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ABSTRACT

The difference equations for representing the diffusion theory
approximation to neutron transport depend on the method of formula-
tion. A parameterized set of equations were implemented for slab
geometry with mesh points located at material intersections. Such
formulations as the mesh edge with four nearest neighbors on planes
are included by the equations, as well as the higher coupling of eight
nearest neighbors on planes for such formulations as linear finite
element. The formulations of primary interest were applied to two
dimensional problems, and to three dimensional problems with coupling
to nearest neighbors on planes. Solutions were obtained to multigroup
problems over a wide range of problem type. Selected results are

reported and conclusions regarding the formulations.
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I. DISCUSSION

Background

This report documents an exploration of the differenée equations
for approximating neutron transport with diffusion theory in slab
geometry. A variety of approaches produce different formulations.

A parameterized formulation coupling near neighbor meshpoints on
material interfaces was implemented in the VANCER computer code
treating up to three space dimensions. Results were obtained for a
wide variety of problems. This testing on problems representative
of application allows conclusions to be drawn about a preferred
formulation.

In 1965 we elected to move the location of the mesh points from
the material intersections, as used in the earlier ORNL codes such
as EXTERMINATOR1 to the centers of the elemental volumes when the
programming started on the CITATION neutronics codez. With mesh
points located internally, the reaction rates are accurately repre-
sented, considering that the neutron flux value at the point is a
reasonable approximation of the average over the elemental volume.

The net leakage between points is the same as with a mesh inter-
section formulation inside homogeneocus materials with uniform

spacing. However, the approximation across material interfaces is
rather crude compared to that of mesh edge (the meshpoints

located on intersections), which results in no interfaces between
adjacent meshpoints. Simple tests indicated that the two formulations
had about the same error associated with the finite difference
formulation when modest differences in the diffusion coefficient
occurred between adjacent materials. Even with large differences

in the diffusion coefficients, the difference in accuracy between

the two methods was found to be usually small, at least small relative
to the error associated with applying a finite difference formulation.

Recall that in those days, the state of the art was such that
generally only two space dimensions could be treated. The computation
cost of treating three dimensions could seldom be justified. However,

we often needed the capability to treat three dimensions, at least



in a coarse mesh model, to assess effects not easily taken into
account by treating fewer than the full three~dimensional reactor
core. Also, the emphasis in the CITATION code development was to
treat a reactor operating history to the point of refueling, and
further, with selective and delayed recycle.

We found that the computation cost could be minimized by locating
mesh points at the centers of the elemental volumes. Only one set
of nuclear properties were required at each point, as to determine
fission source or downscattering, rather than weighting the properties
of abutting materials. Further, the implementation cost was lower
(starting from scratch) due to simpler coding. A further advantage
was the improvement in the results reported: each point had a single
power density and other characteristics. A disadvantage came from
the incomplete assessment of peaking by assessing only the conditioms
at mesh point locations, so that a peak power density at a material
interface was not identified, and this leaves much to be desired in
many applications. (However, interpolation between results at mesh
point locations can not be expected to have high reliability.)

3 effort

In implementing extended capability in the VENTURE code,
directed at fast reactor applications, the mesh centered formulation
was used. This formulation had found wide acceptance at many instal-
lations. Extended capability was made available at low computation
cost, including provision for the fission source distribution function
to be material dependent (accounting for the difference between core
and blanket of a breeder reactor), and also the use of a simple Pl
approximation which involves carrying a net V*J term to correct the
scattering source. These extensions are not simply implemented with
mesh points'located on material interfaces and would add more to the
cost of computation.

Why then implement the capability to locate mesh points on material
interfaces? There were several reasons. Special capability is needed in
analysis to treat complicated geometries. We rule out the use of a mesh
centered formulation as being unreliable for treating the skewed triangles
needed to describe complicated geometries simply, like the cylindrical

control rod in a hexagonal assembly, or the core containing badly distorted



fuel assemblies. What formulation should be used if the points are
located on verticies of triangles? Is the finite element approach
superior? Thus we have attempted to produce information needed to
guide continuing effort on diffusion theory methods development and

implementation.

A qualification is placed on the information reported herein due
to the objective of the effort. This objective was the identification
of preferred formulations for treating representative reactor core
problems with diffusion theory which require a three-dimensional repre-

sentation.

Regarding Available Information

There is published information about the subject. Unfortunately
the reader is often led to believe that a particular method, especially
a new one, is superior to all others. Limited testing of different
formulations and limited comparative evaluation of the different methods
leave us unable to make reliable judgements and decision. Often the
problems which will arise in application have not been identified, nor
techniques proven to produce reliable results in wide application on a

routine basis.

There is published information which indicates that the mesh centered
formulation is inferior to the mesh edge formulation. Excepting certain
applications, and the triangular mesh situation discussed later, we find
the mesh centered formulation to be generally acceptable and often the

most cost effective of the two.

Application of "higher-order" Taylor series expansion formulations
p

has been tested at BAPL.4

Representative Application

In serious reactor core analysis, there are many zones of different
nuclide compositions and hence macroscopic properties. Even though a
first core may have large homogeneous zones (often requiring homo-

genization to eliminate a fine scale detail which can not be treated),



after exposure the nuclide densities and hence macroscopic properties
vary continuously over the reactor. Since this variation must be

taken into account, a large number of zones having different macro-
scopic properties must be considered. Likely a lower bound for
reliable analysis is 103 = 1,000 zones in three dimensions, and more
may be required. Likely at least 203 = 8,000 mesh points are required
just to adequately account for the geometric variations, and often many
mcre. So we start with the assumption that there are many mesh points.

The test problems normally used to evaluate methods are not
representative of requirements. The clean core problems must of course
be solved, but these are a small subset of those of interest.
Identifying the method which produces the most accurate results, or
the lowest cost of computation for a given accuracy, for simple problems,
probably makes a negative contribution by a false generalization.

There is need in analysis for methods which treat simple geometric
arrangements at low computation costs. If a reactor history is to be
followed through several refuelings, severe compromises must be made to
hold down the computation cost to even a reasonable level. The state of
the art is yet such that detailed three-dimensional modeling with many
neutron energy groups can seldom be done. The cost is prohibitive.
Therefore, coarse modeling is usually necessary, and certainly para-
metric survey studies must be done without consideration of fine detail.
The state of the art is such that two~dimensional analysis can be done,
one-dimensional calculations must often be utilized, and special schemes
are very useful. Thus the separability approximation, synthesis of
some form, and other techniques are needed.

In this effort we are primarily interested in a method which admits

treating considerable detail and is adequate when the geometry is simple.

The Neighbor Coupling Penalty

In slab geometry, a mesh point has four nearest neighbors on a
plane and two on adjacent planes, total six. Thus in the lowest order
approximation of transport, the leakage associated with an elemental
volume is through the six surfaces, and the difference equation yields
a dependence of the flux at a point on the values of the flux at these

six neighbors. So with either the mesh center or mesh edge formulations



in wide use, a point has six neighbors, minimal coupling. Actually
there are eight close neighbors to a point on a plane and nine on each
of the neighboring planes, a total of twenty-six close neighbors.

Any sophisticated formulation of the flux distribution over the
elemental volume about a mesh point involves coupling these twenty-six
neighbors. Application of the finite element method in its lowest
order, linear, results in such coupling. The incremental cost of
computation due to this increase in coupling is difficult to justify.
Either the error in the results must be sufficiently reduced to justify
the increased cost, or it must be possible to reduce the number of
mesh points in the problem to offset it.

Note that higher order formulations which couple in more than just
the close neighbors, significantly increase the number of points in-

volved, and increase the computation cost.

Methods Backup

Considerable effort went into analysis of and understanding the
various difference formulations obtained from different approaches.
Thus the one-dimensional equations can be displayed and tested.
Explicit solutions can be obtained for one-group, bare reactor problems
treating up to three dimensions. Documenting this effort is beyond the
scope of this report. However, this backup effort was of crucial
importance and produced information which was used to select between

major options. The following comments are offered.

1. Rather complicated techniques may be used to develop the
difference formulations. Thus a two-dimensional finite element
scheme on planes may be used with a simple difference formula-
tion tc couple between planes. This admits sophistication
across fuel assemblies without serious impact from the treatment
of the third dimension. The results can have higher accuracy
than obtained with the simple mesh edge difference formulation
and may well be used to advantage.

2. The incremental cost of computation can not be justified to
couple more than close neighbors (using higher ordered
formulations), and likely is not justified to treat more than
near neighbors in the axial coordinate if the method is to be
competitive.



3.

S.

The relatively high accuracy of the equations resulting from the
usual finite element scheme in its lowest order (linear), in
spite of the weak formulation, came as a surprise; theoretical
justification for this is not evident.

“hereas the simple difference equations admit only positive
flux solutions given positive nuclear properties, indiscriminate
application of other formulations admit negative solutions.
Generally positive results are assured only if the mesh spacing
is less than

A < D
oz

where D is the diffusion coefficient, I is the removal cross
section, and a is a parameter which depends on the formulation
method (o = O for the simple difference formulations). This is
a rather severe bound. A code written for playing games can be
allowed to do anything, but one for general application must
address this difficulty and hopefully take action to prevent the
generation of negative flux values, an acceptable mathematical
solution but unacceptable in application, especially since the
multiplication factor may not be simply associated with a unique
and most positive eigenvalue.

An overall neutron balance is complicated. Some codes, at least
the ones we have developed, require that an overall neutron
balance be satisfied and allow the multiplication factor to be
estimated from it. The usual boundary conditions can readily

be satisfied (non-return, zero derivative, and even the less
important zero flux) but the sum of the difference equations
leaves special boundary terms which must be accounted for.

There are surprises in treating two and three dimensions not
evident in one dimensional analysis. Not only must cross
derivative terms be ignored in a Taylor expansion approach,
but rather simple approximations which seem reasonable produce
unacceptable solutions.

It is practical to introduce free parameters in the difference
equations. These take on specific values for the difference
equations which result from a method of development, and admit
variation in the values over a wide range, useful for testing
and possibly in application. Implementation of procedures to
admit these free parameters is relatively easy if the equations
are written out to express the dependence throughout the
calculational procedure (as if we ever do this before starting
a program!).



8. Examination of the dominant error vector eigenvalues on inner
and outer iteration indicates that they have but small depend-
ence on the formulation. It is of interest that fixing the
number of mesh points, the outer iteration eigenvalue was found
to increase as the size of a bare reactor increases (fixed
nuclear properties) while the inner iteration eigenvalue
decreased.

9. Results indicate that significant improvement over the simple
difference formulations can not be expected if the source and
removal terms are treated differently. It is attractive to
reduce computation cost by using the average local source, but
a better approximation of the flux distribution over an elemental
volume for the removal. Although this can be done, it is highly
recommended against, because it can produce inferior results in
many situations.

Remark on Hexagonal Geometry

The hexagonal fuel assembly presents a special situation. With the
mesh point centered in an assembly, each point has six nearest neighbors
on the plane equally distant, and the leakage across the associated six
surfaces should be a reasonable approximation. (In slab geometry there
are four neighbors and four leakage surfaces.) With mesh centered triangu-
lar geometry, six points per hexagon, a point has only three neighbors.
Leakage is treated across only three surfaces, and is a rather coarse
approximation. Locating the mesh points at the triangle corners (one on
each corner of the hexagon and one at the center) causes each point to
have six neighbors, and the six leakage surfaces admit a reliable leakage
approximation. In the lowest-order mesh centered formulation for triangles,
each hexagon has six points. With one point in the center and each corner
point shared by three hexagons, only three points are associated with
each hexagon (although boundaries reduce sharing). So about half as many
points are required as mesb centered and the leakage approximation is
improved. Thus as the formulation goes from 3 to 6 points per hexagon,
doubling the number of points, an expected reduction in the difference
approximation error may not occur. Extensive testing has been done on
problems of interest, some of which is reported in the literature,5 which
indicates that the mesh centered formulation may not be the preferred
one. More sophisticated approximation of the flux distribution has also

been done with good results,6



Remark on the Internal Black Absorber

We have done only a small amount of testing in application of the
internal black absorber representation. This approximation in useful .
for representing control rod explicitly in the thermal range in a thermal
reactor, and for blocking out a section of the geometric description. An
extrapolation distance into the absorber is used to estimate the flux
derivative at the surface relative to the flux, a non-return boundary
condition yielding the net leakage rate of neutrons across the surface.

We do note that carrying along this formulation complicates the coding
and also the accounting, as in an overall neutron balance. We have
used schemes of approximating the internal leakage using both the next-
to-latest iterate flux values and the latest ones to reduce the amount
of calculation required to determine the multiplication factor with an
overall neutron balance. The discrepancy should usually be small and
not impact the iterative process except when the leakage is a large
fraction of the total neutron loss rate.

We are aware of good experience in representing internal black
absorbers with the mesh centered formulation. This is perhaps surprising .
when the value of the flux at the surface is not calculated, but on the
other hand the linear approximation of the flux outside the absorber is *
made from the mesh point to the surface, not all the way across the

adjacent differential element.

On Solving the Equations

The usual inner, outer iteration scheme was used to solve problems.
Although undoubtedly there is a class of problems up to some size which
can be solved economically by direct inversion of the space problem, this
scheme simply is not competitive when a large amount of data must be
moved in and out of computer memory.7 With usual iteration schemes, the
data is carefully partitioned into the needed blocks to support sweeping
the mesh in iteration. With only local coupling between points in space,

. the band width of needed data is narrow, a small amount of data is in-
volved in comparison with the filled matricies which must be treated with
direct inversion. The data handling burden can not be ignored in serious .

implementation effort.



IT. IMPLEMENTATION

A copy of an early version of the VENTURE code was used as a starting
point. Major revisions were made to the basic data handling procedures.
Only the "multi-plane-stored" mode of calculation was retained, which
limits application to two-dimensional problems which can be held in memory
for inner iteration at each group.

The coupling interface data file specifications were modified to
allow an interpretation in the sense of the mesh edge formulation.

The routines which generate the equation coefficients for slab
geometry were revised to introduce the parameterized mesh edge formulas-
tions. These involve either four nearest neighbors on planes or the
eight close neighbors on option, and the nearest neighbor on each adja-
cent plane.

The iteration routines were modified to treat the equations. The
changes include treating the full coupling on option, consistent source
calculation or use of the local source on option, and consistent calcu-
lation of the multiplication factor from an overall neutron balance,
and from the residues approach on termination.

Average flux and power density values were generated and printed
for the elemental volumes each surrounded by mesh points. This step of
processing is deemed to be quite essential to support testing and for
general application. The zone, group flux values were placed in the
file needed for exposure calculations. Thus depletion capability with
this code was made available by implementing it in parallel with the

VENTURE code in the local system for core analysis.

Calculational Procedure

The basic procedure of calculation was that documented in the
VENTURE code report with modest changes. A reordering of the iterative
procedure was done to facilitate the estimation of the multiplication
factor from the overall neutron balance because additional information

was required. A number of improvements in the VENTURE code which were
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incorporated prior to the version 2 release were not incorporated in
VANCER. These include modifications to the acceleration procedures on

both inner and outer iteration.

The Programmed Equations

The equations which were applied are presented here. A mesh point
and its close neighbors are shown in Fig. 1. Also shown are the mesh
dimensions considering a specific point (the mesh spacing varies), and
the local material properties. Note the subset two-dimensional mesh
located on a plane. Only the nearest mesh point on each adjacent plane
is considered in writing the difference equations for the element
associated with a mesh point in three dimensions. A leading coefficient
of 2 for each coordinate has been cancelled out of the equations, 8 in

three dimensions.

The point flux value is calculated in the iterative process as

dependent on close neighbor values as

¢(J,I,B,K) =

[ ¢(J-1,1,B,K) * DR(J,%,B,K) + ¢(J+1,I,B,K) * DR(J+1,I,B,K)
+¢$(J,I-1,B,K) * DB(J,I,B,K) + ¢(J,I+1,B,K) * DB(J,I+1,B,K)
+¢(J,I,B-1,K) * DA(J,I,B,K) + ¢(J,I,B+1,K) * DA(J,I,B+1,K)
+¢ (J+1,1+1,B,K) * DH(J,I,B,K)

+¢(J+1,1-1,B,K) * DH(J,I-1,B,K)

+¢(J-1,I-1,B,K) * DH(J-1,I-1,B,K)

+$(J-1,I+1,8,K) * DH(J-1,I,B,K)

+ TS(J,I,B)]/ TL(J,I,B,K) .
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where:

DR(J,I,B,K) =

TYT * TZF IYB * TZF
ul*[ R D(2,K) + XL D(3,K)

TYT * TZA TYB * TZA 4 (7.1
+ i, D(6,K) + N D(7,K)

-uz*[?XL * TYT * TZF * I(2,K) + TXL * TYB * TZF * %(3,K)

+ TXL * TYT * TZA * £(6,K) + TXL * TYB * TZA * Z(7,Ki]

TXL * TZF TXL * TZF
oy k=2 =0 % i ol s
5 [ TYT D(2,K)  + TYB D(3,K)
TXL * TZA ‘ TXL * TZA
adelvton vl % fnlulnben I duniclat
+ T D(6,K) + B D(7,K)J , or
DR(J,I,B,K) =

Z*uo*[?YT % TZF % C, + TYB * TZF * Gy + TVT * TZA * C

for extrapolated or non-return boundaries.

DR(J+1,I,B,K) =
TYT * TZF TYB * TZF
o2 % — s %
%y [ TXR D@,K)  + TXR D(4,K)
TYT * TZA TYB * TZA
4 ———— *® ——
TXR D(5,K) + R * D(8,K)

6

+ TYB *

—uz*[%XR % TYT * TZF * L(1,K) + TXR * TYB * TZF * I(4,K)

+ TXR * TYT * TZA * 5(5,K) + TXR * TYB * TZA * Z(8,K)]

TZA *



13

TXR * TZF TXR * TZF
g *|== " % T %
5 [ T D(1,K) + VB D(4,K)
TXR * TZA TXR * TZA
+ % —_— %
T D(5,K) + VB D(§,K)] , Or
DR(J+1,1I,B,K) =

Z*QO*[?YT * TZF * C, + TYB * TZF * C4 + TYT * TZA * C_ + TYB * TZA * 08}
J

1

for extrapolated or non-return boundaries.

DB(J,I,B,K)

TXL * TZF TXR * TZF
Kl " % futuduil kS
o [ T D(2,K) + T D(1,K)
TXL * TZA , TXR * TZA ,
+ T D(6,K) + T D(S,K%

*

_QZ*[}XL * TYT * TZF * L(2,K) + TXR * TYT * TZF * L(1,K)

+ TXL * TYT * TZA * Z(6,K) + TXR * TYT * TZA * Z(S,K)]

TYT * TZF TYT * TZF
oy 1222 T LAY 211 7oAl g
as[ XL D(2,K) + TXR D(1,K)
TYT * TZA TYT * TZA
- T %k —_— = %
+ TXL D(6,K) + TXR D(S,K)] s, OT
DB(J,I,B,K) =

2*&0*[TXL * TZF * C2 + TXR * TZF * C1 + TXL * TZA * C6 + TXR * TZA * CS]

for extrapolated or non-return boundaries.



DB(J,I+1,B,K)

TYB

. [TXL * TZF
%1

*
+ TXL * TZA

TYB

-0, % [TXL * TYB
<

+ TXL * TYB

_as*[TYB * TZF

TXL

*
+ TYB * TZA

TXL

DB(J,I+1,B,K)

2*&0*[?XL * TZF

for extrapolated

DA(J,I,B,K)

TZF

g *[TXL * TYT

*
+ TXL TYB

TZF
—ug*[?XL * TYT

+ TXL * TYB

*
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TXR * TZF
D(3,K) + —NE D(4,K)
- TXR * TZA ,
D(7,K) + N D(8,K{]

TZF * £(3,K) + TXR * TYB * TZF * I(4,K)

TZA * Z(7,K) + TXR * TYB * TZA * Z(S,Kﬂ

TYB * TZF ,
D(3,K) + TXR D(4,K)
TYB * TZA ,
D(7,K) + TXR D(8,K{] , Or

C,+ TXR * TZF * C, + TXL * TZA * C, + TXR * TZA * C

3 2 7

or non-return boundaries.

*

*

TXR * TYT ,

D(2,K) + sz D(1,K)
TXR * TYB
Ptk Mot

D(3,K) + 7T D(4,K)]

TZF * I(2,K) + TXR * TYT * TZF * I(1,K)

TZF * L(3,K) + TXR * TYB * TZF * Z(4,K)] , or

d
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DA(J,I,B,K) =

2*&0*[?XL * TYT * C2 + TXR * TYT * Cl + TXL * TYB * C3

+ TXR * TYB * c4]
for extrapolated or non-return boundaries.
DA(J,I,B+1,K) =

TXR * TYT 4 s gy
H]

*
as*[%XL TV . peek) 4

TZA TZA
TXL * TYB TXR * TYB
L A LR 4+ 2=2B 20D
TZA D(7,K) TZA D(S’K)]

—ag*[TXL *ATYT * TZA * £(6,K) + TXR * TYT * TZA * Z(5,K)
1]

+ TXL * TYB * TZA * £(7,K) + TXR * TYB * TZA * Z(B,K)] , or

DA(J,I,B+1,K) =

2

2*@0*‘?XL * TYT * C6 + TXR * TYT * C5 + TXL * TYB * C7 + TXR * TYB * Cg]

for extrapolated or non-return boundaries.

DH(J,I,B,K) =

TYB * TZF TXR * TZF
* + *
OLB [( TXR TYB ) D(4,%) :

TYB * TZA TXR * TZA
L3
+< TXR + VB > D(S’K)j'

—a4* [%XR * TYB * TZF * Z(4,K) + TXR * TYB * TZA * Z(S,Kﬂ

DH{J-1,3,B,K)

- . |{TYB * TZF TXL * TZF
O] | LR a2
3 TXL TYB D(3,K)

TYB * TZA , TXL * TZA
*
* < TXL T T TYB ) D(7’K)]
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—Oth*[TXL % TYB * TZF * L(3,K) + TXL * TYB * TZA * Z(7,K)]

DH(J,I-1,B,K) =

TYT * TZF TXR * TZF
x{ 2ah L oo ) %
o, {( R + T ) D(1,K)

TYT * TZ4 TXR * TZA Y} 4
+( TR + T > D(S,K)]

—OLA* [TXR * TYT * TZF * T(1,K) + TXR * TYT * TZA * Z(S,K)] .

DH(J-1,I-1,B,K =

TYT % TZF TXL * TZF
i il o dba i W
G [( TXL + T > D(2,K)

TYT * TZA TXL * TZA
e Jiehban i) *
+ ( TXL + T ) D(G’K%

-0L4* [TXL % TYT * TZF * L(2,K) + TXL * TYT * TZA * Z(6,K):‘

T8(J,I,B) = lé§l % TFS(J,I,B) + TSS(J,I,B) .

TL(J,I,B,K) =
og* [TXL * TYT * TZF * 7(2,K) + TXR * TYT * TZF * 1(1,K)
+ TXL * TYB * TZF * 31(3,K) + TXR * TYB * TZF * 1(4,K)

+ TXL * TYT * TZA * 5(6,K) + TXR * TYT * TZA * I(5,K)
+ TXL * TYB * TZA * 5(7,K) + TXR * TYB * TZA * Z(S,K{]
+ DR(J,I,B,K) + DR(J+1,I,B,K) + DB(J,I,B,K) + DB(J,I+1,B,K)

+ DA(J,I,B,K) + DA(J,I,B+1,K) + INTERNAL BLACK BOUNDARY LOSSES

+ DH(J,I,B,K) + DH(J-1,I,B,K) + DH(J,I-1,B,K) + DH(J-1,I-1,B,K) .



TFS(J,I,B)

[TXR *

+ TXL *

+ TXR *

+ TXL *
+a6*[TXL *
+ TXL #

+ TXR *

+ TXR *

+ TXL *
+ TXL *
+ TXL *

+ TXL *

+a7*[TKL *
+ TXR *
+ TXL *

+ TXR *

+a, ¥

(I, *
10 [IXL

+ TXR *
+ TXL *

+ TXR *

TYT

TYB

TYT

TYB

TYT
TYT
TYT
TYT
TYT
TYT
TYB

TYB

TYT
TYT
TYB

TYB

TYT
TYT
TYT

TYT

*

»

TZF

TZF

TZA

TZA

TZF

TZA

TZF

TZA

TZF

TZA

TZF

TZA

TZF

TZF

TZF

TZF

TZF

TZF

TZA

TZA

*

17

FS(1,J,I,B)
FS(3,J,I,B)
FS(5,J,1,B)

FS(7,J,1,B)

FS(1,J-1,I,B) +
FS(5,J-1,1,B) +
FS(2,J+1,I,B) +
FS(6,J+1,I,B) +
FS(3,J,I-1,B) +
FS(7,J,I-1,B) +
FS(2,J,I+1,B) +

FS(6,J,I+1,B) +

FS(4,J-1,I-1,B)
FS(3,J+1,I-1,B)

FS(1,J-1,1I+1,B)

FS(2,J+1,1+1,B) + TXR *

FS(6,J,I,B-1) +

FS(5,J,I,B-1) +
FS(2,J,I,B+1)

FS(1,J,I,B+1)

TXL *

TXR *

TXL *

TXR *

TXL *

TXL *

TXR *

TXR *

TXR *

TXR *

TXR *

TXR *

+ TXL

+ TXR

+ TXL

TXL

TXR

TXL

TXR

TYT *

TYB *

TYT *

TYB *

TYB *

TYB *

TYT *

YT *

TYB *

TYB *

* TYT

* TYT

* TYB

TYB

* TYB

* TYB

* TYB

* TYB

TZF *

TZF *

TZA *

TZA *

TZF *

TZA *

TZF *

TZA *

TZF *

TZA *

TZF *

TZA *

* TZA

* TZA

* TZA

* TZA

* TZF

* TZF

* TZA

* TZA

FS(2,J,I,B)
FS(4,J,1,B)
FS(6,J,I,B)

FS(8,J,I,B)}

FS(4,3-1,1,B)
Fs(8,J-1,1,B)
FS(3,J+1,1,B)
FS(7,J+1,1,B)
FS(4,J,1-1,B)
Fs(8,J,1~1,B)
FS(1,J,I+1,B)

FS(S,J,I+1,Bﬂ

* FS(8,J-1,I-1,B)
* FS(7,J+1,1-1,B)
* FS(5,3-1,I+1,B)
* FS(6,J+1,I+1,Bﬂ
* FS(7,J,1,B-1)
* FS(8,J,I,B-1)

* FS(3,J,1,B+1)

* FS(4,J,I,B+1)J .
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KMAX

FS(M,J,I,B) = E Vi (ML) *¢ (J,1,B,L) .
L=1

TSS(J,I,B) = Same as TFS(J,I,B) above except that SS(M,J,I,B)
replaces FS(M,J,1,B),

where KMAX

SS(M,J,I,B) = E ZS(M,L) *¢ (J,I,B,L)
L=1

Where:

¢ = neutron flux.

The

diffusion coefficient.

effective leakage constant for extrapolated or non-return

boundaries.

total removal cross section including absorption, buckling,

and outscatter.

fission spectrum

multiplication factor.

fission production cross section.

inscatter cross section.

mesh point location index, x,y,z, where z 1is across
energy group index.

number of energy groups.

zone index.

parameter coefficients o are discussed next.

planes.
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Values of the Parameters

A set of input parameters is converted to the o values used in the
formulation given above. We show here the values of these input or
initialization values and then the conversion. The conversion is done
to cause the primary term of the source to have no multiplying parameter
(rather than the primary loss term) which somewhat simplifies the
calculation during iteration. These input, reference parameters assume

the primary loss term has a unity leading parameter (no adjustment).

The usual difference equation used in EXTERMINATOR and many other
codes has a consistent source formulation: loss and source are calculated
from the local point flux values. For this usual difference formulation,
an all positive solution is assured and a unique, most positive, positive
eigenvalue (multiplication factor) of a problem given full coupling and

all positive macroscopic cross sections. The parmaters take on the

following values with a, = a3 =a, =ag*= bl = b2 = b3 = 0,
Dimensions 1 2 3
Neighbors 2 4 6

ay 2 2 2
ag 0 0 2

Use of the local source with any set of parameters (not recommended)

is effected by setting b1 = b2 = b3 = 0.

Any set of values for the parameters can be supplied, but only a
limited set can be considered to be consistent. For a consistent

source, b1 = a5, b2 = a, b3 = a7

Reference sets of parameter values were made available on a user
input option. The values are shown in Table 1. The identifications
assigned to the parameter sets are self explanatory. Taylor series

results are obtained ignoring cross terms, and higer order obtained by

relating the flux and the second derivative. Linear finite element



TABLE 1. REFERENCE SETS OF PARAMETER VALUES

Linear Extended Linear
Finite Taylor Series Finite
Difference (High Order) Element

Usual
Finite Full
Difference

Reference
Formuiation

Extended Simple
Taylor Series

Simple Compensated
Compromise Compromise Difference

One-Dimensional

3, 2 2 2 2 2 2 2 2

a 1/4 1/6 1/3 0 0 1/12 112 1/4

2

Two, Three Dimensional

Near Neighbors 8 8 8 & 4 8 s 4

(2D)

Near Neighbors 10 10 10 6 6 10 6 6

(3D) .
a, - 3/2 5/3 4/3 5/3 2 5/3 2 2
a, 3/16 1/9 2/9 0 0 1/9 1/12 1/4
a, 172 1/3 2/3 173 | 1/3 0 0
2, 1/16 1/36 1/9 0 1/18 e 0
a 1/2 1/3 2/3 173 1/3 0 0
3 2 2 2 2 2 2 2 2
a 1/4 1/6 1/6 0 0 112 1/12 1/4

0¢
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parameters follow directly from minimizing the usual functional. Certain

compromises were selected which appeared attractive to test.

Given the initial values of the input parameters discussed above,

the calculation of values of the equation parameters was done as

follows:
, 1.0 + bl
X = +bl + b2 if >1 dimension
+b3 if 3 dimensional,

ao = F

%y = Fal

a, = Fa2

ag = Fa3

o, = Fa4

ag = Fa5

ag = Fbl

a, = sz

ag = Fa6

ag = Fa7

%107 3

But parameters which would not be used (as when two dimensions are

treated) were set 0.
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Consistencz

A set of values of the parameters may not be consistent with any
method of derivation. One reason for implementing a number of reference
sets was to insure that these are consistent. However, in this effort
we desired latitude in use of possible values which may prove impractical

for a code to be used in general application. We do note that if we

calculate
1-
X = —bl -b2 if > 1 dimension
-b3 if 3 dimensional,

then X must be > 0.

We also note that positive flux values are assured only if the
coupling coefficients DR, DB, DA and DH are all > 0, although this is

a severe bound.

With the above formulas, a factor of 2 has been eliminated from
all of the terms for each coordinate. A direct calculation of power
level yields P*. This must be corrected by dividing by 2nao, where

n is the number of coordinates,

by P
X = ——‘i— ,
P
X = Znu Eg_
o P* :

To adjust such quantities as leakage calculated with the original flux,
care must be taken to properly account for both the normalization and

the absence of the coefficient 2 for each coordinate.
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Average Flux Values

We found it desirable to calculate average flux values in each
different zone (composition). TFor all formulations over the differen-
tial volume defined by a set of closest neighbors, there is only one
material and set of macroscopic properties. The average flux over
this volume is the linear average of the flux values at the mesh points.
This average was used to calculate reaction rates and such other
information as power density. However, peak flux values must occur
at mesh points with the formulation applied, so peak quantities

were also determined for the materials abutting each mesh point.

ITIT. RESULTS OF APPLICATION TESTING
Here we report a selected set of results obtained by application
to a variety of problems. Some of these problems are simple ones
described in the literature., Others have complicated geometric descrip-
tions or cross section data, or both, and documentation of such data is
beyond the scope of this report. Some of these results have been reported.
For comparison, results for the problems were obtained with the

VENTURE code which contains the mesh point centered formulation.

Reliability Testing

Proofing of the programming was done by demonstrating that the same
results were produced for a problem as are generated by the EXTERMINATOR-II
code when the same formulation was applied. Further it was demonstrated
to our satisfaction that increasing the number of mesh points with any
of the formulations moved the solution toward the continuum result very
nearly common to all the formulations. Often more mesh points were used
for this proofing than desirable from a cost viewpoint, to aveid serious
contamination by high order contributions. Quite generally given a fixed
group structure and sufficient mesh points, the errors in integral
quantities and local properties are nearly proportional to the square

of the mesh spacing.
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Reference Test Problems

The five problems selected are described below:

Problem Description
1 Two-dimensional LWR Problem (IAEA Benchmark
Problem)
2 Three-dimensional LWR Problem (IAEA Benchmark
Problem)
3 Neutron Transport in a BWR Rod Bundle

(Two-Dimensional 7 x 7 Fuel Assembly)

4 Highly Non-separable MIT Two-Dimensional
LW Reactor Problem

5 Two-Dimensional Fast Breeder Reactor Problem

Descriptions of problems 1-3 are available in Ref. 5 (ANL-7416), as
are additional detailed results and results obtained with other methods.
Key results for the first problem are shown in Table 2, and the dependence
of the error in the multiplication factor on the number of mesh points
for the usual formulations is shown in Fig. 2. Note that extrapolated
results were always obtained by assuming that the error is proportional
to the mesh spacing squared, using the results for the cases having the

largest and the next to the largest number of mesh points.

Key results for problem 2 are shown in Table 3, and the dependence
of the error in the multiplication factor for several methods is shown

in Fig. 3 (data taken from the literature).

Key results for the LWR rod bundle problem 3 are shown in Table 4.
We note that the difference error is very nearly the same for the usual
mesh centered and mesh edge formulations when account is taken of the
number of mesh points used (there is less difference on a basis of

mesh point spacing than it would seem from the raw data).

Problem 4 has been described in the literature.8 Key results are
shown for this problem in Table 5. Also shown are results obtained at

. - . 9
ORNL with a second order finite element formulation.
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TABLE 2. TWO-DIMENSIONAL,TWO-GROUP IAEA BENCHMARK PROBLEM RESULTS

Mesh Peak Relative Power Density
Formulation (Near Neighbors) Intervals eff Internal . Near Reflector
Mesh Point Centered, VENTURE (4) 92 1.03208 1.549
172 1.02965 1.649
342 1.02924 1.599
682 1.02944 1.544
1362 1.02954 1.522
2722 1.02958 1.515
Extrapolated (=) 1.02959 1.513
Mesh Edge, VANCER
Usual Finite-Difference (4) 92 1.07647 none 4,28
172 1.03733 0.962 2,231
342 1.03077 1.364 1.660
682 1.02983 1.475 1.546
(=) 1.02952 1.512 1.508
Taylor Series (8) 342 1.03080 1.364 1.652
High Order Taylor Series (8) 172 1.03442 1.095 2.043
342 1.03036 1.405 1.629
682 1.02975 1.485 1.544
(=) 1.02955 1.512 1.516
Linear Finite-Element (8)% 172 1.03109 1.309 1.779
342 1.02985 1.462 1.605
682 1.02965 1.499 1.545
(=) 1.02958 1.511 1,525
Linear Finite-Difference (8)% 172 1.03236 1.214 1.887
342 1.03006 1.437 1.614
682 1.02969 1.493 1.544
() 1.02957 1.512 1.521
Compromise (8) 172 1.03390 1.123 2,009
342 1.03028 1.412 1.625
682 1.02973 1.487 1.544
(=) 1.02955 1.512 1.517
Simple Compromise (&) 342 1.03051 1.389 1.645
682 1.02978 1.481 1.544
(=) 1.02954 1.512 1.510
Compensated Difference (4)%* 172 1.03206 1.228 1.900
342 1.03002 1.438 1.628
682 1.02968 1.493 1.547
(=) 1.02957 1,511 1.520
Local Source
H~-O Taylor Series (8) 342 1.03162 1.393 1.724
Linear Finite-Element (8) 342 1.03229 1.402 1.792
Linear Finite-Difference (8) 342 1.03280 1.422 1.860
Compromise (8) 342 1.03178 1,387 1,737
Simple Compromise (4) 342 1.03126 1.375 1.700
Compensated Difference (4) 342 1.03224 1.403 1.799
1.02958 1.51 1.52

Apparent Solution

%*
Results for 92 mesh inadequate, resulting flux skewed; the only clue of inadequate

solution is a neutron balance k.
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FIG. 2. TWO-DIMENSIONAL FINITE-DIFFERENCE RESULTS.

TABLE 3. THREE-DIMENSIONAL TWO-GROUP IAEA BENCHMARK PROBLEM RESULTS
(34 x 34 x 38 Mesh Points)

Formulation K Peak Power Density
(Near Neighbors) ‘eff Internal Reflector Edge

VENTURE, Mesh Centered (6) 1.02864 2.50 2.42
Extrapolated («) 1.02903 2.35

VANCER:

Usual Finite-Difference (6) 1.03064 2.02 2.50
Linear Finite-Element (10) 1.02949 2.21 2.53
Linear Finite-Difference (10) 1.02968 2,18 2.54
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TABLE 4. LWR BUNDLE PROBLEM DIFFUSION THEORY SOLUTIONS

Points . Processor
Mesh Points  Per Kogg  Feak to Average  Bedk Polnt  Timex
Assembly oin ure (min)
Mesh-centered finite-difference (VENTURE)
12 x 12 1 1.09238 1.2543 0.1900 0.074
24 x 24 4 1.08759 1.3379 0.1907 0.102
48 x 48 16 1.08606 1.3851 0.1909 0.229
96 x 96 64 1.08565 1.4100 0.1910 0.921
Extrapolated ( =) 1.0855 1.418 0.1910
Mesh—edge finite~difference (VANCER) usual finite~difference
(4 neighbors)
13 x 13 (1D 1.08061 1.2607 0.1917 0.224
25 x 25 { &) 1.08389 1.3411 0.1912 0.477
49 x 49 (16) 1.08506 1.3861 0.1911 1.198
Linear finite-element (8 neighbors) (VANCER)
13 x 13 ( 1) 1.08185 1.2659 0.1919 0.238
25 x 25 (& 1.08454 1.3429 0.1913 0.500
49 x 49 (16) 1.08525 1.3869 0.1911 1.465

*
Eigenvalue problem set up and solution; for the VENTURE solutions, the
flux solution from the next smaller problem was used as a starting

guess.
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TABLE 5. HIGHLY NON-SEPARABLE MIT TWO-DIMENSIONAL
PROBLEM RESULTS

Mesh Extrapolated
Formulation, Code (near neighbors) Intervals eff keff
Mesh Centered, VENTURE (4) 232 1.04275
212 1.04188%
402 1.04408°
622 1.04033% 1.0399
1242 1.03990% 1.03976
Quadratic Finite—Element9 (18) 337 1.0391
Mesh Edge, VANCER
Usual Finite-Difference (4) 232 1.03631
312 1.03740
402 1.03473
622 1.03905 1.0396
Extended Taylor Series (8) 312 1.03779
Extended Higher Order
Taylor Series (8) 312 1.03817
Linear Finite~Element (8) 232 1.03923
312 1.03917
402 1.03790
622 1.03960 1.0397
Linear Finite-Difference (8) 232 1.03859
312 1.03869
402 1.03703
622 1.03943 1.0397
12472 1.03966 1.03974
Linear F-D, Local Source (8) 312 1.04272
Compromise (8) 232 1.03786
312 1.03823
402 1.03621
62 2 1.03930 1.0396
Compromise, Local Source (8) 312 1.04087
Compromise (4)> 312 1.03762
402 1.03529
Compromise, Local Source (4) 312 1.03892
40 2 1.03557

dConsistent mesh point expansion allowing extrapolation.
bMesh points added to reflector traverses, a more uniform mesh spacing.
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The fast breeder reactor problem 5 is rather complicated with
microscopic cross sections which we do not document here due to the
amount of data involved. Key results for this problem are shown in

Tables 6 and 7.

Computation time was found to vary considerably. A special
difficulty was the use of rather obsolete procedures in the VANCER
code. We believe that the number of iterations required to solve the
problems is nearly independent of the difference formulations imple-
mented. Relative computation requirements are estimated for three-

dimensional problems as follows:

Memory Relative
Formulation (Words) Computation Cost
Mesh Centered (VENTURE) 166,000 1.00
Mesh Edge (VANCER)
Six Neighbors, Consistent Source 191,000 1.37
Ten Neighbors, Consistent Source 217,000 1.73

We now make an assessment of the results for the various formu-
lations. 1If one considers the difference error in the result, the
number of mesh points required for each formulation can be estimated to
produce the same accuracy. Then given relative cost per mesh point, the
relative merit may be obtained. Thus a figure of merit may be assigned
to accuracy and to cost, and the product is the relative merit of the
formulation. From a practical stand—pbint, we may assign a higher
importance to the cost because the accuracy is often adequate given the
required number of points to describe the problem. We disadvantage the
mesh centered formulation because its ability to show local peaking of

power density (which often occurs at material interfaces) is inferior.



TABLE 6. TWO-DIMENSIONAL FAST BREEDER REACTOR PROBLEM RESULTS
(8ix Neutron Groups, Slab Geometry)
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Mesh K Peak Group Peak Relative
Formulation (Near Neighbors) Intervals eff 6 Flux Power Density
Mesh Centered, VENTURE (4)® 48 x 22 0.940161 1.089 1.9144
96 x 44 0.938820 1.074 1.9236
Extrapolated 0.93837 1.069 1.927
Usual Finite-Difference (4) 48 x 22 0.937160 1.044 1.9351
96 x 44 0.938055 1.061 1.9341
Extrapolated 0.93835 1.067 1.934
Linear Finite-Difference (8) 48 x 22 0.937492 1.057 1.9354
96 x 44 0.938147 1.065 1.9345
Extrapolated 0.93837 1.068 1.934
Linear Finite-Element (8)b 48 x 22 0.937608 1.062 1.9358
96 x 44 0.938176 1.066 1.9334
B Extrapolated 0.93837 1.067 1.933
A Compromise (4) 48 x 22 0.937172 1.046 1.9354
A Compromise (8) 48 x 22 0.937379 1.052 1.9353
96 x 44 0.938114 1.063 1.9331
Extrapolated 0.93836 1.067 1.932
Compensated Difference (4) 48 x 22 0.937194 1.049 1.9364
96 x 44 0.938058 1.062 1.9335
Extrapolated 0.93835 1.066 1.932
Linear Finite-~Element,
Local Source (8) 48 x 22 0.942793 1.070 1.9492
Compensated Difference,
Local Source (4) 48 x 22 0.941042 1.055 1.9466
Apparent Solution 0.93836 1.067 1.933

aPeak values are inside an interval with mesh-centered points, otherwise on the edge.

bInterval peak relative power density values:

1.8972, 1.9202, and extrapolated 1.928.
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TABLE 7. PEAK POWER DENSITY FOR FAST BREEDER REACTOR PROBLEM®

Mesh Intervals

Formulation (Near Neighbors)

312 402 622 1242  Extrapolated

Consistent Source

Meshpoint Centered(4)b 2,416 2,360 2.643 2,780 2.825
Usual Finite-Difference(4) 2.744  2.824  2.880 2.925
Taylor Series(8) 2.756

Higher~Order Taylor Series(8) 2.803

Linear Finite-Element (8) 2.888 2,924 2.920 2,931
Linear Finite-Difference(8) 2.850 2.898 2.910 2.927 2.933
Compromise (8) 2.813 2.873 2.900 2.928
Compromise (4) 2,772 2,842

Compensated Difference(4) 2.831 2.878

Local Source

Higher-Order Taylor Series(8) 2.771

Linear Finite-Element (8) 2.805
Linear Finite-Difference(8) 2.789
Compromise(8) 2.774  2.880
Compromise (4) 2,753  2.846
Compensated Difference(4) 2,772 2.890

2The apparent result is 2.93; the reported result for the 337 point
quadratic finite-element case is 2.908.

bMesh point centered away from peak at the interface.
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Shown below is the assessment:

Formulation Relative Merit
(Near Neighbors on Planes) Accuracy Cost Accuracy Accurac%
% Cost x Cost
Linear Finite-Element (8) 2.8 0.8 2.2 1.8
Linear Finite-Difference (8) 2.3 0.8 1.8 1.5
Compensated Difference (4) 1.8 0.9 1.6 1.5
Compromise (8) 1.6 0.8 1.3 1.0
Mesh Centered (4) 0.9 1.4 1.3 1.8
Compromise (4) 1.2 0.9 1.1 1.0
Usual Finite Difference (4) 1.0 1.0 1.0 1.0
Local Source, Typical 0.8 1.0 0.8 0.8

Choice of the weighting of the individual values of relative merit
is subject to practical considerations. For example, if the number of
points required to describe the geometric arrangement is enough for the
mesh centered formulation to produce a solution which is adequate for
the particular calculation, then this formulation would be chosen based
on cost alone. The best choice for a very coarse mesh probably would be

mesh centered.

We note the low merit of the usual mesh edge formulation, and the
relatively high merit of the linear finite element formulation. We
caution the reader that the "higher order" formulations can be used
only carefully because the use of a coarse mesh spacing will produce
inadequate results. Special action should be taken in a code used
routinely. The merit estimated for the mesh centered formulation
reassures us in the continuing routine application of this formulation

in the VENTURE and other codes.
Conclusions
The following conclusions are drawn from this study:

1. Often the finite difference error is considerably larger than
the improvement obtained by using one formulation instead of
another. The common practice of using any finite difference
solution as a reference result for testing methods is tech-
nically unsound, nearly as bad as using an unconverged solution.
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Althoughnot true in some situations, application to many problems
representative of serious analysis of reflected or blanketed
reactors, shows that the errors in the multiplication factor

and in other properties often have opposite signs for the simple
mesh edge and mesh centered formulations. The two solutions

can not be considered to be bounds, because for bare reactor and
cell problems, they have the same sign. Yet one would expect
that a combination of the two formulations, were it practical,
would generally be an improvement.

In most applications it appears practical to use an improved
formulation on planes normal to the fuel assemblies (mesh edge),
and to locate these planes of mesh points between material
interfaces (mesh centered axially). Thus each point would have
variation in the surrounding material on the plane, but not
axially, which reduces the number of nuclear properties neighbor-
ing a point by a factor of two, reducing computation cost. The
added cost of higher coupling than of just close neighbors on
planes and nearest neighbors on adjacent planes can not likely
be justified by the increase in accuracy.

The source and removal terms should be consistent; if a linear
variation of the flux is assumed for calculation of removal
along a coordinate, so should a linear variation of the source,
which adds computation cost. We are in basic disagreement with
investigators who take the opposite position on this point.

We find the'highest accuracy from the difference equations ob-
tained by the weak linear finite element approach provided the
equations do not breadk down (and produce negative flux values),
not well understood from a theoretical basis; this method is a
form of importance weighting, considering that given the source,
the space problem is self adjoint.

"An automated procedure should be used to rectify the situation

when a problem causes the implemented difference equations to
break down, disallowing the admitting negative flux results,
which should not be tolerated in casual application for serious
analysis.

We have renewed confidence in the mesh centered formulation for
general application because it is cost effective.

Location of the mesh points at corners of triangles is recommended
for general triangular geometry and for treating hexagonal
geometry.
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