——~—€~———ZA—E—-x. (37a)

J J €j J n p=1l n P

Because the coefficients of the Zj on the left-hand sides of Equations

(37) are functions only of geometry (since the Fij are functions only of
geometry) and the right-hand sides are functions only of the surface heat
fluxes, the values of the Zj determined by solution of Egquations (37) are

independent of the emissivities of the various surfaces. For a fixed
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geometry and a fixed set of dimensionless heat fluxes, Eguations (37)
need be solved only once for the Zj' The actual temperature values for
a particular combination of surface emissivities are found from Eguation
(37a) , which introduces the emissivity dependence. This is in contrast
to the formulation represented by Equations (34), which must be rassolved
each time the emissivities are altered.

There is no apparent way to restate either Gebhart's or Hottel's
equations in terms of the variables Zj. Thus, the merits of the net radia-
tion method for solving the class of steady-state problems under discussion

are even greater than previously shown.
II. UNSTEADY STATE

Only Gebhart's and Hottel's methods will be employed in the analysis
of the transient problem. The temperature-time derivatives appear implic-
itly in the net radiation method, which makes it unwieldy for transient
problems. The analysis will be limited to the case in which a shroud
(body n) of known constant temperature surrounds m = n - 1 bodies of
known heat generation or heat input by external means.

In general, it is unlikely that practical problems involwving the
unsteady~-state heating of a nuclear fuel assembly would meet the condition
of a constant shroud temperature. Instead, the shroud temperature proba-
bly also would be varying with time. In such cases, the following anal-
ysis in terms of dimensionless variables strictly would not be applicable.
A rigorous solution would require the integration of Equations (22) or (30},
with the changing temperature of the shroud being taken into account.

Because of the diversity of possible boundary conditions for the energy
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exchange between shroud and environment, it is not possible to frame the
equations in a general manner; each problem must be solved separately.
However, cven for some of these problems, estimated results obtained with

a constant shroud temperature can be useful. Furthermore, since results

th

or a constant shroud temperature can be couched in terms of dimensionless
variables with a consequent decrease in the number of variables, the esti-
mates can be presented as a small number of dimeusionless plots rather than
requiring sclution of a new set of differential eguations for each problem.
If Tn is at a known fixed temperature, there remain m unknown tempera-

tures which vary with time, and Bgquations (30) reduce to the set:

4 .
Pi Vi & 4T 2en. 43/ % & G- s ) .
A dt ’ A, “i5 Ei)OT' r b= e @
i i J=1
d Tl d Ti4
where -7 -~ has been replaced by ———2 ———— . The above equations may
dt 4T 3 dt
also be written as *
4 /
b, V. c. a(T.m - T ) 3/4
L = = = 4 (T - T 4) + T 4
. dt . i n n :
1
Q. n
i 4 4
+ Y (F. - 8. eo(T.T -1 )
Ai 351 1] 1] 1 J n

for i = 1, ..., m since
n 4 4 n n 4

F.. - 8., e.)aT = gT T - = - -
;Z; (Jlj iJ 9Ty 9th ;éaaij €1 ;gisij or, " (e, - &) = 0.
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After successive division by the reference heat flux Qk/Ak and by the
Qk/Ak 3/4
guantity e , one cbtains the dimensionless equations (1 = 1, ...

m) :

4 4
o(r, - T )
1 n

4 4 4 4n3/4
Q. /By . o(T, T ) ) ar
OA, 4 ;
o (Qk/Ak)i‘” V2N
p, v, ¢ )
i i i /
Qi/A_.L m Cf('Tj4 - 'I’r\ll)
e g 3 (FL - 8 EL) -
Qk/Ak 371 1] 11 1 Qk/Ak
8] \/",L Cl
Finally, if is constant for i = 1 to m, these equations become
i
a vy m
i 3/4
= - X, + ¥~ 8., £,)Y. i = 1, ..., :
o= 4+ W) [1 jgl By = 0y sl)yj}, i= 1 m (38)
with initial conditions:
o(T, 4 4)
Y, = —22 2 i=1 mat O = 0
e /Ay

The variables Xi and Yi are defined as for the steady~-state problem,

while

3/4

o - tOAi (Qk/Ak>
, <,

and
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The required initial conditions are given by specification of Ti'
i=1, ..., n at time zero. Equations (38) are a set of first-orderxr
differential equations which can be integrated numerically to yield the
Yi as functions of © and, thereby, the temperatures Ti as functions of
time. In contrast to the steady-state problem, the Yi values for the
transient case are functions of Tn through the parameter W. Thus, both
time and shroud temperature are introduced as additional variables for
the transient problem. The effect of this increase in dimensionality is
to greatly multiply the number of dimensionless plots required to dis-
play the variables. Consequently, the results for the transient case

cannot be presented in as compact a manner as can results for the steady-

state case.



CHAPTER 4
VIEW FACTORS

The analysis of radiant interchange among diffusely emitting and
diffusely reflecting surfaces requires a knowledge of the view factors
between the various surfaces. In this chapter the basic defining equa-
tions for view factors will be presented. A shorthand method will then
be developed for treating surfaces that are greatly elongated in one
dimension. Using this technique, the view factors between infinitely
long parallel cylinders in arrays will be derived for cylinders on sguare

and equilateral triangular pitches.
I. DEFINING EQUATIONS

The development of the basic defining equations for view factors pre-
sented in this section is based on information given in references (28),
(31), and (32). Consider an elemental surface area dA as shown in Figure
1. Direction is measured by the angles © and ¢, where the angle 0 is
measured from the normal to dA. The intensity i of radiation leaving a
surface in the direction (8,¢) is defined as the radiant energy leaving
the surface per unit time per unit elemental projected surface area normal
to the (0,¢) direction per unit elemental solid angle centered around the
direction (0,¢). The radiosity B is the radiant energy leaving a surface
per unit time per unit surface area. Note that intensity is defined on
the basis of projected area, while radiosity is based on actual surface

area. The relation between projected area Ap and surface area A is

25
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ORNL DWG 75-8486i

differential areg
subtended by dw
=r2 gin 8 d8 de

Figure 1. Integration of Intensity Over Solid Angle.
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da = ¢os 8 da.
p

The rate at which energy leaves the differential area dA in all

directions is

B da = j i dAp Aw -zf i cos O da dw
oY
B = j.i cos O dw

where the integration with respect to the solid angle w is over the entire
hemisphere. As 1llustrated in Figure 1, the differential solid angle dw
may be expressed in terms of the angles O and ¢ of a spherical coordi-
nate system centered on dA. Since, by definition, a solid angle any-
where above dA is equal to the intercepted area on‘the hemisphere divided
by the sqguare of the hemisphere radius, it follows that dw = sin 0 40 dé¢.
Consequently, integration over the entire hemisphere vields

2m n/2

B -:ff i cos O sin © dO 4¢. (39)
0 0

If the intensity is independent of direction as it is when a surface emits
and reflects diffusely, i may be moved ocutside the integral signs and

BEgquation (39), won integration, reduces to

B = Ti. (40)

Attention is now directed toward the radiant interchange between a
rair of infinitesimal surfaces, dAi and dAj, illustrated in Figure 2. The

angles Bi and Bj are formed by the respective normals and the connecting
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Figure 2. Geometry for Radiant Interchange Between Two Surfaces.
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line of length r between the elements, The radiant energy which leaves

dAi and is intercepted by dAj is
i. (cos B. dA.)dw, (41)
i i i

in which dw is the solid angle subtended by dAj when viewed from dAi’
From the geometry, dw = cos Bj dAj/rz. Introducing this result into

expression (41) and eliminating ii using Eguation (40), one obtains

B, cos B, cos B, dA. dA.
i i 3 i 3

> (42)
Tr

as the energy incident on,dAj from dAi.
The enexrgy incident on the finite area Aj from dAi may be found by
integrating the foregoing expression over all the differential surface

elements comprising Aj to give

3 . (43)

/ B. cos B. cos B. dA. dA.
i i Jj i 3
T r

A,
J

The radiant energy intercepted by Aj from Ai is determined by integrating

expression (43) over the area Ai to yield

Bi cos Bi cos Bj dAi ?ﬁi
5 | . (44)
T r

A, A,
13

The energy leaving dAi in all directions is Bi dAi’ so that the energy

leaving Ai in all directions is the integral:
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The ratioc of expression (44) to expression (45) represents the fraction
of the radiation outgoing from Ai that is incident on Aj. Since this is

precisely the definition of the view factor Fij’ it follows that

A, .
x J

i . (46)
. f B, da,
1 1
A

As it stands, the foregoing angle factor depends on the magnitude and the

surface distribution of the radiosity Ei'

It is customary in the definitvion of the view factor to assume that
the radiosity is constant over each surface. BAs shown in Equation (2),
the radiosity consists of both emitted and reflected radiation. ¥or an
isothermal surfacs of constent emissivity (and hernce uniform emission,

the assumption of uniform radiosity over the

2]
h

u

H

ace is eguivalent to ths
assumption that the reflected radiation is the same at each point on the
surface. In turn, for the reflected radiation to be uniform over the
surface, 1t is necessary that the incident radiation be constant along
The surface. Tt is unlikely that this condition will be completely real-
ized fgr finite surfaces for any but the simplest gecmetries, such as

radiation exchanyge between infinitely large

With the assumption that Bi is constant, Equation (46) reduces to

thie standard form for diffuse interchange batween two finite surfaces:
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P o= & L 1. (47)

The view factor as defined by Equation (47) depends only on geometrical
parameters. A corresponding derivation for the fraction of the radiant
energy leaving surface j that is intercepted by Ai leads to an eguation
identical to Egquation (47) except that the subscripts i and j are inter-

changed. The result is as folliows:

cos Bi cos B, dAi da,
F.: e ;;*-— % J . (48)

From a comparison of Equations (47) and (48), it can be seen that

A, F,. = A, .., (42)
1

which 1s known as the reciprocity rule.

IT. HOTTEL'S CROSSED~STRING METHOD

In certain cases, mathematical techniques exist for the determination
of cenfiguration factors which avoid the need to perform the double-area
integration required in the direct evaluation of Equation (47). One
such technique iz Hottel's crossed-string method (14, 15, 38), which is
applicable to the calculation of view factors between surfaces that may

be agssumed to extend infinitely far along one cocrdinate. Surfaces of
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AP = (51)

Now examine the configuration shown in cross section in Figure 4,

where some blockage of the radiant transfer between Al and A2 occurs

because of the presence of the surfaces A3 and A4. The dashed lines

abcd, efgh, ae, and dh can be considered to represent the locations of

strings stretched tightly between the outer edges of Al and A2. Line

segments ab and c¢d are tangent to A, at points b and ¢, respectively,

3

while movement from b to ¢ is along the surface of A3. Similarly, ef

and gh are tangent to A, at f and g, while the line segment fg is along

4

the surface of A,. Together with A

4 and A,, the surfaces abcd and efgh

1 2

form an enclosure. Then, since Fll = 0,

+ + =
Fl—abcd F12 Fl-efgh 1

which, after multiplying through by A,, may be written as

1

A + A F + A

1 Fl-abca T 21 F12 A

1 Fl-efgn = 21- (52)

Applying Eguation (51) to the three-sided enclosures abcdh and aefgh, the

lues f
values o Al Fl—abcd and Al Fl—efgh are
A Bt Papea T Pan
1 “1-abed ~ 2
and
A

+ -
A B P T Porgn T Bae
1 Tl-efgh 2 .
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Figure 4. Hottel's Crossed~String Method.
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Substituting these values into Equation (52) yields

(A + A )

ae dh) (

A
12 2 1

+
Aabcd Aefgh

Since Equation (53) is for infinitely long plane areas, the areas are pro-
portional to the lengths shown in the two-dimensional representation,
Figure 4. Exchanging areas for lengths in Equation (53) gives

(ae + dh) ~ (abcd + efgh)

Fi1po 7 2 ah . (54)

Reverting to the interpretation of the dashed lines in Figure 4 as lengths

of string stretched between the edges of A, and A2, Equation (54) may be

1

expressed as follows:

_ (sum of crossed strings) - (sum of uncrossed strings)
12 2 X length of a

. (55)
1

ITT. VIEW FACTORS FOR CYLINDERS ON AN
EQUILATERAL TRIANGULAR PITCH

Hottel's crossed-string method will be used to derive the view fac-
tors between infinitely long parallel cylinders in arrays on an eqguilat~
eral triangular pitch. These configuration factors will subsequently be
used in the calculation of radiant interchange between rods in hexagonal
nuclear fuel rod assemblies.

The numbering system used in the following derivations is illustrated
in Figure 5, which represents an array of cylinders on an equilateral tri-

angular spacing. The notation FIJ will be used to denote the view factor
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between a particular rod designated i and a particular rod designated j
as opposed to the notation Fij which denotes the view factor between the
totality of the surfaces designated i and the totality of the surfaces
designated j. For example, referring to Figure 5, F12 indicates the view
factor between surface 1 and any one of the cylinders numbered 2, while
F12 is the view factor between 1 and all six of the cylinders numbered 2.

The relationship between F and Fl12 is obviously F = 6 Fl2.

12 12

For the spacings (pitch-tc-diameter ratios) that will be of interest
here, view factor values are required for radiation exchange between rods
up to four rows apart. This is equivalent to a knowledge of the view
factors Fl12, F13, F15, and F18. The view factors Fll, Fl14, Fle, Fl7,
and F19 are zero since surface 1 cannot see itself or any of the surfaces
designated 4, 6, 7, and 9. The view factor relations that will be derived
are strictly valid only for infinitely long cylinders. However, because
of the large length-to-pitch ratios of rods in most nuclear fuel assem—
blies, these calculated view factors are very good approximations of the

actual wvalues.

Derivation of Equations for F12

Partial shadowing. If the pitch-to-diameter ratio (PDR) is less than

2/373, a portion of the radiation leaving cylinder 1 in the direction of
cylinder 2 is blocked by other rods, as shown in Figure 6. The lengths of

the various line segments in Figure 6 are

ad = ae = PDR-R; ac = rs = R
cd = eg = (ad2 - <’=l<:2)l/2 = R(PDR2 - 1)1/2
] -1 cd | -1 2
w = L. tan <L tan (PDR™ ~ 1)1/2; bc = Rw
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Figure 6. Determination of F12 with Partial Shadowing.
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§ = g‘" tan " 25 = T o pan™t (PDR2 - 1) i st = RS

in which R is the radius of a cylinder. BApplication of Equation (55)

gives
Fl2 = 4({es + st) ~ 8(bc + cd) - st - cd - 2bc
a 2-27TR TR !
i ) -1 1/2 .
Fl2 = %‘[é‘” (eor” - 12 4 tan "t eor? - 1)V J, 1 < PDR < 2V3/3.

(56)

No shadowing. TIf the PDR is greater than 2/573, no shadowing occurs

and the, lengths of the uncrossed strings are each PDR*2R (see Figure 7).

Then

Flo = 4(es + st) - 2bg _ 2{(es * st) - bg
2-21R 27R !

2 1/2

Fl2 = %~[(PDR‘ - 1) 172

m

;}, PDR > 2V/3/3. (57)

~ tan Y (PDR® - 1) - PDR +

Derivation of Egquations for F13

Radiation to two rows only. For PDR < 2/5/3, cylinders more than

two rows away from cylinder 1 receive no irradiation; thus

6 Fl12 + 6 F13 = 1
and
1
F = = - 212,
13 ¢ 12

Since F12 is known from Eguation {56), it follows that

F1l3 =

R

[KPDRZ - 1Y2 - tan™t epr? "1)1/2J, 1 < PDR < 2V/3/3. (58)
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Partial shadowing. Rod 3 continues to be partially shadowed by rods

between 1 and 3 under the conditions 2/373 < PDR < 2. The upper limit of
2 for the range of PDR is found by referring to Figure 8 and noting that
the obstructing cylinders must be separated by a center-to-center dis-
tance of 2D (D is the diameter of a cylinder) if they are not to block

radiation interchange between 1 and 3. From Figure 8,

ah = PDR-2R; ad = fh = PDR*R; fr = PDR°'3R
1
cd = (ad® - acH)? = repR? - 1)Y2; af = (an® - 32 = /5 poreR
-1 f -1 fh -1 -1 /3
Y = tan ;%~— tan 7 = tan ! /3~ tan t —%~= %
_ T B -lcd T _ -1 2 _ 1/2, _
W = 5 ] tan ac = 3 tan (PDR 1) ; bc = Rw
ar = (af® + £r5)Y2 = 2/3 PDR-R; er = V3 PDR-R
es = (er2 - rsz)l/2 = R{(3 PDR2 - l)l/2
§ =T ctan TS - T tant (3 eor? - 1)Y?; st = RS
2 rs 2
so that
F13 = 4(es + st) - 8(bc + cd) _ &s _* st - 2(bc + cd)
2+27R TR !
F13 = %— &3 por® - 1)Y2 _ tant (3 ppR? - Y2 - 2epR? - 12 .

-1 2 1/2
2 tan * (eDR® - 1)1/2 - %] , 2/3/3 < PDR < 2. (59)

No shadowing. The equation for F13 when there is no shadowing can

be found from Equation (57) if Y3 PDR is substituted for PDR, where Y3 PDR
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<

Figure 8. Determination of F13 with Partial Shadowing.
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is the pitch~to-diameter ratio of cylinder 1 with respect to cylinder 3.

Then

‘ 2 1/2
F13 =‘% [ﬁ3 por” - 1)*?

- 2 .
- tan " (3 PDR® - 1)Y2 - /3 e +'§] ,

PDR > 2. (60)

Derivation of Equations for F15

No interchange. If the PDR jﬂ2/§73, rod 1 cannot see rod 5. Hence

F15 = 0, 1 < PDR < 2/3/3. (61)

Obstruction of one crossed string. For 2v3/3 < PDR < 2 (the deter-

mination of the upper limit of 2 for the range of PDR will be demonstrated
subsequent.ly) , one of the crossed strings is obstructed by other rods as

shown in Figure 9. The lengths of the various line segments are

ah = 2V/3 PDR'R; ad = V3 PDR-R; fh = PDR-3R; fr = PDR-5R
cd = (ad® - acH)? = r(3 POR? - 1)Y?, af = /3 PDR'R

Y = tan"l g%-m tan.wl g%-= tan'l i%jm tan—l ng: tan~l Zg

w = g»— v - tan * g%v= g~~ tan”t K%:» tan™t (3 R - 1)Y?; be = Rw
hn = eh = PDR'R; ma = el = (hn° - hm?)>/? = reppr? - 1)1/2
ak = ah cos ¥ = 9V7 PDR-R/7; ar = (af® + ex%)2 = 2/7 por-R
kr = ar - ak = 5/7 BDR-R/7; hk = (hr> - kr2)"/? = /31 PDR-R/7

o = tan 1 EE-“ tan —
hk . hm
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Figure 9. Determination of F15 with Partial Shadowing and Obstruction
of One Crossed String.
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ek = (en® - nk%)Y/? = 247 poR-R/7

R = tan”l 2%-— an“1 g%-= tan~l igj— %~+ tan“l (PDR2 - 1)1/2
o -8 = 2[—2— ~ tan * (PDR® - 1)1/2._]; Im = R(a - B) (62)
er = /7 PDR*R; es = (er2 - rsz)l/2 = R(7 PDR2 - l)l/2

§ = tan—l £§-= g—— tam—-l (7 PDR2 - 1)1/2; st = R§.

Since ¢ will become equal to B at the PDR for which obstruction of
the crossed string ceases, this PDR may be found by setting o - B = 0 in
Equation (62) giving PDR = 2. The view factor F15 is found from the

application of Equation (55) to yield

[2(st + es + jm + 1m) + 6 mn] - 2[2(bc + cd + jm + mn)]

F15 =

r

2°21R
s + - §m - + cd
Fl5 = st + es + 1m mn jm 2 (bc cd) ,
2TR
F15 = Ei [(7 PDR2 - l)l/2 - tan—l (7 PDR2 - l)l/2 - 2(3 PDR2 - l)l/2
T
+ 2 tam‘l (3 PDR2 - 1)1/2 + (PDR2 - l)l/2 - tan‘l (PDR2 - l)l/2
-1
- tan (/3_/5)}, 2/3/3 < PDR < 2. (63)
Partial shadowing with no obstruction of crossed strings. The upper

limit of PDR for this case is the PDR which produces no shadowing of rod
5, that is, when hk = 2R (see Figure 9). But, from the previous case,

hk = ¥21 PDR'R/7. Solving for PDR gives 2v¥21/3 as the upper limit.
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Referring to Figure 10 and using many of the results for the pre-

ceding case,

F15 = 4(st + es) - 4(bc + cd + jm + mn) _ st + es - bc - cd - im - mn ’
2-2TR TR
F15 = ¢ [(7 pprZ - 192 - pant (7 por? - Y2 - 3 eoR? - DY 4
cant 3 eor? - Y2 - eor® - Y2 4 tan™ @EoR? - 12 - ';L]
2 < PDR < 2/21/3. (64)

No shadowing. The equation for F15 with no shadowing is obtained by

using the result for Fl2 with no shadowing and substituting V7 PDR for PDR,
where V7 PDR is the pitch-to~diameter ratio of cylinder 1 with respect to

cylinder 5. Then

Fl5 =

= [

[(7 poR? - 1)2 - tan™t (7 PoR? - 1Y2 - /7 poR + Irz':l ,

PDR > 2v21/3. (65)

Derivation of Equations for F18

No interchange. If the PDR §_2/573, cylinder 1 cannot see cylinder

5; hence
F18 = 0, 1 < PDR < 2V/3/3. (66)

Obstruction of one crossed string. For 2/573 < PDR < 2v21/3, one of

the crossed strings is obstructed by other rods as shown in Figure 11. The
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lengths of the line segments are

ah = 2vV/7 PDR'R; ad = V7 PDR-R; fh = PDR-5R; fr = PDR-7R
cd = (ad2 - acz)l/2 = R(7 PDR2 - 1)1/2; af = Y3 PDR-R
- -1 £ - 7 -1 5 -1 V3
Y = tan 1 £§-— tan 1 E%': tan SN tan — = tan 15
a ) 3
m -1 cd m -1 ¥3 -1 2 1/2
=0 oy - ce . = . 7 PDR® - 1 ; bec = R
w 5 ] tan s 3 tan 15 tan ( ) w
2 2.1/2 2 1/2
hr = PDR-*2R; hn = PDR*R; mn = (hn~ - hm™) / = R(PDR™ - 1) /
2
ak = ah cos ¢ = 19v¥13 PDR-R/13; ar = (af2 + fr )l/2 = 2v¥13 PDR-R
2 . 1/2
kr = ar - ak = 7v13 PDR-R/13; hk = (hr - er) / = ¥39 PDR-R/13
-1 kr -1 mn -1 7V3 -1 2 1/2 .
= ta r mn o L2 PDR" - ; =
a = tan T tan 7 an 3 tan (PDR 1) jm = Ro
eh = /3 PDR-R; el = (eh” - h19)Y? = r(3 pDR® - 1)Y/?
ek = (en? - nk2)/? = 6/13 PDR-R/13
B = tan-l bk tan—l hl _ tan~1 ZE?— L tamﬁl (3 PDR2 - 1)]‘/2
ek el 6 2
- 2 2 —
a - B = ég'— tan 1 (3 PDR™ - l)l/ - tan 1 (PDR2 - 1)1/2; Im = R(a - B)
2
er = v¥13 PDR*R; es = (er2 - rs )l/2 = R(13 PDR2 - 1)1/2
§ =2 - tan 18 =T _ wan™t (13 poR? - 1)1?; st = RS,
2 rs 2
The upper limit of 2v21/3 for the range of PDR is found by equating
o and B since o = B at the minimum PDR for which there is no obstruction

of either crossed string. The configuration factor F18 is given by
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Flg = [2(st + es + jm + Im + el) + 4 mn] ~ 2{2(bc + cd + jm + mn)]
2-27R !
Flg = st + es + lm + el -~ dm ~ 2(bc + cd) )
2TR
F18 = ?J; [(13 ppr? ~ 1)%2 - tan™t (13 eor? - 1Y? - 2(7 poR® - 1)V/2

+ 2 tan T 7 eor? - DY? ¢ 3 eor? - Y2 - tan T 3 Por? - Y2
-1 /5/3
- tan (5-8% )] , 2Y/3/3 < PDOR < 2V/31/3. (67)

Partial shadowing with no obstruction of crossed strings. The upper

limit of PDR for this case occurs when there is no shadowing of rod 8,
that is, When hk = 2R (Figure 11). But, hk = V39 PDR-R/13 so that PDR =
2/3573, This case differs from the previous one only in that both

crossed strings are obstructed. The equation for F1l8 becomes

F18 = 4(st + es) ~ 4(bc + cd + jm + mn) _ st + es - bec - cd - jm - mn
2°2TR TR v
] - ] 2
rig = & [(13 por® - )% - tan™l (13 poR® - 1)Y% - (7 BoR? - 1)V 4

/2 2 1/2 _

tan 1(7 pOR® - 1)t (rpr? - 1?2 4 tant (epr? - 1)

tan T (%)] , 2V/21/3 < PDR < 2/39/3. (68)

No shadowing. The equation for Fl1l8 with no shadowing is obtained by

using the result for F12 with no shadowing and substituting v13 PDR for

PDR, where v13 PDR is the pitch-to-diameter ratio of rod 1 with respect
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to rod 8. Then

F18 = i— [(13 pprZ - 1)Y2 « tan™t (13 poR? - 1) Y2 - /13 pDR + g-] ,
PDR > 2¥39/3 . (69)

An Approximation for Close Spacings

Calculated results for F12, F13, F15, and F18 for selected values of
PDR are shown in Table I. The guantity ERROR = 1-6(F12+F13)-12(F15+F18) in
the table represents the fraction of the radiation leaving a rod that is
not intercepted by rods in the first four surrounding rows. Obviously,
ERROR increases with PDR. For the spacings encountered in the designs of
hexagonal nuclear fuel assemblies (PDR < 1.4; commonly, 1.2 to 1.3), it
can be seen that to a very good approximation all the radiation outgoing
from a cylinder may be assumed to be intercepted in the adjacent four
rows of rods. In such cases, all the radiation falling on rods in rows
beyond the fourth may be assumed, instead, to fall on rods in the fourth
row for the purpose of radiant interchange calculations. This assumption
has the advantage of introducing negligible error for close spacings
while obviating the need to consider an excessively large number of sur-
faces in order to account for all the radiation leaving a given surface.

In place of F18, the pseudo view factor F18% is defined for such cases as

1 - F12 + F1 - Fl
Fla* = 6(F12 l23) 12 5 . (70)

Values of Fl8%* are also given in Table I.

IV. VIEW FACTORS FOR CYLINDERS ON A SQUARE PITCH

The crossed-string method will now be used to derive the view factors
between infinitely long parallel cylinders in arrays on a square pitch.

The cylinders are designated as shown in Figure 12. For the spacings
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TABLE I

View Factors for Parallel Cylinders on

an Bgquilateral Triangular Pitch

PDR F12 F13 F15 F1l8 ERROR Fl8*

1.00 0.16667 0.0 0.0 0.0 0.00000 0.00000
1.05 0.16338 0.00328 0.0 0.0 0.00000 0.00000
1.10 0.15758 0.009209 0.0 0.0 0.00000 0.00000
1.15 0.15030 0.01637 0.0 0.0 0.00000 0.00000
1.20 0.14274 0.02367 0.00010 0.00002 0.00014 0.00003
1.25 0.13601 0.02961 0.00041 0.00006 0.00059 0.00011
1.30 0.12997 0.03444 0.00088 0.00014 0.00132 0.00025
1.35 0.12449 0.03838 0.00146 0.00025 0.00228 0.00044
1.40 0.11949 0.0415% 0.00215 0.00037 0.00347 0.00066
1.45 0.11491 0.04408 0.00291 0.00052 0.00484 0.00092
1.50 0.11070 0.04606 0.00375 0.00068 0.00638 0.00121
1.55 0.10679 0.04754 0.00464 0.00085 0.00808 0.00153
1.60 0.10317 0.04860 0.00558 0.00104 0.00992 0.00187
1.65 0.09980 0.04928 0.00656 0.00124 0.01188 0.00223
1.70 0.09665 0.04962 0.00758 0.00146 0.01395 0.00262
1.75 0.09371 0.04966 0.00863 0.00168 0.01613 0.00302
1.80 0.09094 0.04943 0.00971 0.00191 0.01840 0.00344
1.85 0.08834 0.04896 0.01081 0.00215 0.02076 0.00388
1.90 0.08588 0.04826 0.01194 0.00239 0.02320 0.00433
1.95 0.08357 0.04736 0.01308 0.00265 0.02572 0.00479
2.00 0.08138 0.04627 0.01425 0.00290 0.02830 0.00526
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that will be considered here, all but a very small fraction of the radia-
tion leaving cylinder 1 is intercepted by cylinderxs 2, 3, 5, and 8.
Again, the notation FlJ denotes the fraction of the radiant energy out-
going from cylinder 1 that is intercepted by a single cylinder numbered
J, not that intercepted by all cylinders J. Obviocusly, ¥ll, Fl4, Fle,
F17, and Fl1-10 are zero since surface 1 cannot see itself or any of the

surfaces numbered 4, 6, 7, and 10.

Derivation of Equation for Fl2

The equation for Fl2 for cylinders on a square pitch is derived in
the same manner as the equation for Fl2 for cylinders on an equilateral

triangular pitch with no shadowing. Thus

2 i/2

F12 =-% [(PDR - 1) 2 pytsz

- tan" T (PDR - PDR + %J , all PDR. (71)

The above formula, as noted, applies for all PDRs since there is no shad-
owing of rod 2 by other rods, even for PDR = 1.0, for cylinders on a

square pitch.

Derivation of Equations for F13

Partial shadowing. 1If the PDR is less than Y2, rod 3 is shadowed

by other rods as illustrated by Figure 13. Lengths of the line segments

are
ad = PDR°R; cd = (ad2 - ac2)l/2 = R(PDR2 - l)l/2
-1 hr -1 T
h = hr = PDR-2R; = ta e 1l = —
a r Y n o tan )
w= == P - tan led o tan—l (PDR2 - 1)1/2, be = R
2 ac 4
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Figure 13. Derivation of F13 with Partial Shadowing.



it

2)1/2

ar (ah2 + hr = 2/2 PDR-R; er = Y2 PDR'R

2 S2)1/2

es = (er - r 2 . 1)1/2

= R(2 PDR

-les

=T _tan 2 epR? - 1Y, st = rs.
rs 2

§ = g-— tan

The upper limit of /2 for the range of PDR is found by noting that there
will be no shadowing when gh becomes equal to 2R. Since gh = /5 PDR"-R,
it follows that PDR = /2. Hottel's crossed~string method leads to the

result:

4(st + es) - 8(bc + cd) st + es ~ 2(bc + cd)

Fl3 = 2-20R - TR ’
. - 2
F13 = % [(2 por? - 132 - tan Y2 por? - )2 - 2epr? - 1) 4
2 tan ' (PDR® - 1)1/2}, 1 <PDR < /2 . (72)

No shadowing. The equation for F13 with no shadowing can be derived

by substituting /2 PDR for PDR in Equation (71) since Y2 PDR is the pitch-

to-diameter ratio of cylinder 3 relative to cylinder 1. Then

P13 = & [(2 poRZ - 1)/2 - tan"t(2 Por? - 112 - /3 pDR + E] , PDR > /2.

2

(73)
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Derivation of Equations for F15

Obstruction of one crossed string. For 1 < PDR < /2, one of the

crossed strings is obstructed. Referring to Figure 14, the lengths of

the line segments are

ah = (a£? + %)% = 2/3 PDR'R; ad = V2 PDR-R
ac = R; cd = (ad2 - acz)l/2 = R(2 PDR2 - l)l/2
Y = tan-l g% - ta -1 f%-: t.a.n—-l 2 - tan“l 1= g-~ ta.n—l 3
w = %'— v - tan—l §%~= tan“l 3 - tan"l (2 PDR2 - 1)1/2; bec = Ru
hn = eh = PDR'R; mn = el = (hn> - hm?) /2 = R(PDRZ - 1)/ 2
o = §g~— tanvl E§~- w - tan—l g%'= tan"l 2 - tan*l (PDR2 - 1)1/2; jm = Rog
B = tan”l L2 tan“l hi tan—l 2 - Iy tan—l(PDR2 - l)l/2

af el — 2

- 2
o~ B = %-— 2 tan l(PDR - 1)1/2; Im = R{a - B)

ar = (af2 + fr2)l/2 = ZVg.PDR-R; er = V5 PDR-R

es = (er2 - rsz)l/2 = R(5 PDR2 - l)l’/2

§ = I tan—.l g L tan-l(S PDR2 - 1)1/2; st = R§.
2 rs 2

The PDR at which the crossed string is no longer obstructed may be

found by setting a - 8 = O to yield PDR = v2. The value of F15 is

[2(st + es) + 2(jm + Ilm) + 6 mn] - 2[2(bc + cd + jm + mn]

F15 =
2+27R ’
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Pigure 14. Derivation of F1l5 with Partial Shadowing and Obstruction
of One Crossed String.
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st +es + 1Im+ mn ~ jm ~ 2(bc + cd)

Fls = 2TR
- 1
F15 = 5% [(5 poRZ - 1) - tan"l(s por® - 1Y - 22 por? - 1Y/2 4
2 tan T2 POR® - 1Y% + (EpR® - 1DY? - tanYepr? - 1HV2 - tan”l(l/z)J ,
1 < PDR < V2. (74)

Partial shadowing with no obstruction of crossed strings. The upper

limit for this case occurs when there is no longer any shadowing. The
PDR at which this happens may be determined by setting either w or o equal
to zero, which gives a value of PDR of /“; Since this case differs from
the previous one only in that both crossed strings are unobstructed, one

obtains (see Figure 15)

st + es -~ bc - cd -~ jm - mn

F15 = — )
F15 = %’[(5 por” - 1Y% - tan™l (s POR? - Y2 - (2 poR? - nt2y

tan T(2 PDRZ - 1)2 - ®pR? - Y2 & tanY(epr? - V2 - g],

/2 < PDR < V5, (75)

No shadowing. The equation for F15 with no shadowing can be derived

by using the equation for F12 and substituting VE'PDR for PDR, where V5
PDR represents the effective pitch-to-diameter ratio of rod 1 with respect

to rod 5. Then
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Figure 15. Derivation of F15 with Partial Shadowing and No Chstruction
of Crossed Strings.
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F15 =

E

[}5 PDR® - 1)1/2 ~ tan Y (5 PDR® - 1)1/2 - V5 PDR + g], PDR > V5.

(76)

Derivation of Equations for F18

Obstruction of one crossed string. Figure 16 shows radiation inter-~

change between rods 1 and 8 when one of the crossed strings is obstructed.

The lengths of the line segments are

ah = (af2 + fhz)l/z = 2/5 PDR'R; ad = /5 PDR-R

ac = R; cd = (ad2 - acz)l/2 = R(5 PDR? - l)l/2
= tan-l EE’“ tan”l o tan“l 3 - tanml 2= tan"l 7
at af P
w = g‘~ b - tanml §%—= taln“l 7 - tan_l (5 PDR2 - 1)1/2; bc = Rw
ha = PDR-R; mn = (hn2 - hmz)l/2 = R(PDR2 - ]_)1/2
eh = V2 PDR'R; el = (eh® - h1%)1/? = Rr(2 pDRZ - 1)1/2
o =24 tanul 2 - tan_l oy - tan“l cd tan"l 3 - tan*l (PDR2 - 1)1/2;
2 hin ac
jm = Ra
8 = tan T §§-~ tan T 2%—— g-z tan © 3 - 5%»+ tan ' (2 PDR® - l)]"/2
a - B = ég__ tan T epr® - 1?2 - tan™t 2 por? - 1)Y?; 1w = R(a - 8)

2 2)1/2

ar = (af + fr = 2v10 PDR*R; er = ¥Y10 PDR-R

es = (er2 - r52 1/2 R(10 PDR2 - l)l/2

)

i
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Figure 16. Derivation of F18 with Partial Shadowing and Obstruction
of One Crossed String
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2,172

§ = - tan ‘(10 PDR

w
= an ; st = R6.
2 rs

i
NP

Setting a - B = 0 and solving for PDR gives /5 as the pitch-to-

|

diameter ratio at which the crossed string is no longer obstructed. The

value of F18 is

Flg = [2(st + es) + 2(dm + lm + el) + 4 mn] - 2[2(bc + cd + jm + mn)]
2+27R !

st + es + 1m + el - jm - 2(bec + cd)

F1l8 = - ,
2WR

- 2
F18 = %;-[}10 PDR2 - l)l/2 ~ tan 1(lO PDR2 - 1)1/2 ~ 2(5 PDR -~ 1)1/2 +
2 tan 15 poR® - 1)Y2 4 (2 eoR® - Y2 - tan M2 POR® - 1)2
-1 — .
- tan (2/11& , 1 < PDR < V5 . (77)

Partial shadowing with no obstruction of crossed strings. Setting

o equal to zero gives PDR = ¥10 as the upper limit for this case. Using
results from the previous case but with both crossed strings unobstructed,
one obtains

st + es - bc - cd - jm - mn

F15 = ’
TR

1/2 172 2 1/2

F15 = - tan“l(lo PDR2 - 1) (5 PDR” - 1) +

SHIe

Elo PDRZ - 1)

2 1/2 2 1/2

tan—l(S PDR™ - 1) - (PDR -~ 1) + tan_l(PDRz - 1)1/2 - tan—l 2],

Y5 < PDR < Y10. (78)



No shadowing. The PDR of rod 1 relative to rod 8 is V10, so that

£

PDR > 10. 4 (79)

2 /2

F18 = Blo PDR® - 1)

= [

- tan Y10 PpR® - 1Y? - /T poR +

N3

Close Spacings

Values for Fl12, F13, F15, and F18 are given in Table II for selected
values of PDR. The quantity ERROR = 1~-4(F12 + F13)-8(F1l5 + F18) in
the table is the fraction of the radiation leaving cylinder 1 that is
not intercepted by rods 2, 3, 5, and 8 in the adjacent three rows. For
close spacings, there is obviously little error in assuming that all the
radiation failinq on other rods is intercepted instead by rods in posi-
tion 8. As noted previously, this assumption permits all the radiation
leaving a surface to be accounted for, while producing only a slight
redistribution of the radiant energy for rods of close spacings. This
redistribution of energy introduces a much smaller error in the tempera-
ture calculations than is indicated by the value of ERROR because of the
one~fourth powexr variation of temperature with changes in the view fac~
tors, as shown in Egquations (34) for example. The pseudo view factor

F18* (also given in Table II) is defined for rods on a square pitch as

1-4(F1l2 + F13)-8F15

ko=
F1l8 5 .

(80)
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TABLE 1T

View Factors for Parallel Cylinders
on a Square Pitch

PDR Fl2 F13 F15 F18 ERROR F18*

1.00 0.18169 0.06831 0.00000 0.00000 0.00000 0.00000
1.05 0.16906 0.07803 0.00136 0.00006 0.00025 0.00009
1.10 0.15895 0.08337 0.00350 0.00023 0.00095 0.00034
1.15 0.15031 0.08632 0.00596 0.00047 0.00203 0.00073
1.20 0.14274 0.08760 0.00861 0.00079 0.00344 0.00122
1.25 0.13601 0.08760 0.01140 0.00116 0.00514 0.00180
1.30 0.12997 0.08659 0.01427 0.00157 0.00708 0.00246
1.35 0.12449 0.08475 0.01720 0.00203 0.00924 0.00318
1.40 0.11949 0.08221 0.02018 0.00251 0.01159 0.00396
1.45 0.11491 0.07927 0.02308 0.00303 0.01438 0.00483
1.50 0.11070 0.07652 0.02554 0.00358 0.01823 0.00585
1.55 0.10679 0.07395 0.02761 0.00414 0.02304 0.00702
1.60 0.10317 0.07156 0.02932 0.00472 0.02870 0.00831
1.65 0.09980 0.06931 0.03073 0.00533 0.03510 0.00971
1.70 0.09665 0.06721 0.03185 0.00594 0.04216 0.01122
1.75 0.09371 0.06523 0.03273 0.00658 0.04982 0.01280
1.80 0.09094 0.06337 0.03337 0.00722 0.05801 0.01447
1.85 0.08834 0.06l6l 0.03382 0.00788 0.06669 0.0l621
1.90 0.08588 0.05995 0.03407 0.00854 0.07580 0.01802
1.95 0.08357 0.05837 0.03415 0.00922 0.08531 0.0l988

2.00 0.08138 0.05688 0.03407 0.00990 0.09518 0.02180
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V. PREVIOUS WORK

The literature contains formulas, graphs, and tabulations of configu-
ration factors for a large number of geometries which have received atten—
tion since the introduction of the view factor concept in about 1928
[see (28) for historical notes]. Among the more complete compilations
of view factors are the works of Hamilton and Morgan (12), Leuenberdger
and Pearson (20), and Siegel and Howell (28). The last tabulate references
to over 170 geometrical configurations for which angle factors have been
determined.

The view factors between parallel cylinders in arrays, however,
appear to have received little attention. Except for the derivation of the
configuration factor between two infinitely long parallel cylinders with
an unobstructed view of each other, no other analytical results are avail-
able. The usefulness of the crossed-string method in deriving analytical
relations for the view factors between parallel cylinders in arrays does
not seem to have been recognized. Invetigators concerned with heat trans-
fer in rod arrays have calculated the view factors that they needed using

integration of the egquation:
Fo=2| F aa (81)
ij A, dAi-Aj i

where FdA -a is the configuration factor between the differential area
i3

dAi and the finite area Aj. Bugation (8l) is merely a statement of the
fact that the view factor for Ai with respect to Aj is the area-weighted
average of the view factors from the differential areas comprising Ai.

As shown by Jakob (17, p. 19) the view factor between a differential
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surface dA., and a finite surface Aj' whose generatrix is parallel to the
i

differential surface, 1is

g sin ¢ - sin ¢~
da, -A, 2
13

if the surfaces are infinitely long (Figure 17). The symbols ¢°° and ¢~
represent the angles measured clockwise from the normal to dA at which
the surface Aj "appears" and subsequently "disappears" from the view of

dA,

. If Ai is divided into n equal-sized incremental areas, the finite
i

di.fference approximation for Fij becomes

zf: sin ¢ ¢;
. (82)

BiH

Watson (37) determined F12 and F13 for rods on a square pitch using
Equation {(82). A comparison of his tabulated results covering a range
of PDRs from 1.0 to 6.0 with the exact values calculated using the rela-
tions derived in this dissertation shows a maximum deviation of 0.4%.
Klepper (19) has calculated values of Fl2 and Fl3 for cylinders on a tri-
angular pitch and values of Fl2, F1l3, and F15 for rods on a square pitch
at PDRs of 1.1, 1.2, 1.3, 1.4, and 1.5. Rods spaced on a triangular pitch
wera divided into twelve 30° segments, while rods on a square pitch were
divided into eight 45° segments. As a result of inaccuracies caused by
this coarse division and by graphical evaluation of the angles ¢~ and
$~7, Klepper's angle factors differ as much as 5% from the exact values.
Singer (29) has developed a computer program to perform an evaluation of

Fquation (82) for the general case of radiation between two cylinders with
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Normal

dA;

Figure 17. Geometrical Relationship Between dAi and Aj.
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intervening upper and lower shadowing pins which is the configuration
encountered for radiation between rods in arrays (see Figure 16, p. 63,
for example). Except for two sample problems involving computation of
F12, F13, and F1l5 for cylinders on square pitches of 1.0625 and 1.3341,
Singer does not tabulate any view factors for parallel rod arrays.
Results of his sample calculations using 100 increments differ no more
than 0.04% from the exact values. A general computer program for the
determination of view factors developed by Toups (35, 36) has been uti-
lized by Evans (5) to calculate view factors between rods in sqguare
arrays.

It is obviously much simpler and more accurate to use the theoretical
relations derived in Sections III and IV than to compute the view factors
between parallel cylinders by evaluation of Equation (82), even if one
uses the programs already developed by Singer or Toups. The crossed-
string method could, of course, be used to derive equations for the view
factors between cylinders farther apart in the array as would be needed

in the case of cylinders on wide spacings.



CHAPTER 5
CONSTRUCTION OF VIEW FACTOR MATRICES

It is c¢lear from an examination of the equations for radiant exchange
within an enclosure (Chapters 2 and 3) that it is essential to know the
view factors Fij for each surface with respect to every other surface
within the enclosure in order to effect a solution. The previous chap-
ter was directed toward a determination of the individual view factors
between rods in arrays_for the two cases of cylinders on a square pitch
and on an equilateral triangular pitch. In the present chapter, atten-
tion will be centered on the generation of the entire matrix of configu-
ration factors. One of the major difficulties in evolving an algorithm
to treat radiant exchange in a sguare or hexagonal rod array of any
size is the development of a method for generating the F matrix for an
array of arbitrary size. Obviously, however, this is necessary in order
to produce a program of general utility and to avoid the necessity for

solving the problem anew each time another size array is encountered.
I. HEXAGONAL ARRAYS

Two possibilities are considered. The first is the general case,
which allows for an arbitrary variation of the surface heat flux from
rod to rod. The second is the special case in which the distribution of
heat fluxes is symmetrical. A particular example would be that of equal

heat generation rate in each of the cylinders.

71
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Arbitrary Heat Flux Distribution

The manner in which the rods are numbered for an arbitrary heat flux
distribution is illustrated in Figure 18 for a 217-rod array. The num-
bering of the cylinders for larger or smaller arrays conforms to the
pattern given in Figure 18. In general, each rod will be at a different
temperature. The spacing between cylinders is assumed to be such that
radiant exchange between rods more than four rows apart is negligible.
Then, knowledge of the wvalues of Fl12, F13, F15, and F18 (defined in
Chapter 4) will allow one to determine all the view factors between rods
in the array. Thus, for example, F. _ = F12, F = F13, F =

1-7 14-31 29-53

F15, and F18~86 = F18. Elements of the F matrix for a 37-rod, or four-
row, array are shown in Figure 19. Examination of the elements of F
matrices for rod arrays of various numbers of cylinders (1, 7, 19, 37,
61, 91, 127, 169, 217, etc.) shows that a pattern exists for the location
and magnitude of the nonzero elements. (A much larger array than that of
Figure 19 is required to allow detection and definition of this pattern.)
The observed pattern was programmed into the computer subroutine HEX,
which can construct the F matrix for a hexagonal rod array of arbitrary
size. The subroutine consists essentially of a large number of DO loops,
each of which generates a portion of the matrix. For example, elements
of the matrix in Figure 19 that have a left-hand superscript of 3 can be
generated by the FORTRAN statements:

NROWS = 3

M{(1) 1

DO 1 I = 2, NROWS

1 M(I) M(I - 1) +6 * (I - 1)

DO 3 K = 2, NROWS
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Figure 18. Numbering of Cylinders

Arbitrary Temperature Distribution.
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Figure 19.

a Nonsymmetrical Temperature Distribution.

Matrix of Fij Values for a 37-Rod Hexagonal Array with

1 ) 2 3 L 5 6 7 3 g 10 11 12 13 b 15 16 17 18 19 20 21 22 23 2k 25 26 27 28 29 30 31 32 33 34 35 36 37
1 Fl2 Fl2 Fl2 Fl2 Fl2 F12 Fl13 Fi3 Fi3 F13 F13 Fi3 F15 F15 715 F15 F15  F15 Fi5  F15 F15  F15 F15  Fl5
2 32 F13 F13 Fl2 Fi2 Fl2 Fi2 Fi3 F15 F15 Fi5 F15 F13 FI13 F13 F15 F15 Fi8 F18 F138 F18 ¥15 F15
3 3riz2 713 F13 F13 Fl2 Fl2 Fl2 Fl13 F15 Fl15 F15 F15 F15 Fl5 F13 F13 Fi5 F15 F18 F18 F18 Fi8
4 3r2 P13 F15 F15 F13 Fl2 Fl2 Fl2 F13 F15  F15 F18 F18 F15  F15 F13 ¥13 ¥15  F15 F18 F18
5 3Fl2 F13 F15 F15 F15 F13 Fl2 Fl2 Fl2 F13 F15 F18 F18 F18 F15  F15 F13 F13 F15 F15 "8
6 3ri2 F15 F15 F15 F15 F13 Fl2 Fl2 Fl2 .Fl13 Fl15 F18 F18 F18 ¥18 F15  Fl5 £13 F13 F15
7 Fl2 F13 F15 F15 F15 F15 F13 Fl2 Fl12 F13 F15 F15 F18 F18 F18 F18 F15 F15 F13
8 3r12 F13  F15 F13 F18 F15 Fl3 Fl2 Fil2 Fl2 F13 F15 F18 F18 F15 F13
9 3r12 F15 F18 718 F15 F12 fl2 Fl2 Fl2 F13 F15 F18 F18 F15
10 3Fl2 F23  F15 F18 F18 F15 F15 F13 Fl2a Fl2 F13 F15 F18 ¥18

11 3yiz ¥15 18 £8 18 F15 Fl3 Fl2 Fl2 Fl2 Fl3 F15 F18

12 3Fr12 P13 F15 F18 F18 F18 F15 F13 Fl2 Fi2 3 F15 F18

13 3r12 F15 F18 F18 FI5 Fl3 Fi2 Fi2 Fl2 FI13 Fi5 F18

1 312 P13 FI5 18 F18 ¥15 FI3 ¥l2 TFl2 FI3 F15 F18

15 3r12 F15 F18 F15 F13 Fl2 Fl2 Fl2  F13 Fl15 F18

16 3v12 P13 715 F18 F18 F15 F13 Fl2 Fl2 FL3 F15

17 312 F18 F18 Fl5 F13  Fl2a Fi2 Flz F13  F15
18 3p12 Fi5 w18 F18 F15 F13 Fl2 Fi2  Fl13
19 Fl2 F13 Fl5 F18 F18 F15 F13 Fl2 Fl2
20 3r12 F15 F13 Fl5 F13 K12
2 3p2 F13 RIS FI8 F15

22 3510 F18 ¥18

23 312 F15 F18
N 2R3 RIS F18

25 Only upper half of matrix is 3F12 F18

26 shown since Fyj = Fji’ which 3p12 F15

27 follows fram the reciprocal 32 P13 RS R

28 relation A, F,, = Ay 7,  and 3p12 18

29 the fact that A = A, for 3r2 F15

30 the equal-diameter rods. 32 FI3 FI5 RI8

3 3r12 F18

32 312 F15

13 3p12 713 P15 P18
34 3r12

35 riz

36 3p12
37

VL
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Il M(K~-1) +1

it

il

12 M(K) -1

DO 3 I =11, I2
J =1+ 1
3 F(I,J) = Fl2
Other elements of the matrix are generated in a similar, although usually
more complex, manner.
Once the m x m eleméent matrix for the view factors between rods has
been produced, the complete n x n matrix, which includes the interactions
between the rods and shroud, is found by making use of the relationz (n

denotes snhroud):

m
F, = - F,. i = we s
in 1 2: i i 1, , m
=1
A,
F . === F ,1i=1 n
ni A in’ oty

m
an =1~ 22 Fni'
1=1

Symmetrical Heat Flux Distribution

If the distribution of the heat fluxes is symmetrical such that rods
at corresponding positions in the array have equal heat fluxes, the temper-
ature distribution is also symmetrical. The surfaces may then be numbered
as shown in Figure 20, where rods with the same number are considered as
one surface of uniform temperature. The numbering of the cylinders for
larger arrays follows the pattern set fo?th on Figure 20.

The motivation for regarding the condition of a symmetrical heat flux

distribution as a special case is the large reduction in the number of
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equations relative to the general case of an arbitrary distribution of
heat fluxes. In the case of a 217-rod array there would be a reduction
from 217 equations to only 25 equations, one equation for each surface in
each instance. The savings in computing time is particularly significant
in the solutions of unsteady~-state problems where the integration of a
large number of differential equations is involved. Since heat geneva-
tion rates in nuclear fuel assemblies are usually nearly uniform across
an assembly, symmetry does indeed exist.

If the radiation interchange between rods more than four rows apart
is insignificant, knowledge of Fl2, F13, Fl5, and F18 is sufficient to

calculate all the view factors. For example, = 2 F12 + 2 Fl3 since

Fa-s
egach of the rods designated as 4, which together compose surface 4, has
the same fraction (2 F12 + 2 F1l3) of the radiation leaving it intercepted
by rods in the grouping that comprises surface 5. The F matrix for a 91-
rod array is shown in Figure 21. As before, a computer subroutine
(HXSYM) was written to construct the F matrix for an arbitrary-size arvay

from an inspection of the pattern of nonzero elements in the matrices for

various~sized arrays.
II. SQUARE ARRAYS

Arbitrary Heat Flux Distribution

For square arrays with a nonsymmetrical temperature distribution, the
use of a double-index notation as illustrated by Figure 22 greatly sim~
plifies writing an algorithm to construct the matrix of view factors.

Thus, one can write for rod (i,j) that F = F1l2,

(i,3)-(i-1,3)

F,.o. ) ) = P13, and so forth. Radiation exchange between rods
(1,3)-(i~1,3+1) ! g
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N 2 3 L 5 3 7 8 ] 10 11 12
1 6F12 6¥13 12F15 10r18
2 2(F12+F13) 2(F12+F15) F12+2(F13+F1l5)  2(F13+F15+F18) 2(F15+F18) 2{F15+F18) 2FLY 2F18 2F1d 2r18
3 2F13 2(Fl2+F15+F18)  2(Fl2+F15+F138) 2F13 F13 2(F15+F18) 2Fi5 2{¥15+r18) 2118
L 2(F12+F13+F16) F12+2F1% 2(F12+¥15+718) 2715 2(Fi5+Fi8)
5 F12+F13+2F15 F12+ 18 F12+F15+F18 F13+F12 F13+F15 F12+F1% 2F15+F18 F15
6 2F13 2(F12+F15) Fl2+2r18 2F15 2F12
7 2(F12+F15) 2(F12+F18) 2F13 2F1S

Only upper half of matrix is shown since
8 P F13+2F18 Fl2 Fla+Fl¥+¥15 F12+F1% FLE+F18
1378 St

9 2(F13+F15) 2(F12+F18) r12
10 Fi2 Fi2+F15+518
11 K13 1o
12

Figure 21, Matrix of F,.
a Symmetrical Temperature Dis

Values for a

%ribution.

91-Rod Hexagonal

Array with
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more than three rows apart is assumed to be negligible (see Table II, p.
66, for the range of PDRs for which this assumption is valid). After the
F' matrix has been generated using a double~index notation for rod posi-
tion (quadruple indexes for the view factors), a conversion is accom-~
plished to achieve a single-index notation (shown outside the circles in
Figure 22) for position and a double-index notation for the view factor.
becomes

For instance, in the case of the array shown.

F7,4)-(7-5) Fi7-47

This conversion is carried out to avoid the awkwardness that would arise
in using double-index notation in the identification of the terms in the
eneryy palance equations. For larger or smaller arrays, the single~-index
indication of rod position is similar to that shown in Figure 22 with
cylinders numbered seguentially in column order. Construction of the F
matrix for nonsymmetrical sguare arrays is performed by the computer

algorithm SQUARE.

Symmetrical Heat Flux Distribution

Illustrations of the numbering sequences for rods in arrays with a
symmel:rical heat flux distribution are shown in Figures 23 and 24. Dif-
ferent numbering systems are required for arrays with an even number of
rows and those with an odd number of rows because of the different symmetry
for such arrays. Construction of the F array is accomplished by subroutine
SQSYM, which incorporates the pattern observed from an examination of the
matrices for a number of array sizes. Subroutine SQSYM is valid for both
even- and odd-rowed arrays which have rod spacings such that radiation

between rods more than three rows apart is negligible.



el

ORNL. DWG 75-8477

o En) G2
@ @ @ )(8)(9) (o) (
clolojololololo
0JlOIOI0IOIC L ..@
OOOODC

DEOO®
ojolololololololelo
clololelololelolole
olololololololololc
PEEEOOEOO®E
olololclololclolole

Fi gu 23. De q ati of Cy111 for Array with
Symme tr l Tempe t re Di t tion and an Even NJID ar of Rows.




ORNL DWG 75-8478

(7)) Ge) (i) GB) (9) Go) 1)
@ @ 1)
. 1) (a) (o jsf
00O, . )C
HOOO®EU @@@.
0J0J0, ©JOI010]0,
© O ®®
@ O,
@DWEEWEE
@ . . . . . OEE @

rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr




CHAPTER 6

THEORETICAL RESULTS

I. STEADY STATHE

Equations (37) of Chapter 3:

M8

(F,. - 8..)%. = ~X,, i=1, ..., m (37

which are the dimensionless steady-state equations for a rod array with

a constant shroud temperature can be written in the form:

m

21 By %5 = G 3l m (83)
where

B..=F.. - 8§
1] 1] 1)
and
C., = ~-X..
i i

Now Bii = ~l for i = 1, ..., m since Fii = 0 as the rods are convex and

cannot see themselves. Further,

o m
. B, .=, F..=1-F _ £ ~F, < 1.
=1 1ij i=1 ij ii in —
J#L j#L
Tt follows that
| B | > E l B I for i =1, ..., m
iil — « ij ! !
i=1
j#L

83
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which is a sufficient condition for convergence to a solution of Equa-
tions (83) using Gauss-Seidel iteration. A complete description of the
Gauss~-Seidel method and its computer implementation may be found in
references (21) and (22).

The computer algorithm STEADY was written to sclve the steady-state
problem. The program proceeds by first determining the view factors P12,
F13, Fl5, and the pseudo view factor F18* using subroutine EQVIEW for
rods on an equilateral triangular pitch or subroutine SQVIEW for rods
on a square pitch. The complete array of view factors F is then con-
structed using HEX, HXSYM, SQUARE, or SQSYM, depending on whether the
array configuration is hexagonal or square and whether the distribution
of rod heat fluxes is symmetrical or nonsymmetrical. The pseudo view
factor F18* is used in constructing the F array rather than the true view
factor F18 in order to take into account all the radiation leaving a rod
as explained in Chapter 4. Finally, subroutine SIMEQ employs Gauss~-
Seidel iteration to solve Egquations (37) to obtain the dimensionless
variables Zj from which the temperature values Tj are determined. An
annotated listing of the computer program STEADY including a description

of the necessary input data is given in Appendix D.

It is now of interest to consider the case in which the heat flux

is the same for all the rods (Xi =1 for 1 = 1, ..., r) and all surfaces
have the same emissivity. In such a case, Equations (37) become
g
. (F.. - 68,.)2. = -1, i =1, ..., nm 84
=1 i 13°73 ’ (84

where
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m A
1l - ¢ 1
= — —_ 4+ R
Z. Y. ) (} y >

j j € n

An examination of Equations (84) shows that the values of the Zj are
functions only of the geometry. The use of the dimensionless variables
Zj then permits a highly compact presentation of the variation of temper-
ature with array configuration, array size, PDR, heat generation rate,
and emissivity. Figures 25 through 27 show the dependence of Zl {(from
which the center-rod temperature Tl can be found) on PRPR for various
sizes of hexagonal arrays of cylinders on an equilateral triangular pitch.
Similar results are presented in Figures 28 thrxough 30 for square arrays
of rods on a square pitch. The ranges of PDR values considered in
Figures 25 through 30 correspond to those for which it is reasonable to
assume that radiant exchange between rods more than three rows (sguare
pitch), or four rows (triangular pitch), apart is negligible.

For spent nuclear fuel assemblies the heat flux Ql/Al is depandent
on the radicactive decay heat release rate which is determined from a
knowledge of the fuel composition, conditions and period of irradiation
in the reactor, and time elapsed since removal from the reactor. The
temperature of the shroud Tn can be calculated from an independent enerqgy
balance which equates the heat generated within the rod array to that
dissipated by the shroud to the surroundings. Emissivities of the sur-
faces must either be measured experimentally or estimated from literature
values. The number of rods in the array, m, and the ratio of the surface
area of a single rod to that of the sheath, Al/An, are, of course, geomet-
rical parameters. If the shroud is located at a distance P - D (P = pitch

of the rods) from the last row of rods,
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Figure 25. Center-Rod Temperatures for Hexagonal Arrays of 1, 7,
12, and 37 Cylinders.
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Figure 26. Center-Rod Temperatures for Hexagonal Arrays of 61, 21,
127, 169, 217, and 271 Cylinders.



88

ORNL DWG 75-8483

190 I S B I T T
I80
170
160
150
140,
[
Tl 130
&
=X 120
e
< 10
!
3 -
Al 100
o
& 90
o
N 80
70
60
501
40}
30 | 1 ] | ] ] ] § ]
10 Il l2 13 14 15 le |17 I8 18 20
PDR
Figure 27. Center—Rod Temperatures for Hexagonal Arrays of 331,

397, 469, 547, and 631 Cylinders.
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Figure 28. Center-Rod Temperatures for Square Arrays of 1, 4, 9, 1o,
and 25 Cylinders.
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Figure 29. Center—Rod Temperatures for Square Arrays of 36, 49, 64,
81, 100, and 121 Cylinders.
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moo, 1

1
Al 2/3 2+ /3 (NROWS-1)]EDR - 1

for hexagonal arrays and

Al B i
A "~ 4[(NROWS+1)PDR - 1]
1
for square arrays, where NROWS is the number of rows of rods. For

unshrouded arrays the shroud may be considered to be located at infinity
so that Al/Arl = 0.

If it were desired to take into account the variation of the emissiv-
ities with temperature, it would be necessary to modify STEADY to solve
Equations (37) in an iterative manner. The procedure would be to specify
trial values for the emissivities of each of the surfaces, solve the set
of equations for the temperature values, and calculate new emissivity
values based on these temperatures. A new set of temperatures could then
be obtained by resolving Equations (37) and these steps could be repeated

until the temperatures converged.

IT. UNSTEADY STATE

It was shown in Chapter 3 that the unsteady-state equations for a rod
array with a constant-temperature shroud could be couched in terms of

dimensionless variables as

ar, 3/4 o
- AY. + W) X, + F -6 . eNv. |, i=1, ..., m (38)
i PN S iji i77]

where the dimensionless time 0O is defined as
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3/4
5 - zga.(gk/Ak)

pVec o

and the parameter W is defined as

oT 4
n

0 /B

W =

Solution of Egquations (38) for the Yi as a function of 0 requires the
numerical integration of a set of first~order differential equations,
which was performed using Hamming's modified predictor~corrector method.
This method is a stable fourth-order procedure that requires evaluation
of the right-hand side of the differential equations twice during each
step. A fourth~order procedure using Runge-~Kutta-Gill integration, which
requires four evaluations per step, was also tried but was found to be
much slowexr for the same accuracy. The integration routine used was
supplied by International Business Machines (IBM) in its System/360
Scientific subroutine Package. An explanation of the predictor~corrector
method and a description of this subroutine (DHPCG) are given in a recent
IBM publication (16), while a more-detailed exposition of the mathematics
may be found in references (13), (22), and (25).

Integration of Equations (38) first requires computation of the gray-

body view factor matrix ¥ using the equations derived in Chapter 2:

< Ly ik
> |F. - ¥ .=-F,,. €., i=1, ..., n; =1, ..., n (28)
e ik €1 & kj 3

which may be written more compactly as
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B ¥.=¢c..,i=1, ..., n; =1, ..., n (85)
ik kJ 1]
k=1 *
where
. B 1 - Ek “ Sik
. is
ik J Ek Ek
and
c = ~F,., €
1] 1) 3

Equations (85) represent n2 relations in the form of n sets of n simul-
taneous linear algebraic equations which must be solved in order to define
the n2 values of'}lj. Gaussian elimination with pivoting as incorporated
in the subroutine MATQ is employed to perform this task. MATQ is basically
an algorithm developed at the Oak Ridge National Laboratory with further
modifications suggested by Kee (18) to improve its speed. Discussions of
the theory and programming of Gaussian elimination are available in refer-
ences (21) and (22).

The computer program TRANS uses DHPCG, MATQ, and other subroutines,
as required, to solve Equations (38) for the Yi as a function of 0. Cal-
culated results are presented in Figure 31 for a 217-rod array with equal
heat generation in each of the rods and an initially flat temperature pro-
file (Ti = Tn’ i=1, ..., mat t = 0 so that Yi =0, 1=1, ..., m at
O = 0). The parameter W reflects the influence of the initial temperature
level. For an array of the specified geometry and emissivity, Figure 31
can be used to find the variation of the center-rod temperature Tl with
time t for any heat generation rate, rod properties, and initial tempera-

ture level in the range of the parameters. The sclution of unsteady-state
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problems for large rod arrays with nonsymmetrical heat generation rates
quickly becomes impractical bhecause of the excessive computer memory and
computer execution time needed. Thus, the results of Figure 31 reqguired
the numerical integration of 25 simultaneous differential equations, while
217 equations would be necessary for the same array if the distribution of
heat fluxes were nonsymmetrical. A listing of TRANS is given in Appendix
D.

As pointed out previously, it is likely that the physical situation
for unsteady-state problems of interest will be such that the shroud
temperature is not constant. 1In such a case, it would be a simple matter
to return to Equations (30) and to modify TRANS in order to deal with these
problems. The absence of a constant shroud temperature precludes formula-
tion of the equations in a useful dimensionless form, but it does not
affect the ability to obtain solutions of these problems with only slight

modification of the algorithms presented.

IIT. PREVIOUS WORK

Very few analyses of radiative heat transfer in rod clusters are pre-
sented in the literature. Pieczynski and Stewart (24) studied heat trans-
fer in a hexagonal array of 7 rods using Hottel's method, while Fisher and
Cowin (6) investigated a one-ring cluster of 6 rods, a two-ring cluster
of 18 rods (rings of 6 and 12 rods), and a three-ring cluster of 36 rods
(rings of 6, 12, and 18 rods) using the net radiation method. Evans (4)
also chose the net radiation method to analyze sguare arrays of 49 and 64
rods. Each of these analyses, however, is restricted to writing out and

solving the equations for the problem under consideration. None of the
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authors presents a scheme that is useful for treating arbitrary-sized
arrays in a general manner.

The most sophisticated analysis to date appears to be that presented
by Watson (37) in his investigation of radiation exchange among rods on a
square pitch in a sguare array. The calculational scheme evolved by
Watson permits solution for any array which has equal heat generation in
each of the rods. Hottel's method is used with BEquation (24) writien in

the form:

Q. n
= + § F . T 4
Aic ij 7]
4 j=1
T, = J , L =1, ..., n
i n
}4 333
j::l

for each of the radiating surfaces, and these eqguations are solved by
trial and error. The qu values required in the analysis are estimated

from the empirical equation (all surfaces assumed to have the same

emissivity):

This relation for the Bij' although exact for € = 1, yields results which
are increasingly in error [measured by comparison with the exact valuas of
Blj found using Equations (28)] as the emissivity of the surfaces
decreases. The above equation overestimates the values of the sz with
the consequence that the predicted values of temperatuve are too low.

The usefulness of framing the energy equations in terms of dimen-

sionless variables has been overlooked by previous investigators.
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Salmon (27), however, employed a dimensional variable which is equivalent
to the dimensionless variable Y as defined here divided by the Stefan-
Boltzmann constant o. He used Watson's computer algorithm (37) to
generate values of this variable for various PDRs and array sizes in a

study of heat transfer in square fuel elements.



CHAPTER 7
EXPERIMENTAL
I. EXPERIMENTAL APPARATUS

Experimental temperature measurements were made for two 217-tube
hexagonal arrays of differing PDRs. Table III 1isté the important
geometrical characteristics of the two arrays, while Figure 32 is a
photograph of one of the mock fuel elements prior to final assembly.
Spacing between the tubes was accomplished by wrapping each tube with
spiral~wound wire. One end of each tube was welded to a tube sheat as
shown in Figure 33; the other end was plugged. The entire assembly
was installed in a section of schedule 40 stainless steel pipe 10 in.
in diameter and 17 ft long with the tube sheet forming one end of the
closed pipe. The assembly was supported within the pipe by three-
legged centering supports spaced to eliminate sagging. Figure 34 is
a photograph of the test vessel.

Thermocouples and electrical heaters were ingerted intco the tubes at
the tube sheet face. Electrical rod heaters were placed in 205 of the
tubes to simulate heat generation by radioactive decay. The specifica~
tions of the heaters are shown in Figure 35, The heaters were arranged
in 14 parallel circuits. Thirteen of the circuits consisted of three
parallel groups of five heaters in series, while the remaining one con-
tained twoe parallel groups of five heaters in series. The current to each
circuit was monitored, and the current through each heater was calculated

on the assumption of egual distribution of current between groups. The

99
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TABLE TITI

Geometrical Characterisgtics of Experimental Arrays

Characteristic Apparatus 1 Apparatus 2

Tubes (304 L stainless steel)

Number 217 217
Outside diameter, in. 0.25 0.25
Wall thickness, in. 0.016 0.035
Pitch, in. 0.341 0.31
PDR 1.364 1.240
Total length, in. 138 138
Heated length, in. 47.5 47.5
Surface area per foot, in.? 9.425 9.425
Metal cross-sectional area, in.2 0.01176 0.02364
Wire wrap (304 L stainless steel)
Diameter, in. 0.091 0.060
Spiral pitch, in. 8 8
Surface area per foot of tube, in.? 3.890 2.537
Cross=-gectional area, in.? 0.006504 0.002827
Sheath (304 L stainless steel)
Inside distance across flats, in. 5.160 4.670
Wall thickness, in. 0.125 0.125
Inside surface area per foot, in 2 214.5 194.1

Metal cross-sectional area, in.2 2.288 2.076




101

PHOTO 93753A

217 TUBES, 1/4-IN.-DIAM |
EACH WRAPPED WITH

2
TUBE SHEET 0.091-IN. WIRE

5

Figure 32. Tube Bundle and Sheath Prior to Assembly and Insertion
into Test Vessel.
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power dissipated in the Nichrome portion of each heater was the product
of the sqguare of the current through the heater and the electrical resis-
tance of the length of Nichrome. The resistivity of Nichrome V is essen-
tially constant at 113.5 x 10—8 ohm-meter over a temperature range of 800
to 1400°F.

One-eighth-inch~diameter Chromel-Alumel thermocouples were inserted
in the remaining 12 tubes. These thermocouples‘could be moved up and
down the length of the tubes to measure the axial temperature profile.

In addition, four fixed thermocouples were locaﬁed on the outside of the
hexagonal sheath at the axial position corresponding to the centerline
of the heated zone. The specifications stipulated when thermocouples
were purchased allowed a maximum error of + 4°F at temperatures up to
525°F. At higher temperatures, the maximum permissible error was 0.75%
of the temperature. The usual variance of the thermocouples from true
values was found to be far less than that allowed by the specifications.
Positions of the tube thermocouples as well as those on the sheath are

shown in Figure 36.
II. TEST CONDITIONS AND EXPERIMENTAL DATA

In order to reduce the contributions of energy transfer by gaseous
natural convection and conduction to negligible values, the test vessel
was evacuated and the experiments were performed under vacuum. The test
procedure consisted of adjusting the power input to attain the desired
center tube temperature, allowing the temperatures to reach their steady-
state values, and recording the thermocouple, voltage, and current values.

It was necessary to reposition the tube thermocouples several times during
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Figure 36. Cross Section of Experimental Array Showing Positions
of Thermocouples.
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each run in order to measure the axial temperature profile. Sufficient
time was allowed after each relocation of the thermocouple cluster to per-
mit the sensors to reach steady state.

Experimental data are reported for five runs, three at a PDR of
1.364 and two at a PDR of 1.240. A brief summary of the data for these
runs is given in Table IV. The shroud temperature shown is the average
value recorded for the sheath thermocouples. Variation from the top to
the bottom of the sheath was approximately 25° to 30°. Detailed tempera-
ture data obtained with the tube thermocouples are presented in Figures
37 through 41. Thermocouple locations are given relative to the center-
line of the heated zone, which was 92.5 in. from the tube sheet face.

The more positive a position, the nearer it is to the tube sheet. Although
measurements were made from -2.5 ft to +7.0 ft from the bundle midpoint at
6-in. intervals, the data presented show only the temperature values from
-2.5 ft to +2.5 ft, representing data taken from 6 in. beyond one end of
the 4-ft heated zone to 6 in. beyond the other end since the centerline

of the heaters is the zero position. Skewing of the temperature profiles
is attributable to heat dissipation in the nickel heater leads (positive
gide of the heated zone).

It can be seen from the figures that the temperature profiles are
nearly flat at the center of the heated zone. The heated length is long
enough that heat conduction in the axial direction has little effect on
the temperature at the centerline of the heaters. BAn estimate of axial
heat conduction from the central 1 ft of the heated zone was made using

Fourier's law in the form:



TABLE IV

Summary of Thermal Data for Experimental Runs

Core Shroud Center Tube

Run Pressure Power Heat Flug Temperature Temperature
No. PDR (microns Hg) {Btu/hr) [Btu/ {(hr—£ft“}] {(°F} (°F)
1 1.364 20 1565 29.5 441 799
2 1.364 33 2960 55.7 556 1002
3 1.364 50 1620 30.5 469 804
4 1.240 6 1650 31.1 503 805
5 1.240 10 2820 53.0 616 998

80T
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where S is the combined cross-sacitional areas of metal for the tubes,
spiral wire wrap, and the sheath; k is the thermal conductivity of 304 L
stainless steel; (dr[?/dx){+ is the temperature derivative at +0.5 ft, and
(dT/dx)]_ ig the temperature drivative at -0.5 ft. BAxial conduction
losses from the central 1 £t of the heaters were found to be approxi-
mately 6 to 7% of the heat generated in this section for the 800°F runs
and 3 to 4% for the 1000°F runs. The assumption was then made that the
temperatures measured at the centerline of the heaters approximated those
that would be measured if the heated length was infinitely long. A com~

parison of the experimental values with theoretical calculations will be

made in the next chapter.



CHAPTER 8

COMPARISON OF EXPERIMENTAL RESULTS AND
THEORETICAL CALCULATTIONS

A problem arises imnediately in the comparison of the experimental
results presented in Chapter 7 with theoretical predictions using the
computer program discussed in Chapter 6. Because the experimental assem-
bly was constructed to simulate a Liquid Metal faszt Breeder Reactor (LMFBR)
fuel rod assembly, spiral wire wrap was used to separate the tubes.
Clearly, the view factors between wire-wound tubes differ from those
between parallel cylinders as derived in Chapter 4. Two approaches were
taken to estimate the effects of the wire wrap.

The first approach was to ignore the presence of the wire wrap com-
pletely, reasoning that the blockage of radiation between tubes as a
result of the wire wrap was offset by the increased ares avallable for
radiative transfer. The computer program STEADY was emploved to simulate
the experimental array with zero heat generation in the tubes containing
thermocouples and equal heat generation in the remaining tubes containing
heaters. The tube surface heat fluxes Q/A were determined by dividing
the total power input to the 4~ft heated section by the surface area of
the 205 heated tubes, ignoring the surface area of the wire wrap. Like~
wise, in the ratio Al/An' B, was taken as the surface area of a tube alone.

1

he e ;
The quantity An (A218

), of course, was the surface area of the shroud.
View factors were those derived in Chapter 4. Figures 42 through 46 show
a comparison of the experimental results with theoretical predictions

for several assumed values of emissivity. Before discussing these

results, the alternate treatment of the wire wrap will be considered.
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The second approach to handling the wire wrap was to treat a tube
and its associated wire wrap spacer as one surface of uniform tempera-
ture. The view factors between tube-wire wrap surfaces were estimated as
shown in Appendix B, where ¥171°, F172%, F1737, F1°57, and F178” are the
view factors between tube-wire wrap surfaces as opposed to the previously
defined view factors between bare tubes, F1l2, Fl3, F15, and Fl8. Since
a tube-wire wrap surface can see itself, F1”1” is not zero as is Fll.

The subroutine HEX was used to construct the view factor array with a
single additional statement inserted to generate the F1°1° wvalues. Sur-
face heat fluxes and the ratio Al/An were computed based on the combined
surface areas of a tube and its wire wrap. The results of this more
rigorous approach, however, were temperature values almost identical
(maximum difference of 3°F) to those for the first approach.

Various emissivity values were used, as shown in Figures 42 through
46, in an attempt to fit the experimental results. The emissivities that
gave the best fits to the data are lower than those usually reported in
the literature for 304 stainless steel of comparable surface conditions,
although the reported values show a large amount of scatter. Literature
data (11, 15, 26, 34, 37, 39) indicate that the emissivities of stainless
steel surfaces are a strong function of surface condition, particularly
its degree of oxidation. Rolling and Funai (26) appear to have carried
out the most extensive emissivity measurements to date for 304 stainless
steel. Their data showing the influence of oxide film thickness are given
in Figure 47. BAs can be seen from Bquation (37a), the calculated tempera-
ture of a tube which has no heat generation (Xj = 0) is a function only

of the emissivity of the shroud, not of the emissivity of the tube itself
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or the emissivities of other tubes. Since a dull gray oxide film was
observed on the shroud (during fabrication) and experimental shroud tem-
peratures were 450 to 650°F, the sheath emissivity was estimated from
Figure 47 to be approximately 0.55. A similar value has also been mea-~
sured experimentally by Watson (37).

It is clear from Figures 42 through 46 that the experimentally mea-
sured temperature gradient across an array is much greater than predicted
by theory. As a consequence, the predicted temperature profile is much
flatter than the measured profile and the theoretical and experimental
temperature profiles do not match for any sheath emissivity. Evans (2,4)
encountered similar difficulties in his analysis of experimental data
for a square array of 64 rods on a sguare pitch. Using the net radiation
method, he also found the predicted temperature profile to be flatter than
the experimental profile. Further, an emissivity of 0.05 to 0.10 was
required in his calculations to achieve any measure of agreement with
the experimental data, whereas the actual emissivity of the Zircaloy sur-
faces was estimated as 0.22,

This poor agreement between theoretical and experimental results
indicates that one or more of the assumptions underlying the thesoretical
model is not correctly describing the experiments. To the extent that it
is feasible, each of the five basic postulates upon which the theory is
based will be examined to evaluate its validity for the experimental tube
array.

The first postulate (see Chapter 2) is that each surface is isother-~
mal. Temperature variations around the circumference of each tube and

around the periphery of the shroud were assumed to be effectively damped
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out by thermal conduction. If a significant temperature variation existed
from one side of a tube to the other as a consequence of the net radial
heat flux that exists in the array, a steeper temperature gradient than
calculated would occur across the array. However, the empirical analysis
given in Appendix A shows that, even under the most conservative assump-
tions, the temperature drops across the tubes are not large enough to
account for the differences between theoretical and observed temperature
profiles.

The second assumption is that the emissivities of the surfaces are
independent of wavelength. For the experimental runs, the temperature
range of the tubes was 560 to 1000°F (1020 to 1460°R). For this tempera-
ture range, 80% of the emitted energy has a wavelength of 2 to 14 microns.
The data of Rolling and Funai (26, pp. 92-94) show that the emissivity
of 304 stainless steel is relatively constant over this wavelength range.

The third postulate is diffuse reflection. For real surfaces, the
concept of a diffusely reflecting surface appears to be more of an
abstraction than a reality. Data given in the literature (1, 3, 23, 33)
indicate that the directional distribution of reflected radiation is often
highly dependent on the incident angle and wavelength of the incident
radiation, the roughness of the surface, and the surface composition. The
absence of any literature data for 304 stainless steel, however, makes it
difficult to ascertain the extent to which this assumption is justifiable.

For most materials, the fourth assumption of diffuse emission appears
to be more realistic than the assumption of diffuse reflection. Data
reported by Eckert and Drake (3) indicate that metallic surfaces follow

Lambert's cosine law fairly well for angles up to about 50° from the
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surface normal; for larger angles, the emission is greater than predicted
by the cosine law.

The final assumption is that the total radiant flux leaving a sur-
face (i.e., the radiosity) is uniform over the surface. This assumption
is valid only if the incident energy flux does not vary over the surface.
If calculational methods based on uniform radiosity are used when, in
fact, the incident flux is nonuniform, one has, in effect, made the
physically inaccurate assumption that each incident ray is reflected uni-
formly from the entire surface rather than from the point of incidence.
Thus, i1f the incident flux were much greater on one side of a tube than
the other, the reflected flux would be represented as uniform over the
surface in the calculation while, in reality, the reflected flux would be
greater along the portions of the surface experiencing a higher incident
flux. For the rod arrays under consideration, there is an increase in
the energy flux moving radially from the center rod to the shroud. Con-
sequently, the radiant flux impinging on a tube can be expected to vary
to some degree around the periphery of a tube. If this variation is
significant, a tube can no longer be considered a single surface but,
instead, must be subdivided into smaller surfaces which more nearly
approximate areas of uniform radiosity.

Fisher and Cowin (6) have reported theoretical calculations for
radiant heat transfer in one~, two-, and three-ring clusters of 6, 18,
and 36 rods enclosed by circular sleeves in which successive computations
were performed with each rod considered as one surface, two surfaces, and
four surfaces in order to investigate the effects of nonuniform radiosity
around the circumference of a rod. Circumferential temperature variations,

however, were assumed to be damped out by thermal conduction in the rod.
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A comparison of theoretical calculations with experimental temperature
values for both polished and oxidized nickel-copper tubes showed that,
although even the single-surface representation gave reasonable results,
agreement between theory and experiment improved with increasing subdivi-
sion of the rods. Increasing the subdivision resulted in larger calculated
temperature decreases from row to row, more closely approximating the
experimentally observed gradient. These larger temperature decreases may
be explained as follows. When the incident flux is nonuniform and a
single-surface representation is used which levels the reflected flux over
each tube, the calculated temperature gradient underestimates the actual
temperature gradient across the array. Subdivision of the tubes results
in a more realistic representation of distribution of reflected energy and
a calculated temperature gradient closer to the actual gradient since the
smaller surfaces provide a better approximation of the actual point

reflection of an incident ray.

Subdividing the surfaces of tubes, however, greatly increases the
number of equations that must be solved. 1In addition, the view factors
must be reevaluated, as they are now based on exchange between portions
of tubes rather than between whole tubes. The resulting complexity makes
it impractical to seek a general solution for large arrays of rods.

Since the need for the assumption of uniform radiogity in the standard
calculation methods arises from the use of view factors based on this
assunmption, another possible approach in the formulation of the energy
balance equations is to use interchange factors which do not assume uni-
form radiosity. Obviously, however, these interchange factors would then
become functions not only of geometry but also of the assumed distribu-

tion of reflected radiation.
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Klepper (19) has calculated interchange factors between whole rods
which do not assume uniform radiosity over the entire surface of a tube.
An individual tube is considered to have a uniform surface temperature
(and hence uniform emissive power), but the reflected flux is assumed
to be constant only over each of several areas into which the tube is
subdivided. Tubes in arrays on a square pitch are divided into eight
equal~sized areas, while cylinders in arrays on an eguilateral triangular
pitch are divided into 12 segments. Evaluation of the interchange factors
proceeds by considering the temperature of a central tube to be elevated,
while the remaining tubes in a large array are at absolute zero. This
assunption does not affect the value of the calculated interchange fac-
tors since they are not a function of temperature. Therefore, these
interchange factors are applicable to any combination of rod temperatures.
The size of the array selected is sufficiently large that the calculated
interchange factors approximate those which would exist in an infinite
array. The path of a unit emission of radiant energy from the central
rod is followed as it is partially absorbed and partially reflected by
segments of various cylinders in the array. The calculation is terminated
when the initial unit of released energy is 96 to 98% absorbed. (Com~
plete absorption would reguire following an infinite number of successively
weaker reflections.) The fractions of the unit of energy absorbed by the
segments of a given rod are summed to give the fraction absorbed by the
whole rod.

The interchange factors determined by Klepper represent the fraction
of energy emitted by one rod that is absorbed by another rod as a conse-

quence of direct exchange and multiple reflections. This, however, is
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simply the definition of Gebhart's absorption factor Gij (or 3ij/si)'

and the interchange factors calculated by Klepper could alternately be
computed using Equations (15). If one considers an array of n rods,

each subdivided into N areas, the summation in Equations (15) would be
over n X N + 1 surfaces. (The additional surface is the shroud enclosing
the rods.) The view factors required in the computation are those between
segments of rods. The absorption factors between segments of rods
resulting from a solution of Equations (15) could be used to find the
absorption factors between entire rods in the following manner. ILet i~
and j° denote segments of rods i and j, respectively. Then the fraction

of the radiation emitted by a segment i” that is absorbed by rod j is

where Gi'j’ is the fraction of the radiation emitted by segment 1~ on rod
i that is absorbed by area j~ on the rod j. The fraction of the total
radiation emitted by rod i that is absorbed by rod j is the weighted

average of the Gi'j' That is,

For rods of uniform temperature and emissivity which are divided into
N equal-sized areas, the radiation emitted by each segment of rod i is

the same, so that
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N N
> Gi-y - (86)

i’=1 j7=1

Zir
=2

N

i3~ b3 Ci-y =
17=1

Let Nmin designate the minimum number of areas into which each rod
must be subdivided in orxrder to approximate uniform radiosity over each
rod segment. For every N greater than Nmin' the values calculated for
the absorption factors between whole rods will be the same. For values
of N less than Nmin’ however, the Gij will be a function of N, approaching
the true values as N approaches Nmin' Thus far, the work reported in this
paper has been based on N = 1, the assumption of uniform radiosity over
the entire surface of each rod. Values of G,lj for N = 1 ¢an be found by
using Equations (15) and the configuration factors between whole rods
derived in Chapter 4. If a comparison of these Gij is made with the Gij
computed by Klepper, it is found that quite different values result from
the two sets of calculations, and there is a corresponding difference in
the manner in which the energy leaving a rod is found to be distributed.
Table V shows this comparison for rods on an equilateral triangular pitch
for € = 0.3, 0.6, and 0.9 at PDRs of 1.2, 1.3, and 1.4. Results for the
Gij with N = 12 show a larger fraction of the radiation to be absorbed
by the radiating rod itself and by immediately adjacent rods, while there
is a wider dispersal of energy for N = 1. Thus, the absorption factors
calculated with N = 12 indicate that the array is less permeable to thermal
radiation than do the absorption factors calculated with N = 1. The
result is a greater temperature gradient (because of the lower effective
thermal conductivity of the array) when the Gij for N = 12 are used in

place of the Gij for N = 1 in solving Equations (20).
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TABLE V

Comparison of Absorption Factors for N = 1 and
N = 12 for Rods on a Triangular Pitch

e = 0.3 € = 0.6 € .9
N = 1 N =12 N =1 N = 12 N =1 N = 12

Pitch-to~-Diameter Ratio = 1.2

Gll 0.04662 0.188 0.03807 0.137 0.01183 0.0407

Glz 0.07296 0.111 0.10629 0.125 0.13388 0.140

G13 0.02894 0.0161 0.02914 0.0156 0.02539 0.0184

Gl4 0.01808 0.00359 0.01207 0.000108 0.00330

Gl5 0.00841 0.00401 0.00085

Gl6e 0.00526 0.00181 0.00020

Gl7 0.00310 0.00087 0.00009

Gl8 0.00255 0.00059 0.00005

Gl9 0.00157 0.00027 0.00001
Pitch-to-Diameter Ratio = 1.3

Gl1 0.04075 0.156 0.03316 0.117 0.01024 0.0350

Gl2 0.065650 0.102 0.09719 0.1le6 0.12210 0.127

G13 0.03025 0.0230 0.03414 0.0252 0.03461 0.0310

Gl4 0.01768 0.00650 0.01221 0.00244 0.00342

Gl5 0.00911 0.00126 0.00512 0.00178

Gl6 0.00582 0.00237 0.00037

G17 0.00365 0.00129 0.00020

Gl.8 0.00303 0.00097 0.00029

Gl9 0.00192 0.00044 0.00004
Pitch~to-Diameter Ratio = 1.4

Gl1 0.03618 0.138 0.02945 0.105 0.00907 0.0316

Glz2 0.06100 0.0967 0.08950 0.111 0.11236 0.120

G13 0.03079 0.0265 0.03729 0.0301 0.04067 0.0373

Gl4 0.01707 0.00822 0.01206 0.00334 0.00343

G15 0.00968 0.00195 0.00626 0.00306

Glée 0.00625 0.00128 0.00288 0.00054

G17 0.00413 0.00172 0.00033

Gl8 0.00351 0.00147 0.00071

G19 0.00227 0.00066 0.00008
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Since previous calculations using N = 1 yielded temperature gradients
much smaller than those found experimentally, the computations were
repeated using Klepper's interchange factors. For the PDRs encountered
in the experimental arrays, Klepper's results show that the radiation
leaving a rod is essentially absorbed in the first two surrounding rows
of rods as indicated in Table V. Because Gl4 was very small, it was
assumed to be zero in orxder to use the subroutine HEX without modifica-
tion for setting up the matrix of interchange factors. The values of G15
were increased so that the sum of the absorption factors remained unity.
The assumption was made that values of Gij given by Klepper, although
derived for rods in infinite arrays, can be used with reasonable accuracy
even for rods near the sheath. BAfter construction of the G matrix using
HEX, Equations (35) were solved simulating the experimental conditions.
Comparisons of calcunlated results with data for the experimental runs with
the 217-rod hexagonal assembly are presented in Figures 48 through 52.
Clearly, the calculated temperature profiles are in much closer agree-
ment with the experimental data than the theoretical results presented
previously in Figures 42 through 46 (pp. 116-20). Further, the values
of emissivity that generate theoretical curves most closely approximating
the experimental prefiles are in the range which would be expected for
the experimental surfaces, while the theoretical emisgivity values
required to fit the experimental data in Figures 42 through 46 (pp. 116~
20) were much lower than the expectea values.

Based on these results, it appears that the assumption of uniform
radiosity around the entire periphery of a tube is not met in practice,
at least for the arrays employed in the experiments reported here. Fur-

ther experimentation with arrays of other sizes (particularly, small



132

ORNL. DWG 75-8501
8401 T T T T T T T T ]

820

800

780

760

740

720

700

680

660

640

620

TUBE TEMPERATURE (°F)

600

580

560

540

520

500 ] 1 ] 1 1 ] | 1 l ]
I 3 57 7 126 97 147 155 196 170 i85 209

TUBE POSITION
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arrays) is needed to more thoroughly check the theory and establish that
this is indeed the case. However, on the basis of the results reported
here, it is recommended that the energy balance equations be solved
using Gebhart's or Hottel's method and that the G and ¥ matrices be con-
structed using the absorption factors given by Klepper. This procedure
will replace the assumption of uniform radiosity over the entire surface
of a cylinder with the much less stringent assumption that the reflected
energy flux is uniform over 30° segments for rods on a triangular pitch
and over 45° segments for rods on a square pitch. BAs an aid to computa-
tion, the absorption factors determined by Klepper are reproduced in

Appendix C.



CHAPTER 9

CONCLUSIONS AND RECOMMENDATIONS

I. CONCLUSIONS

The following conclusions were educed from this study of radiative

heat transfer in arrays of parallel cylinders:

1.

Explicit theoretical equations can be derived for the view
factors between rods in arrays of parallel rods on square
and equilateral pitches using Hottel's crossed-string
method.

An analysis of the steady-state temperatures prevailing in
hexagonal arrays of rods on a triangular pitch and in
square arrays of rods on a square pitch can be made by
using the theory of radiant exchange among diffuse-gray
surfaces. A computer algorithm can be written to solve
the sets of linear egquations arising from the theoretical
formulation in such a manner that a rod array of any size
can be handled (within the limitations of computer memory).
Development of the analysis in terms of dimensionless
variables allows presentation of calculational results in
a highly compact form with a minimum of variables.
Unsteady-state solutions can be calculated for these same
rod arrays by numerical integration of the differential
equations resulting from a transient analysis based on
diffuse~gray surfaces. The number of variables in the

transient problem can also be reduced using dimensionless
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variables, particularly for the case in which the shroud
temperature is constant.

4. For the array tested — a 217-tube hexagonal array on a
triangular pitch — the assumption of uniform radiosity
around the periphery of each tube yielded theoretical
results which were in poor agreement with the experi-
mental observations.

5. The use of absorption factors derived on the basis of
more finely divided surface areas for each tube (thereby
replacing the assumption of uniform radiosity over the
entire tube with an assumption of uniform radiosity over
each of the subdivisions) produced theoretical temperature

profiles within 7% of the experimental profiles.

IT. RECOMMENDATIONS

The theoretical analysis presented here should be further tested by
comparison with experimental data from arrays of different sizes. 1In
particular, the apparent shortcomings of the assumption of uniform
radiosity around entire tubes should be studied further. Future experi-
ments should be designed to employ grid spacers at intervals along the
length of bare tubes, thus removing the complicating factor of the spiral
wire wrap spacers employed in the experiments reported here. Neverthe-
less, these spiral spacers must be considered in simulating IMFBR fuel
assemblies. Fabrication of the tubes of a highly conducting material
(such as copper) would remove any concern about significant temperature
gradients across individual tubes. Tubes with known and stable emissiv-

ities are needed so that this parameter is fixed a priori in making
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theoretical calculations for comparison with the experimental data. For
metallic surfaces, however, this is difficult to accomplish even under
high vacuum because of the susceptibility of these surfaces to oxidation
or reduction at high temperatures. At least in the range of high emissiv-
ities (0.9 to 1.0), stable surfaces can be attained through the use of
high-temperature paints. Many of these paints have the added advantage
that their emissivities are nearly constant over a broad temperature

range.
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APPENDIX A
THERMAL CONDUCTION ACROSS TUBES

A rough estimate of the temperature drop across a tube as a conse-
quence of the noninfinite thermal conductivity of the tube walls can be
made using Fourier's law for thermal conduction in the finite difference

form:

ap = - 2 (87)

The guantity Q represents the steady-state net heat flow across the tube.
For a tube in row i, Q is some fraction of the energy generated in rows

1 to i-1 as well as some part of the heat generated within the tube
itself. The heat crossing a tube in row i as a result of heat generation
in more inwardly located tubes may be approximated as

b P
q PDR'D g PDR '

P2,

where p is the number of tubes with heat generation interior to vrow i, g
is the number of tubes in row i, and Ql is the heat generation rate for
a single tube. The term D/{(g-PDR-D) represents an estimate of the frac-
tion of the energy that would be intercepted by a single tube since D is
approximately the width of a single tube and g-PDR+D is roughly the
perimeter of row i. In addition, the heat flowing across a tube because
of heat generation within the tube itself is taken to be 0.5 Ql; there-

fore, for a tube in row i,

= B
Q0 = Ql (q-PDR + 0.5) .
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The area S normal to heat flow is 2LAr, where L is the length of a tube,
Ar is its thickness, and the factor of 2 arises because heat may flow in
either direction around the tube. The length £ of the path for heat flow
is estimated as one-half of the distance along one side of a tube, or
nD/4. This distance is assumed to be roughly the average distance that
energy absorbed on one side of the tube is conducted along the tube wall

before being radiated. Equation (87) then becomes

T Q. D
B - 1 2] B
(-AT) 8k LACT (q~PDR * O'b) :

Table VI gives estimated values of the temperature differentials
across tubes in rows 2 to 9 for the experimental run with the highest
heat generation rate for both the apparatus with le~-mil-wall tubes (run
2) and the apparatus with 35-mil tubes (run 5). A value of 11 Btu/(hr-
£t~ °F) was used for the thermal conductivity of stainless steel. It is
readily apparent that the temperature drops are guite small and that even
the cumulative effect of these drops could not account for the differences
between theoretical and cobserved temperature profiles discussed in Chap-

ter 8.
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TABLE VI

Estimates of the Temperature Differentials
Across Individual Tubes

-AT (°F)

Row P q Run 2 Run 5
2 1 6 1.2 0.5
3 7 12 1.8 0.8
4 19 18 2.4 -1
5 37 24 3.1 1.5
6 6l 30 3.8 1.8
7 91 36 4.5 2.1
8 127 42 5.2 2.5
9 169 48 5.9 2.8




APPENDIX B

VIEW FACTORS BETWEEN WIRE-WRAPPED TUBES

As previously, the notation FIJ denotes the configuration factor
between two single rods, I and J. Further, the symbol I" will be used
to stipulate the wire wrap for a bare tube I, while the symbol I' will
designate a tube plus its associated wire wrap (i.e., I plus I").

In the case of tube~wire wrap surfaces, the surfaces can see them-
selves; thus F1'l' is not zero. Referring to Figure 53, the following

relations can be written:

F11'!

[}

F11 + F11" = F1l1" since F1l1l = 0 ,

Flv1

F1"1 + F1"1" = F1"1 since F1"1" = O .

Using the reciprocity relation and the above eguations one obtains

F1'l = %%T" F11' = %%T" Fl1l" .
and
F1'1l" = %%;'- F1"1' = %%;—- F1"l = %%7 - F11" .
Then
F1'1' = F1'1l + F1'1" = 3§%i$l£1 .

From FEguation (55) it can be seen that the quantity (2A1-F11") equals the
sum of the crossed strings minus the sum of the uncrossed strings
stretched between Al and Al". Referring to Figure 53, the length of a

crossed string bce is
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u i
Rl<2 - 6)+ R2<2 + @>,

while that of an uncrossed string ae is

1/2
2 _ 02 _ 1/2
@Rl + R (R, -~ R)) J = 2(RR,)

The value of @ is

Then F1'1' is

T T - 1/2
) 2[Rl<2 ) + RZ(Z + O) 2(R1R2) ]
21T(Rl + RZ)

F1'1!

R, - R
=171 2 1
(Rl R2) sin (R — ) + 2(R1R2)
1 2
+
Rl R

/2

Fl'1' 0.5 ~ 1
T

2

If D is the diameter of a tube and d is the diameter of its wire wrap,

the above equation can be written for a tube-wire wrap surface as

(® - a) sin'l(D - d) + 2(pa)t/?

D+ d
F1'1' = . - -
L 0.5 T D+ d

. (88)

Figures 54 and 55 show cross sections of an array at two different
axial locations. The position of the wire wrap relative to a tube as it
spirals around the tube will always be between these two locations. The
view factors F1'2', F1'3', F1'5', and F1'8' could be approximated by suc-

cessively estimating their values for case one of Figure 54 and for case
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Figure 54.
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two of Figure 55 and then averaging the results. Within the accuracy
of the estimates, the view factors for the two cases appear to be equal;
consequently, only the development of the view factors for case one will
be presented.

For a fixed axial location, the values of F1'5' and F1'8' for those
surfaces 5' and 8' which 1' is able to see can be related to the values

of F15 and F18 by the following equations:

Al Fl5

gl = i . = me—
F1'S Al' F15 PDR *

Al F18

1 v . I —
Fl's IS F18 5DE

These equations follow from the fact that 1' sees the same areas of 5'
and 8' as 1 does of 5 and 8; however, the surface area of a wire-wrapped
tube 1is larger by a factor of PDR than the area of a bare tube so that
the view factors F1'5' and F1'8' are similarly reduced. The values of
F1'5' and F1'8' are, of course, zero for those surfaces 5' and 8' which
1' cannot see. However, during each spiral of the wire wrap around a
tube, the particular tubes 5' and 8' seen by 1' change for each of the
six positions corresponding to the configuration shown in Figure 54. At
each of these positions, 4 of 12 of the tubes labeled 5' (or 8') are

visible so that the length-~averaged values are

e o _E15
F1'5 3 POR {89)
F1l8
F1'8' = —~=Tme
1'8 I o (90}

In a similar but more approximate manner, the length-averaged wvalue of
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F1'3' is estimated to be

F13

F1'3' = .
2 PDR (o)

The value of F1'2' is then found by difference from the equation:

. 1 - 6F1'3' - 12(F1'5' + F1'8’
F1'2' = 6( L, (92)




APPENDIX C

KLEPPER'S ABSORPTION FACTORS

Absorption factors calculated by O. H. Klepper and reported in
reference (19) are reproduced here for the convenience of users of the
programs in this report. Interchange factors for cylinders on an equi-
lateral triangular pitch are tabulated in Table VII for emissivities of
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95 and for PDRs from 1.1 to 1.5
in steps of 0.1l. For cylinders on a sguare pitch, Klepper's values for
the interchange factors are given in Table VIII at identical values of

emissivity and PDR.
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TABLE VII

n Eguilateral Triangular Pitch

Emigsivity
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Pitch-to-Diameter Ratio = 1.1
Gl11 0.225 0.209 0.186 0.160 0.128 0.0901  0.0478  0.0252
Gl2 0.115 0.120 0.124 0.129 0.135 0.141 0.147 0.152
Gl3 0.00923 0.00856 0.00833 0.00849 0.00878 0.00929 0.00989 0.0104
Gl4 0.00111

Pitch-to-Diameter Ratio = 1.2
Gl1 0.188 0.177 0.159 0.137 0.110 0.0772  0.0407  0.0215
Glz 0.111 0.116 0.120 0.125 0.130 0.135 0.140 0.143
G13 0.0161 0.0153 0.0152 0.0156 0.1l62 0.0172 0.0184 0.0193
Gl4 0.00359 0.00236 0.00158 0.00108

Pitch-to-Diameter Ratio = 1.3
Gl1 0.156 0.149 0.136 0.117 0.0944 0.0665 0.035G  0.0185
Gl2 0.102 0.108 0.112 0.116 0.120 0.123 0.127 0.129
Gl3 0.0230 0.0233 0.0239 0.0252 0.0267 0.0287 0.0310 0.0325
Gl4 0.00650 0.00479 0.00341 0.00244 0.00162
Gl5 0.00126

Pitch-to-Diameter Ratio = 1.4
Gll 0.138 0.134 0.122 0.105 0.0851 0.0600 0.031l6  0.0l66
Gl2 0.0967 0.103 0.107 0.111 0.114 0.117 0.120 0.122
Gl3 0.0265 0.0273 0.0284 0.0301 0.0321 0.0345 0.0373 0.0391
Gl4 0.00822 0.00625 0.00458 0.00334 0.00226 0.00135
Gl5 0.00195 0.00137
Glé 0.00128

Pitch-to-Diameter Ratio = 1.5
Gll 0.121 0.118 0.108 0.0942 0.0762  0.0538 0.0284 0.0150
Gl2 0.0899 0.0966 0.101 0.104 0.107 0.109 0.112 0.113
G13 0.0295 0.0314 0.0331 0.0354 0.0380 0.0410 0.0443 0.0464
Gl4 0.00939 0.00755 0.00566 (0.00419 0.00287 0.00174
Gl5 0.00260 0.00199 0.00149 0.00121 0.00102
Gl6 0.00191 0.00151 0.00115
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TABLE VIII

Klepper's Absorption Factors for Cylinders on a Square Pitch

Emissivity
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95

Pitch-to~-Diameteyr Ratio = 1.1

Gll 0.193 0.179 0.160 0.137 0.111 0.0777 0.0415 0.0219
Gl2 0.125 0.130 0.133 0.138 0.142 0.145 0.149 0.152
Gl3 0.0605 0.0622 0.0645 0.0679 0.0717 0.0766 0.081¢9 0.0858
Gl4 0.00417 0.00332 0.00269 0.00216 0.00167 0.00113

G15 0.00247 0.00219 0.00207 0.00206 0.00210 0.0022)1 0.00234 0.00247

Pitch-to~Diameter Ratio = 1.2

Gll 0.156 0.148 0.134 0.115 .0928
Giz2 0.114 0.120 0.125 0.130 -134

0 .0653 0.0345 0.0182
0
G13 0.0602 0.0627 0.0654 0.0687 0.0723
0
0

.137 0.141 0.144
.0767 0.0814 0.0848
.00243 0.00124

.00555 0.00585 0.00614

Gl4 0.009922 0.00782 0.00618 0.00487 .00367
Gl5 0.00663 0.00580 0.00538 0.00528 .00532
G17 0.00237 0.00182 0.00143 0.00113

G118 0.00132 0.00111

(ool el oNe)

Pitch-to~Diameter Ratio = 1.3

Gl1 0.126 0.122 0.111 0.0968 0.0781 0.0551 0.0229 0.0153
Glz 0.101 0.108 0.113 0.117 0.121 0.124 0.127 0.129
G13 0.0591 0.0622 0.0650 0.0681 0.0713 0.0748 0.0785 0.0811
Gl4 0.0132 0.0106 0.00836 0.00652 0.00480 0.00312 0.00151

Gl15 0.0118 0.0111 0.0110 0.0113 0.0118 0.0125 0.0134 0.0141
Gl6e 0.00182 0.00109

G17 0.00381 0.00297 0.00234 0.00185 .00139

Gi8 0.00242 0.00193 0.00165 0.00152 0.00145 0.00145 0.00148 0.00154

O

Pitch~-to-Diameter Ratio = 1.4

Gll 0.110 0.107 0.0987 0.0861 0.0696 0.0492 0.0258 0.0136
Gl2 0.0921 0.0993 0.104 0.109 0.112 0.115 0.118 0.120
Gl3 0.0573 0.0607 0.0633 0.0659 0.0684 0.0709 0.0734 0.0753
Gl4 0.0143 0.0118 0.00937 0.00731 0.00535 0.00345 0.00163

G15 0.0153 0.0154 0.0157 0.0165 0.0L175 0.0188 0.0203 0.0214
Gl6é 0.00269 0.00179 0.00112

G1l7 0.00427 0.00340 0.00266 0.00208 0.00154 0.00101

Gl18 0.00284 0.0022% 0.00192 0.00173 0.00161 0.00157 0.00157 0.00162
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TABLE VIII (continued)

Emissivity
0.3 0.4 0.5 0.6 0.7 0.8 0.9 0.95
Pitch~to~Diameter Ratio = 1.5

Gll 0.102 0.100 0.0921 0.0804 0.0650 0.0460 0.0241 0.0127
Gl2 0.0880 0.0952 0.100 0.104 0,108 0,111 0.113 0.115
G1l3 0.0565 0.0601 0.0628 0.0654 0.0678 0.0702 0.0725 0.0743
Gl4 0.0152 0.0127 0.0102 0.00803 0.00592 0.00385 0.00182
Gl5 0.0166 0.0169 0.0174 0.0183 0.0195 0.0209 0.0225 0.0237
G16 0.0031le 0.00214 0.00136
G17 0.00486 0.00393 0.00311 0.00245 0.00183 0.00121
G18 0.00337 0.00281 0.00242 0.00224 0.00214 0.00212 0.00216 0.00224




APPENDIX D

LISTINGS OF COMPUTER PROGRAMS

On the following pages are given the listings of the steady-state
(STEADY) and unsteady-state (TRANS) computer programs. As much as possi~
ble, the variable names used in the programs duplicate those employed in
the report text. Comment cards within the program listing describe the

character and format of the input data regquired.
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LIST NG OF THE CCOCMBINED STEALY STATE (STEADY ) AND
UNSTEADY STATE (THRANS) PROGRAMS FOR TrE CALCULATICON
OF RADIATIVE HEAT TRANSFER IN HEXAGONAL AIRAYS OF
CYLINDERS N AN EGUILATE@AL TRIANGULAR PITIH AND LA
SQUARE ARRAYS OF CYLINDERS ON A SQUARE PITCA

B R B P O N E BT R P ATE PR R RS DSBS O S D BE S EE S S RSN CRe TSR &

IMPLICIT REALEB(A~-R,0~22
DIMENSION STATEMENT AND VALUE OF NMAX AND MXKCWS
MUST BZ CHANGED IF CALCULATICAS ARE T BZ DUNE
FOR ARQAYS UF MORE THAN 37 CYLINDERS IN THE CASE
OF JINSYMMETRICAL FEAT GENERATIUN, (OK #0OR HEX
ARRAYS CGF MORE THAN 231 CYLINDERS AND SQUARS
ARRAYS CF NURE THAN 25H¢€ LODS IN THE (ASE OF
SYMMETRY IN THE DISTRIBUTICON OF HEAT FLUXES,
DIMENSION STATEMENTS MUST ALSC 3€ CHANGED IN
SUBRMCUTINES DERIV AND CUTP.
INDICES QF G IN DIMENSION STAYEMENT MUST
CORRESPOND TO VALLE CF MXECwWSe THOSE (OF F
AND THATYT JF H TC MXROwSEMXROWERMAR Dw SAMXIAT

DIMENSION GO 962545 )0 ALX{16.38)2C{(38,38%).¢(313

> A{T8)Y,0(38)E{38) e X{38),¥Y(38),721{3R)PRVT{(5},

COMMON/MD/CeX pWaM

COMMUN/MOZTEL «NC,KP

EQUIVALENCE {(C{1),G(1)})

EXTERNAL DERIV..QUTAH

NMA X= 33

MXROCWS=6

CONV=D.SD=-10

SIGMA=D .1712D-8
INPUT CATA CONSISTS OF THE FCLLOWING?
CARD 13 NVIEWSNGECMZNSYM NMETE,NSTATL,
NEMISS JNFLUX ~ FLEMATY OF 1615
CARD 2 NROWSWNREGOS ~ FORMAT CF 1615
CARD 35 PDRLE{1):AR ~ FORMAY CF 8F 1L .0

(DECIMAL NMULST B& FUNCHED)

IF MOTATEL=2s (PEMT{I)I=1s4})ew.TPI MULST 3E INELT

ON FOREMAT OF BFI10.0 {PUNCHE CECIMAL)

IF NEMISS=2, (E{1).1=1.N} MUST BE INPUT QN
FORMAY OF 8F10.0 (PUNCH DECIMAL)

IF NFLUX=2 s (XK{T1}sI=1+M) MUST BE INPUT ON

FORMAT OF 8F10+0 (FPUNCH DECINAL)
IF NVIEW=2+ KLEFPFER®'S VALUES FOR ABSORFYION
FACTORS G11+G12sCG132G14,G15016+G17,618 #4U3T BC
INPUT OUN A FORMAT (F BF102.0 [PUNCH DECIMAL)

WHERE:

NVIEW=1 DENOTES UNIFORM RADICSITY

NVIZW=2 DENOTES NOANUNIFORM RACIOSITY

NGEOM=1 DENCTES FEXAGCNAIL ARRAY 0OF CYLINDERS
ON AN EQUILATESAL TRIANGULAR PITCH

NGEQM=2 DENOTES SQUARE ARRAY CF CYLINDERS

ON A SQUARE PLITCH

NSYM=1 DENOTES SYMMETRICAL FEAT GENERATION
NS¥YM=2 DENCYTES ULNSYMMETRICAL HEAT GENERATION
NMETH=1 DENGTES NET RADIATION METHQD

NMETY H=2 DENQYES HCTTEL'S METHID

NSTATE=]1 DENCOTES STEADRY STATE

NSTATE=2 DENOTES UNSTEADY STATE

NEMI SS8=1, AlLL SURFACES HAVE SAME EMISSIVITY
NEMISS=2, SURFACES VARY IN ENVMISSIVITY
NFLUX=1s CYLINDERS FAVE SAME HEAY GENERATION RATE
NFLUX=2y CYLINDERS VARY IN HEAT GENERATICON
NROW S=NUMBER OF #HCwS IN ARRAY

NRODS=NUMBER OF CYLINDERS IN ARRAY
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POR=PITCH-TO-DIAMETER RATIO CF CYLINCERS
AR=RATIO OF SURFACE AKEA DOF A SINGLE
CYLINDER TC SURFACE AREA GF SHROUD
E(1)Y=EMISSIVITY OF SURFACE )
E(ILY=EMISSIVITY OF SURFACE [
XCL)=RATIO OF HEAT FLUX FOR SURFACE |
TO HEAT FLUX FOR KEFERENCS SURFACE
Ma=NUMBER OF INDEPENDENT SURFACES (EXCLUDING
SHROUD)s M=NRODS I¥F NSYM=2, (THERWISE
MINKDBDS (SEE CHAFTER 5)
Ne=MELl (N IS SURFACE NUMBER ASSIGNED T3 SHAI0UID)
PRMT IS DESCRIBEC IN SUBRAOUTINE DHPCG
TRI=INTERVAL OF INDEFENDENT VARIABLE THETA AT
WHICH QUTEUT IS CESIRED FCR TRANSIENT SOLUTICN,.
TP O MUST £ AN O INTEGER MULTISLE OF FRMTI3).
W=DIMENSIONLESS SHECUD TEMP. (SEE CHAPTER 3)
1 RCAD 1COSNVIZEW o NGEUM s NSYN JNMETH JNSTATE S NEMISS e NFLULX
IF (NVIEW Q. Q) GC TC 70
READ 102, NRCW S NHODS
READ 121sPDRsE(1) AR
IFfF (NSTATE JEGCe 2) REAT 101 +{PRN¥NT{I)sl=1e4)0
DETERMINATICN OF ALMBER OF INCERPENDENT SU
M=NFODS
IF INSYM EQe 2) GC TC 7
GO T2 {3-5)sNGECM
3 M=l
DO 4 I=1+NROWS
4 M=M+{I+1)/2
GO 1O 7
5 M=2
I2={NROwS+1)/2
DO 6 I=1.12
& M=M+]
7 N=M#1
SET ORK REAL IN EMISSIVITIES AND HEAT FLUXES

‘?30
ﬁT)
R»H

(I)=E{1)}
8 X{I)=1.D0
E(N)=EL 1)
IF (NEMISS «EGe 2) READ 1 1+(E(1] :l N)
IF (NFLUX «EQe 2) READ L {X(I =1 oM}
GO TO {10+351sNVIEW
12 EMISS=1 D0
GO TO {11514 sNGEGM

CALCULATION OF BLACK dCDY VIZw FACTORS
FOR CYLINDERS ON A TRIANGULAR PITCH
11 CALL EQVIEWI{PLRF11.F12.F13+:F15,F18,F18A,ERROR)
GO TO {12+13) +sNSYM
CONSTRUCTICN OF MATRIX OF 8LACK BODY VIEW FACTCKS
FOR HEXAGONAL ARRAY WITH SYM, HT. GENERATION
12 CALL HXSYM(F s ANRGUS o Ny AMAX 2 ARSEMISS,
> Fl1sF12,F13,F15,F184A,1C)
GG YO 17
CONSTRUCTICN OF MATRIX OF BLACK B0ODY VIEW FACTCRS
FOR HEXAGONAL ARRAY WITH ARBITRARY HTe. GENERATION
13 CALL HEX{F A NROWS s NsNMAXsARLZEMISS,
2 FllsF12:,F13.F15,F18A,1C)
GU 10 17
CALCULATION 0OF 8LACK BCDY VIEW FACTORS
FOR CYLINDERS CN A SGUARE F£ITCH
14 CALL SQVIEW(PCR.F11:F12sF13,F15,F18,F18A,ERRIM)
GO TO {15+16) sNSYM
CONSTRUCTICN OF MATRIX OF BLACK BODY VvIEWw FACTCORS
FOR SQUARE ARRAY WITH SYMe HMTo GENERATICON
15 CALL SQSYMIF s A;NROBSaNANMAXLARENISS,
> Fll+F12+:F13+F1S»F18A,IC)
GG TG 17
CONSTRUCTICN OF MATRIX OF BLACK BODY VIEW FACTORS
FOR SQUARE ARRAY wiIThH ARBITRARY HT » GENERATICN
16 CALL SQUARE(F s ANROBWS S NINMAXLZARLCEMISSsF11sF 12,
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> F13:,FL15+F18AaGMXKRECWS)

GO TO {18+30) JNMETH

GO TO (1929 +MNSTATE
SGLUTICON OF STEADRY STATE PROBLEM
BY NET RADIATICON METHOD

X{N}I=0.DC
DO 2C I=1.M
X{NY=X{N)-X{I3}%AL1)
C{leld=-X{1)
F{I,1)=F{{+13-1.D0
Z{1)=CL 113 /F{ls1}
IF (M «EGs 1) G0 TO 21
CALL SIMEG(FsC{1s13»Z2+MaNMAX,CONV)
ZiN)I=0. DD
ALPHA=~ {1 +DO~EIN)IAE{NIEX{N]}
DO 22 [=1eN
YT =Z{Id# {1 00~-ELI3)/7E{I)X{I)4+ALPHA
G0 TO &0
PRINT 215
STOP
DETERMINE NMATRIX CF SCRIPY £ FACTORS
CONTINUE
CO 33 1I=1.N
00 32 Jd=1.N
C{losd)=-FL{Il.J2¥xE{ D
FALp2I=F {103 %{1.0D0-E{J¥I/ELI)
F Il s13=F{lei)-1D0/E(1}
CALL MATQ{F.C»s NaN;DETohMAXgNMAXw[f)
GO 10 47
NONUNIFCRM RADIOSITY
READ IN KLEPPER®*S VALUES FOR ABSORPTIUN FALTOHRS
VALID ONLY IF ALL SURFACES HAVE SAME EMISSIVITY
READ 101Gl 1+2C12:0G13:C14%eG15,G16+:061744618

Gi=GL1
G2=G12
G3=5613
G4z=G1 4o
G5=615
GHE=G1L 6
G7=G17
GB=G1 8
GO TO {3637 NGECM

SUM=G1l1 46 D0%{G124G12+4C144G1H64G1ITI+12,00%{H15+56:18)
BECAUSE KLEPPER®S ABSORPTIGN FACTORS DC NQT SUNM TC
CNE, THE ABSORPTICN FACTOR G188 15 ADJLSYTED 30 THAT
ALL THE RACIATION LEAVINMG A CYLIMNDER S CUONSICEREC

518=G18%{] «DD~SUM)I/1Z2.00
BECAUSE THE GRAY ECLY VIEW FACTOR MATRIX IS5 EEING
CONSTRUCTED USING A SUBROUTIKE DESIGKNED FOR ELACK
BODY VIEW FACTOR MATRIX CONSTRUCTION, THE VALUES
OF G13:,G615,618 ARE INCREASED 1D COMPENSATE FCR
ZERO VALUES OF G14.G16+4G17 IN THE MATRIX

Gi3=G134G14

GLI5=G15+0.5D0%G16

G1l8=G18+0.8D0%G17

G0 Y4 38

SUM=G11 44 .D0*{(G12+0G1346144G164G17)+8.D0%{G1345G18)

Gi8=G18+{1.00-3UM} /8,020

Gl19=615+40.5D0%{G144G1€EY

Gl8=G1840.5D0%G17

EMISS=E{1)

CALCULATION COF HCTTEL®S GRAY ECGOY VIEW FALTORS

Fl1=EMISS*G11

F12=£EMISS*G12

FI3=EMISS¥G13

Fi5=EMISS5%G1L5
Fil8=EMISS%*G18
GO TO (41+44) NGEDM
GO TO {42+43) «NSYM
CONSTRUCTICON OF MATRIX OF GRAY BODY viEw FACTCRS



(@1

00N

OO

[SXA]

(e e

leTe!

le4

FOR HEXAGONAL ARRAY wWITH SYM, HT. GENERATION
42 CALL HXSYMA{C, Ay NROBS s NsNMAXSARLENISS,
> FllsF12+sF13+F154F18,1C)
GG TO 47

CONSTRUCTICN OF MATRIX OF GRAY BODY VvIEW FACTCRS
FOR HEXAGINAL ARRAY WITH ARBITRARY HT. GENERATION

43 CALL HEX{CsA NROWNS SNy ANMAXARCEMISS,
P FllaF12.F132F154F18,1C)
GG T0O 47

44 GU TO {4S+46) ¢+ NSYM

CONSTRUCTICN OF MATKIX OF GRAY O0DY VIEw FALZTGORS

FOR SQUARE ARRAY wWITH SYM, HT. GENERATION
45 CTALL SQSYM{Cs AsNROWS I NINMAX ARLENMISS,
> FllsF12sF134F152F184,1IC)
GG T0O 47

CONSTRUCTICOCN OF MATRIX OF GRAY 80DY VIEW FACZTCRS

FOR SQUARE ARRAY wlITk ARBITRARY HY . GENERATICN
46 CALL SQUAREIF 4 ASNRORBRS o N NMAX AR LEMISS sF11eF 12,
> Fl3:F15:F1BsGeMXRCNE)
DO 461 1I=1.N
DO 461 J=1,.N
461 C(L+J4¥I=F{(1.+J)
47 GO TO (4E8¢51) 4NSTATE
SCLUTICN OF STEALY STATE PR{OBLEM
BY HOTTEL*S METHOD
48 X{(N)=0Q.,D0
DC 49 I=1+M
X{NY=X{N)=-X(L3}I®A(]I)
C{I»1)=ClIl,1)-E{1)
D{I)=-X{(1)
49 Y{L)=D(I1)/7C{1,1)
IF (M +EG. 1) GO TO SC
CALL SIMEQ(CsCesYaMaAMAX,CONV)
S2 Y(NI=D.DOD
GO TO 690
SOLUTICN OF TRANSIENT £PROBLEM
BY HOTTEL*'S MET+CC
51 EwW=M
EW=1.DD/EW
X{NI=0.00
DO %2 1=1.M
X{NI=X{N)-X{I1)*A(])
C{IL+I)=ClILI}~-EL]1)

D(I1)=Ew
S2 Y{1)=0,D0
GG TO 690
53 NC==1
KP=0
CALL DHPCG(FRNTSY s CoM IHMLF,DERIV,O0UTP,ALX)
IF (IBLF «GT. 10} PRINT 216
IF (IHLF «EQs 11) PRINT 217
IF (IHLF «EQs 12) PRINT 218
IF (IHLF +EQe 13} PRINT 219
GUC 10 1
60 IF (NGEUOM +EQe 1) PRINT 201 :NRGCWSZNRODS
I[F (NGECM LEQe. 2) PRINT 202 ,.NRUWSJNRODS
IF (NMETH «EQe. 1) PRINT 221
IF {NMETH .EQ. 23 PRINT 222
IF ANVIEW «EQ. 1) PRINT 223
IF (NVIEW +EQe 2) PRINT 224
IF (NSYM +EQae 1) PRINT 225
IF {NSYM +EQe 2) PRINT 226

PRINT 203, AR

PRINT 204 .PDR

IF (NSTATE LEGe 2) PRINT 22C,W

IF INVIEW oEQe 1) PRINT 2054F12+F13,F15+F18,F183A

IF (NVIEW <EQe 2) PRINT 206eG1+C2:G3+4G43G51+G6+07:G8

GO TOQ (£€1+S3)sNSTATE
61 PRINT 207
PRINT 208
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IF {NMETH +EQe 1) PRINT 209, (T+E{I)eX{1)s2{1),
1 Y{I)sI=1sN)
IF (NMETH +Ele 2) PRINT 210 (I-ELI)aX(I)sY{1)>»
1 I=1.N)
PRINT 211
GO TA 1

70 STOP

100 FORMAY(1615}

101 FORMAT(B8F1C.0)

102 FORMAT{(2F10.9)

2C1 FORMAT{* RHEXAGUONAL ARRAY CF*,132,% ROWS 0OFY,14,
1 * RODS UN AN EQUILATERAL TRIANGULAR RPITCH*)

202 FLORMAT{Y SQUARE ARRAY CF*,I3,* LCWS OF* 14,
1 * RODS CN A ZQUARE PITCHY)

203 FORMAT(® RATIC (OF SURFACE AREA CF A SINGLE 00
1 *7TO THAT OF SHROUD I35 *7.1PEf1.3)

204 FORMAT{* PITCH=-TO-CIAMETER~RATIC=? (FH43)

205 FORMAT{* BLACK 8B0ODY VIEW FACTUHS ARE F12=7,F1

4

2 Fl13.1D42X,'F18%=1,4F132.,10+/}

2C6 FORMAT(* KLEPFER' 'S ABSORPTION FACTORS ARE 511=7
1 FI13410s° GLZ2=% 4 F 13100/ oD X *GI3="43F 13613047 |
2 Fl13a10,° GIlBE=®3F 134100/ 95X925616=% 3F 1341047 a1
2 F1l3a10s? Gl1E=¥,F12.1%+/)

227 FORMAT{* SURFACE EMISSIVITY CIMENSICNLESS
1 *DIMENSICNLESS CIMENSIGNLESS?)

208 FORMAT(2S X "HEAT FLUX,X TEMPERATURE , Z Ve

1 *"TEMPERATURE » Y4 /)

209 FCRAMAT{I6,0PF13.3,1P301¢€ .39

21C FORMAT(IE+0PF 134,35 1PL1€43+416XsD1E3)

211 FORMAT(1H1)

215 FURMAT(* NET RADIATICAN METHOD CANNOY BE USED ¢
1 *"FOR TRANSIENT PROELEM?)

216 FORMAY(* TRANCSIENY SOLUTION ABCRTED DURING®,
1 * INYEGRATION IN SUERGUTINE CHECG*)

v

Iy

»

.10
1 2X o ¥Fl 321 3F 12,10 e/ sSX4F 15t 4F 124109 2X?F18=z1,

~ s

217
1

218
1

219

FORMAT( *

NUMBER OF BISECTIONS OF INITIAL INCREMENTY,

* IS GREATER THAN 157}

FORMAT( *

EITHER INPUT VALUE OF STEP SIZE OR OF ThE?,

* INTEGRATION INTERVAL 1S ZEROY)

FORMAT( ¢

SIGN OF INTECRATICON STEF SIZE DUOES NAT?,

1 v EQUAL THE SiGN OF ThE DIFFERENCE OF THE UPPERT',

2 v AND LOWER BUOUNDS OF THE INTEGRATION RANGE?)
220 FLORMAT{ W=t ,fF10.3)
221 FORMAT{( SOLUTION BY NET RADIATICN METHCD?)
222 FGRMAT{ SOLUTION BY ROTTEL?Y ¢S METHOD ')
223 FLRMAT( UNIFLCRM RADICSITY®*)
224 FORMAT( NONUNIFORM RADIOSITY?)
225 FORMAT({
226 FORMAT(
END

-

- & N B & »

SYMMETRICAL +T. GENERATYION DISTRIBUTIUNT)
UNSYMMETRICAL HT. GENERATION DISYRIZUIICN®)
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LR R B B I R L B O B 2 B R B B BY NN I B I R R B N R BRI R B BN B RN B N N N R B AN IR BN NE EE_E IR I B BN BE NE R AN J
SUBRDUT INE CHECG

PURPOSE
TGO SOLVE A SET OF FIRST UORDER CKRDINARY GENESRAL
DIFFERENTIAL EGUATIOMS wliITH GIVEN INITIAL VALJES

USAGE
CALL DHPCG (FRMT o ¥ +DERY«NDIMSIHLE JFCTLOUTP . 8UX)
PARAMETERS FCTLOUTP FEQUIRE EXTERNAL STATEMINT

DESCRIPTIUN OF PARAMETERS
PRMT s INPUT AND OLTPLT VECTOR MADE UP (F3Q

PRMT( o LOWER BOUND OF INTEGRATION [ANTERVAL

PRMTA o UPPER BCUNC OF INTEGRATION INTERVAL
PRMT( s INITIAL STEF SIZE OF INDEPENCENT VARULAE
PRMT( ¢+ ERRUOR BUOUND. IF ABSCLLTE ERROR > PRAT {4
STERP SIZiZ IS HALVEL. IF CRRCR < PRMT (4)/757 AN
STERP SIZE < PRMT(3)s STEP SIZE IS DCUBLZD. US
P

1)
2)
33
4)

MAY CHANGE PRMT{4) DURING INTEGRAT ION IN

PEMT(S) e NOT INPLT. CHPLG INITIALIZES FRMY(
USER WISHES T END INTEGRATICN AT ANY QUTF
PRMT (5) IS MADE NCN~-ZERO IN CULTP.,

Yo INPUT VECTOR OF INITIAL VALLES (DESTROYED).

LATER s Y IS VECTOR CF DEPENDEANT VARITIABLES COMPLTED
AY INTERMECIATE FCINTS X

DERY s INPUT VECTOR LCF ERROR WEICHTS. SUM OF TS
COCMPUONENTS MLST = 1. LATER, DOE&RY IS VECTOR OF
DERIVATIVES aFf Y AT FCINT X

NDIM, NUMBER CF EGUATICANS IN SYSTEM
{HLF» OUTPUT VALUE whICH SPECIFIES NUMBER OF
BISECTICNS CF INITIAL STEP SIZE.

FCTs EXTERNAL SUBRCUTINE SUPPLIED 8BY LSER TO JOMFUTE
RIGHT HAND SIDE OF CERY GIVEN VALUES CF X AND Y. LTS
PARAMETER LIST MUST EE X,Y,0ERY AND IT MUST NGT
DESTROY X AND Yo

OUTPs EXTERNAL SUERCULTINE SUPPLIED 8Y LSER FOR OLTPLY
PURPOSESs ITS PARAMETERS ARE Xe¥YoDERY »IHLF oNDIMs
AND PRMT, NUONE OF TH+ESE PARAMETERS {EXCERPT PANT(4)
OR PRMT{S)) SHOULL BE CHANGEL EY QUTP.

AUXe AUXILTARY STORAGE ARRAY WwWITH 15 RCuS AND
NDIM COLGUMNS

METHOD

EVALUATION IS DONE BY HAMMING'S MODIFIED PREDICTCR~-

CORRECTOR METHCD. IT7T IS A FOURTE ORDER METHOD USING

4 PRECEDING PLINTS FOR CCMPUTATICN OF NEW Yo FLUSTH

ORDER RUNGE-KUTTA METHOD SUGGESTED BY RALSTON IS

USED FOR INITIAL ACJUSTMENT OF INCREMENT AND FCR

COMPUTATION CF STAKTING VALUES. OHPCG AUTOMATICALLY

ADJUST S STEP SIZE DURING COMPUTATION 8Y HALVING O8
DOUBLING. fORK REFERENCE., SEE ~
{1) RALSTON/ZWILF, MATHEMATICAL METHODS FOR DIGITAL

CCMPUTERS. PPe S5-1CC.
{2) RALSTCNs RUNGE-KLTTA METHCOS wWITH MINIMUM ERROW
SOUNDSe MTAC,VGL 16,.I5SUE 80(1962)s PPe 431-~7,

LR JE B IR AR BE SN BN BN N DR LN BE BN BN BN -ER BE SR BN EE BN R BN BN B N B BN N B BN BN IR R B OE-BN BE N NE IR BE BE NN B B BN BB -

SUBROUT INE CHPCGIPRNT 5Y s DERY S NDIN 2 THLF o FCTL0UT? 4 ALX)
IMPLICIT REAL%8B{A~r,0-2)

DIMENSICN PRMT(1) Y (1)sDERY(1)aALXT{1641)

N1
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OO 00

laXe]
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O [eXg)

(a¥e)

GO

OO0

o

NGO

11

12

13

14

15

16

17

18

18

2C

21

le7

IF{HE(PRMT{2)-X))3+2+4

ERROR RETURNS
IHLF=12
GOTD 4
IHLF=13

COMPUTATICN OF UCERY FOR STARTING VALUES
CALL FCT(X,Y,CERY)

RECORDING OF STARTING VALUES
CALL DUTPI{XsY +DERY s o NDIMPRMT)
IF{PRMY LS} £:5+6

IF{IMLF })7274:6

RETURN

DO 8 I=1,NDIM

AUX{8,1 }=DERY{1)

COMPUTATION OF AUX{2.1)
ISw=1
GDTD 140

X=X +H
DO 10 1
AUX{2,1

DINM
i

- e

=1asN
I=Y{

INCREMENT H I5 TESTEC EY MEANS CF BISECTION
IHLF=INHLF+]

K=X-—H

DO 12 I=1+NDIM

AUX{A4 I d=AUX(2,1])

H= 2 500%H

N=1

ISw=2

GOTO 1020

X=X+H

CALL FCTI{X:YCERY)
N=2

DO 14 I=1+NDIWN
AUX{(2+1)=Y (1)
AUX{9,1)=DERYL1)
1SW=3 '

GOYO 1290

CCMPUTATION OF TEST VALUE DELTY
DELT=0,.00

CO 16 I=14NDIW
DELT=DELT+AUX{1S5, 1) XCABS{Y{{)~AUX{4,1))
DELT=DECHBEELEEEHELEECESTDCXDELT
IF(DELT-FRMT{4))1G+15+17
IF{IHLF-10311.18.18

UNSATISFACTORY ACCURACY AFTER 10 BISECTYT IONSS
IHLF=11

X=X +H

GAT0 4

SATISFACTORY ACCURACY AFTER LESS THAN 11 BISECTICNKNS.
X=X +H

CALL FCT(XsYsLCERY)

DO 20 [=1.NDIM

AUX{3.,1)¥=Y{1}

AUX{10» 1)=DERYL])

N=3

iSw=4

GOT0O 100

N=1
X=X+H
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CALL FCT{XsYCERY}
X=PRMT{1)

DO 22 I=14NDIWV
AUX{11»1)=DERY(I])

22 YCL)=AUX( 1 o 1) 0% o B7CSCOXAUX( B, 1 )47 6ECEEREEEHECETOL R
1 AUX( 99 I )—e208333335323223333300%xAUX(10,1)+
2 2D4162€C0ELBLEECOBH6H6TLCHDERY (1))

23 X=X4+H
N=N+1

CALL FCT(Xe+Y»DERY)
CALL QUTP(XsYsOERY s +NDINLPBRMT)
IF(PRMT(J))@ 246
24 IFIN-4)25
25 DO 26 =1
)=
26 AUX(N+7,1
- 27

27 DO 28 1 =1 +NDI¥
DELT=AUX{I,I1)+AUX{9,1)
DELY=DELYT+DELT

28 Y{I)=AUX{141) 4333322223323
1 DELT#+AUX(10,1))

GOTO 23

{ad

I3Z33CoRHE(ALX{E, 1)+

29 DO 30 I=1.NDINM
DELT=AUX{9, 1) +AUX{10s1}
DEL T=DELT+LELT+DELTY

3C YIIDX=AUX( Y o I) 437500 42{AUX{( 821 )+DELT+ALX{11»1))
GOTO 24

PR TR TR TS R Ry O S P i eI Y
THE FOLLOWING PART (OF SUBROUTINE DHPCG COCMPUTES RY
MEANS OF RUNGE=-KUTTA NETHOD STARTING VALUES FO2 TRE
NOT SELF=5TARTING PRELICTCR~CORRECTOR METH(OD

02 DO 191 I=1,.NDIM
Z=HEAUX (N+7,1)
AUX(S.I =2

101 Y(I)=AUX{NsI)+,4D0%2

Z 1S AN AUXILIARY STOHACE LOCATICN

Z=X+e4D0%H

CALL FCT{ZsYsLCERY)
DO 102 1I=1.NDIN
Z=HEDERY(I)

AUX (G }=Z

102 Y{IISAUXIN, 1) +.2G6577€CS2477536CC0%AUX{(Se1) ¢

1 15875564497 103583C0C»7

I=X+455737254218785430C*H
CALL FCT{ZsYLERY)

DO 103 I=1sNDIM
Z=H*DERY{(I)

AUX{741)=2

103 Y(I)=AUX{N,I)+.2181CC 3382259204 7C0%AUX{ S¢1)~

1 3.0509651486529308DCAALX{6+:1)4¢3.8328647604670103C0%2Z

Z=X4+H
CALL FCTL{Z.YLERY)
DO 104 [=1.NDIM

104 YUI)=AUXINGI) +41747€02822€6269C37L0%AUX{S,1)~

1 +55148CO62B7E732940C*AUX(6+:1)1+1.205535599396523500%
2 AUX( 7, 1) +e1731847E121951903DC*H%RDERY (1)

GUTO{ 9+ 13s15+21)41ISw

LRSS EE S RS R ELRERERESRESEE T EESEREREIT S IR R R PSS EE R LT T

POSSIBLE EBREAK-PUINT FOR LINKAGE

STARYING VALUES ARE CUMPUTED.
STARY HAMMINGS MODIFIEDC PREDICY(LR~CORRECTOR METHCD.
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ISTEP=3
IFIN=-3)2042202+,204

s (D)

N=H CAUSES RFOWS OF ALX T CHANGE SYORAGE LOCATIONS,
202 0O 203 N=2,.7

00 223 I=1.NDIM

AUXIN-1 » I)=AUX{N, 1}
203 AUXIN+6,I3=AUXINET7 5 )

N=T

N LESS THAN 8 CAUSES A4+l TO GET AN
294 N=aN+1

COMPUTATION 2F NEXT VECTOR Y
G0 208 I=1+NDIM
AUX{N=1+1}=Y(1)}
205 AUX{N+6,1I1=DERY{ 1}
X=X+
206 ISTEP=ISTEP+]
DO 207 I=1,.801IM
DELT=AUX{M~4 I3+1 .
1 AUX{N*SE, [ J-AUXK{N#!
Y{l d=DEL. T~ 92851381
207 AUX(16. T=DELT
PREDICTOR GENERATELD IN £
PREDICTOR GENERATED IN Y

FE2333333323323D0¥HXLAUXIN+A T}
s LIHAUXINEL, I )HFAUXINTSG 1))
4710743300%AUX{(16+ 1)

ﬁ t»ﬂw

Dw 16 OF AUX, MCDIFIED
s DELTY I35 AUXILIARY STORACE.

CALL FCT{XsY,LERY)
DERIVATIVE OF MODIFIEC PREDICTOR IS GENERATED IN LERY

DG 208 I=1.NDIM
DELY= .1 25D0%{ S eDURAUXIN~T s I )-AUX{(N~TF5 [ ) +3.D0%H*
1 (DERY({II+AUXINAG ¢ IIH+AUX(N+AH I)-AUXIN+SI)))
AUX{16s Id=AUX{16,1)-DELT

208 YLII=DELT4H.CT438ND1EE28925C2000%AUX{16»1)

TEST WHETHER +H MUST BE HALVED CF DOUBLED

DEL T=0,D¢C

DD 209 I=1.NDIM
209 DELT=DELT+AUX{(15

ITF{DELT-PRMY(4))

S(AUX(IéoI)!

4 E
2 2ez

3
-

H MUST NOT BE HAL
210 CALL FCT{X,Y,LCERY
CALL QUTPI XY »LER
IF{PRMT {5)}212.,21
IF{IHLF-11)21 3421
RETURN
IF{(HX (X=-PRMT{Z))
IF(OABS{X-PRMT{2
IFIDELT - 0200 %PR

o]
2

» THAT MEANS Y{1I) ARE GUCGO.
D

IMePRMT )

- ¥ &

[AVEAVEIVEAVE AV
b bk o Pt
[ RV

]
b
M
H COULD BE DOURLE
VALUES ARE AV AILACL
2
1
1
/

Nﬁ

IF(IHLF}ZQ]v&Ol.
IFIN~T7)2C1+21E
IF(ISTEP~-4)201
CHEK=(PRMT {2} ~
NCHEK=CFrEK
XCHEK=NCHEK
IF (DARS{ChEK~XCHEK) »2GTe COCOLIL0) GO TD 201
HzH4+H
IHLF= [HLF~1
I1STEP=0
DO 221 I=1eND1
AUX{N=-1 o« 1 )=AUX
AUX(N=-2 2 1) =AUX
AUX{N~3,1)=AUX
X
X

AODmTO Al N

HeRIVE VRV
P et o
OO~NM
Te

+.,C000CGI00

AUX(N+5 .1 3=AU
AUXINFS s 1 )=AU
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AUXIN+4 s T )=AUX(N+1+1)
DELT=AUX(N+6s [JH+AUX(NES,])
CELT=DEL T+DELT+DEL T

221CAUX{155 1) =8B.5€2%625€£256796300%(
1~363511 11111111113 1D0%R4c{DERY (]
GOTG 201

Y{I)~AUX{N~3,1))
YHDELT+ALX{N+4 1))

tHOMLST BE HALVED
222 THLF=IHLF+}
IF(IHLF~-10)223,223.,21C
223 H=.5D0%H
I1STep=0
00 224 =1 NOIM

Y1)z e39CE25D~2%{ B8 L1 XAUX(N-1,1)4135,.D0%AUX(N~2,1)+

1 4eD1XAUXIN-3sI)+AUXIN~GoI) )~ ol 17187SDO0*{AUXIN+E 1)~
2 6.00*Aux(N+5.1)aALx(n+4,1>)xH

AUX(N~4'I)~.3 CE2SL~Z2%(12.D00%AUXIN~141)¢135,50x%

1 AUX{N-2 .I)+1”a DOSAUXIN~B+ I +AUX(N=4 2 1) )= 4023437500 %
2 (AUXINSG, 1)+ 18B,D0%AUXINAS 4 1) ~G 4CO%AUX (N+4 5 1)) %K

AUXIN-3,[)=AUX{N—-2+1)
224 AUX(N+4 s L )=AUX(N+S541)

X=X~

DELT=X— {iH$H+)

CALL FCT(DELT Y DERY)

DO 225 I=1NDIM

AUXAN-2 1))=Y (1)

AUX(N+S s I )=DERY(I)
225 Y(I)=AUX{N—4,1)

DELT=DELT~{H+H)

CALL FCOT{DELTsYDERY)

0O 226 I=1.NDIM

DELT=AUX{N+5, I} +AUXIN+4,1)

DELT=DELTH+DEL T+DELT

DAUXA{109sI)=BeGE29062GE2%62GE3DCX(ALXIN-1,1)~Y (1)}

1-2.361111111111111100%R2{AUX{N+6EHI)+DELTH+DERY(I1))
226 AUXIN+3+1)=DERY{1)

GOTO 2046

END
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SUBROUTINE OUTP

GUTE I35 THE QUTPUT SUEBRGUTINE FOE THE

TRANSIENT SOGLUTION ALGORITHM DHECG

'EENENEEEFENRIEE I IS A B A B I B I I N N A S BCEECA I I BRI I AR I 2 2R R BRI JE R B S N BN A%

SUBROUTINE QUTPITHETASYLDERYJOELTA, My PRNMT)
IMPLICIT REAL%B{A~-H,{~2)
COMMIN/MO/TPL oNC L KP
DIMENSION Y{1)DERY (1D 4FRMT{1)ar{103T(1D)s
> YP{10+38) NSTEFP(12)

OATA CONV/D.5CO/
NC=NC+1

CHECK T0O SEE [F AT AN CUTPUT PCINT,

VALUES FOR LATER PRINTING.

C=THETA/TPI
Q=Q++20CL001D0
NG=0Q

XNG=NG

IF {(DABS{U~XNG)} +GTe.

KP=K2+1

NSTEP{KF )I=NC
H{KFP)=DELTA
TIKPI=THETA

DO 1 I=1.M
YPIKP,I)=Y(])

IF (KP=10) 23€4+6

CHECK TO SEE IF AY END OF INTEGRATION

fCOCCIDO) FETURN

IF (DELTAX{THETA-PREMTL(2))) 3,5,%
IF (DABS{THETA-PRMT (2) )~ 1D0¥CABS(DELTA)) S444%

USING CENTER KOD AS EASIS.

TO STEADY STATE |

IF {DABS{DERY (1))
PRMT{5) =100

IF SO STORE

INTERVAL

CHELK TO SEE (F CLOSE

MAY NEED TO USE ANOTEHER ROD AS
BASIS IFf ROD 1 HAS NG KHT. GE
CHANGE VALUE (CF CGONvy

s GT »

,.

COCNV)

PRINT 200 {NSTEPL{IK) ¢K=]1,KP)
PRINT 201 21{H{KJsK=1,KP)
PRINT 202+ {T{K}+K=1,KF)

PRINT 2¢73
DO 7 J=1+M

PRINT 20642 J2{YP(KosJ)sk=1,KP})

PRINT 205
KP=0

FORMAT{ 1 X *STEPY, 7Xs1071

FCRMAT{ /s* STEP SIi
FORMAT(/,* THETA®,
FORMAT{ /+6Xs *ROC" »
FORMATLO6X»I24€Xe10
FORMAT(1H1?

RETURN

END

Z
8
S
o

E
X
X
1

*
[
0

NERATIONS

RETURN

MAY ALSWQ I3+ TG
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@ O OGO OP PO TE PP VOO VDO VOGO O O I DO E® HOD BT PGP TIPSO PG e 0
SUBRQOUT INE CERILV

DERIV CALCULATES THE YEMP-TIME LCERIVATIVES
REQUIRED IN THE TRANSIENT PROBLEM SOLUTICN

¢ e 28O O CPD SO O PGS PO S SOOOO LSO P SOIEEDIL NPT SPGO OGP QS e O

SUBROUT INE DERIVITFETA;YL,DERY)
IMPLICIT REAL*8{A~H,0-2Z)
CUMMUN/MD/C o X oW M

DIMENSICN Y{1),DERY(1)sC{(38+s38).x(383)
DO 2 I=1+M

DERY{I)=X(1)

DO 1 J= 1'

CERY(II)=DERY(IL)+C(I,d22Y(J
DERY(I) =4 CO%x (Y (1) ta)i%,7 DO*DE&Y(I)
RETURN

END
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LI NS N I N RS R W A SR I S N B N B A R RE B B NN I R N R AR AR R AR R IR N SR B B AR X RN
SUBROUT INE SINVEG

SIMEG SUOLVES & SET OF LINEAR ALGEBRAIC
EQUATIONS BY TRE (GAUSS~-SETDEL METHAD

LI I AN A N A R A B A I B I R R R R Y B AN R BN N B BE R O N N I N B L R AR 2 B B I N

SUBRAQUT INE SIMEG(B,CsZMaNMAX,CENY)
IMPLICIY REALFB(A~-H,0~-2)

DIMENSION BH{NMAXNMAXTCINMAX ), Z{NMAX )
ITER=0
EEROR=D .05
ITER=ITER+1
IF (ITER »GT.
I {ITER .GT.
DO 7 I=1+eM
SUM=0.D0

IF {1 +EGe 1) GO TO 4

ERINT 200
SYCe

gt
DO
DO
[ 1 ]
. gt

.\
[
.l

Z(I¥y=227

IF {ERRDOR «L. T CUNV) RETUKN

G} TGO 1

FORMAT(* NO CONVERCGENCE IN SIMEG IN 1000 ITERATIINS® )
END
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.C...QGO....'Q'.BQ99.‘...'-.-.0”8.’..‘-'0..."..’..l.‘..
SUBROUT INE MAT(Q

MATCGC SOLVES A SET OF LINEAR ALGEERAIC
EQUATIONS 8Y GAUSSTIAN ELIMINATION

LR AR IR AR I R I I R B RN RN R I I N Y B N I A A I N I A R R R N e E TR

SUBROUT INE MATGA (As X+ NGy NVeDET S NANXs ISTARS
IMPLICIT REALAB{A-H L2}

DIMENSION A{1)sX(1),ISTAR(1)

DET=1.D9

NEI =nR—-1

DO S K=1aMR1

IR1=K+1

PIVOYT=0,.D0

DO 6 I=K.NK

[K={K-1 )ENA+]

Z=LABSOA(CIK) )

IF{Z-PIVOT )OS E+7

RIVOT=Z

IPR=1

CONTINUE

IF{(PIVOTIBLG, &

DET=5 .00
RETURN
IF{IPR-K)ICs11,417

DO 12 J=KsNR
IPRJI=(J—1)%NATIPR
Z=ALIPRJ)}

Kd={J-1)&NA+K
AUIFRU)=ALKI)

A{KJ)=Z

DO 13 J=1,.NV
IPRJI={J-1IENX+IPR
Z=X{1PRJ)

KJ=(J-1 PENX+K
XCIPRJ)Y=X{KJ)

XK JI=2

KK={K=1 3} NAa+K

PIVOT=]1 ¢DO/A(KK)
KNA={K~-1)%NA

I1A=0

DG 21 J=IR1lsNR
ATEMP=A{KNA+ L)

IF (ATEMP LEQ. G.DC) CC YC 21
[A=TA+1

ISTAR(IA)=J

CONTINUE

DO 24 J=IK1.NR
Ki=(J—-1)xNA+K

I¥ (A(KJ) EQa. CeD2) €O TO 24
A{KI)=A{KJIIXPIVOT

I£ (1Aa.LE.D) CO YO 24
DD 14 1IB=1,:1A
=iSTARL{IB)}

[d=(J-1 )&ENA+]

IK=(K~1 })ENAS]
ACTAY=A(TU)-A(IK)%*ALKI)
CONTINUE

DG 5 Jd=1sNV

KJ={J-1 )%NX+K
IFI{X{(KJ)) 15+45,15
X(KJ)=X(KJYXPIVOT

IF (FTAJLE.Q) GG T0O 5
DO 16 [B=1+1A
I=1ISTAR{IB}

I0=(J—1 YENX+1
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IK={K~1)%ENA+]

XLT)=X{TJI-A{IK)RX(KJI)

CONTINUE

NRNR={NR~-1 )ENA+NR

IF{AINRNRY) 17,9617
PIVOT=] .00/ (NRENR)

DO 18 J=1asNV

NRJI={ J-1 I ENX+AR

X{NRII=X{NRJI)XPIVOT

DO 18 K=14NKE}

I =NR~-K

SUM=0 .D ¢

DO 192 L=1sNR}

IL=L%&NA+]

L= {Jd=-1 ) ENX+{L+1)

IF {A(IL)Y +EQe D.02% GO TO 19

SUM=SIM+A{ ILY ¥ X{L J?

CONTINUE

Td=(Jd~1 J&NX+]

X1 Jy=x(1J)-5uUm

RETURN

END
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SUBROUTNINE EQVIEW

favIEw CALCUL ATES THE dLACK B840DY VIigEd FACTGR3I IR
INFINITE CYLIADERS (N AN EQUILATEHAL TRIANGULAR fITCH

‘..“........’9‘/@."..Q!QI.‘.Q......‘..Q..I'Qeﬁ!GEOO"‘

SUBKOUT INE EQV[“&(PLR F11eF12+F122F15,F18:F13A,ERRORI
IMPLICIT REAL$B{A~t,C~21
PI‘B.IQ!%Q?éJV59G757PF
DA3=DSQRT{3.00)
D7=05ORT{7 D01}
C13=D5QRT{13.00)

Cl1=PI+7P1]

C2=P1/72.D7

C3=PI1/3.072

Ca=R1/6 D0
CS=DATANID3/5.D0)
CE=DATAN(D3*5 D0/ E74CC)
C7:DATAN(DB*5.D@/3.CC)
R1IZ2.D7%0SQ1T{2.D0) /200
R2=2«09
R3I=2DIXDSORT(Z21.D00})/72.D0
R4=2«DIFCSERT{2Q.DL I/ 2.00
S1=DSGRTIPOEEPLKR-1 003
SB—D&QQT(B DOFPOR¥PLUR~1.0C)
ST+ DbQR?{f.DQ*PDR*pLR*1-DC)
513=0SQRT{13+LO0%PDRAPLR—-1.D0)

H
o
N
]
<
hod
o
>
Z

=57=DATAN
T

[l ¥

R LRI R
[} Il
°
g
p]

2.D00

GMP‘MP‘"”F‘I‘\"‘AE
0
o
A~
L
X1
—

c

(?lwoD%FC”)/Pl

PPR «GTe R2) GO TO 2
(T3-2.D0xT1-C4d/f1

- (T7~2.00%73¢7T1~C8)/C1
(T13-2.00%T7+T73-C€)/C1
a s

(T3~-D3%PDE+C2) /P

PDR 2GTe &3} GO TC 3
(T7-73-T1=-C31/P1
_(TIBWE»DO*T7+T3 CelsC1

W h% Co Ui

&
liﬁlﬁﬂﬂi

[y

mﬂhmmﬂ1*~70ﬂﬁﬁﬂ~ﬂqddﬂo
N

w»aﬁv-ouwﬂw‘ﬂﬂ

&
i

Fl5= (TT -D7EPDR$C2) 7P

IF (PO LGT. Ra) GC TG 4
F18=(T13~¥7—T1~C7)/PI

GO TO 5

F18={T7T13-D13%FLCR+C2)/PI
FRANR=T] D06, LO¥{F124F133~12% COR(FLIS5¢F18)
F18A= (1 +D0-6.CCx{F12+F13)-12. CC%F153/12.D0
RETURN

END
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SUBROUT INE SQvlibw

SOVIEW CALCULATES THE 8LACK o0DY VIEW FACTORS FOHR
INFINITELY LOM: CYLINDELRS OGN A SCQUARE PITOH

f P B BT BB PP E SR D HELE PO IDBRA RS RTEE SO RN DETRD PR ERES DR LN RORDE P

SUARODT INE SQVIEWIPIR2F 11 «F12.F12:F15,F18

IMPLICITY REAL¥8{A~H,G-L)

pI—J-14§‘92L33589?95Pf

SORT{2.00)

dﬁOkT(S DO

TmOSARTLINL00)

Ci=pPL{+PI

C2=P1/2D0

C3=P1/4-00

Ca=DAYTANL .50D0)
CE=CATAN{(Z2.00/11.003
CHTUATAN(2,.02)

G RRT{PRDREEEDR-1 . 00)

ISOR T2 UDHPORAPER~Y 2030 )

ISR T(5 DV OORAPDR~1 2D0)
HJJRT\1’/a[:”$p{)¥-3*ﬁl?¥-2—~i,,ﬁj;f))
DATAN(S 1)

)ATAN{ Se

ATANTIS S}

)\J

¢*FATAN(51Q)

Do

1 =~PDR4 2P

2 2GTs L&} GO TO 1

2~Z200%T1Y/P1
e B2 D0RT24T1~Ca)r/Cl
= 10~2DN%T8+T2~(5 ) /018
a5

2=

D?tkPD(« C2r/srl

—
As

2 Gl e 5y GL 1O 2

3o YT g ) e b gt T 2w gt b ()N b s (10
AVE SN I
it
¥

BN T ee T TR e SO T T T e TS el g et d (0 (O U OO
-;U-* ~4me-:‘.s-s 4—1—4@4~w§£

S52{T5~-T2~ TK“RB)/QK

Hu{ Y1 0~2.D0%T54 7283 /7C1
O 730 5
15={Ta9-DSsCDRL2I/PT

F {PDr LY. LIOY CC TC 3
PR={ T 3~TS5~T1~=Car3 /|

DT 5

Fila={71C~01D%rRe (2301

ERROKEL oDD=4 2 L0#{F 1 23F 13) 8. DOX(F15+
Fi18a= {1 o004, 00x{F124F13)-R,D0CEF 15}
RETURMN
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t-'iasDG
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LA A BN K I L 2N 2R BN BL DR 2N BRI IR AE BN BN B 2R I BN IR BN I BRI I IR A A N A N N R E N}
SUZRJUTINE SGULARE

SLWUARE CONSTRULCTS THE MATRIX F ELACK BCDY VIEw
FACTIORS OR ThE MATRIX LF GRAY BCCY VIEw FACTIRS
FOR A SGQUARE ARRAY UOF CYLINDERS BITH AN ARBITRARY
DISTRIBUTICN GF HEAT GENEHATICN RATES

LAL BN IR R IR N A A I IR LR BN IR B - BT R IR IR 2 R BN BE BY BN BN BV R BN K BN N R RN BN R I N RS BE R B Y W

SUBROUT INE SQUAREZ(F s AZNROWS yNINVMAX, AR ,EMISS,
D FlleFl24F13:F13+F18«CoMXROWS)

IMPLICIT REAL%8{(A~H,C-2)

DIMENSICN GIMXROWS s MXROWS e MXKRORE sMXKOBWS ) s FINMAKLcNNAX )

> A{l)

M=N~1

DO 1 I=1+NRUWS
O 1 J=1+NROWS
CC 1 K=14NRCWS
DO 1 L=14NRGOWES
Gl sd+sKsL )=0,LC0C
DO 25 [ =1 ¢NROR®S
DG 25 J=1+NROWS
K=1=-1

L=J

IF (K «L7, 1) GG TC 2
G{IlsJeKybl )=F12

I¥ (K +GT. NRCWS) GC TC 3
G(ILsJdsK4LI=F12

IF (L +LTe. 1) GO TC 4
G{lsJsKel)=Fi2

L=J+1

IF (L +GTe NRCWS) GC TC 5
G{IlsJsK el )=F12

K=1~1

IF (K «LTe 1) GG TO 7

L =1

IF (L «LYe 1) GO TO €

Gl sdeKabL)=F113

L=J+1

IF (L «GTas NiRLCWS) GC TC 7
GlIeJdasKeLI=F173

K=1+1}

IF (K «GT. NRC%S) GC TC 9
L=Jd-1

IF (L 1T, 1)
GlleJdosKelL )=F112
L=J+1

IF {i. «GTe N
Gl Lo daKel )=F1
K=[-1

IF (K «LTe 1) GO TO 12
L=J-2

I¥ (L +LT. 1) GC TO 12

G Tl s JsKsL)=FLE

L=J+2

IF (L «GTe NRLWS) GG TC 11
G Il sJesKL)=F15

K=1+~2

IF (K «LTs 1} GG TO 123
L=J-1

1F (L ~L7s. 1) GG TO 12
GllesJdeKsL )=F15

L=Jd+1

IF (L. «GTe NRCRS) GC TG 13
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Gl IsJaKel )=F 15

K=1+1

IF (& +GT.e NFPOwWSY GU TO 17
L= -2

Iy (L »LT. 1) GG T 14
G{iTIsJdeaKel)=F15

L=d+z

IF (L «GT . NROWSY) G0 TO 15
GI{TsdekKal) =F15

K=1+2

IF {8 oGT. NEROWS) GO TO 17
= d~1

IF (L »LT. 1% C¢O TO 16
Gi{lsQeKagl)=F15

L=J+l

IF (L +GTe NROWSY GG TO 17
Gl IsdeKel)=F13

K=1-1

I {K LTs 1) GO T4 21
L=J-3

IF (L SLTs 13 0 TO 18
GilaJdeRsbL 3=F1H

LEdd3

1F (L 26T « NRUWS)Y GU T4 (9
G T edaKel)=¥F18

K= f-3

IF (K oLT. 1) GG TO 21
L=Jd-1

IF (L A4T. 1) GO T4 20

Gl edaaL)=F13

L=J+l

Gl IlsdarsLI=F18

K=T41

1F (K «GTe NRUWS) GO YO 25
L=d~3

IF {4 LT 1) GG TQ 22

Gi{ isdeKel }=F18

L= j+3

17 {L oGVTe NHRDO®SY) GO TO 23
G{iledsK+L }I=F18

K=i+3

{F (K 6T, WNRJIWSI GO YO 25
L=y-1

IF {L «LTes 1) GO TO 24
GI{TsJdeKL}=F18

L=+l

IF L »G6GT. NROWSY GO 7O 25
GilsdaKell)=f18

CONT INUE

VIEZwW FACTORS HAVE UBEEN GENERATED USING
DOUBLE~INDE X NOTATION FUR RUOD $OSITION
AND QUADRUPLE INDEXES FOR VIEW FACTORS.
COMVERSION IS MNOwW ACCOMPLISHED TU ACHILVE
SINGLE~INDEX NUTAT ION FUR POSITION AND
DOUBLE-IMODEX NOTATION FOR VIEwW FACTUES.

DO 43 LL=1»NRUWS

D 43 KK=1 s NRUOWS

D0 43 JJ=1.WlRUWS

DU 43 11I=1 «KRUOWS

I=II+NROuSH{II~1)

JT KK+ NRDES F{LL~12

F(XOJ} G(i[sJJvKKyLL}

SLNM=SUMEF (T +4)



FLT aN)=EMLI535~-5UM
FANS T I=ARXF{]4N)
TOTAL=TOUTAL #F{N. 1)
FANNYI=ML ES-TOTAL
RETURN

ZND
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R R R R R N R NN N N A R A R N Y I R RN N R K]
UBROUTINE SQEYM
THE MATRIX OF EBELACK BQGDY VIEW FACTORS

GRAY LODY VIEW FACTORS FGR A SCUARE
GENERATICN

SGSYM CONSTRHUCTS
OR THE MATRIX CF
AFRAY OF CYLINDERS #1ITh SYMMETRICAL HT.

FRENE BRI NE S N BE R N B RE I R R I R R B AT A IR BN A I R N I IR B B I B RE B R R BRI B B R R Y N A

SUBROUT INE SQESYMIF 3 A NRODUWSeNaNMAXJAR,EMISS,
Fl1lsF124F13,F1EWF1R,NM)

IMOPLICIY REALAB(A-H,~Z1)

DIMENSION FANNMAXJNMAX)JA{1) M{1)

MM=N-1

KO={NRIWS+1)/2

Kl=KD~1

K2=Kl1-1

K3=K2-1

M{1)=1

DO 1 K=2.NROWS

M{K)I=M{K~1)+K

[TEST=2%K0D~NRC®S

DU 2 I=1aN

DD 2 Jd=1sN

)=2.0D0
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DO*x{(F1.
5
i

U WWWNNN -
bw]
Q
PN
i
n
-
N

N

DO%XF IR

OX(F134F18)
O%F 15
DO*F18

2+2.00%F 15
+F18

O%F 15
Dx(F13+F18)
g%xF12
3
O*F18
LT
3

2+F 15
342 .CO%xF 1 8
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DO 22 1=11,12
Ji=1+14
J2=J1 4}
A43=J2+1
Flledl)=F
“{1ed2)=
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DO 12
5 «LTe 9}

OO NI ~D

)f

\"
CONC D
O~ HODMN~H O~ 1
Ng =XE O
L~

Ji=J2+1i

Ja= 3341
F(LesJ1)=F12
F{IlJ2)=2.D0%F13
F{l+J3)=2.,0D0%F15
F{1+J4)=2.,CO%F18
DO 19 K=z=4,K1
I=M(K~1)+3
JI1=M{K} +1
A42=41+1
F{lsJ1)=F15
F{LIJ2)=F134F 18
IF (NRDES L7Ta. 11)
> GO Tu 8¢C

DO 13 K=5,K1
I=M(K~1)+2
J1=M{K) +1
J2=J1+1

“ ok #

E I - i e 1T ¢

Lok g
oW

J2=J41+1
FllsJ1)=F12
F(l«J2)=F12

IF (NROWS «LT. 10}
> GO TUQ 8¢

DO 26 K=2+K3
I=M{K~-1)+1
JI=M{K+2}+1
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FINSTI=F{I.N)*
TOTAL=TCTAL+F(
FANSNIZEMISS-T
RETURN

END
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L3 BE BN B N S LB OB N OB R AP POLODIBELSL LS DD e % B e LE LS DB ERE SR
SUBROUT INE HEX

HEX FORMS THE MATRIX GF BLACK BLLY VIEW FACTURS OR
THE MATRIX 0OF GRAY EQDY VIEW FACTORS FOR A RIX ARRAY
OF CYLINDERS WITH AR ARBITRARY t+iT. GEN. DISTRIILTION

l‘..’ﬂ'.ﬁ’..'.'.0'&’0."""'.'..“".ﬂ."-’..').ﬂﬁ‘v’ﬂ’

SUBROUT INE FEX(F, Ay NRUW SN MNMAX s ARSEMIS S
> Fl1eF12:F13,F15,F18,M)

IMPLICIT REAL*¥B{A-N O~Z)

DIMENSION F{NMNAX,AMAX)} A{1) .M{13}
NRODS=N-1

KO=NROWS

Ki=NROWS~1

K2=NEDWS~2

K3=NROWS~3

K4=NROWS—4

Miii=1

DG 1 I=2+NROWS
M{1)=M{ I-1}+6%{1I~1)
DO 2 I=1sN
DO 2 Jd=1eN
F{leJdi=CaDO
IF (NRDOWS LY. 2} GG TC 83
F{l,2)=F12
F{1,3)i=F12
Filsal=Fle
Fll1+5)=F12
F{le63I=F12
FL{1.,7)=F12
F{2+.4)=F13
F{3:53=F13
F(3,7T)=F13
F{4,6)=F13
F{S:7)=F13
DO 3 K=2+K0
{l=M(K-1)+1
12=M{K}~1

DO 3 I=11.12
J=1 41
F{l.J3}=F12
DO 4 K=2.K0
{=M{K-1)+1
J=MIK )
F{l,Ji=F12
DO 5 K=2,K0
I=M{K=1)+]
JEM{K}-1
FlsJ)}=F13
IF (NRO®S »LYT. 3) GG TC 83
F{i1, 8)=F13
Fll10)=F13
Fi1+,12)=F13
F{1s143=F13
F{le186)=F13
F{(118)=F123
Fi2+13)=F1i5
F{2:143}=F15
F{2,156})}=F15
F{32,15)=F15
F{3:16)}=F15
F{3,18}=F15
Fl{4, B8)=F15
Fla, 9I=F15
F {4.,17)=F15
F{a+18)=F15
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11,12

i1
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Fis
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3+K3
[1.12
3¢K3
3sK3
M{K~1)+2%K~2

M{K)
K~1

Fl15

I1+K=-2
13%K+2
{

M{K) ~K+1
14+3

I1+14
=K~-1

={
=I14K=-2
I+i4

=M K)
=K-1
=18%K+1
i+t 4

DO 64 L=0L1,L2,L3

I1=M(K=~1)+2%K~2

12
13

14
DO 65 1I=11+12,13

14=14+3
J
F{leJI=F15

L1=M{K~1])+K~-1
DO 66 K

DO €3 I=1I1,12

J

Ia4=14+3
£3 F{lsJ}

14=18%K+2
DO 66 [=I1212,13

DO &4 K
DO 64

J
G4 FlsJ¥=F15

12
L3
14
1
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13

L2
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la=24%K+15

DG 72 I=11+s12+13
T4=1a4+4

J=1+14
F(l.J)=Fi8

DO 73 K=2 K4
Li=M{(K-1)+K~—1
L2=M{K)~-K+¢+1

L 3=K~1
[4=24#K+13

DO 73 L=L1L2.1L73
I1=4

[2=114¢K~2
Ta=14%4

DG 73 I=11,12
J=1+14
F(lasJd)=F18

DO 74 K=2,Ké
L1I=M{K~1)+K=]
L2=M{K)~K+1
L3=K~1

14=24%< 315

DO 74 L =L 1L2.13
I1=4

12=11¥%K~2

vz 14 +4
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L3=K—~1
La4=12%K~4

DO 79 L=L1.,.L2,L3
I1=L

12=11+41

La=lL 442

I4=10

D0 79 I=1I1,12
[14=14+}

J=l«l 4+l 4
F(lsJ3}=F18

DO 80 K=5%.K1
{1=M{(K~1)+4
i2=11+K~5
[4=£%K~9

00 8% I=11.12
J=1+14
FllsJ)=F18

DO 81 K=5,K1
[1=M{K~1)+1
{2=114K~5
I4=6%K=-2

DO 81 I=11,12
J=1+14
F(lsJ3=¥F18

IF {(NRO¥S «LT. 73}

> GO YO 83

DO 82 K=4,K3
[1=M{K~-1)+K~2
12=M({K)~K

[3=K~1}

[4=18%K+3

DO 82 I=11212413
14=14+3

it o :
Cm OGOl
O dte BN

'3
<
k4
}
<
.

DU 85 J=1,.NROCS
SUM=SUMAF(I1,3)
FILJNI=EMISS~-5UM
FINSs I I=ARRF{ T ,N)
TOTAL=TOTAL4F{N,I)
FINsNI=EMISS~TOTAL
RETURN

END
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S 2 ® 98 S0 T CE PR O OB ETH SRRSO ED B ST PO OSSN 20 2T 80
SUBRGUT INE HXSYM

HXSYM FUORMS THE MATRIX OF BLACK EJDY VIEw FACTIRS OR
THE MATRIX 0OF GRAY EOCY VIEW FACTORS FOR A HIXAGONAL
ARRAY OF CYLINDERS wITr SYMMETRICAL HEAT GENZRATICN

(IR 2 B I BRI DR B A I B N B B B R BN BE B B B B 2 B B NE-EN AN 2N BE BRI B BN IR 2R B A B B A B AN ]

SUBRUOUTINE HXSYM(F A NECHS o NaNMAX L ARy EMISS,
> Fl14aF 1245 13,F15eF18,M)

IMILICTIY REALXE(A—b =713

DIMENSICN F(NNMAXANMAX)I o ALLl)eM{1)

MM=N—-1

K1=NROw 51
KZ=NROsS~2
K3I=zNROWE-3
Ka=NROWS—4

M{1)=1

DO 1 K=24NROWS
MIK)=M{K~1)+{K+1) /2
DO 2 I=1sN

DC 2 J=1sN

f'(l‘J =L eDD

I+ {NRUWS LTe 2) GG TC 125

Fll+:2)7€,D0%712
E{2.1)=F12
F{R24+2)z22.D0%{F12¢F13)

IF (NRO®S LTe. 3) CGCC TC 125
F{1+s3)-CsD0%F {13
Fl2s3)1=2DD%{F12+F 153

F {24 )=F1l2+t2.C0%(F{3+F15)
FL{3.,1)=F13

F{332)1=F(2+3)
F{3+3)=2D0%F 13
F{344)72.D0%(F12+F1%4F18}
Fl42)7F(2+4)
Fla,3)=F(3,4)

IF (NROWS +LTa. 4} CGC 70 125
FL1 51T 12.D0%F15

F 23 )=2:D2%{F13+F1542F18)
F{2+0)=2-.D0%{F15+F18)
Fl3,5)1=2,D0%(F12+F1S+F18)
Fl3s6)=2.D0%F 13
F{445)=2.D0%x{F12+F134F18)
F a4 +46)=F12+2.CC%¥F 15
F{5+,1)=F15
FiD,2)=F13+F1€+F 18
F{5,3)=F124F124F18
F{S+4)=FI2+F124F1 3
FiS5s9)=F124F1242.DC*%F 15
F{S+06)=F124F168
F{6,2)=F{(2+6)

Fl6s3)=F{ 3,6}
F{6,4)=F{a4s5)
FlEsS)=2DNFF{5e6)

IF [INROWS LT, S) CLC TC 125
F 1l +8)1=1Z.,.D0%F18
F(2:7)=2:D0{FIE+F1E)
F{2.8}=2.C0%F1¢c
F{2:,9)=2-D0%F 18
FL3,81=2.00%(F1E+F18)
F{3,9)=2-.00%F15
F(4,83=2.D0%(F13+F152F18)
F{5,7)=F12+F154Fi 8
F{5,8)=8#12¢F1 3
F{%«9)=F13¢+F1¢C
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