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A NONLINEAR PLASTICITY MODEL FOR STRUCTURAL ALLOYS

AT ELEVATED TEMPERATURE*

D. N. Robinson

ABSTRACT

A nonlinear, time-independent plasticity model is
presented which incorporates some aspects of both iso
tropic and kinematics hardening. The model characterizes a
material with limited memory, i.e., in the sense that part
of the deformation history as recorded in the internal
dislocation structure is erased at stress reversals. This
feature ensures that the predicted response eventually
reaches a limit cycle under cyclic stressing, even in the
presence of creep and relaxation. The model is intended as
a candidate for replacing the nonlinear model now residing
in Sect. 4.3.6 of RDT Standard F9-5T.

Keywords: plasticity, nonlinear, isotropic hardening, kine
matic hardening, cyclic stressing

1. INTRODUCTION

The use of the RDT Standard1 constitutive equations in finite element

computer codes has provided quite satisfactory predictions of structural

response in many applications typical of high temperature design.2'3 It
is recognized, however, that these equations do have shortcomings, many of

which are concerned with the interaction of time-independent (plasticity)

and time-dependent (creep and relaxation) effects. Such interactions are

of major concern regarding structural alloys at high temperature and have

been the prime motivation for formulating a unified creep/plasticity model

under the High-Temperature Structural Design Program at ORNL, the develop

ment of which has been reported in a series of writings.4 X1
Although the unified model does show considerable promise in repre

senting many of the critical features of creep/plasticity interaction, it

nevertheless, does represent a significant departure from the essentially

*Work performed under DOE/RRT 189a 0H048, High-Temperature Structural
Design.



classical equations now recommended in Ref. 1. Consequently, there are

several yet unanswered questions surrounding the unified equations,

regarding their fidelity in representing complex multiaxial behavior and

also concerning their large scale numerical implementation.

In the formulation described here, the classical assumption that

plastic and creep strain can be treated separately and additively is

retained, i.e., unlike the viewpoint taken in the unified equations cited

above, where creep and plastic strain is viewed as arising from identical

physical mechanisms. The work presented here is not concerned with creep-

plasticity interaction, but instead is directed at remedying a recognized

shortcoming of the Ref. 1 plasticity model, namely its bilinear represen

tation of elastic-plastic behavior. Reference 1 recognizes that the

bilinear plasticity model may be too strong an idealization in some situ

ations, e.g., in inelastic stability analysis (cf. Sect. 4.3 of Ref. 1).

A nonlinear model based on effective stress and strain and applicable only

for radial or near radial stress paths is given in Sect. 4.3.6 of Ref. 1

and is suggested for use in such situations. The work presented in this

report may be viewed as a proposed alternate to the nonlinear plasticity

model given in Sect. 4.3.6. The present model is more general and is not

limited strictly to proportional stressing.*

A bilinear idealization of the stress-strain curve goes just a step

beyond perfect plasticity and represents the least one can put down in

order to capture the essence of plasticity in complex structural analysis

and still hope to get answers of engineering importance. It is too strong

an idealization, however, to be made use of in trying to predict detailed

response under homogeneous, uniaxial stress states. As pointed out by

Ellis et al.,12 it is the shape, or change in shape, of the actual stress-

strain curve which gives rise to the details of hardening or softening,

Bauschinger effects, etc. The distinction between the very strong kine

matic behavior of small offset yield surfaces (based say, on 10 ye) and

the much weaker kinematic nature of yield surfaces based on larger offsets

(say, 0.1 or 0.2%) is intimately related to the shape assumed by the

stress-strain curve as a result of deformation history. A bilinear

*Compare footnote in Sect. 2 of this report regarding nonproportional
loading.



idealization, of course, cannot capture this distinction, and may, in some

cases, even unrealistically predict that the yield surface representing

gross yield, i.e., that associated with the knee of the bilinear curve,

crosses the origin of stress space. This is not generally observed

experimentally.

The plasticity model is outlined in Sect. 2, together with an account

of its underlying assumptions. This is followed in Sect. 3 by a statement

of the special considerations to be taken when stress reversals are en

countered. These special considerations allow a phenomenologically cor

rect response of the model to cyclic stressing, including assurance of

asymptotic stability. By this is meant the tendency of the response to

settle down to a limit cycle under a repeated, cyclic history of stress.

Real materials, after all, do generally behave in an asymptotically stable

way.*

We adopt the viewpoint here that metals achieve asymptotic stability,

in the above sense, by virtue of their having only a limited memory of

past deformation history. That is to say, much of the detail of their

history is not retained from cycle to cycle and thus cannot act to deter

the metal from ultimately seeking a stable asymptotic state.

Physically, a metal records its deformation history through its

internal structure. At stress reversals where remobilization of dis

locations is known to occur, giving rise to Bauschinger and related

effects, some aspects of its memory as recorded in the dislocation struc

ture are no doubt erased. At the same time, other aspects of its history,

as evidenced in long term hardening (or softening) with eventual satura

tion under continued cyclic loading, are retained. An attempt is made

here to idealize and model these characteristics so as to ensure achieve

ment of asymptotic stability in much the same way it is believed to be

brought about in actuality.

*It was discovered recently that the basic bilinear plasticity model
recommended in Ref. 1 suffered from some lack of stability in this sense
in the presence of creep and relaxation (cf. Ref. 13). Modifications of
the bilinear model to correct this situation have been formulated and are

presently being recommended to the RDT Standard Task Force for inclusion
into Ref. 1.



In Sect. 4 of this report, several predictions of cyclic uniaxial

response will be presented making use of a particular set of material

parameters which characterize 2 1/4 Cr—1 Mo steel at temperatures around

500°C.1'' The final section includes a summary and states the conclusions

of the study.



2. DEVELOPMENT OF THE BASIC MODEL

The development is limited here to isothermal conditions. The ex

tension to nonisothermal deformations may be accomplished in precisely the

same way as in Ref. 1.

The yield condition is presently taken to be of the form:

f {air aip =K' (1)

in which a.. are components of the stress tensor and a.. are components of

the translation tensor, specifying kinematic translations of the yield

surface. For a fixed inelastic state, i.e., fixed a., and k, Eq. (1) is
id

interpretable, in the usual way, as a hyper-surface in stress space which

separates stress points for which plastic deformation takes place from

those for which only elastic deformations occur.

The isotropic hardening rate is specified by

dK =<*ij ^ki' %J dePij > C2)
which, in general, depends on stress and plastic strain and d< = 0 when

deP.. = 0.

The kinematic-hardening rate is likewise specified as

d"ij" °«*« «w O < • (3)
Once again, da. . = 0 when <ie?. = 0.

The unique isotropic form of Eq. (3) with deZ . = deK. and dzKv = 0
Tyj QT, K.K

is:

in which G is a scalar function. This form will be adopted here. This

means that, in the present case, the center of the yield surface always

translates in the direction of the plastic strain increment.*

*As discussed by Liu,xs Eq. (4) provides a good idealization of the
kinematic hardening behavior for proportional and near proportional load
ing. It is assumed here, however, that Eq. (4) also provides a reasonable
first order approximation for general loading.



From a given inelastic state with / • k, an infinitesimal stress

increment da. .such that -^—da.. >0 (loading) causes aplastic strain
13 3o.. 13

increment

13 da
(S)

*J

Equation (5) expresses the usual normality condition. As loading occurs

(i.e., de?. . + 0, d< + 0, and da.. / 0) the stress point must remain on the
13 ts

yield surface; this is insured through satisfaction of the consistency

condition, i.e.,

df = d< . (6)

Using Eqs. (1), (2), and (4) this condition gives

13 ^3

Now, using Eq. (5) we get the flow law

d£. i£-.
3a,
*J

*£**.
3a P7^)

(7)

9aij
(8)

At this point we shall adopt specific forms of the above equations. The

yield conditions, Eq. (1), will be taken as

f = tt (8. . — a. .) (s. . — a. .) = k ,
J 2 ^ tj %3J v 1,3 %3

(9)

in which s.. denotes the components of the stress deviator, i.e., e.. -
.1*3 1

a. . - ic716. .. Note that when a. .= 0, f = Ja = y s..s.. and Eq. (9) be
%3 T^kk 13 13 J * ^3 1*3„„ .,.,ij' 'i3 ~' ' " £ 13 W
comes the familiar v. Mises yield condition. In Eq. (2) g.. will be taken

as

q . . - Es . . ,
*13 t>3

in which H is a scalar function.

(10)



Equation (2) thus becomes

d< =Bai3d^. =H(W)dW ,

in which Wrepresents the inelastic work,

W= js. d£ . .
; i>3 1*3

With these explicit forms, Eq. (8), the flow law, becomes:

icp _̂ C8fe£ ~°W (8i3 ~V daki
i3 (s —~a )[H8 + G (s =~a TT '
" *• rs rsJ l rs v re rs^J

Now, if we assume that the denominator of Eq. (12) is a function of k

only, i.e.,

or, in particular, if we take

n

FM = (B/k)

(ID

(12)

(13)

(14)

in which g and n are constants, we get for the kinematic-hardening function

G:

,n

2k "ijff =^JT~ ~^ s«- («„•„• -ex.-,) •

da. . =
i>3

t-J 1*3'

The kinematic hardening rate itself thus becomes:

— -s— S,
|"ce/K)n H

2k 2k fC JO fC)6 fv JO

Making use of Eqs. (12), (13), and (14), we can write Eq. (16) as:

,n

da.: „MET d«e. -£ (. -d.,)
^J 2k t-J 2k ^J tj'

dep. . .
^3

Note that with n = —1 and g = j*, Eq. (17) reduces to

da. . = C de*.. — J£- (s. .— a. .) ,
1*3 t*3 2< 13 i*3

(15)

(16)

(17)

(18)



as stated in Ref. 1. This corresponds to the situation in which there is

both isotropic and kinematic hardening, and the uniaxial stress-plastic
3C

strain curve is linear with slope E = •=—.
P 2

If, in addition H • 0, i.e., there is no isotropic hardening, Eq.

(18) further reduces to

da. . = C dsP. . , (19)
13 13

the classical linear kinematic hardening model of Prager.



SPECIAL CONSIDERATIONS FOR STRESS REVERSALS

At an indication of reversed plastic strain, i.e., when, in a step

wise calculation, the calculated increment in plastic strain des . has a

component in a direction opposite to the plastic strain increment last

calculated, two measures are taken:

1. the yield parameter k, whose growth rate is given by Eq. (11),

is reset to k0, its value in the undeformed state, *

2. the current value of inelastic work, measuring the inelastic

state of the material, is reduced by an amount S(jdW, LW).
6 is considered a function of the total accumulated inelastic

work jdW and that amount accumulated since the last inelastic

reversal LW.

These measures are in keeping with the viewpoint discussed in the

introduction, that is to say, k is reset, erasing its contribution to the

recorded memory of deformation history, whereas the state variable Wis

partially reset by an amount which depends on the total accumulated inelas

tic work, i.e., an accumulative measure of the complete history of deforma

tion.

*In order that the stress point remain on the yield surface, this
abrupt change in k must be accompanied by a corresponding jump in a...
Thus, according to Eq. (17) we have for consistency: ^

K - K0

Act. . = = (8.. — a. .) .
%3 2k 13 ^«r
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4. PREDICTIONS OF UNIAXIAL RESPONSE

In the calculations presented here the previously unspecified func

tions H and 6 were taken as follows:

E(V) = WV (20)
(1 + W/B)*

and

6(/, MO = \C +(1 -C) (1 -e~^/a)) W (21)

in which fir = jdW, and A3 B3 C3 and co are constants. As before, k0 is
the initial value of k.

In order to qualitatively represent the elastic-plastic behavior of

2 1/4 Cr-1 Mo steel (heat 20017)1U at M50 to 500°C, we have chosen the

material parameters as:

A = 0.014 MPa

B =0.069 MN-m/m3

C = 0.995

to =5.17 MN-m/m3

g = 1.28 x 107 (MPa)7/a
k0 = 1284 (MPa)2

n = 2

and, in addition, the elastic modulus is taken as

E = 1.5 x 10s MPa.

Figures 1 through 4 show the response of the model to constant strain

cycling through total strain ranges of 0.5, 0.6, 0.7, and 0.8% strain,

respectively. Upon first loading, the knee of the stress-strain curve

occurs somewhere in the vicinity of ^190 MPa. As cycling is continued the

tips of the hysteresis loops move farther apart, finally saturating; the

greater the strain range, the higher the saturation stress. Figure 5



to
a.

w
LU

DC

Ae =

Fig. 1.
0.5%.

_»--

11

T

ORNL-DWG 78-18402

STRAIN INCREMENT = 0.1%

STRESS INCREMENT = 35 MPa

STRAIN (%)

Stress-strain hysteresis loop through a strain range of



CO
CO
LLI

cc
h-
co

Ae =

12

ORNL-DWG 78-18403

STRAIN (%)

Fig. 2. Stress-strain hysteresis loop through a strain range of
0.6%.



a.

CO
CO
LU

CC

I-
co

13

I

ORNL-DWG 78-18404

STRAIN INCREMENT = 0.1%

STRESS INCREMENT = 35 MPa

STRAIN (%)

Fig. 3. Stress-strain hysteresis loop through a strain range of Ae =
0.7%.



a.

CO
CO
LU

cc

\-
co

0.8S

14

ORNL-DWG 78-18405

-- STRAIN INCREMENT = 0.1%

STRESS INCREMENT = 35 MPa

STRAIN (%)

Fig. 4. Stress-strain hysteresis loop through a strain range of Ae



15

ORNL-DWG 78 18406

JIU 1 1

-
-

™ 290
Q-

5

- -

SATURATIONSTRESSOMDO

1 1

-

0.5 0.6 0.7 0.8

STRAIN RANGE (%)

Fig. 5. Saturation stress (peak) vs cyclic strain range.

shows the variation in (peak) saturation stress with total strain range.*

Note that in each case, the shape of the saturated loop in Figs. 1 through

4 is quite different from that of the early cycles. This is in keeping

with experimental observations.14"16

*The kind of behavior reported in Ref. 14 and 16, where 2 1/4 Cr—1 Mo
steel cycled under relatively large strain ranges and temperatures of ^500
to 550°C first hardens and then softens with continued cycling, can be
modeled by substituting a suitable function for Eq. (21.) which reaches a
maximum and thereafter decreases asymtotically to a lesser saturation value.
It may be more conservative in applications, however, to ignore the peak
hardness and allow only monotonic hardening to the reduced saturation value
as was done in Figs. 1 through 4.
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Figure 6 shows the detailed characteristics of the first stress

reversal for the Ae = 0.6% strain range curve of Fig. 2. The features are

seen to fall somewhere between those of pure kinematic and pure isotropic

hardening.

Whereas initial (gross) yielding occurs in Figs. 1 through 4 at about

190 MPa, the initial elastic range extends only about ±60 MPa. Experi

ments conducted on such a material would thus detect a yield surface based

on a small offset yield (say, 10 ye) with a radius not far in excess of 60

MPa. This also is in keeping with experimental results.17

a.

S

CO
CO

STRAIN (%)

ORNL DWG 78-18407

Fig. 6. First stress reversal for Ae = 0.6% showing comparison with
idealized isotropic and kinematic hardening.
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Figure 7 shows how the small offset yield surface (actually, the

limit of elasticity) behaves corresponding to the first cycle in Fig. 2.

The yield surface is first centered at the origin (0 in Fig. 7); it trans

lates and grows in size as first loading occurs winding up in the position

labeled J. At this point the yield surface has grown to a radius of about

80 MPa and has completely crossed the origin of the stress space, just as

often observed experimentally for the small offset yield surface.17

As the stress point moves inside the yield surface and back toward

the origin (Fig. 7), the material behaves elastically until point A is

reached. At stress point A, reversed plastic strain is incurred and the

yield surface is abruptly reduced to its original size, indicated by the

dotted circle. From this point, unloading is accompanied by reversed

plastic deformation well before the stress becomes negative (Bauschinger

effect). It is readily seen in Figs. 1 through 4 that the unloading curve

departs from linearity well before the zero stress axis is reached.

Continued loading drags the yield surface across the origin in the

other direction, again growing as it translates to the position labeled II

ORNL-DWG 78-12775

Fig. 7. Behavior of small offset yield surface during early cycling
through Ae = 0.6%.
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in Fig. 7. There, the center of the yield surface is slightly farther out

and slightly larger than at J. This process is continued as cyclic load

ing proceeds until saturation occurs. Following saturation the yield

surface translates back and forth in a stable pattern, growing as the

yield surface translates and reducing in size as plastic reversals occur.

Figure 8 shows the response if reloading were to occur before unload

ing is complete. If reloading occurs before point A in Fig. 7 is reached,

i.e., while the stress point still remains inside the yield surface, none

of the parameters change and as the yield surface is once again reached in

the original direction, reloading follows the path baa in Fig. 8. If, on

ORNL-DWG 78-18408

a.

S

CO
W
LU

<r
i-
co

STRAIN INCREMENT = 0.1%

.. STRESS INCREMENT = 35 MPa

STRAIN (%)

Fig. 8. Behavior following partial unloading.
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the other hand point A in Fig. 7 is reached by the stress point on unload

ing, the yield surface is reduced is size and reloading follows a path

such as bdc in Fig. 8. (Note that in the example of Fig. 8, not only did

the stress point reach A of Fig. 7, but the yield surface was dragged a

small amount in the reversed direction to the minimum unloading point

shown in Fig. 8 — reloading then followed bdc.)

The behavior depicted in Fig. 8 is not unlike that reported by Phillips.

In his experiments Phillips finds time-dependent effects such that if

after preloading to point a in Fig. 8, the stress is held at that point

for some time and then reduced (without reversed yielding) reloading

occurs along a path like bdc. If, on the other hand, all of this is done

rapidly, without holding at point a, a path much more like bac is followed

upon reloading. Moreover, regardless of the time scale, if the material

is reverse yielded upon unloading (i.e., reaches point A in Fig. 7), a

path such as bdc is followed in any case.

In the time-independent theory presented here we cannot hope to model

the time-dependent behavior found by Phillips, however, we can and do

capture the behavior brought on as a result of reversed plastic strain,

i.e., reloading along bdc when reversed yielding is incurred.

We can imagine an experiment performed by prestressing to a, as in

Fig. 8, reducing the load and exploring for the existing (small offset)

yield surface. If we begin probing the yield surface such that we first

incur a small reversed plastic strain, we map out a surface having the

same size as the initial one, translated in the direction of prestressing

and not including the prestress point a. This is, indeed, reminisient of

numerous experiments performed by Phillips,18 Liu,13 and Ellis.12'17

It is worth noting that although the small offset yield surface may

translate back and forth across the origin as the stress-strain curves of

Figs. 1 through 4 are traced out, the gross yielding features (say, an

offset of 0.05% or 0.1%) which are of primary interest to the structural

analyst, show only slight kinematic features and never cross the origin.
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Figure 9 shows the effect of a relaxation hold period* on one end

of the 0.6% strain cycling hysteresis loop of Fig. 2. One effect of the

hold period is to produce a slight (^5%) bias in the saturated hysteresis

loop. The hysteresis loop does reach a very definite limit cycle after

isotropic hardening effects have saturated.

Figure 10 shows the response of the model presented here to situations

which involve prior creep. The curve labeled I in Fig. 10 indicates

forward and reversed yielding after an accumulated creep strain of 0.03%

at 150 MPa. Curve II shows yielding following an order of magnitude more

creep, i.e., 0.3% at 150 MPa. Also shown in Fig. 10 is the stress-strain

curve followed with no prior creep strain. These results seem to be in

qualitative agreement with the experimental results reported by Swindeman

in Ref. 13. Note that creep/plasticity interaction, as such, can be

additionally built into the present model if desired. The achievement of

an asymptotically stable plastic model, however, is accomplished quite

independently of creep/plasticity interaction effects.

Figure 11 illustrates a loading history of a kind that presents some

difficulty in applying and interpreting the bilinearization procedures

recommended in connection with the bilinear plasticity model of Ref. 1.

Represented in Fig. 11 is the stress-strain response in the region of a

sharp notch where the nominal stress, far from the notch root, is cycled

elastically, i.e., as in a notched fatigue specimen. Typically, there

occurs a large initial, inelastic strain followed by cycling through a

relatively narrower range. Cycling is not over a constant strain range in

this case but is presumed to occur according to the Neuber Rule,19 which

relates the local (notch) stress and strain ranges to those of the nominal

stress and strain ranges.

The procedure recommended in Ref. 1 for selecting a bilinear stress-

strain idealization calls for the determination of two material parameters.

The first, k, relates directly to the bilinear yield stress, i.e., the

knee of the curve, and the second, C [cf. Eq. (19)], specifies the (linear)

*The actual time-dependent response during relaxation was not calcu
lated here, instead, in order to assess the effect on the plasticity model,
we have assumed that in each relaxation period the stress relaxes to a
value of 0.6 of its starting value.



to
a.

CO
CO
LU

cc
\-
co

21

ORNL-DWG 78-18409

STRAIN INCREMENT = 0.1%

STRESS INCREMENT = 35 MPa

STRAIN (%)

Fig. 9. Stress-strain hysteresis loop through a strain range of Ae
0.6% with relaxation hold period.
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Fig. 10. Effect of prior creep on forward and reversed yielding.

plastic hardening rate.* In the determination of these parameters use is

made of the monotonic stress-strain curve (at the appropriate temperature)

and an expected maximum strain range.

In situations where it is expected that cyclic stressing may occur

subsequent to an initial inelastic loading, as in Fig. 11, k may be up

dated to reflect the partially hardened state. However, in accordance

*k and C are taken here as defined in Ref. 1.

The (a priori) choice of the maximum strain is left, according to
Ref. 1, to the judgment and experience of the designer.
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Fig. 11. Idealized stress-strain response at a sharp notch according
to Neuber's Rule.
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with Ref. 1, the hardening rate C is to remain equal to that originally

determined from the monotonic stress-strain data throughout the calculation.

In the situation depicted in Fig. 11, assuming that the calculation is

at least qualitatively corret,* we see that no fixed choice of the parameter
C could give an accurate representation of the response; the plastic slope

changes by almost an order of magnitude from the initial load up to the

saturated cyclic state. With C fixed at a value determined from the

monotonic curve and the initial offset strain, as recommended in Ref. 1,

the plastic slope would clearly be too small to be representative of the

later cycles. This could lead to a significantly different prediction of

response than pictured in Fig. 11, especially since the Neuber rule as

used in that calculation is, in part, a stress limit. In a fully stress

controlled situation an inappropriately low C value would, no doublt, lead

to a bilinear prediction exhibiting a wide hysteresis loop with unrealis-

tically large strain excursions. Evidently, in problems such as this one,

it is necessary to have a plasticity model that inherently allows shape

changes in the stress-strain response with accumulated deformation and,

at the same time, does not require a priori estimates of a strain range.

It is well established that, at least for fixed strain range cycling,
shape changes in the hysteresis loops do occur as in Fig. 11.
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5. SUMMARY AND CONCLUSIONS

A nonlinear plasticity model is presented which is intended as a

possible replacement for that given in Sect. 4.3.6 of Ref. 1. The model

outlined in Sect. 4.3.6 is stated there as being restricted to propor

tional stressing and is intended for use in situations where the basic

bilinear model recommended in Ref. 1 may not be applicable.

Although the present model is not inherently limited to proportional

stress (just as with the primary bilinear model of Ref. 1), its ability

to adequately represent the stress-strain response under general nonradial

stressing has not been demonstrated. Assessments of the applicability of

the model in situations involving nonproportional stressing are currently

being undertaken.

The general features of the present model may be summarized as

follows:

1. It captures the general shape changes which occur in the hysteresis

loops under continued cycling, including a saturation stress which is

adjustable, along with the transient period to saturation, through

choice of the material parameters.

2. It contains elements of both isotropic and kinematic hardening.

3. It characterizes the material as having limited memory, which ensures

stability of the predicted response under cyclic stressing, even in

the presence of separately calculated creep strains.

4. It allows compatible interpretations of the strong kinematic behavior

of small offset yield surfaces, on the one hand, and the weak kinematic

behavior of larger offset yield surfaces, on the other.

Although the model does not require any wider data base than already

exists for the structural alloys of interest, no automatic procedure has

yet been developed for obtaining a best fit of the material parameters to

the data. This does not mean that the model cannot be made to adequately

represent an average set of data for a given material. Fitting can be

done, at least on a limited scale, just as was done in obtaining the

parameters for the calculations given above; through use of parameter

sensitivity studies coupled with trial and error.
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