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MATHEMATICAL DESCRIPTION OF ADSORPTION AND
TRANSPORT OF REACTIVE SOLUTES IN SOIL:
A REVIEW OF SELECTED LITERATURE

C. C. Travis
ABSTRACT

This report reviews selected literature related to
the mathematical description of the transport of reactive
solutes through soil. The primary areas of the Titerature
reviewed are (1) mathematical models in current use for
description of the adsorption-desorption interaction
between the soil solution and the soil matrix and (2)
analytic solutions of the differential equations describ-
ing the convective-dispersive transport of reactive
solutes through soil.






1. INTRODUCTION

This study is a survey of selected aspects of the mathematical
theory of the transport of reactive solutes through soil. It was
undertaken as a first step toward improving and refining existing meth-
odologies for assessing the impact of alternative energy-related tech-
nologies on man. The movement of reactive solutes through porous media
is a fundamental process in the assessment of both nuclear and non-
nuclear technologies. Even though there presently exist several rea-
sonably good methodologies for predicting radionuclide movement in
soil, there is a continuing need to upgrade these methodologies as the
demand for accuracy and realism increases. It is expected that the
state-of-the-art review provided by this document will assist in this
process.

The study of the movement of reactive solutes through an absorbing
medium has a long and varied history. Scientists from diverse areas of
science and engineering have contributed to its development. 1In the
area of chemical engineering, for example, the theory of solute trans-
port has been used successfully to develop chromatography into a power-
ful tool for chemical separation and analysis. In agriculture, the
movement of chemicals through the soil is of major importance in the
study of soil fertility, as well as in pest control, irrigation, salin-
ity control, and drainage. Considerable attention has also been given
to solute transport in such disciplines as groundwater hydrology, soil
physics, sanitary engineering, petroleum engineering, nuclear waste
management, and environmental monitoring.

The movement of reactive solutes in soil is controlled by three
processes: convection by moving water, hydrodynamic dispersion, and
adsorption or exchange of the solutes by the soil matrix. The mathe-
matical simulation of the transport of a reactive solute through soil
therefore requires the simultaneous solution of the differential equa-
tion describing convective-dispersive transport and the equation des-
cribing the interaction between the solute and the soil matrix. This



report reviews these differential equations together with their mathe-
matical solution.

The review 1s organized as follows. Section 2 contains defini-
tions of selected soil and groundwater terms that arise in the mathe-
matical simulation of the transport and adsorption of reactive solutes
in soil. 1In Sect. 3, a brief review of the differential eguations
describing convective-dispersive solute transport in porous media is
presented. Sections 4 and 5 are devoted to a review of mathematical
models in current use for description of the adsorption-desorption pro-
cess in soil. Section 6 contains a review of selected Titerature
related to analytic solutions of the differential equations describing
convective-dispersive transport of reactive solutes in one dimension.



2. SOIL PROPERTIES

The soil is an exceedingly complex system composed of three phases:
the solid phase consisting of soil particles, the Tiquid phase consist-
ing of soil water together with dissolved substances, and the gaseous
phase consisting of soil air. Each of these three phases has organic
and inorganic constituents and possesses both inert and active com-
pounds. The biological and heterogeneous character of soil strongly
influences its physical and chemical properties. With regard to solute
transport, the interaction of the diverse components in the soil has a
direct effect on such phenomena as dispersion, convection, adhesion,
adsorption, and ion exchange.

Reflecting this complexity, the problems of understanding and
modeling the soil-water complex are numerous. In general, however, no
unique physical or mathematical concepts beyond those common to the
analysis of most other physical and biochemical systems are needed to
simulate the transport of reactive solutes through the soil. These
concepts include velocity and acceleration, potential and kinetic
enerqgy, force fields, and the conservation of energy, momentum, and
mass. In this section, definitions of soil and soil-water characteris-
tics are presented that are of use in the mathematical simulation of
the transport and adsorption of reactive solutes in soil.

2.1 Bulk Density
The dry bulk density is the ratio of the mass of a dried soil to

the total volume of the soil. The wet bulk density is the ratio of the
mass of a moist soil to the total volume of the soil.

2.2 Porosity

The porosity is an index of the relative pore volume in the soil
and is expressed quantitatively as the ratio of the volume of the soil
interstices or voids to the total volume of the soil. Its value
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generally is in the range 0.3 - 0.6 (30 - 60%). The effective porosity

refers to the amount of interconnected pore space that is actually
available for fluid transmission. It is expressed as the percentage of
the total soil volume occupied by the interconnecting interstices.

2.3 Pore Velocity

The actual flow velocity of water in the soil is not uniform. The
variability of velocity results from the facts that flow velocity near
the center of a pore's cross section exceeds that near the edge and
that the velocity in wide pores exceeds that in narrow pores. The
average velocity of water through the pores is termed the pore velocity.

2.4 Darcy Flow Velocity

The Darcy flow velocity or Darcy flux is the volume of water

passing through a unit cross-sectional area of soil per unit time.
Darcy flow velocity and pore velocity are related by the fact that
Darcy flow velocity equals the pore velocity multipiied by the effec-
tive porosity.

2.5 Volumetric Water Content

The volumetric water content or soil water content is the ratio of

the volume of the soil solution to the total volume of the soil. In
sandy soils its value at saturation is about 40-50%, in medium-textured
soils it is approximately 50%, and in clay it can be on the order of
60%. When the soil is saturated with the soil solution, the volumetric
water content is numerically equal to the effective porosity.

2.6 Soil-Water Potential

The soil-water potential is defined as the amount of work that

must be done per unit quantity of pure water in order to transport an



infinitesimal quantity of water reversibly and isothermally from a pool
of pure water at a specified elevation and atmospheric pressure to the
soil water at the point under consideration. Stated simply, soil water
potential is the enerqy that soil water possesses because of its rela-
tive position in the soil matrix. Differences in the potential energy
of soil water within the soil matrix cause soil water to flow in the
direction of decreasing potential energy. It is convenient to divide
the total soil-water potential into four component potentials: (1) the
gravitational potential, which is the energy of soil water resulting
from its position in the gravitational field with respect to an arbi-
trary reference elevation; (2) the matric potential, which is the
energy of soil water resulting from capiliary and adsorption forces
that tend to hold the soil water in the soil matrix; (3) the osmotic
potential, which is a measure of the forces of attraction between dis-
solved ions and water molecules; and (4) the pneumatic potential, which
is the energy of soil water resulting from unequal pressures in the
gaseous phase.

2.7 Hydraulic Head

Soil water potential is expressible in several equivalent ways.
Two of these are energy per unit mass and energy per unit volume.

Since water is practically incompressible, the expression of potential
as energy per unit mass is directly proportional to its expression as
energy per unit volume. The dimensions of potential expressed as
energy per unit volume are those of pressure.

The third, and often most convenient, method for expressing poten-
tial is in terms of hydraulic head, which is the height of a liquid
column corresponding to a given pressure. Thus hydraulic head is the
number of centimeters of a liquid, usually water, necessary to generate
a pressure equal to that obtained when the potential is expressed in

units of energy per unit volume.



2.8 So0il Moisture Retention Curve

The soil moisture retention curve gives the functional relation-

ship between soil water content and suction. This curve is strongly
dependent on the nature of the particular soil under consideration.
Two typical soil moisture retention curves are shown in Fig. 1.

These curves show that if only a slight external suction is
applied to the soil matrix, no outflow of soil water will occur. As
suction is increased and exceeds a critical value, the largest pores
begin to empty. Very soon most of the large pores will be empty, and
outflow of soil water will begin in progressively smaller pores, until,
at high suction values, only the very narrow pores will retain water.
In a sandy soil, where most of the pores are relatively large, the
water content decreases rapidly as suction increases. In a clayey
soil, where the pore-size distribution is more uniform, there is a more
gradual decrease in water content. Thus the amount of water remaining
in the soil matrix at a given level of suction is strongly dependent on
the size and distribution of the soil pores.

There are two different ways to obtain the relationship between
suction and soil wetness. One is to measure water content vs suction
while increasing suction to gradually dry a saturated soil. The other
is to wet an intially dry soil while decreasing suction. The two
methods do not yield the same results. Figure 2 shows typical
results. The interested reader is referred to Miller and Miller (1955,
1956), Mualem (1973, 1974), and Parlange (1976) for a further discussion
of this subject.

2.9 Breakthrough Curve

As a pulse of solute moves through a finite soil column, dispersion
causes the solute to spread. Measurements as a function of time at the
bottom of the soil column reveal that the solute concentration will
gradually increase from zero to some maximum value in the form of an
S-shaped curve. This curve is called a breakthrough curve.
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3. CONVECTIVE-DISPERSIVE SOLUTE TRANSPORT

The theory of convective-dispersive solute transport in porous

media has been discussed for many years, and its mathematical formula-

tion is well understood.

The mathematical derivation of this theory

will not be discussed in detail, and the interested reader is referred

to Bear (1972) and Crank (1956) for a development of the theory.

This

study will, however, present the relevant equations and briefly discuss
the physical significance of their terms.

The differential equation governing convective-dispersive reactive

solute transport in anisotropic media may be written as

fas]
e
i
D
I8
o
E

where
C
S =
P
0
DX = x component
Dy = y component
DZ = z component
q, = X component
qy = y component
9, = 2 component
Q
[ug/(cm>+hr)],
7 =
t = time (hr),

= yolumetric soil water content (cms/cm

of
of
of
of
of
of

3. aC 3 aC
T ey (Dy ay> MY (Dz 82)

3S

- (9,0 - 2 (9.0 - 2% (0,0 -0 -0,

= concentration of solute in soil solution (ug/cm3),
amount of solute adsorbed on soil matrix (ug/g),
= 5011 bulk density (g/cm3),

3,

solute dispersion coefficient (cm2/hr),
solute dispersion coefficient (cmz/hr),
solute dispersion coefficient (cmz/hr),
Darcy soil water flow velocity (cm/hr),
Darcy soil water flow velocity (cm/hr),
Darcy soil water flow velocity (cm/hr),

= a sink (or source) for irreversible solute interaction

distance from the soil surface {cm),
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The primary mechanism governing the transport of solutes in soils
is the convection of the solute with water as water moves through the
soil matrix. This process is represented in Eq. (1) by the terms

9. -9

If this were the only mechanism governing the transport of solutes
in soils, an amount of solute introduced into the soil solution would
travel through the soil column in a body without any Tengthening or
spreading. In reality, the body of solute will grow in size because
the s0i1 solution does not move through the soil matrix in a uniform
manner. The flow rate is slower near the walls of a soil pore than in
the middle, the flow is faster in Targe pores than in small pores, and
water flows in some pores at an angle to the mean direction of water
flow. This tendency for molecules of a solute to become more diffuse
with time is called hydrodynamic dispersion. Because this phenomenon
can occur only when there is movement of the water through the soil,
convection and hydrodynamic dispersion are two inseparable processes.

Another process causing the dispersion of the solute is molecular
diffusion. This is caused by the random thermal motion of molecules in
the soil solution and occurs whether there is water movement through
the soil or not. However, since hydrodynamic dispersion and molecular
diffusion are governed by differential equations of the same form,
their effects can he added. The combination is referred to as apparent
diffusion, and this process is represented in Eq. (1) by the terms

o [ 8CY , 8 3C 9 aC
5§”<Dx'§i> Ty ( Dy Y, > Y (Dz Y )

In addition to convection, hydrodynamic dispersion, and molecular
diffusion, the transport of a solute in the soil is affected by adsorp-
tion and exchange with the soil matrix. This reversible solute adsorp-
tion by the soil matrix is represented in Eg. (1) by the quality 3S/5t.
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We will assume that there is a functional relationship between S and C,

which we

may express as

S = f(C).

Such a relationship is termed an adsorption function or an adsorption

isotherm.

we obtain

where

The factor 1 + (p/e) f'(c) has been called the retardation factor by

Hashimoto

If we then replace 35/5t in (1) by

5 L [DX(C) %%] +o 5337 [Dy(C) %3]

3C 3 3
o3z [DZ(C) 3{] - a5 [a,(€)C] - 5 [a (0)C]

=
>
—
]
S
i
3
>
~
~
-l
4
@|o
_+,
—~
o
S—
S—v

£
x
—
o
~—
i
o]
X
~
—
—
+
o
-
—
o
—
| —

Qc) = a/(1 + 5 Q) .

(2)

et al. (1964). The physical significance of the retardation
factor is that the ratio of the Darcy velocity to the solute migration
velocity is given by this factor.
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4. EQUILIBRIUM ADSORPTION MODELS

One problem in attempting to model solute transport in the scil is
the development of an adsorption-desorption function that describes the
relationship between the concentration of the solute in the soil solu-
tion and the amount of the solute adsorbed on the soil matrix. The
adsorption-desorption process in the soil can be a kinetic one in which
the relative amounts of the solute in the soil solution and in the soil
matrix are changing with time, or it can be an egquilibrium situation in
which the equilibrium ratio between amounts of solute in the soil solu-
tion and in the soil matrix is attained rapidly and thereafter remains
constant. This section will review the mathematical models that have
been used in the Titerature to describe the adsorption-desorption pro-
cess under equilibrium conditions.

4,1, Linear Adsorption Isotherm

The simplest and most widely used of the equilibrium adsorption
isotherms is that given by a linear relationship. That is, it is
assumed that the amount of the solute adsorbed by the soil matrix and
the concentration C of the solute in the soil solution are related by
the Tinear relationship

S=K,C, (4)

where Kd, the distribution coefficient, is a measure of the retention
of the solute by the soil matrix. Experimentally, the distribution
coefficient, Kd’ can be determined from the ratio

K. = [M]soi1 -
d [M]so1ution
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where
M[3011] = amount of solute adsorbed by the soil matrix
(nug/g),
M[so]utioﬂ = concengration of solute in soil solution
(ng/em”).

The assumptions implicit in the use of a linear isotherm are that
the concentration of the solute in the soil solution is very low and
that the equilibrium ratio between the soil solution and the soil
matrix is attained rapidly.

The linear isotherm model (4), in conjunction with the convective-
dispersive solute transport model (1), has been used frequently to
describe the transport of radioactive material through porous media.
Duguid and Reeves (1976) use equation (4) in a model of radioactive
contaminant transport from a seepage pond, situated entirely above the
water table, to a nearby stream. The results of the simulation, how-
ever, are not compared with empirical data.

Logan (1976) uses a linear adsorption isotherm, together with a
two-dimensional convective-dispersive solute transport model, to per-
form an assessment of the quantitative effects on the environment
resulting from the potential release of radionuclides during all phases
of radiocactive waste management operations.

Burkholder (1976) develops a transport model to predict radio-
nuclide migration from geologic repositories should groundwater invade
the disposal site. The dissolved nuclides may have complex physico-
chemical interactions with the soil as they migrate. These interac-
tions cause the nuclides to move at lower velocities than the water and
thereby reduce, as a result of radioactive decay during holdup, radio-
activity releases to the biosphere. To simulate this adsorption of the
nuclides by the soil matrix, Burkholder uses a Tinear equilibrium
adsorption isotherm with a distribution coefficient Kd’ The ratio of
the water velocity to the nuclide migation velocity is then given by
the retardation factor K = 1 + pKd/e.

Van De Pol et al. (1977) employ a Tinear equilibrium adsorption
isotherm in their study of the rate of movement of tritium in a soil
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column under field conditions. When the predicted concentration of
tritium in the s0il was compared with experimental observations, the
linear adsorption isotherm was found to adeguately describe the adsorp-
tion of tritium by soil under the conditions of the experiment.

The linear isotherm model (4) has also been used to describe the
adsorption of nonradioactive solutes by the soil matrix. Selim and
Mansell (1976) use Eq. (4) to develop a model for solute transport in a
finite soil column. The model has not been verified with experimental
data, however.

Selim, Davidson, and Rao (1977) employ £g. (4) in their study of
solute transport through multilayered soils. Within each layer, the
soil is assumed to be homogeneous and isotropic. The linear adsorption
jsotherm 1is used to describe solute adsorption within the individual
soil Tayers. The predicted results were compared with experimental
data on the movement of the herbicide 2,4-D (2,4-dichlorophenoxyacetic
acid) through a two-layer soil column consisting of Norge loam and
Eustic sand. The predicted and experimental data were found to be in
close agreement. Elrick, Erh, and Krupp (1966) also used a linear
adsorption isotherm to predict the movement of herbicides through the
soil. Theoretical breakthrough curves based on the linear adsorption
isotherm were found to describe the early breakthrough behavior of the
herbicide Atrazine. The theoretical breakthrough curve predicted
greater concentrations of the herbicide at later times than were mea-
sured experimentally, indicating a greater adsorption of the herbicide
than predicted by the Tinear model. Lindstrom et al. (1967) also used
the linear isotherm equation to develop a mathematical model of the
movement of the herbicide 2,4-D in the soil.

Begovich and Jackson (1975) used a linear adsorption isotherm to
simulate the six-year buildup of lead, cadmium, zinc, and copper around
a lead smelter. It was found that the predicted levels of cadmium and
zinc in the top two soil horizons were comparable with the experimen-
tally determined values. Results obtained for lead and copper were not
so satisfactory.
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4.2 Freundliich Isotherm

The Freundlich isotherm is defined by the nonlinear relationship

s =KkeV (5)

where K and N are constants. This isotherm is the oldest of the non-
Tinear adsorption isotherms and has been used widely to describe the
adsorption of solutes by soils. It should be kept in mind, though,
that the flexibility of the two constants allows for easy curve fitting
but does not guarantee accuracy if the data are extrapolated beyond the
experimental points. One limitation of the Freundlich isotherm fis
that, 1ike the linear isotherm model, it does not imply a maximum
quantity of adsorption.

Numerous examples exist in the literature where the Freundlich
jsotherm has been used to describe the adsorption of solutes by the
s0il matrix. To mention a few, Bornemisza and Llanos (1967) and Chao
et al. (1962a, 1962b, 1962c, 1963) reported that sulfate adsorption by
soils conformed to the Freundlich isotherm. Garcia-Miragaya et al.
(1976), Levi-Minzi et al. (1976), and Street et al. (1977) found that
the adsorption of cadmium by soils could be described using the
Freundlich isotherm. Van Genuchten et al. (1974), Swanson and Dutt
(1973), Lindstrom et al. (1967, 1970, 1971), Harris (1966, 1967),
Geissbuhler et al. (1963), Oddson et al. (1970), Hague and Sexton
(1968), Haque et al. (1968), Hornsby and Davidson (1973), Bailey and
White (1970), Davidson and McDougal (1973), Hance (1967), Kay and
Elrick (1967), Davidson and Chang (1972), and others proposed the use
of the Freudlich isotherm to describe the movement of herbicides in the
soil.

4.3 Langmuir Isotherm

The Langmuir adsorption isotherm was developed by Langmuir (1918)
to describe the adsorption of gases by solids. Langmuir assumed that
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the surface of a solid possesses a finite number of adsorption sites.
If a gas molecule strikes an unoccupied site, it is adsorbed, whereas
if it strikes an occupied site, it is reflected back into the gas
phase. This model leads immediately to the concept of an upper limit
of adsorption. The maximum amount of adsorption occurs when the sur-
face of the solid is covered with a closely packed adsorbed Tlayer of
gas molecules.

The derivation of the Langmuir absorption isotherm presented by
Langmuir for gases can be modified to apply to the adsorption of reac-
tive solutes by soil. Each adsorption site in the soil matrix can be
assumed to have an equal probability of adsorbing the solute from the
soil solution. This assumption requires that the free energy of
adsorption for the soil be constant. Under this assumption, the rate
of adsorption will be proportional to the concentration of the solute
in the soil solution and to the number of sites in the soil matrix that
are as yet unoccupied. Thus the rate of adsorption of the solute by
the soil matrix will be given by

KiC(b -S) (6)

where C 1is the concentration of the solute in the soil solution, S is
the amount of the solute adsorbed by the soil matrix, b is the maximum
amount of the solute that can be adsorbed by the soil matrix (ng/g),
and K1 is a constant. The rate of dissociation of the solute from

the soil matrix will be proportional to the number of occupied sites in
the soil matrix. Thus the rate of dissociation will be given by

KoS . (7)

At equilibrium,

KoS = KyC{b = S) . (8)
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Replacing K1/K2 by K and rearranging, we obtain the two standard
forms of the Langmuir isotherm:

c.1.¢
SR b (9)
and
_ KbC
SETTRe - (10)

In these two formulas, K is a measure of the strength of the bond hold-
ing the adsorbed solute on the soil surface, and, as was stated before,
b is the maximum amount of the solute that can be adsorbed by the soil
matrix (ug/9).

The monolayer adsorption theory of Langmuir breaks down when the
free energy of adsorption is not constant. This is the case when the
heat of adsorption of the solute by the soil matrix is not independent
of the number of occupied adsorption sites in the soil matrix. How-
ever, several useful adsorption isotherms have been derived by assuming
different functional relationships between the heat of adsorption of
the solute by the soil matrix and the fraction of the adsorption sites
in the soil matrix that is occupied by the solute. If the heat of
adsorption is a linear function of the surface coverage, the adsorption
isotherm takes the form used by Brunauer et al. (1942):

log C = Ky + KZS . (11)
where K1 and K2 are constants. If the heat of adsorption is a

logarithmic function of the surface coverage, the adsorption isotherm
can be shown (Halsey and Taylor 1947) to be:

logS=K+N1logC , (12)

where K and N are constants. This is an equivalent form of the
Freundlich isotherm, and it is thus seen that the Freundlich isotherm
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may be obtained from Langmuir's theory of monolayer adsorption by
assuming that the heat of adsorption is a logarithmic Function of the
surface coverage.

The Langmuir adsorption isotherm has been used extensively in the
literature to describe the adsorption of solutes by the soil. For
example, John (1972) and Levi-Minzi et al. (1976) found the Langmuir
isotherm to adequately describe cadmium adsorption over a wide range of
soil types. Colombera et al. (1971) found that the adsorption of alum-
inum from hydroxy-aluminum perchlorate solutions by clay minerals in
the soil can be described by the Langmuir adsorption isotherm. Enfield
and Bledsoe (1975) and Novak et al. (1975) used the lLangmuir adsorption
isotherm to model the movement of phosphorus in soils resulting from
the renovation of wastewater by a land application treatment system.
The Langmuir isotherm has also been used by 0Olsen and Watanabe (1957),
Weir and Soper (1962), Pissarides et al. (1968), Obihara and Russell
(1972), Wier (1972), Humphreys and Pritchett (1971), Rajan and
Watkinson, (1976) and others to describe phosphorus adsorption by soil.

It can be seen from Eq. (9) that a plot of C/S against C should
give a straight line of slope 1/b. Soil phosphate adsorption data
obtained by Olsen and Watanabe (1957) and Larsen et al. (1965) indicate
that in the case of phosphorus adsorption by soil, the plot of C/S
against C is not a straight l1ine. One possible explanation of these
results is that the energy of adsorption of phosphorus by soil is not
constant. Bache and Williams (1971) point out that for the data
obtained by Olsen and Watanabe, the relationship between the energy of
adsorption of phosphorus by soil and the surface coverage is almost
linear. They therefore propose that an adsorption isotherm of the form
(11) might be more appropriate for describing phosphate adsorption by
soil. The experimental data obtained by 0lsen and Watanabe are shown
to be fitted satisfactorily by an adsorption isotherm of this form.

In a different attempt to account for the degree of curvature in
the plot of C/S against C, Gunary (1970) did a least-sguares fit of
several different equations to the data for phosphate adsorption on 24
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different soils obtained by Larsen et al. (1965). He concluded that
the best fit was given by the equation

C .
€= Ky + KL Ky /O, (13)

where Kl’ K2, and K3 are constants. No theoretical foundation

for Eq. (13) was given, but the author suggested that the inclusion of
the square root term in the equation could be taken to imply that the
soil will adsorb a little phosphate firmly, a slightly greater amount
of phosphate less firmly, and so on until a limiting value is reached
when all the components of the phosphate adsorption system are satu-
rated.

4,4 Langmuir Two-Surface Isotherm

Experimental data on phosphorus adsorption by Shapiro and Fried
(1959), Arambarri and Talibudeen (1959), de Haan (1965), Helyar et al.
(1976), Munns and Fox (1976), and others suggest that two different
types of surface adsorption sites are responsible for the adsorption of
phosphorus. One of these adsorption sites has a high bonding energy
and reacts rapidly with phosphorus, while the other has a Tower bonding
energy and reacts more slowly with phosphorus. Langmuir (1918) pro-
posed an equation for describing the simultaneous adsorption of a gas
by more than one surface. The adaptation of Langmuir's equation to the
adsorption of a solute by a soil with two adsorbing components is

Kqb,C K,b
L S L

_ L,
1+ KlC

1+K2(:

(14)

where b1 and b2 are the maximum quantities of solute that can be
adsorbed by the two components and K1 and K2 are constants related
to the bonding energies of the components.
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Holford et al., (1974) have used the Langmuir two-surface eguation
to model phosphate adsorption by soil. In their consideration of 41
soils from southern England and eastern Australia, they obtained an
excellent fit of the experimental data with the Langmuir two-surface
equation.
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5. FIRST-ORDER KINETIC ADSORPTION MODELS

The use of the equilibrium adsorption models reviewed in the pre-
vious section is based on the assumption that the equilibrium between
the reactive solute in the soil solution and the soil matrix is
obtained rapidly. For some chemicals in the soil, such as phosphorus,
this is generally not the case, and in such cases, it is more appropri-
ate to use a kinetic model to describe the adsorption-desorption rela-
tionship. This section will review the more important first-order
kinetic adsorption-desorption models.

5.1 Reversible Linear Model

The most frequently used first-order kinetic adsorption model is

ds _, o '

where S is the amount of the solute adsorbed by the soil matrix, C is
the concentration of the solute in the soil solution, 6 is the
volumetric soil water content, p is the soil bulk density, and kl and
k2 are constants. Equation (15) assumes that the rate of solute
adsorption by the soil matrix is related to the difference between what
can be adsorbed at some concentration and what has already been
adsorbed. The equilibrium isotherm associated with Eq. (15) is a 1in-
ear isotherm such as is given by Eq. (4).

Equation (15) has been used frequently to describe the adsorption
kinetics of chemicals by the soil. For example, Davidson and McDougal
(1973) and Hornsby and Davidson (1973) used Egq. (15) to describe the
adsorption of herbicides by the soil. Lindstrom et al. (1967, 1970},
Davidson and Chang (1972), and Oddson et al. (1970) used Eq. (15) to
describe the movement of several different organic chemicals in the
soil. Cho (1971) used Eg. (15) to describe the convective transport of
various oxides of nitrogen in the soil.
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One of the most frequent applications of Eq. (15) has been in the
description of the adsorption kinetics of phasphorus in soils. Among
those who have used this equation to describe the movement of phos-
phorus through the soil are Shah et al. (1975), Novak et al. (1975),
Novak and Adriano (1975), Enfield {1974), Enfield and Bledsoe (1975),
Enfield and Shew (1975), Enfield et al. (1976), Cho et al. (1970), and
Griffin and Jurinak (1974).

5.2 Reversible Nonlinear Model

Another first-order kinetic equation that has been used to
describe the adsorption-desorption relationship between a reactive
solute and the soil matrix is the nonlinear kinetic eguation

The parameters kl’ and k2 (Giddings 1965) are called, respectively,

the forward and backward adsorption rate coefficients. When the value
of n is unity, Eq. (16) reduces to the reversible linear first-order
kinetic adsorption process described by Eg. (15). The equilibrium iso-
therm associated with Eq. (16) is the Freundlich adsorption isotherm,
given by (5).

Enfield and Bledsoe (1975) have used Eqg. (16) with a value of n
less than unity to model the adsorption of herbicides by soil.

Davidson and McDougal (1973) and Enfield, Harlin, and Bledsoe (1976)
found that phosphorus movement in the soil could be described using Eq.
(16) with a value of n less than unity.

Mansell et al. (1977) used Eg. (16) to predict the transport of
phosphorus through sandy soils and found that it provided an adequate
description of phosphorus transport in both water-saturated and
water-unsaturated soils. This agreement between calculated and
experimental data is not surprising, because in this experiment the
backward and forward adsorption rate coefficients were extremely small
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in relation to the average pore water velocities. The large average
pore water velocities and the small adsorption rate coefficients caused
the sorption of phosphorus from the soil to be small. This is consis-
tent with general observations by Black (1968) that phosphorus applied
to sandy and organic soils is more mobile than phosphorus applied to
other soils.

Hornsby and Davidson (1973) used Eq. (16) to describe the trans-
port of the organic pesticide fluometuron in soils. The distributions
of the adsorbed and solution phases of the pesticide were well
described at high flow rates. At Tow flow rates, where equilibrium
adsorption exists, the kinetics of the adsorption process were not so
important, and the process was described equally well using the Tinear
adsorption isotherm (4).

Van Genuchten, Davidson, and Wierenga (1974) used Eq. (16) to
study the movement of picloram (4-amino-3,5,6-trichloropicolinic acid)
through a water-saturated Norge Toam soil. The equilibrium adsorption
and desorption isotherms were found to be described by different equa-
tions. When the observed and predicted concentrations of picloram in
the soil were compared, it was found that Eq. (16) adequately described
the adsorption kinetics at low pore water velocities (14.2 cm/day) pro~
vided the multivalued character of the adsorption-desorption process
was included in the calculations. However, even at low pore water
velocities, calculations using Eq. (16) did not fit the data as well as
when a Freundlich adsorption-desorption relationship was assumed. At
high pore water velocities (145 c¢m/day), Eq. (16) was found to be
inadequate to predict picloram movement.

5.3 Kinetic Product Model

A model proposed by Enfield (1974) to describe the kinetics of
phosphorus adsorption by soil is the equation

% = acPsd | (17)
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where a, b, and d are constants. This equation was empirically
derived, and no theoretical foundation for its form is given. More-
over, like the Freundlich isotherm, it does not imply a maximum quan-
tity of adsorption. These limitations aside, however, it has been used
with some success by Enfield and others to describe phosphorus movement
in soil.

Enfield found that the model provided an adequate description of
phosphorus adsorption kinetics in five selected Cklahoma soils. He
then compared the results of using Eq. (17) with those obtained using
the reversible linear kinetic model (15). Even though the five soils
had widely varying physical-chemical properties, in every case Eq. (17)
gave a better fit to the experimental data than Eg. (15).

Enfield and Bledsoe (1975), using Eq. (17) to describe the trans-
port in soil of phosphorus from a wastewater treatment system, reported
that the predicted values fitted the experimental data reasonably well.

Enfield, Harlin, and Bledsoe (1976) compared Eqgs. (15), (16), and
(17), among others, in their ability to describe the kinetics of ortho-
phosphate adsorption by 25 mineral soils under laboratory conditions.
Equation (17) appeared to give the best overall results.

Enfield and Shew (1975) again compared the results of using Eq.
(17) with those obtained using Eq. (15) for several different soils
with soil textures ranging from sands through clays. Darcy flow rates
ranged from 0.18 cm/hr (16 m/year) to 5.6 cm/hr (490 m/year). The
majority of the studies were performed at the low end of the flow spec-
trum, since the model's primary objective was to describe the movement
of phosphorus in wastewater treatment systems applying waste to land.
Similar results were obtained in all soils studied. Of the two models
tested, the one employing Eg. (17) appeared to give the best results.

5.4 Bilinear Adsorption Mode!l

The kinetic version of the Langmuir adsorption isotherm (9) is
given by the so-called bilinear adsorption model,
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d
L= kyCb - ) - kS (18)

where k1 and k2 are constants and b is the maximum gquantity of

solute that can be adsorbed by the soil matrix. The theoretical foun-
dation for this equation is the same as that given for the Langmuir
adsorption isotherm. We assume that the rate of adsorption of the
sotute by the soil matrix is proportional to the concentration of the
solute in the soil solution and to the number of sites in the soil
matrix that are as yet unoccupied. Thus the rate of adsorption of the
solute by the soil matrix is given by

kyC{b - S) . (6)

The rate of dissociation of the solute from the soil matrix is
assumed to be proportional to the number of occupied sites in the soil
matrix. Thus the rate of dissociation will be given by

koS- (7)

Taking the difference between the rate of adsorption and the rate of
dissociation, one obtains Eq. (18). The equilibrium isotherm for this
equation is, of course, the Langmuir adsorption isotherm (9).

Despite its strong theoretical foundation, Eq. (18) has not
received widespread application in describing the adsorption of chemi-
cals by soil. One reason for this lack of application is that there
does not exist an analytic solution of the coupled system (9) and (18),
and hence any use of this system requires a numerical approximation.
However, Eq. (18) has been applied to the study of the adsorption of
phosphorus on clay minerals by Gupta and Greenkorn (1973).

5.5 Elovich Model

An equation developed by Roginsky-Zeldovich (1934), but now gener-
ally known as the Elovich equation, has been applied by a few
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researchers to describe the adsorption of solutes by the soil. The
ETovich equation has the form

..Bq
dg 2
rri Ale , (19)

where A1 and 82 are parameters and g is the fraction of the adsorp-
tion sites in the soil matrix occupied by the solute. This equation
has been applied to describe the kinetics of the absorption of gases on
solids by Allen and Scaife (1966) and Hayward and Trapnell (1964). A
theoretical discussion of the eguation can be found in Low (1960),
McLintock (1967), and Atkinson et al. (1971).

An Elovich-type equation was used by Atkinson et al. (1971) and
Kyle et al. (1975) to describe the kinetics of phosphate adsorption on
the surface of gibbsite. The equation employed was

dg _ ,.-Bq _ ,.-B
at Ae Ae ,

(20)
where A, B, and ¢ are defined as in Eq. (19). This model was found
satisfactorily to describe the adsorption of a phosphate solution by
gibbsite.

An Elovich-type equation derived by Lindstrom et al. (1971) was
used by Van Genuchten et al. (1974) to study to movement of a pesticide
through a water-saturated Norge loam soil. The equation is

dS _, 6C .-bS bS
Tk e -k, Se , (21)

where k1 and k2 are the forward and backward kinetic rate coeffi-
cients, respectively, b is similar to the surface stress coefficient
described by Fava and Eyring (1956), and S, C, 9, and p are as defined
previously for Eg. (9). The equilibrium adsorption isotherm associated
with Eq. (21) is given by
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exp(-2bS) . (22)

5.6 Fava and Eyring Model

In their study of the adsorption and desorption of detergents on a
fabric surface, Fava and Eyring (1956) employed the first-order kinetic
equation

%%—= 2k1¢ sinh b¢ . | (23)

where k1 and b are constants and ¢ is defined as the distance from
equilibrium divided by the initial distance from equilibrium. Thus ¢
is given by

t
e (24)

where S{o0) is the initial amount adsorbed and S{«) is the equilibrium
amount adsorbed. The agreement obtained by Fava and Eyring with
experimental data was quite good.

Hague and Sexton (1968), Lindstrom and Boersma (1970), and
Leenheer and Ahlrichs (1971) have also used Eq. (23) to model the
adsorption of pesticides by soil and organic matter. Lindstrom and
Boersma (1970) compared results obtained using this equation with those
obtained using the Freundlich adsorption isotherm and the reversible
Tinear model.

5.7 Combined Equilibrium and Kinetic Model

Cameron and Klute (1977) have used a combination of the linear
equilibrium isotherm (4) in the form
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.8
S=kypC (25)

together with the first-order linear kinetic model, Eg. (15),

Rk do-ks (26)
where k1 and k2 are the adsorption and desorption rate constants,

to develop an adsorption-desorption relationship that describes the
rate of solute transfer between the solute and the solid phases of the
soil. The reasoning behind this approach is that a chemical in the
soil may react at different rates with different components of the soil
matrix. For example, a chemical may be adsorbed rapidly by the various
mineral surfaces in the soil but slowly by the soil organic matter.
Cameron and Klute consequently assumed that the adsorption of solutes
by the soil matrix is controlled by two types of reactions: one that
is rapid and consegquently obtains an almost instantaneous equilibrium
and one that is slower and is best described as a kinetic reaction. If
we represent the concentration of the adsorbed solute in the soil
matrix resulting from the kinetic reaction by S1 and the adsorbed
concentration in the soil matrix resulting from the equilibrium reac-
tion by 52, then the total adsorption S can be obtained as the sum of

S1 and 52, and the total rate of adsorption is given by

3S 1 2
X5 T - (27)
Since
oS
1 0
i kl-a C - sz (28)
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95,

P

8 oC
355 ° (29)

Eq. (27) may be written

S .\ 8¢ 8 3C
el k1 5 C kZS + k3 5 5t (30)
where kl’ k2, and k3 are the adsorption rate, desorption rate,
and equilibrium constants respectively.

After a sufficiently long period of time the reaction described in
Eg. (30) will reach equilibrium, with the resultant adsorption isotherm
being

K
9 1
S=2f{-~+k,]C . (31)
p(“z 3)

Since Eq. (31) s a linear adsorption isotherm, it is easily seen
that a laboratory determination of the adsorption isotherm could tend
to mask the kinetic component.

Cameron and Klute applied their combination equilibrium-kinetic
model to data obtained by Elrick et al. (1966) on the movement of the
herbicide Atrazine in soil and to data on phosphorus (KH2P04) move-
ment obtained by Cho et al. (1970). The best agreement was obtained
for the data on Atrazine movement in soil. Figure 3 shows the break-
through curve obtained by Elrick et al. for Atrazine in Honeywood silt
loam. The solid line is the theoretical breakthrough curve calculated
under the assumption that the adsorption of Atrazine by the soil matrix
can be described by the Tinear equilibrium adsorption isotherm (31)
alone. As can be seen, the early breakthrough pattern is well
described by the theoretical curve; however, the experimental values of
C/CO do not approach a value of unity as quickly as predicted by the
1inear adsorption theory. Figure 4 shows the fit of the Cameron-Klute
model to the data obtained by Elrick et al.
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6. ANALYTIC SOLUTIONS OF TRANSPORT MODELS

As was discussed in Sect. 3, the differential equation governing
convective-dispersive solute transport in anisotropic media is given by

o€ _ o ’C B G 5 aC
05t 7 ° EYN(DX SIJ "0 gy (Dy ay) Y (Dz at)
] 9 9
- 5}‘(QXC) - 5§-(qu) - 5}'(QZC)
R
-0 e Q, (32)

where C is the concentration of the solute in the soil solution and S
is the concentration in the soil matrix. Once the rate of solute
adsorption by the soil matrix %%— and the sink term Q have been speci-
fied, the simulation of the transport of a reactive solute by ground-
water may be accomplished by the solution of this differential equation
subject to various initial and boundary conditions.

A solution to Eq. (32) that can be written in closed form is
called an analytic solution. Such solutions are difficult to obtain,
and, in general, this equation must be solved by a numerical technique,
such as the finite-element method or the finite-difference method. The
difference equations that result from the application of these methods
are generally solved with one of the following iterative methods: the
line successive over-relaxation (LSOR) method described by Young
(1954), the iterative alternating direction implicit procedure (ADI) as
presented by Peaceman and Rackford (1955), or the strongly implicit
procedure (SIP) introduced by Stone (1968). For a discussion and com-
parison of the various numerical methods used in solving Eq. (32), the
interested reader is referred to Baetsle (1967), Shamir and Harleman
(1967), Oster et al. (1970), Rubin and James (1973), Smith et al.
(1973), Watts (1971, 1973), Aziz and Settari (1972), Pickens and Lennox
(1976), Trescott and Larson (1977), and Mansell et al. (1977).
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Most of the analytic solutions of Eq. (32) that have appeared in
the Tliterature are for the one-dimensional version of this equation.
The one-dimensional versicn, under the assumption of constant coeffi-
cients and without the sink term, can be written as

3C _ 5 8%C , 3C p 3S 33
3t - Pz - V3 g ot °* (33)

where V is the x component of the Darcy soil water flow velocity. This
section reviews the various analytic solutions of this equation that
have appeared in the literature.

6.1 Linear Isotherm
If a linear adsorption isotherm of the form S = KdC is assumed

to exist between the soil matrix and the soil solution, then the
one-dimensional equation (33) reduces to

aC _ 92C aC
5% = Do 5 - Vo 3 (34)

where Dy = D/(1 + pKd/e) and VO = V/(1 + pKd/e). Solutions to

Eq. (34), subject to various initial and boundary conditions, have
appeared for both finite soil columns and semi-infinite soil columns,
We will Took at the semi-infinite case first.

6.1.1 Semi-infinite soil columns

The best-known solution of Eg. (34) was presented by Lapidus and
Amundson (1952). Assuming initial conditions of the form

C(x, 0) =
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the solution of (34) presented by Lapidus and Amundson is

2
v
C(x, t) = exp (ﬁw %gﬁ—)m(x, t) + fo(x, t)] , (36)
where
-1/2

(37)
and
folx, t) = (4'nDot)~l/2
t 2 2 3/2
Vgs X ey
x J Cols) exp [4D0 A Gy (t - s) ds . (38)
If Co(t) and Zo(t) are constants, CO and ZO’ respectively, then
the solution (36) reduces to
C{x, t) -~ Zo _ 1
(éo ~)Zo 0 = §-[1 + erf(va q - x/a,/q
+ exp <%ﬂ> erfc (va;q + /az/q)], (39)
0

where g is the volume of the soil solution that has entered the soil
column since time t = 0 and is given by



37
q =v0te .
a4 and a, are given by
a; = VO/(4GDO)
a, = eVO/(4DO),
and erf and erfc are the error and complementary error functions

respectively.
When Co(t) js the step function given by

the solution (36) reduces to

Cx, t) =
Co H(Vgat) + (C_ - Co) H[Veo(t - T)] , T <t <+o, (47)
where
H(v) = %-[1 + erf(Vqiv - xvay/v) + exp(Vy/Dg) erfc(vajv + xva,/v)] .

(42)
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For the special case C, = 0, this solution has been used by Warrick et

al. (1971) and Balasubramanian et al. (1976). Assuming initial condi-
tions of the form

C(x, 0)

i
S
b
v
O

-

c(o, t)
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then the solution (39) of Eq. (34) reduces to

+ Vgt
Clx, t) - 1 arfc _&_1,.\,’_0,13.__} + 1 exp Vox erfc[~‘——0—7—x 175 ] . (44)
¢, 25" aong0) 2] 2 Bo (4Dgot)

This form of the solution has been obtained by Rafai et al. (1956),
Ogata and Banks (1961), and Flrick et al., (1966).

Davidson et al. (1968) found an analytic solution to Eq. (34)
under the boundary conditions

C{x, 0) =0, O0<x,

Vo C(0, t) - Dp 2% (0, t) = VoCgs O <t T, (45)

Vo C(0, t) =0, t>T.

These boundary conditions simulate the agriculturally interesting prob-
Tem of a uniform application of a solute solution (for example, a
herbicide) to the surface of the soil for a time period T, after which
solute-free water is applied and the solute slug is displaced through
the soil. This type of application of a solute solution is called a
pulse application.

A solution to Eq. (34) under the above boundary conditions was
also reported by Lindstrom et al. (1967). lai and Jurinak (1972a) used
these solutions to study the dynamics of Na+ and Mg2+ transport
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through Yolo loam soil at different pore velocities. They found that
at high pore velocities, there was good agreement between theoretical
and experimental retention curves. At lower pore velocities, however,
the transport of cations was faster than predicted by the model.

Numerous other analytic solutions to Eq. (34) for a semi-infinite
column and various initial conditions have appeared in the literature.
See, for example, Banks and Ali (1964), Cho (1971), Cho et al. (1970),
Ogata (1964, 1970), Ogata and Banks (1961), Brenner (1962), Gershon and
Nir (1969), Villermaux and Van Swaaij (1969), Eldor and Dagan (1972),
Lindstrom et al. (1967), Crank (1956), Marino (1974), Banks and Ali
(1964), Kirda et al. (1973), and Warrick et al. (1971).

6.1.2 Finite column

Bastian and Lapidus (1956) obtained an analytic solution of Eq.
(33) subject to the linear adsorption isotherm S = KdC which is
applicable to solute transport in a column of finite length. 1In order
to be able to find a solution of (34) for a finite column of length L,
the behavior of the fluid phase at each end of the column must
be described. The boundary conditions used by Bastian and Lapidus are
given by

Vo C(0, t) = Do 32 (0, £) = VoCo, 20,
3 =0, t>0 (46)
3% s ’ z. s

C(x, 0) =0, O0<x<L,

where C0 is the initial concentration of the solute introduced to the
column at time t = 0. The use of boundary conditions of this type has
been discussed in detail by Wehner and Wilhelm (1956). These boundary
conditions describe slug flow of the solute when D = 0 and perfect
mixing of the solute in the soil matrix when D = +w,



40

Cleary and Adrian (1973) give an analytic solution applicable to
solute transport in a finite column. The initial and boundary condi-
tions they use are given by

C(0, t) =Co, t>0,

aC =
"é')? (L: t) - 09 t>0 s (47)

C{0, x) =0, 0=<x<L,

where CO is the concentration of the solute in the soil solution.
Solutions similar to that given by Cleary and Adrian have been used by
Gupta and Greenkorn (1973), Kirda et al. (1973), Lai and Jurinak
(1972b), Warrick et al. (1971), Brenner (1962), Rose and Passioura
(1971), and Bresler (1973).

Selim and Mansell (1976) give an analytic solution to Eq. (34) in
a finite column subject to the boundary conditions

C(X,O)zc_ia Oixil—a

3C }

5’;('—: t) N 03 tz_o > (48)
VOC(O,t)"Do‘g*S(“(Oat):Vocos 0<t=<T,

Vo C(0, t) - D 2= (0, t) = 0, t>T,

where Ci is the initial solute concentration throughout the soil

column and CO is the concentration of the applied solute solution.
These boundary conditions describe a continuous application of a solute
solution of constant concentration for a time period T, after which
solute-free watér is applied to the soil in other words, a pulse
application. The case of a continuous solute application can be

obtained as a special case of a pulse application by choosing T very
large.
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6.2 First-Order Kinetic Reversible Linear Model

We will now present an analytic solution of Eq. (33) subject to
the first-order kinetic reversible linear adsorption equation

If we assume initial conditions of the form

C(x, 0)
S(X, 0) = ND(t) s x>0, (50)
C(0, t) = Co(t) , t>0,

Z(t) , x>0,

the solution given by Lapidus and Amundson (1952) is given by
C(x, t) = exp [Vx/2D][Yi(x, t) + Y,(x, t)] , (51)

where Y2 js defined by the relations

F(t) = exp (~k,t)
t

X -x2
* j Io [2Vkikyes(t - s)/pl /ﬂ%ﬁgg.EXP(‘zﬁg = Sd) ds , (53)
0




42
d = V2/4D + kyp/6 = Ko , (54)

and Y1 is defined by the relations

(s}

Vi(k, t) = j (It % - 8) - H'(t, x + )] X(s)
0

+ [H(t, x = s) = H(ty, x +s)] Y(s)} ds , (55)
— t }/_,,_______.__, ?
= o2 ayi kik -q2 d
H(t, q) —-{;~exp(-k2t) i 10[2 ﬂl?fﬁi.(t - s)] exp [7%;-- sd] 7% .
(56)
X(s) = Zy(s) exp(Vs/2D)/D , (57)
V(s) = (ka/2D) Mo(s) + = Zo(s)] exp(Vs/2D) , (58)

where IO is the modified Bessel function of zero order.

The complexity of the solution to Eq. (32) subject to the linear
first-order kinetic adsorption equation (49) is characteristic of
solute transport problems when any adsorption mechanism but the linear
adsorption isotherm S = KdC is assumed. For the special case Co(t)
= Cqs ZO = Ng = 0, Eq. (51) reduces to

C( = ’
X5 t) = €y exp (Vx/20) [ F(t) + kofg F(s) ds T .
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Numerous other analytic solutions of Eq. (33) subject to the
linear first-order kinetic adsorption equation (49) and various initial
conditions exist in the literature. See, for example, Horenstein
(1945), Lindstrom and Boersma (1971a, 1971b), Lindstrom and Narasimhan
(1973), Lindstrom and Stone (1974a, 1974b), Lindstrom and Oberhettinger
(1975), Nielsen and Bigger (1962), Ogata and Banks (1961), Ogata
(1964), Eldor and Dagan (1972), Oddson et al. (1970), Lindstrom (1976),
Gupta and Greenkorn (1973), and Marino (1974).

6.3 Analytic Solution of the Cameron-Klute Model
In the Cameron-Klute combined equilibrium and kinetic model for

adsorption, it was assumed that the total adsorption had two compo-
nents, one governed by the Tinear adsorption isotherm,

S=k3

and the other governed by the first order linear kinetic model,

t 95

where the kinetic componen =%

is given by
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o8
v

|

0
= ky 2 C - koS (60)

[
ct

We will make the following dimensionless transformations:

T

il
i
i

vt/L , B = vlL/4D , £ = x/L ,

C

1
i

C/CO s N DS/BCQ s Nl = OSI/GCO s (6])

Kl = Lkl/V s K2 = Lkz/V s K3 = k3 .

The dimensionless time T is equivalent to the number of pore volumes
that have passed through a column of length L. The Brenner number B is
a measure of the relative importance of convective transport as compared
with dispersion (Rose and Passioura 1971). The scaling parameter Co
is chosen as the concentration of the incoming solute.

Substituting Eq. (61) into (59) and (60), we obtain

3C . 1 22C _aC _ aly
(] + K3) 5{'_ 4B SEZ'" 3E - 357 * (62)
oN
L= KC - KNy (63)

The initial conditions used are as follows:

co, =1, T>0,
(¢, 0) =0, ¢&€>0,
(64)
Neg, 0) =0, &>0,
1im C(g, T) = 0 .

Ero
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The solution of (62) and (63) subject to (64) given by Cameron and
Klute is

[or]

C(g, T) = 75 lexp(2Be)] J expl-h? - B2g2/h?] J(x, t) dh , (65
i

W

where

w= [Be2 (1 + K3)/"Ifé

K. BeZ/n?

x
il

1

, 2 2
Ky [T - BE (1 + K3)/h ]

<
il

and J(X, Y) is the J function defined by
3% ) =1 - &Y o et 102/ VE) dt .

The function J(X, Y) appears in a wide variety of problems, and there-
fore no attempt will be made to list its properties. The reader is
referred to Luke (1962) or to the original work of Goldstein (1953).
The total adsorbed concentration N of solute in the soil matrix is
given by



4%

T
N(g, T) = K3C(g, T) + K, J C(g, u) exp[~Ky(T - u)] du , (66)
0

where C(£,T) and C(&,u) are calculated from (6.5).

If K3 = 0, Eq. (65) reduces to the dimensionless form of the
solution obtained by Ogata (1964) for the first-order reversible
kinetic model. If K2 = 0, Eg. (65) reduces to

-—t

Cle, T) = % fexp[2Be(1 - M1 erfele(8/T')/7 - m(aT)'/?)

+ exp[2BE(1 + M)] erfele(B/T)Y% + mBT) /%1y, (67)

where )
M= (1 + KZ/B)]/' ,
T = T(1 + K3)

Equation (67) represents the solution to a combination equilibrium and

first-order linear irreversible kinetic model. If K1 and K2 equal

zero, this combination model reduces to the Tinear isotherm model

solved in Sect. 6.1. The solution (36) can be obtained from Eq. (67)

by setting M = 1.

6.4 Convolution Solutions

This section presents a solution, based upon the use of convolu-
tion integrals, of the one-dimensional equation describing the flow of
a solute through an adsorbent soil. For simplicity, we assume that a
Tinear adsorption isotherm describes the adsorption equilibrium hetween
the soil and the soil solution. Thus, as in Sect. 6.1, Eq. (33)
reduces to
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3C 92C 3C (68)

=
]

DKd>
0 D/(“ </

DKd>
0 W(“"é" .

The analytic solution of Eq. (68) corresponding to an instantaneous
release of a finite quantity of material M (g/cmz) is given by

<3
1]

C{x, t) =

exp [.. %%99_2_] . (69)

vinDyt

For a more general time-dependent release, the solution of (68)
may be obtained by the use of a convolution integral. Assume that,

instead of an instantaneous release of a finite quantity of material,
the material is continuously introduced at the rate g%‘ = f(t)

[g/(cmzosec)]. The concentration distribution resulting from this
continuous discharge is given by

o f(s) -[x - Vo(t - s)]z}
C 3 t - dS . (70)
0 Vi, i I-s exp{ Molt -s)

From Eq. (70) the concentration distribution corresponding to a
square pulse release of amplitude CO and duration TD is given by

D
C(x, t) =

Co 1 exp{-[x - Vo(t - 5)?] }ds -
T | A 40, (t - 5) )
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for0<t<TDandby

D 2
C(X, t) - CD J 1 "*[X - Vo(t - S) ] d 79
ZEDN 0 vVt - s =P ADo(t - s) ’ (72)

for TD it'

This equation may be integrated to give

C(x, t) = Jhl~exp Vox g{x, t) » 0<t<Ty,

VX ]
= ool =02 - -
C(x, t) 77, exP {20, [9(x, t) -~ g(x, t - Tl » Tp<t,

where
ot 1) = [err(ttat) -] e (3g1) - [ere (tat) ] e (- 382)
0

/AD,t

In general, for releases other than square pulses, the integral (70)
must be evaluated by numerical quadrature.

7. CONCLUSION

This study provides a state-of-the-art review of selected aspects
of the mathematical theory related to the transport of reactive solutes
in soil. It focuses on two primary areas of interest: the mathemati-
cal models in current use for description of the adsorption-desorption
process in soil and the known analytic solutions to the differential
equations decribing the convective-dispersive transport of reactive
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solutes in one dimension. It is expected that the review provided by
this study will be of assistance in the development of improved method-
ologies for assessing health effects associated with the terrestrial
transport of both radioactive and chemical pollutants from energy-
related technologies.
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