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This report  describes the capab i l i t i e s  o f  several models to predict  

accurately e i t h e r  pollutant concentrations in e ~ ~ v i ~ o n ~ ~ n ~ a l  media o r  

radiological dose t o  human organs. 

sect ions:  

p o r t  models, and t e r r e s t r i a l  a n d  aquatic f ood  c h a i n  models. 

pub1 ished primarily by model users ,  model predictions aye csmparcd t o  

observations. 

The models are  disrsusz;ed in three 

aquatic o r  surface water t r a n s p o r t  modcl s, atmospherir t rans-  

Usin9 d a t a  

This procedure i s  infeasible  f a r  f ood  c h ; i i n  i i i ~ > d P l S  -ar*d9 

* -  therefore ,  the uncertdinty ernbodie 5 ,  

ra ther  t h a n  the model o u t p u t ,  i s  estimdted. 

Aquatic t r a n s p o r t  models are  d i v i d e d  i n t o  onc-d  irnensionz? , 1 ~ ~ ~ ~ : j j t i ~ d i i ~ ~ I -  

ver t ica l  dnd longitudinal-horironta% models 

considered predict  observed concentrations t o  w i t h l i n  a f a c t o r  o f  3 ,  blct 

they underpredicted in a research f l u m e  and  overpredicted in a, n a t u r a l  

environment. 

without sorption. The sorption model FETRA, underpredicted p o l l ~ i t a n t  

concentrations by 40% a n d  sediment concentrations by 70?ha 

sorption model, devised by Yotsukura a n d  co-workers, was a b l e  tc pi-ed+ct 

temperature t o  within 1 ‘ C :  downstream from a nuclear power p 7 a n t  thermal 

e f f  1 uent . 

Thc one-diriiens-n’iPnd1 ivod.1~ 

Longi t u d i  r ia l  -transverse model s were a v a i  1 ab1 c w i  %h and 

The n m -  

The atinospheric section o f  the report  draws several concl ~nslasns 

about  the a b i l i t y  o f  the Gaussian plume atmospheric disperrisn rnndel t o  

predict  accurately downwind a i r  concentrations from releases iirider 
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several sets  o f  conditions. Data a re  c. 

judgments published elsewhere. Predict  

ted t o  corroborate 

011s o f  ground-icve 

sc i en t i f  

ce:t tprl 

c 

ne 

concentrations within 10 km of a continuous puint release could be 

within 20% of the observation. Predictions o f  concentrdtion a t  a spec i f ic  

time and place within 10 krn over f l a t  terrain from t h e  release p a i n t  

under steady meteorological conditions could bc w i t h i n  a n  order o f  

magnitude of the observalions. 

point u p  t o  10 km f r o m  the rclease over f i a t  t e r ra in  could h P  pr-rdicted 

within a fac tor  of 2 .  Monthly and seasonal averages over f l a t  terrain 

The long-term average f o r  a s p w i  f i c  

u p  t o  100 km away from the release could be predicted t o  w i t h i n  a f a c t o r -  

of 4 .  The uncertaint ies  of predicting over coinplex terrain o r  during 

complex meteorology are  unquanti f i ah le  a t  t h i s  point.  

The section on food chain models concludes t h a t  no validation study 

has been conducted t o  t e s t  the predictions o f  e i the r  a q u a t i c  o r  ler-  

r e s t r i a l  food chain models. Using the aquatic pathway From water t o  

f i s h  to  an adul t  fo r  137Cs as an example, a 95% nne-tailed confidence 

l imi t  interval f o r  the predicted exposure i s  calculated by examining the 

d is t r ibu t ions  o f  the input parametem. Such an interval i s  fniind t o  be 

16 times the value of the median exposure. 

f o r  the a i  r-grass-cow-mi 1 k-ttiyroi d for  

A siir-rilar one-tailed l i r i i i t  

and  infants  was 5 . 5  times 131 I 

t h e  median dose, 

I n  conclusion, of the three model types discussed in th i s  repor t ,  

the aquatic t ransport  models appear t o  do  the b e s t  j o b  o f  predicting 

observed concentrations. However, t h i s  concl ~ s 7 ; o n  i s  based on many 

fewer aquatic Val idation data than  were avai lable  f o r  atmospheric model 
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validation. 

under Favorable cond i t i ons ,  but rnay be unsui tab le  for prediction under 

complex cond i t ions ,  Food c h i n  models have  n o t  been successfully validated 

arid,  therefore,  uncer ta in ty  about  t h e  o u t p u t  o f  such mode1s can presently 

only be q u d n t i f i e d  by analyzing t h e  variance o f  t h e  i n p u t  parameters. 

Atinospheric rriodels can p red ic t  t o  w i t h i n  a fiictear o f  2 





1 .  INTRODUCTION 

Numerous standards and regulations have been enacted t o  protect 

humans and the environment from releases  of potent ia l ly  hazardous sub- 

stances.  

mental media a re  often used t o  ascer ta in  whether o r  not the per t inent  

regulations a re  o r  will be violated.  Such models a re  u t i l i t a r i a n  because 

t h e i r  predictions may be much eas i e r  t o  generate than  a corresponding 

s e t  of f i e l d  measurements. Unfortunately for  model users ,  a model i s  

Models t h a t  predict  the f a t e  of  these releases in given environ- 

never a completely accurate re f lec t ion  of the actual system being modeled; 

consequently, model predictions are  never t o t a l l y  accurate indicators of 

the corresponding f i e l d  measurement o f  the given quantity being predicted 

o r  measured. This difference between model predictions and the measured 

quantity can be termed model uncertainty. 

I t  i s  the purpose o f  t h i s  report  t o  examine the question, "How well 

can various types o f  models of t ransport  through the environment predict  

wha t  I s  observed?" In addressing t h i s  question, we have ( 1 )  re l ied 

heavily on published comparisons of predictions versus measurements f o r  

given models, ( 2 )  u t i l i zed  s c i e n t i f i c  judgement i n  several cases3 ( 3 )  

consulted the r e su l t s  o f  a workshop on "The Evaluation of Models Used 

f o r  the Environmental Assessment of Radionuclide Releases" tha t  was held 

in Gatlinburg, Tennessee, in September of 1977 ( r e f .  1 ) .  The present 

report  i s  not intended t o  be a comprehensive review o f  environmental 

t ranspor t  model s 

The types of models t h a t  a re  considered include aquatic o r  surface 

water t ransport  models, atmospheric t r a n s p o r t  models, and food chain models. 
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'Ihe foodchain i i icdcls include the aquatic foodchain (ingestion o f  f i s h )  

and  the t e r r e s t r i a l  foodchain (ingestion of food crops) .  

2 A Q U A T I C  TRANSPORT MODELS 

- 
lhe  term "aquatic transport  models" used in t h i s  section will  be 

taken t o  iiiean models o f  the mass transport  o f  sonre substance i n  a n d  

through some surface water systern. 

have been devised f o r  myriad purposes and  applications.  However, very 

Few attempts a t  validation have heen made a n d ,  o f  the models which have 

been subjected to  validation attempts, an  even smaller number have been 

tes ted for more tilati one locale  o r  s i tua t ion .  

Ntiniersus aquatic transport  mode1 s 

This section will explore several aquatic transport models and  any 

k n o w n  attempts t o  val idate  t h o s e  models. As s ta ted  in the introductory 

sect ion,  the selected models are  intended t o  be nei ther  a comprehensive 

l i s t i n g  nor  a representative sampling of aquatic t ransport  models. 

Rather, t h i s  sect ion,  a s  those t h a t  follow, estimates the degree t o  

which t h e  chosen models have been validated and attempts to  place confi-  

dence bounds on the predictions o f  the various inodels. 

The models w i l l  be grouped and discussed in three categories:  one- 

dimensional models, two-dimensional (longitudinal -ver t ical  ) models, a n d  

two-dimensional (longi-tudinal - transverse) models. I n  each o f  these 

three groups, mode?s with and  without the a b i l i t y  to consider sorption 

by sediment wi 11 be discussed. 

2.1 One-dimensional Models 

Gloyna and others a t  the Center fo r  Research in Water Resources of 

the University o f  Texas a t  Austin have considered aquatic models 
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t h a t  incl  udc b o t h  sorptive? and purely h y d r ~ d y ~ ~ i n i ~  processes i n  <I research 

f 1 i m  (model r i v e r )  I According t o  Gioyna e t  a l  . one-dimensional irlodels 

b ~ i  th01-4t ssrptior; have been acceptably validated f o r  the d i f fus ive  period 

afFer release, partially validated for. the convective period, and n o t  

validated f ~ r  dead water zones. 

2 

3 S h i h  and Glcyxia v a l  idated a o n e 4  imensional ana ly t lc  so lu t ion  t o  

t ~ w  convective-~dispei,sive equation f o r  t ransport  o f  8 5 ~ r  in t h e i r  experi- 

mental f l  ttiilc. We 1” nterpol a ted frorn f i g u r e s  o f  predicted and observed 

c c n c e n t s a t i o n s  t o  c a l c ~ l a i e  the r a t i o s  o f  maximum prediction t o  inaximu 

o b s e w a t i ~ o n  shown i n  Table I .  For the f i v e  curves published, the model 

t-if ~ ~ i i i  and ~ 1 o y t - a ~  tetic~cd t o  underpredict the maxjniurn concentration o f  

c35Sr observed i n  the Mater ( F i q .  1 ) .  

r a t i o  o f  Insximum prediction t o  maximum observation was on ly  0.66. 

other k ~ ~ r d s ,  the largest  underprediction amounted t o  only about 50%. I f  

t h i s  trend ~ e r e  t o  h o l d  true, we would expect t h a t  the nodel of Shih and 

Gloyna would be acceptable f o r  many appl icat ions.  Approximately the 

sam a b i l i t y  t o  predict  so lu te  concentrations was observed i n  simjlar 
4 s t u d j e s  w i t h  85Sr i n  the research flume a t  the University o f  Texas. 

19nfoi-‘%unately, t o  our knowledge Gloyna has n o t  tested h i s  model outside 

the experimen t a l  f l  unie e 

However, the smallest  value o f  the 

In 

H R W W W ,  Rar-idon e t  a l a 5  modified the model o f  Shih and Gloyna a n d  

t e s t ed  i t s  a b i l i t y  t o  predict  mercury t ransport  i n  the Walker Branch 

w,tterstied a t  Oak Ridge National Laboratory. Raridon e t  a l .  claimed t h a t  

their  changes i n  the Shih-Gloyna model more completely and r e a l i s t i c a l l y  

described the  mechanisril o f  sorption-desorption. 

Gloyna model $ we used the data plot ted by Raridon e t  a l .  t o  estimate t h e  

r a t i o  s f  the maximum mercury concentration predicted t o  t h a t  observed 

Much as  w i t h  the S h i h -  
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Table 1 .  Comparisons of maximum predict ion w i t h  riiaximurn ohseLvation 
o f  85Sr concentration i n  w a t e r  o f  t h e  experimental flume 

Downstream 
di s timce, f t  

85 
. Maximum value ( Sr dpmJml ) 
Predicted Observed PredictedSObserved 

- ....... __l.---l_lll--.-- I__ 

50 
50 
90 
90 

170 

1000 1500 
1500 1510 

790 1200 
1200 1230 

560 190 

0.67 
0.99 
0.66 
0.98 
0.72  

.._._..__..-..__._.___....._I ......_-...-__....I__ - . ._.__._. ___ ...... 

C .  S .  S h i h  and E. F.  Gloyria, Kudioactivity Transport in Water- a 

Ma-thema-ticaZ Node2 fo r  t h e  Ti-ansport o$ Radionuclides, CRWR-18 Center 
fo r  Research i n  Water Resources, The University o f  Texas, Austin, Texas, 
J[me 1 ,  1967. 
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8 

F i g .  1. Exper imental  da ta  and dfspersed f lnw model. Source: C .  S. Sh ih  
F. G1 oyna , Radioact iv i ty  Tmnspor t  in bkrter-Mathematica I Mode 2 f o r  the and E 

2 7 ~ m s p o ~ ~ i ;  of Rad&mucI&&s, CRWR-18, Center f o r  Research i n  Water Resources 
The U n i v e r s i t y  of  Texas, A u s t i n ,  Texas, June 1, 1967. 
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(Sab le  2 ) .  

t i o n s  in  Tab le  2 i s  t h a t  t h e  model tended t o  o v e r p r e d i c t  the observed 

c o n c e n t r a t i o n s  r a t h e r  than unde rp red ic i  a s  was t h e  case  with Shih and 

Gloyna (Tab le  1 ) .  However, a s  with Shih and Gloyna, Rar idon ' s  p r e d i c t i o n s  

were less  than a f a c t o r  o f  2 d i f f e r e n t  from the o b s e r v a t i o n s .  T h i s  

r e s u l t  would t end  t o  i n d i c a t e  t h a t  the Shih-Gloyna model can p r e d i c t  

adequa te ly  t h e  t r a n s p o r t  of some p o l l u t a n t  i n  a s t ream a t h e r  than the 

Univeps i ty  o f  Texas r e s e a r c h  flume. 

by t h e  reminder t h a t  Raridon e t  a l .  only r epor t ed  samples t o  a downstream 

d i s t a n c e  o f  100 m .  

a t  longer  d i s t a n c e s  remains t o  be seen .  

Thc most obvious c h a r a c t e r i s t i c  o f  the Raridon e t  51. p red ic -  

This conclus ion  miust be q u a l i f i e d  

Whether t h e  model would con t inue  t o  perforin adequa te ly  

I n  summary, t h e  primary one-dimensional model i s  one dcveloped by 

Gloyna and h i s  a s s o c i a t e s  a t  t h e  Un ive r s i ty  o f  Texas. This model can 

p r e d i c t  observed c o n c e n t r a t i o n s  i n  an experimental  f l  I J W  w i th in  a f a c t o r  

o f  2 ,  b u t  the model tends t o  unde rp red ic t .  

Shih-Gloyna model f o r  use i n  a n a t u r a l  stream. Mercury c o n c e n t r a t i o n s  

were p r e d i c t e d  wi th in  a f a c t o r  o f  2 t o  d i s t a n c e s  u p  t o  100 m downstream, 

b u t  the model tended t o  o v e r p r e d i c t  r a t h e r  than t o  unde rp red ic t .  

Raridon e t  a1 .5  adapted t h e  

2 . 2 .  Long i tud ina l -Ver t i ca l  Models 

We are  aware o f  no l o n g i t u d i n a l  a q u a t i c  r a d i o a c t i v i t y  t r a n s p o r t  

models t h a t  do no t  i n c o r p o r a t e  s o r p t i o n .  

by O n i s h i  a t  B a t t e l l e - P a c i f i c  Northwest Laboratory has some success  i n  

p r e d i c t i n g  the c o n c e n t r a t i o n s  o f  s e v e r a l  n u c l i d e s  i n  both water a n d  

sediment of  seve ra l  s t reams.  'The SERAI'RA i s  a f i n i t e  element sediment 

The SERATRA6'7 model developed 
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Tab1 e 2 .  Comparison o f  ~ ~ ~ ~ ~ ~ ~ r i  predic tednmd maximum observed 
o f  Hg i n  water 

Downstream 
d i s t a n c e ,  in 

Maxiniuni value ( '97HlmCi/ l  .- _I__L l_^l_-_---l.---ll-.. i t e r )  
Predicted Observed Predi cted/Observed 

10 
20 
40 
70 

100 

13.9 12.5 
12.4 10.6 
10.0 5.99 

6.33 5 , 6 7  
4.67 4.03 

1.11 
1 . 1 7  
1.67 
1.12 
1.16 

R. J .  Raridon, M .  T. Mil l s ,  and J .  W. Huckabee, Computer Model n 

for  Chemical Exchange i n  the Stream System, pp. 284-291 i n  Ppuceadings of 
the  E'irst Az-nuaZ NSF !@am Con*amirznnts Conference, Oak Rfdge  National 
Laboraatory, A U ~ L L S ~ ,  8-10, 1973, CONF-730802, 1973. 
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and contaminant model, which was modified t o  predict  time-dependent 

longitudinal and ver t ical  dis tvibut ions o f  sediments a n d  radionuclides 

in b o t h  the Columbia and  Clinch r ivers .  For the Clinch River study 

( r e f .  G ) ,  137Cs, 'OS,, and lg8Au were used as sources a t  l e a s t  par t ly  

because datd from previous sampling of the r iver  w ~ r e  avai lable .  

t o  Onishi', "agreement of predicted r e su l t s  and f i e l d  d a t a  f o r  continuous 

release cases was very good,  while f o r  instantaneous releases agreement 

According 

was poor." In the Columbia River ver i f ica t ion  study ( r e f .  7 ) ,  65Zn was 

traced because o f  i t s  adsorption charac te r i s t ics  and  again because f i e l d  

data were avai lable .  As i n  the Clinch River study, Onishi s ta ted  t h a t  7 

fo r  the Columbia River "sediment and radionucl ide r e su l t s  of the ver- 

i f i ca t ion  t e s t  case ... indicate very good agreement with measured da ta . "  

Both the quoted staterrients a r e  t rue  enough; the f i e l d  d a t a  on radio- 

nuclide concentrations in water presented by O n i ~ h i ~ ' ~  do agree f a i r l y  

well with the predictions of the models (Table 3 ) .  The la rges t  discrc- 

pancy was the underprediction of the observed concentration by more t h a n  

a fac tor  o f  'I, which occurred w i t h  137Cs i n  Case 1 .  Unfortunately, the 

small number of f i e l d  observations t h a t  Onishi presented fo r  each case 

make i t  d i f f i c u l t  t o  decide whether the predictions are  o r  a re  n o t  in 

agreement w i t h  the measurements. The d a t a  i n  Fig. 2 a re  indicat ive 

of t h i s  f a c t .  
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Table 3. Maximum differences between predict ioas  o f  SERATRA 
model and observed concentrations 

Dissolved concentration/l i t e r  Prediction/ 
O b s e r v a m  Observation Nucl i de  Distance, kni pred ic t ion  

l 37cs 13 2.1 1 .o 2.1 

37cs 30 1 .o 

"sr 13 3.7 3.7 1 .o  

"Sr 30 2.8 2.8 1 .o  

65Zn 108 41 41 1 .o 

Y .  Onishi, Pini te  Element iV~dt?Ze f o r  Sed-;merit ctml Contcim.l*nant n 

Tmnsport in Surface Waters-Tmnsport of Sediments and Kudionuc i! i d e s  ?:n 
the CZ-inch River, BNWF-2227, July 1977; Mathematical Simulation of Sedi- 
ment and RadionucZidg Xmnsport in the  Columbia River, BNdJL-2228, 
August 1977. 
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RIVER KILOMETERS 

F i g .  2.  Longitudinal d i s t r ibu t ion  o f  t o t a l  137Cs, dissolved 
137Cs, and pa r t i cu la t e  137Cs in t h e  Clirich River. Source: Y .  Onish i ,  
D .  k. Schreiber and R. B. Codell, MathernaticaZ Simulat-ion of Sed+nent 
a d  Radionuclide Transpori- in the Clinch River, Tennessee, Proceed i ng S 

o f  t h e  ACS/CSJ Cheinical Congress, Honolulu, Hawa i i ,  April  2-6, 1979 
( A n n  Arbor Science Plnbl i ca t ions ,  Inc. ) .  



11 

2.3. Longitudinal-Transverse Models 

8 The aquatic t r anspor t  models o f  Yotsukura and Cobb and Yotsukura 

a n d  Sayre' were concerned with transverse m i x i n g  of  solutes in streams. 

A l a t e r  paper by Jackman and  Yotsukura" adapted the model o f  Yotsukura 

and Cobb t o  predict  temperature downstream from some thermal input.  

Yotsukura and Sayre' offered a mathematical proof t h a t  the transverse 

cumulative discharge concept could be included in the s teady-state  two- 

dimensional mixing equation while s t i l l  incorporating the iniportarit 

transverse velocity term. 

simpler form o f  the convection-diffusion equation t h a t  was par t icu lar ly  

applicable t o  nonuniform channels. 

Yotsukura and Sayre' ultimately derived a 

8-1 0 All of the models discussed by Yotsukura and his co-workers 

employed an orthogonal curvi 1 inear coordinate systeni t o  describe the 

geometrical configuration of the channel - This coordinate system coupled 

w i t h  the f low d is t r ibu t ion  within i t  allowed the easy inclusion o f  the 

e f f ec t s  o f  channel i r r e g u l a r i t i e s  and curvature. 
8 9 

Although both  Yotsukura and Cobb a n d  Yotsukura and Sayre published 

curves o f  observed and predicted concentration p ro f i l e s ,  the agreement 

between predictions and observations cannot be gauged from those d a t a ,  

because only the best curves o f  prediction were plot ted.  

prediction curve resulted from varying the value o f  several input parame- 

t e r s  and generating a g r o u p  o f  predictions fo r  each parameter value, 

( i . e . ,  the model was tuned t o  f i t  the observations).  

Yotsukura, Cobb and  Sayre f e l t  t h a t  t h i s  process "ver i f ied"  t h e i r  model 

because the parameters being varied resul ted in a n  average diffusion 

The "best" 

Nevertheless, 
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coef f ic ien t  t h a t  was uniforni f o r  a given t e s t  and  t h a t  was bracketed by 

pub1  i shed val ues. 

10 The adaptation o f  the Yotsukura-Sayre model by Jackman a n d  Yotsukura 

included equations For the conservation of thermal energy. lhe transverse 

temperature gradient downstream From a s i t e  of thermal input was modeled 

f o r  several d i f fe ren t  r ivers .  

the curves published in the temperature study" did n o t  r e su l t  from a 

tuning o f  the model. 

8 3 9  Contrary to  the earl  i e r  pub1  ished r e s u l t s ,  

The curves o f  predicted temperature versus observed temperature 

In no case did the predicted temperature were generally very s imilar .  

exceed the  observed temperature by as much a s  2°C. 

poorest agreement i s  shown in Fig. 3 for  time 0805. Most 0.f the predicted- 

observed curves showed even be t te r  agreement. 

agreement, the d a t a  of Jackman and Yotsukura'' are  f rus t r a t ing ,  because 

the uncertainty i s  di.FFicult t o  quantify. 

d i scre te  concentrations are  predicted, a mean r a t i o  o f  predicted t o  

observed concentrations has l i t t l e  meaning f o r  Celsius degrees; an 

average overprediction of 1 "C seems t r i v i a l  i f  the observed concentration 

i s  la rge ,  b u t  seem a b s u r d  i f  the observation i s  near zero. 

of the Celsius d a t a  in to  d2grees Kelvin creates  the inverse p r o b l e m  

near perfect model; var ia t ions o f  a few degrees in the Kelvin scale  

would seeiii very minor. 

the a b i l i t y  of the Jackman-Yotsukura model to predict  solute  concentrations 

downstream from some release i s  d i f f i c u l t  t o  do .  Suffice i t  t o  say t h a t  

the inodel o f  Yotsukura and Sayreg i s  good enough t o  have been suggested 

One o f  the cases of 

I n  sp i t e  o f  the good 

Contrary t o  s tudies  where 

Translation 

Therefore, making a quant i ta t ive statement a b o u t  

by the NRC" as an appropriate model t o  use .for routine o r  continuous 

re1 eases from nuclear power plants .  
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F i g .  3. Comparison o f  observed and calculated transverse temperature 
d i s t r ibu t ions ,  the North P l a t t e  River near Glenrock, Wyoming, January 1990. 
Source: 
U.S. Geological Survey Professional Paper 991 U.S. Government Printing 
O f f i c e ,  Washington, D . C . ,  1977. 

A, P .  Jackrnan and N .  Yotsukura, ThemnuZ Loading of TiatrnaZ. StreamsJ 
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The model FETKA developed by Onishi and others 1 2 - 1 4  d i f f e r s  from 

the Yotsukura-Sayre model by vir tue o f  a capbi l i ty  t o  consider sorption. 

Although rETRA has n o t  been applied t o  any radiological assessments, i t  

has been used tc:, predict  t h e  t ransport  of sediment and the pollutant 

kepone i n  the  James River Estuary of eastern Virginia. 

cans is t s  o f  Ihe three submodels: 

dissolved contaminant transport  code, and ( 3 )  a par t icu la te  contaminant 

t ransport  code. 

given fo r  sediment t ransport  and par- t i  cul a t e  keponc. 

published i n  numerous f igures  o f  sediment o r  kepone concentration as a 

function of distance downstream i n  the James River. Onishi varied the 

simulation parameters between figures and compared the r e su l t s .  For 

each f igure,  wc found the point o f  l a rges t  divergence hetween e i t h e r  

predicted-average par t icu la te  kepone and observed-averaqe par t icu la te  

kepone o r  predicted- and observed-total sediment concentration i n  water. 

For each point o f  l a rges t  discrepancy, wc? calculalecli the predicted t o  

The FETRA model 

( 1 )  a sediment t ransport  code, (2) a 

Data, which can be considered ver i f icat ion data ,  wcre 

The data were 

observed r a t i o  as an indication of agreement (Table 4 ) .  

r a t io s  of predicted t o  observed-average par t icu la te  kepone concentration 

and predic t ia te  sediment concentration were 8.63 a n d  0.33, respectively.  

This means t h a t  FETRA uncle) predicted par t icu la te  kepone concentrations 

by about 40% a n d  underpredicted sediiiicnt concentrations by nearly 70%. 

O n i s h i  and Wise14 gave no f i e l d  rneasurernents f o r  dissolved pol lutant  i n  

t h i s  case. 

The smallest 

3. ATMOSPHERIC DISPERSION 

One o f  t h e  principal ways Sn which radionuclides from nuclear 

f a c i l i t i e s  reach t h e  environment i s  via discharges i o  the atmosphere. 
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Table 4. Ratios o f  FETRA predictions t o  observed values a t  the  
p o i n t  o f  largest discrepancy i n  t h e  James River- Estuary" 

Predicted/ 
Observed 

Concentration a t  the p o i n t  
o f  1 argest disc-ancy 

t Y  Pe Pred i cted 0bsFvx 

Dnwnstream T i  de 
--.I- __ distance,  km 

101 
1 01 

75 
li 02 
101 
7 02 
107 
102 

Ebb 
SI ack 
F1 ood 
Average 

Ebb 
Slack 
F1 ood 
A v e rag e 

Q.  072 0.092 
0.070 0.108 
0.1 Q6 0.154 
0,068 0.106 
0.070 0.090 
0.068 0.108 
0.068 0.108 
0.07 0,106 

Average par t icu la te  kepone concentration i n  sediment (ug/g) 
0.78 
0.65 
0.69 
0.64 
0.78 
0.63 
0"  63 
0*66 

47 
45 

Total  sedimen, concentration i n  water ( n ~ ~ / 1  
35 
33 

90 
101 

t e r )  
0.39 
0 - 3 3  
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Atmospheric dispersion calculat ions provide estimates o f  a i r  concentration 

resul t ing from these releases.  

t o  ca lcu la te  t h e  dose t o  man from both d i r ec t  and ind i rec t  pathways. As 

a r e s u l t ,  an estimate o f  the uncertainty associated with the atmospheric 

dispersion calculat ion i s  an  important component in any attempt t o  

estimate the uncertainty in the f ina l  dose calculat ion.  

These a i r  concentrations are  then used 

3.1. The Gaiissian Plume Model 

T h e  Gaussian plume model15 i s  the most widely used method o f  e s t i -  

mating downwind a i r  concentrations o f  radionuclides released to  the 

atlimphere. le;  ” 

i t  has proven reasonably successful in predicting observed a i r  con- 

centration pat terns .  

A1 though t h i s  tiiodel has theoret ical  1 imitat ions,  

15  

For a continuous p o i n t  source, the model i s  given by 

where 

3. x = ground-level a i r  cancentration, Ci/m , 

Q = re lease r a t e ,  Ci/sec; 

H = height of re lease ,  m ;  

u = wind speed, m/sec; 

CT oZ = standard deviation of a Gaussian d is t r ibu t ion  in the cross 
w i n d  a n d  ver t ical  d i rec t ions ,  respect ively,  m. Y ’  

I t  has been found tha t  changes i n  ay and oz can great ly  a f f ec t  the 

rcsul t i n g  a i r  concentration calculated by the mode?. l89l9 A number o f  
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empirically determined graphs of CT and crz as a function of downwind 

distance and atmospheric s t a b i l i t y  have been proposed.20 Vogt2' has 

compared the short-term diffusion fac tors  X! ( x ,  y = 0 ,  z = 0 )  computed 

from s ix  such s e t s  of curves assuming a 100-m release height and using 

one method of determining atmospheric s t a b i l i t y .  

maximum values generally agreed within a fac tor  of 2 f o r  each s e t  of 

curves and each atmospheric s t a b i l i t y  category considered, b u t  the 

location of the maxima differed by as much as an order o f  magnitude. 

Vogt" a l so  calculated annual average diffusion fac tors  using the same 

s i x  s e t s  of dispersion parameters and annual average meteorological 

s t a t i s t i c s  for Jii l ich.  I n  this case,  the maximum values differed by over 

Y 

Q 

He found t h a t  the 

an order of magnitude and t h e i r  location by a fac tor  o f  5 depending upon 

which s e t  of dispersion parameters was used. 

Vogt's comparisons were based on one method of determining the 

s t a b i l i t y  of the atmosphere. 

proposed fo r  c lass i fying the s t a b i l i t y  o f  the atmosphere. 22 

shown tha t  these d i f f e ren t  methods can give s igni f icant ly  d i f f e ren t  

r e su l t s  when applied t o  the same meteorological data se t .  23-25 

However, a var ie ty  of methods have been 

It has been 

There 

a re  indications t h a t  the select ion of a s t a b i l i t y  category alone can 

r e s u l t  i n  a fac tor  of 4 difference between the lowest and highest annual 

average a i r  concentration calculated u s i n g  a given s e t  o f  uY and oZ 
" 

curves. 2 3 9 2 4 s 2 6  Because o f  the large differences in the value of the 

diffusion fac tor  t h a t  can r e s u l t  from the use of d i f f e ren t  values o f  

dispersion parameters, i t  has been recommended tha t  as much s i t e -  

spec i f i c  information as possible concerning wind veloci ty ,  topography, 

and re lease h e i g h t  be u t i l i zed  when choosing values of cr and oZ t o  be 

u t i l i zed  i n  a given s i tua t ion .  

Y 
22 



Another c r i t i c a l  parameter in the Gaussian model i s  the hcight o f  

the re lease,  H. T h i s  value includes not  only the physical height o f  the 

stack b u t  a lso any a d d i t i o n a l  height due t o  the r i s e  of the plixne as a 

r e su l t  o f  i t s  buoyancy o r  momentum. 

usually estimated through t h e  use o f  models such as those suggested by 

Bri ggs . 27 

buoyant plumes o r  stacks associated w i t h  t h e i r  routine releases so nor-  

mally plume r i s e  i s  n u t  c r i t i c a l  t o  t h e  estimation of a i r  concentrations 

resul t ing from these f a c i l i t i e s .  

The amount of t h i s  pluriicl r i s e  i s  

Nucl ear  power p l  ants sel dom have e i the r  1 arge monicntum o r  

26 

3.2. Overall Uncertainties in Gaussian Model Calculations 

The best way t o  determine the overall uncertainty associated with 

atmospheric dispersion models such as t h e  Gaussian plume inode? i s  t o  

coinpare the i r  predictions with environmental measurements taken under 

release conditions s imilar  t o  those assumed by the model, a process 

commonly referred t o  as model validation. Such studies need t o  be 

conducted under a variety o f  t e r r a i n ,  release height,  a n d  meteorological 

condi t ions .  Unfortxnately, n o t  enough model Val idation studies have 

been performed t o  allow fo r  a r e l i ab le  s t a t i s t i c a l  analysis o f  the 

uncertainty associated with the Gaussian plume model. 

attempt t o  estimate t h i s  uncertainty based largely on s c i e n t i f i c  judgment 

i s  summarized in Table 5 and discussed below. These estimates asslime 

t h a t  t h e  factors  considered above, i .e .  , dispersion parameters, plume 

r i se ,  e t c . ,  have been optimized. The comparisons between predictions 

and f i e l d  measurements discussed below, however, need n o t  include an 

optimization of  these parameters in the prediction process. For example, 

select ion o f  a d i f f e ren t  s e t  of  dispersion parameters or a d i f fe ren t  

c r i t e r i a  for  determining atmospheric s t a b i l i t y  could change t h e  r e su l t s  

26,28-30 One 
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Table 5 ,  An estimate of the uncertainty associated with 
concentration predictions made by the Gaussian plume 

atmospheric disperson model 

Conditions 
Range o f  the r a t i o  

- Predicted 
Observed 

Highly instrumented f l a t - f i e l d  s i t e ;  ground-  
level cen ter l ine  concentration w i t h i r r  10 km 
o f  continuous point source 

Specific hour and receptor p o i n t ;  f’ lat  
t e r r a i n ,  steady meteorological conditions;  
within 10 km o f  re lease p o i n t  

Ensemble average fo r  a spec i f i c  point ,  f l a t  
t e r r a i n ,  within 10 km o f  release p o i n t  (such 
a s  monthly, seasonalp or annual average) 

Monthly and seasonal averages, f l a t  t e r r a i n ,  
7 0-1 00 km downwind 

Complex t e r r a in  o r  meteorology (e .g .  , sea 
breeze regimes) 

0.8-1.2 

0.1-10 

0. 5-2 

0.25-4 

b 

T. V.  Crawford (Chairperson) , Atmospheric Transport o f  Radionuclides, C t  

pp. 5-32 i n  Ymxeed&gs of a Woz.kshop on the Evaluation of ModeZs Usad 
f o r  t h s  EnuiromenfiaZ Assesstnent of Radionuclide Releases, ed. by F e 0. 
Hoffman, D. L .  Shaeffer,  C .  W .  Miller,  and C .  T .  Garten, J r . ,  USDOE Report 
CONF-770901, NTIS, April 1978. 

bThe group which assembled these estimates did n o t  feel  there was 
enough information avai lable  t o  make even a “ s c i e n t i f i c  judgment” estimate 
under these conditions. 
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of a given comparison. 

a s  given provide a useful indication o f  the uncertainty in the Gaussian 

model to  be expected under the s ta ted conditions. 

3.2.1. Centerline concentrations 

However, i t  i s  believed t h a t  these comparisons 

.___.. __I__..___~.-- 

The estimate given fo r  the highly instrumented f l a t - f i e l d  s i t e  

assumes t h a t  previous d a t a  on meteorology and airbornz concentrations 

are  a lso avai lable .  Pasquill18 has a lso estimated an uncertainty o f  

+10-20% for  short  downwind distances,  steady winds, and  ground-level 

re leases .  

f a r  elevated releases .  

He suggests t h a t  an e r ror  o f  ?30-35% may be more appropriate 

A more appropriate value f o r  the uncertainty 

associated with the maximum a i r  concentration value from elevated sources 

may be tW%.  18y19 

in these estimates are  ra ther  i d e a l i s t i c  and  seldom occur in the real 

The meteorological a n d  t e r r a in  conditions specified 

worl d .  

3 . 2 . 2  a _. Speci f icJour a n d  receptor 

As shown in 'Table 6, the order of magnitude uncertainty i n  concen- 

t r a t ion  estimates for  a spec i f ic  hour and receptor location i s  supported 

by recent comparisons based on d a t a  taken a t  Hanford, Washington, provided 

the wind direct ion i s  accurately known.25 

representative o f  f l a t  t e r r a i n ,  b u t  these resul ts are 1 imited t o  thermally 

s t ab le  conditions. Measurements taken under a la rger  variety of atmo- 

The Hanford s i t e  i s  f a i r l y  

spheric s t a b i l i t y  conditions also support t h i s  uncertainty estimate,  

however.31 

s l igh t ly  s tab le  conditions the uncertainty may be a fac tor  of 2 o r  more 

l e s s  than  w h a t  i s  estimated in Table 5.  

These laLter  r e su l t s  a l so  indicate t h a t  f o r  neutral and 
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Table 6.  Some validation r e su l t s  fo r  short-term 
Gaussian plume model predictions 

- 
Range o f  the r a t i o  

Conditions Predicted Reference 
Observed 

Surface level re leases  o f  fluores- 0.2-5, 72% of 
cein pa r t i c l e s  under thermally samples 
s t a b l e  atmospheric conditions 
a t  Hanford, Washington 

SF, re leases  from a 36-m stack 0.33-3, 89% of 
samples U 

under s t a b i l i t y  categories B 
t h r o u q h  F a t  the Rocky Mountain 0.1-10, 100% of 

2 5  

31 

Arsenal Denver, Colorado samples 
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3 , 2 . 3  Ensemble averages -__-_---- 
I n  radiological assessments one i s  generally more interested in 

ensemble averages t h a n  s i n g 1  e receptor values when considering roiltine 

releases from nuclear f a c i l i t i e s .  Table 5 indicates t h a t  fo r  f l a t  

t e r r a in  the uncertainty associated w i t h  ensemble averages i s  expected t o  

be s ign i f icant ly  l e s s  t h a n  the uncertainty associated w i t h  predictions 

for a spec i f ic  location. Recent validation s tudies32y33 indicate  t h a t  

such accuracy i s  possible even in more complex t e r r a in  when meteorological 

regimes a re  well defined (Table 7 ) .  

One way in which a i r  concentrations a re  used i n  radiological assess- 

ments i s  t o  estimate external exposure t o  inan from airborne radionuclides. 

Monthly and annual average exposures measured around operating nuclear 

power plants have been compared t o  exposures predicted from a i r  concen- 

t ra t ions calculated from the Gaussian plume model. 34-36 

exposure model as  well as the a i r  concentration model i s  involved in the 

f ina l  comparison, on the average the predicted values were within a 

While t h e  

fac tor  o f  2 of  riieasured exposures and individual s ta t ion  predictions 

were a l l  w i t h i n  a fac tor  o f  5 of measurenients (Table 7 ) .  

3 .2 .4 .  ~. Long distances 

Most atmospheric validation s tudies  have been carr ied o u t  .for 

downwind distances on the order of 10 km o r  l e s s .  

however, a re  generally carr ied o u t  t o  distances approaching 100 krri o r  

more. 

the Savannah River P1 an t  and concurrent 85Kr a i r  concentration measurements 

out t o  a distance of 150 kin has become available.37 

Radiological assessments, 

Recently, a data s e t  consisting of 85Kr release information fo r  

Comparisons using 
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Table  7. Some validation r e su l t s  for  ensemble averages 
predicted by the Gaussian plume model 

____I-I-- - 
Range o f  the r a t i o  

Predicted Reference 
Observed Conditions 

Annual average SO2 concentrations 

f o r  Roane Co., Tennessee; both 
p o i n t  and area source emissions 
i ncl uded 

0.5-52 

Continuous garnma-ray measurements 0.33-1.78 
0.04-6.8 km downwind of a 
boil ing water reactor 

Gamma-ray doses downwind of 0 . 5 - 4  - 
Humbol d t  Bay Nucl ear  Power P1 an t  

32,33 

34 

35 

Monthly garnma-ray doses for  four 0.30-4.78, 35,36 
s t a t ions  downwind of a nuclear power individual s ta t ions  
p l a n t  a t  an inland s i t e  

1.55, mean o f  a l l  
data 
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t h i s  data s e t  (Table 8)  support t h e  uncertainty estimate shown i n  Table 

38-40 5 .  

3.2.5. 

The group which assembled the estimates shown i n  Table 5 d i d  not feel  

there was enough information avai lable  to  make even a " sc i en t i f i c  judgment" 

estimate of the accuracy of the Gaussian plume model under these conditions.  

The Gaussian model was never designed t o  be used unde r  conditions of 

complex terrain o r  meteorology without extensive modification, a t  l e a s t  

Complex te r ra in  a n d  ~ . .  meteorology - 
-̂.-- 
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of i t s  i n p u t  parameters. 

Koch and his co-workersZ9 have reviewed a number of diffusion 

experiments conducted i n  complex t e r r a in  (Table 9 ) .  O n  the average, the 

Gaussian model tended to  overpredict the measured concentrations by a 

fac tor  o f  5 near the source. 

t r a t ions  were underestimated by a s  much as trqo orders of magnitude. 

However, some individual 5 rnin SO2 concen- 

Other maximurn hourly SO2 concentrations were overpredicted by factors  o f  

20 to  nearly 300. I n  general ,  the model was found to  be most accurate 

fo r  f l a t  t e r r a i n ,  l e s s  accurate fo r  rugged, open t e r r a i n ,  and l e a s t  

accurate fo r  a confined canyon. 

3.2.6. bow w i n d  speed, inversion - . .. . . _. conditions .-_. . 

A special condition not considered i n  Table 5 i s  dispersion under 

low w i n d  speeds i n  the presence o f  a temperature inversion. 

Gaussian plum model was not designed to  be used under these conditions. 

A g a i n ,  the 

Van der Hoven41 has reviewed several experiments conduc Led under 

All w i n d  speeds these conditions fo r  g r o u n d  level sources (Table 9 ) .  

were less  than 2 m/sec, and the ver t ical  temperature gradient was greater  
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Table 8. Val idat ion results f o r  Gaussian plume rnodel 
p red ic t ions  out  t o  140 km 

_____l_l__p---- --... ___..__ ___ - 

Range o f  the r a t i o  
Condi t i  ons Predi c ted 

Observed 
- - ~  Reference 

85Kr measurements 30-140 km downwind 
of  the Savannah River P lan t  

Weekly and  annual averages 0.25-4 

Seasonal averages,  s p r i n g  

Annual average 

Summer 

Fa1 1 

Winter 

38 

2-4, 69% o f  samples 39 
2-10, 100% o f  samples 

0.5-4, 46% o f  samples 
0.5-10, 85% o f  samples 

0.5-4, 31 % o f  samples 
0.5-70, 85% o f  samples 

2-4, 69% o f  samples 
2-10, 92% o f  samples 

1-4, 77% o f  samples 
1-10, 92% o f  samples 

10-hour averages,  six v a r i a t i o n s  of 0.5-2, 42-65% o f  samples 40 
the model 0.1-10, 79-95% o f  samples 
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Tab le  3. Some validation results f o r  Gaussian plume model predictions i n  
bo th  complex terrain and a l s o  under low wind 

speed, inversion conditions 

co nd i ti QrIS 

Range o f  t h e  ratio 
Predicted Reference 
Observed 

Review o f  a number o f  experiments 0.01-300, individual 29 
conduct ted i n compl ex terrai n for measurements close 

t o  the source 
0.50-2, <2-15 km 
downwind o f  source 

pli ume center? i ne concentrati oils 

Review of a number of experiments 
conducted under 7 OW wind speed, 
inversion conditions 

stability category 
E F G 

smooth desert1 i ke terrai n" 2.3-10 1.3-12 3.6-20 
WQO~EXI  f l  at terrain" 20-25 20-40 20- 30 
wooded hi1 ly terrain" 50- 350 300- 500 

41 

_I ~ 

4 7 Ratios  estimated from curves provided by Vari der Hoven. Lt 
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t h a n  -0.5OC/IOO III. For smooth,  unforested t e r r a in ,  measured concentrations 

were lower t h a n  calculated values for  atmospheric stabil. i t y  categories 

E, F ,  arid G by a t  l e a s t  a fac tor  of 2.3, 1 .3 ,  and  3 .6 ,  respectively.  

Observed values were 20 t o  40 times lower t h a n  predicted values f o r  

f l a t ,  forested t e r r a i n ;  50 t o  5QO times lower for  h i l l y ,  forested t e r r a in .  

3.3. Other Atmospheric Dispersion Models 

As noted above, there a re  a number of conditions cormionly encountered 

in radiological assessments fo r  which the Gaussian plunie model i s  n o t  

expected t o  apply. These include s i tua t ions  involving complex te r ra in  

or meteorology a n d  l o n g  range t r anspor t .  

o f  more complex, seemingly more r e a l i s t i c ,  dispersion models have been 

o r  a r e  being developed f o r  use in these obviously non-Gaussian s i tua t ions .  

However, t o  run properly these models often require a much more extensive 

input data base than the Gaussian model, a computer with large storage 

capacity,  and a long computer running time fo r  each simulation desired. 

T h u s ,  these conditions severely l imi t  the p rac t i ca l i t y  of using many of 

these more complex models in assessment a c t i v i t i e s .  

shortage of validation r e su l t s  for  these models. 

3.3.1. Trajectory models I 

As a r e s u l t ,  a large number 

There i s  a lso a 

In  a t ra jec tory  model, time- and space-dependent w i n d  f i e l d s  a re  

26 
used t o  ca lcu la te  t r a j ec to r i e s  fo r  e i t h e r  puffs or plume segments. 

One example o f  such a model i s  t h a t  developed by the National Oceanic 

42 and  Atmospheric Administration Air Resources Laboratories ( A R L ) .  

Predictions f r o m  t h i s  model have been compared w i t h  the data gathered a t  

the Savannah River Laboratory43 with the r e su l t s  shown i n  Table 10. The 
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Table  10 .  Val i d a t i o n  r e s u l t s  f o r  s e l e c t e d  non-Gaussian 
atmospheric  d i s p e r s i o n  models 

Model Condi t ions  
Range o f  the r a t i o  

P red ic t ed  Reference 
0 bserved 

A R L  

ADPIC 

I M PACT 

85Kr c o n c e n t r a t i o n s  50 
l o  150 km downwind of 
Savannah River P l a n t  

13’ I c o n c e n t r a t i o n s  o u t  
t o  approximately 90 km 
a t  Idaho Nat ional  
Engineer ing Laboratory 

41 Ar c o n c e n t r a t i o n s  o u t  
t o  apprnximately 25 km 
a t  Savannah River P l a n t  

Compl ex t e r r a i n  
Coastal  s i t u a t i o n  

0.5-2,  seasonal  average  39 
0.8-1.2,  annual average  

0.5-2, weekly average ,  53% 43 

0.1-10, weekly average ,  90% 

9 . 5 - 2 ,  2 y e a r  average 

o f  samples 

of  samples 

0 .5-2,  44% of samples 46 
0.1-10, 94% o f  samples 

0.5-2, 61% o f  samples 46 
0.1-10, 98% o f  samples 

0.5-2,  1 hour average  28 
0.5-2,  4 hour average 28 
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A R L  model does seem t o  perform somewhat be t t e r  than the Gaussian model 

when applied to  t h i s  same d a t a  s e t  (Table 8 ) .  The ARL model has been 

used f o r  assessing the impact of energy technologies on a regional44 and 

a c o n t i n e n t a ~ ~ ~  sca le .  

3.3.2. -_.- Part ic le- in-cel l  - models 

Par t ic le- in-cel l  ( P I C )  models a re  considerably more complex than 

the t ra jec tory  mudel considered above., Par t ic le- in-cel l  models estimate 

atmospheric dispersion by calculat ing the t r a j ec to r i e s  o f  many partfcles 

emitted as a function of time from a par t icu lar  point source, 

concentration i s  calculated by counting the number n f  pdrt'icles per u n j  Is 

volume.26 

Lawrence Li verniore Laboratory a 46 

short-term samples taken a t  the Idaho National EngirleeririeJ Laboratory 

a n d  the Savannah River Laboratory (Table 10).  Accurate specif icat ion of  

the w i n d  direct ion appeared t o  be the l a rges t  source o f  e r ro r  i n  these 

comparisons. 

3.3.3. Grid models 

- 
ihe a i r  

One example o f  a P I C  model i s  the A D P I C  model develsped a t  

This model has been c.arripar~d with 

46 

__I_ -_-- 

In g r i d  models, numerical so lu t  ons t o  the three-d mensl'onal advection- 

diffusion equation a r e  obtained on a g r i d  network. 

IMPACT, has been applied to  over a dozen locales  i n v o l v i n g  complex 

t e r r a in  d u r i n g  the past  two years.47 

with measurements i n  both complex te r ra in  and a coas ta l  environment 

(Table 10). 

the predicted t o  observed a i r  concentrations fo r  a Gaussian model XdS 

approximately 0.3 t o  3 f o r  the complex t e r r a in  a n d  0 ,25 t o  4 fo r  the 

coastal  s i t ua t ion .  

One such model, 

The IMPACT tiiodel Itas been compared 

F o r  the same data sets ,  the rriaximurri range o f  the ratio of  

28 
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4. FOOD CHAIN MODELS 

The goal of most assessment models i s  thc  estimation of dose o r  

exposure t o  human populations or  s i t ~ q l e  persons a s  a r e su l t  o f  some 

ef f luent  release a t  a near o r  d i s t an t  s i t e .  

o r  atrriospheric t ransport  generally can achieve only par t  o f  t h i s  goal 

( i  . e . ,  the calculat ion of e f f luent  concentrations a t  some point d i s t an t  

from the source).  Therefore, to account Tor an addi tional important 

aspect of the assessmerlt g o a l ,  food chain models are  needed. 

models can be c l a s s i f i ed  as two types, t e r r e s t r i a l  and aquatic.  Basically,  

t e r r e s t r i a l  food chain models consider foods produced, e i the r  d i rec t ly  

o r  ind i rec t ly  from the s o i l .  Aquatic food chain models consider foods 

( f i s h )  grown in same aquatic system. 

Models of aquatic transport  

Food chain 

The uncertaint ies  associated w i t h  predictions of food chain models 
- 

will  be discussed i n  t h i s  section. lerrestridl and aquatic food chain 

models will  be examined separately.  

4.1. Aquatic Food Chain Models 

Models o f  dose t o  man via aquatic food chajns a re  usually qui te  

simple. 48-51 

assumed t o  follow f i r s t -o rde r  kinet ics .  

chronic re leases ,  the various pathways from water t o  the food f o r  man 

a re  o f t e n  lumped into a s ing le  f ac to r ,  cal led the bioaccumulation fac tor  

o r  concentration factor .  Therefore, the aquatic food chain model f o r  

chronic re leases  can be generalized as :  

Basically,  a l l  of these a re  compartmental models t ha t  a re  

For simp1 i f i ca t ion  and f o r  
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where 

R = radiological dose t o  human,  

Cw = radionuclide concentration in water, 

5 = bioaccumulation fac tor  in the food organism, 

I = intake r a t e  by humans of  food organism, 

D = dose conversion fac tor  (rem/uCi ) . 

To our  knowledge, no successful validation s tudies  re la t ing  model 

predictions t o  observed data have been perfomed fo r  aquatic food cha-in 

models. The reasons f o r  t h i s  lack include d i f f i c u l t i e s  in nieasuring 

bioaccumulation Factors, assessing human intake a n d  internal dose, arid 

sustaining a program long enough t o  achieve meaningful r e su l t s .  Because 

no such studies  have been performed, the only manner i n  which the uncer- 

t a i n t y  in model output can be assessed i s  by investigating the ckiaracter- 

i s t i c s  of  the j n p u t  parameters. 

The variation in the predicted radionuclide concentration, w i t h  the 

reservations discussed i n  Sect. 2 ,  i s  such t h a t  models may underpredict 

by as much as a fac tor  o f  2 and overpredict by a fac tor  of 4. 

t h i s  range would d i r ec t ly  a f f e c t  the precision o f  the dose as  estirriated 

Obviously, 

by Eq. ( 2 ) .  

The precision o f  the calculated dose would a l s o  be affected by 

uncertainty about the bioaccumulation f ac to r .  

radionuclides from the water by l iving organism i s  complex and includes 

intake,  incorporation into t i s s u e ,  and excretion. Only when the r a d i o -  

nuclide i n  the organism and the radionuclide in the water are  in equi l i -  

The process of assimilating 

brium, or when the time history o f  the organisin and  water are  known, can 
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t h e  bioaccumul ation fac tor  be accurately measured. Some factors  which 

a f f ec t  the bioaccumulation fac tor  a re :  the trophic level o f  the species;  

t h e  chemistry of the water and the radionuclide; interact ion between 

sediment arid water; nutrierit levels  i n  water; a n d  temperature a n d  numerous 

other cheniical , physical and biological factors .  51 

charac te r i s t ics  may combine t o  cause the calculated bioaccumulation 

fac tor  to vary as much as  10 

Some o r  a l l  o f  these 

4 in d i f f e ren t  aquatic environments. 

A recent, study of f i s h  consumption by individuals within regions of 

t h e  United States  generated data t h a t  describe -the variabil  i ty  o-f  human 

dietary intake of The consumption pat terns  f o r  several age 

g roups  and nine regions o f  the United States  were delineated f o r  freshwater 

f i n f i s h ,  s a l t  water f i n f i sh  and she l l f i sh .  For the adul t  g r o u p ,  the 

maximum individual intake of fresh-water f in f i sh  was 108 times as much 

as the tilean .for the more than 21,000 people surveyed. 

f i n f i sh  and s h e l l f i s h ,  the maximum intake was 1 7  and 37 times the mean, 

respectively.  Presumably, a l a rger  sampl i n g  o f  the population would 

r e s u l t  in even higher maximum consumption ra tes .  I f  so ,  the a b i l i t y  t o  

predict  accurately dose .to a maximum individual becomes more d i f f i c u l t ,  

and the variance about the mean intake increases.  

For s a l t  water 

In the unlikely event t h a t  a l l  of the extreme fac tors  l i s t e d  i n  the 

preceeding paragraphs were t o  occur simultaneously, the r e s u l t  would be 

a huge overprediction of the central  tendency o f  the dose. 

t i o r i  of pol lutant  concentration by a fac tor  of 4 ,  of bioaccumulation 

f ac to r s  by as  much as  500, and of f i sh  consumption by 100, could r e s u l t  

in a given prediction t h a t  was as much a s  200,000 times as great  as the 

An overpredic- 
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actual dose, I t  i s  evident t h a t  the amount o f  variance in the d is t r ibu-  

t ion o f  potential  doses i s  very large indeed. 

The potential  uncertainty associated with a predicted dose or 

exposure can be be t t e r  quantif ed by studying the d is t r ibu t ion  of the 

input parameters a s  s ta ted  ear  i e r ,  or by comparing the predictions of 

an  aquatic food chain model w i t h  actual measurements. The l a t t e r  i s  

probably not achievable. 

base f o r  each input parameter i s  su f f i c i en t ly  de ta i led .  

The former could be accomplished i f  the d a t a  

Using reports  t h a t  estimate the variance o f  observed values for  the 

bioaccurnulation fac tor  and intake r a t e ,  we have attempted t o  make such a 

calculat ion fo r  an aquatic food chain model as represented by Eq. ( 2 )  

b u t  excluding considerations o f  dose. We are  assuming for the fac tors  B 

and I t h a t  the model will  consis t  o f  defaul t  or non-site-specific multi- 

p l i e r s .  I f  th is  i s  the case,  then the uncertainty about the prediction 

of R fo r  any given concentration will  include the uncertainty surrounding 

B and I in addition t o  the variance in predicting a given concentration 

o f  pollutant  in water and predicting dose. Further assuming t h a t  6 and 

I a re  lognormally d i s t r ibu ted ,  the t o t a l  variance i n  the prediction t h a t  

r e su l t s  from those parameters can be shown t o  be: 53,54 

2 2 2 
OT = OB + U I  , 

where 

aB2 = variance o f  the 1 ogari thms of  the observed bioaccumul a t i o n  factors  

u12 = variance o f  the logarithms o f  the observed intake r a t e s ,  

0: = variance of the d i s t r ibu t ion  o f  B e l .  
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L By calculat ing values o f  0 

we can ca lcu la te  the uncertainty associated w i t h  the prediction of 

for  B and I ,  subs t i tu t ing  them into Eq.  ( 3 ) ,  

pol 1 u t a n t  intake given 

Because data f o r  137Cs 

example of the iincerta 

an accurate estimate of the water concentration. 

were avai lable  fo r  bioaccumulation f ac lo r s ,  an 

nty in calculat ing pol 1 utatit exposrrre through the 

aquatic pathway t o  an adul t  follows. 

The summary o f  bioaccurnulation fac tors  pub1 ished by Vanderploeg e t  

a1 .55 l i s t s  e i g h l  g roups  o f  values fo r  the uptake of 137Cs by freshwater 

f in f i sh .  A l l  of these values werc e i t h e r  f o r  Salloict  o r  s o m  chronic 

re lease o f  13’Cs in to  the water body o f  i n t e re s t .  The ari thmetic means 

o f  thcse e ight  groups were shown t o  be lognormally d is t r ibu ted .  56 

mean, 1lB3 and standard deviat ion,  u5,  of the logarithms o f  t h c  eight 

groups were 7 .2  and 0.86, respectively.  Thcse t r ans l a t e  to a median 

The 

bioaccumulation fac tor  f o r  137Cs of 1340 and an ari thmetic mean o f  1940. 

‘The uncertainty term f o r  i n t a k e , n I ,  was calculated frorri a survey o f  

the eat ing habits o f  over 20,000 people? 

d i s t r ibu t ion ,  the standard deviation of the logs was found t o  be approxi- 

mately 1.2.  

d i s t r ibu t ion  w i t h  a geometric mean o f  0.30 kg/year and an ari thmetic mean 

o f  0.85 kglyear. 

Again assuming a lognormal 

Coupled w i t h  a mean o f  the logs o f  - 1 . 2  t h i s  represents a 

By subs t i tu t ing  oB = 0.86 arid u I  = 1.44 i n t o  E a .  ( 3 )  we can calcula-te 

a value o f  oT = 1.68. 

visualized by calculat ing a one-tailed 95% confidence interval f o r  the 

value of uT pCi/year f o r  a g i v e n  water concentration w i t h  the following 

formulas 

The impad o f  such a value o f  oT can best be 
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95% confidence l imi t  = exp(iiT + 1.65 or)  , 
99% confidence l i m i t  = exp(yT + 2.33 oT) . ( 4 )  

I f  t h i s  i s  done, we find t h a t  f o r  any value of pT, the 95% cnnfidence 

interval  upper bound i s  15.9 times exp uT. 

fidence l imi t  would be 49.8 exp pT. 

Similarly,  the 99% con- 

The confidence l imi t s  can be interpreted as follows. If  we choose 

defaul t  o r  generic values f o r  the bioaccumulation f ac to r  ( B )  and the 

intake r a t e  of  f i sh  ( I ) ,  and i f  the variance a b o u t  those factors  i s  

governed by the variance in the d is t r ibu t ion  o f  estimated 6s and I s ,  

then we can predict  the I3’Cs exposure to  an a d u l t  from any concentration 

o f  137C5 in water t o  within a fac tor  of 16 with 95% confidence and 

within a fac tor  of 50 with 99% confidence. Stated another way, i f  one 

hundred estimates of 137Cs exposure t o  an adul t  a re  made under s imilar  

conditions f o r  a given concentration of water, the actual exposure will 

exceed 16 times the calculated exposure in only f ive  t r i a l s  and will 

exceed 50 times the calculated exposure only once. 

age groups,  and organs, the amount of overprediction may be l a rger  o r  

smal 1 e r a  

For the other nuclides, 

The a b i l i t y  of an aqua t i c  food chain model t o  predict  a dose i s  

a l so  a function bo th  of the a b i l i t y  t o  predict  some water concentration 

and  t o  predict  dose given an exposure. 

e a r l i e r  section on aquatic t ransport  models fo r  a discussion of the 

a b i l i t y  of such models t o  predict  accurately concentrations of pollutants 

in waters or sediment, 

dose, generally,  can be found e 1 ~ e w h e i - e . ~ ~  

i n  a dose conversion fac tor  i s  given f o r  1 3 ’ 1  by D u n n i n g .  

The reader should r e fe r  t o  the 

A discussion of the d i f f i c u l t i e s  in predicting 

A discussion o f  the uncertainty 

58 
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In general terms, we can examine the a b i l i t y  to  predict  accurately 

concentration in water, bisaccurrrulation, intake r a t e ,  a n d  dose conversion 

fac tor .  Using published s c i e n t i f i c  judgments, we surmised t h a t  the 

range o f  uncertainty i n  each model type was such t h a t  dose could be 

overpredicted or underpredicted by tens or hundreds of thousands. 

Uti1 i z i n g  data which spec i f ica l ly  pertain t o  the prediction of 

1 3 7 ~ s  exposure t o  an adul t  via the aquatic f ood  chain, we calculated 

t h a t  f o r  f i s h  grown i n  a given concentration o f  1 3 7 ~ s  i n  water we would  

overpredict the exposure by l e s s  than a fac tor  o f  15.9 i n  95% o f  the 

cases.  Given these r e s u l t s ,  improvements in the d a t a  bases for  bioaccumu- 

l a t i o n ,  f ood  intake by region, age, and sex, and f o r  fac tors  entering 

into ca culation of the dose conversion fac tor  can narrow the  w i d t h  of 

the con idence iti-terval considerably. 

The comparison o f  the generalized uncertainty implied by looking a t  

ranges w i t h  t ha t  o f  the estimate o f  uncertainty embodied i n  the 95% 

confidence interval emphasizes the danger o f  propagating uncertainty by 

examining only the ranges. 

spec i f i c  t o  given parameters need t o  be examined. 

To be meaningful, estimates of variance 

4 . 2  Terres Lri a1 Food C h a i n  Model s 

Several iiiadels e x i s t  t ha t  w r e  designed t o  predict  the dose t o  

humans v i a  t h e  t e r r e s t r i a l  food chain.49y59-C2 

GRONK, N R C  Reg. Guide 1.109) a re  s teady-state  models applicable t o  

chronic contamination s i tua t ions .  

l i n e a r  compartmenl model. 

inswted  i n t o  TERMQD flows9 the model could theore t ica l ly  simulate doses 

fol  1 o w j  ng an acute re i  ease.  

Most o f  these (FOOD, 

The TERMOD model ," how~vet-, i s  a 

If  time-dependent parameters were to  be 
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As w i t h  the  aquat ic  food chain models discussed i n  the previous 

sect ion,  there a re  few data avai lable  w i t h  which t o  compare model predic- 

t ions  fo r  the purpose o f  val idat ing t h e  model. However, i t  i s  appropriate 

t o  estimate the uncertainty embodied i n  the model predictions by analyzing 

the variances of the model input parameters. 

been completed f o r  the t ransport  o f  ’ 31 I through the air-grass-cow-mi 1 k- 

thyroid pathway fo r  infants .  

Such a study has recently 

63 

The model used in t h a t  study took the form: 

R =  x, 0 k * V, * l/Xeff * Q * 

where 

3 x = equilibrium a i r  concentration ( p C i / m  ) ;  

k = a u n i t  conversion f ac to r  (86400 sec/day);  

VD = an3air concentration t o  pasture grass t r ans fe r  fac tor  
(m / k g ,  dry w t .  s e c ) ;  

l / h e f f  - - T e f f / l n  2 = e f fec t ive  mean-time on pasture vegetation (days);  

Q = t o t a l  da i ly  dry matter intake of a dairy cow (kglday); 

fs  = f rac t ion  of  the to t a l  dry matter intake composed o f  f resh 
forage; 

f = f ract ion of a year  t h a t  dairy cows receive fresh forage; 

Fm = intake-to-mi 1 k t r ans fe r  f ac to r  (day/l i t e r )  ; 

U = annual m i l k  consumption r a t e  ( l i t e r s / y e a r ) ;  

P 

D = thyroid dose conversion f ac to r  f o r  i n fan t s ,  ages 0.5 t o  
1 . 5  years ,  (rnrem/pCi ingested);  



38 

R = dose coiiimitment (mrem/year) t o  !.he thyroid. 

The methods used fo r  the uncertainty analysis of the model represented 

by Eq. ( 5 )  included searching the l i t e r a t u r e  for  appropriate data for  

each parameter, t es t ing  f o r  lognormality, and calculat ing dis t r ibut ional  

s t a t i s t i c s ,  LI and 0, fo r  the model output,  R .  As discussed e a r l i e r ,  

when dealing with a multipl icatiive chain of lognormal parameters, the 

variance of the logarithms of the model o u t p u t  can be estimated by 

summing s imilar  terms fo r  each i n p u t  parameter: 53 , 54 

No terms are  included fo r  x or k because these fac tors  are  a s i t e - spec i f i c  

measurement and a constant,  respectively.  

The GJ value found by Hoffman63 fo r  each parameter l i s t e d  in E q .  ( 5 )  

VD, 4.8E-2; 1 / X ,  1 .4E-1;  Q ,  1 .2E-1;  f s ,  2 .4E-1;  f i s :  

5.5E-1; U, 2 . O E - 1 ;  D, 7.OE-1. When these values a re  entered into 

E q .  (6), the resul t ing estimate o f  the value of oR = 1.046. 

o f  oR can be subst i tuted in to  aT in E q .  ( 4 )  t o  calculate  a one-tailed 

95% confidence bound fo r  the median value o f  R fo r  a given a i r  concentra- 

t i o n .  In t h i s  case,  the 95% confidence bound would be 5.G tiines exp 1 ~ .  

These ranges a re  somewhat narrower t h a n  s imilar  ranges calculated fo r  

aquatic food chain models i n  the previous section. 

be explained by the f a c t  t ha t  the la rges t  contributor t o  the variance in 

the aquatic sect ion,  freshwater f i n f i s h  int,ake r a t e ,  was quantified f o r  

children 1-11 years old b u t  was applied with a dose conversion fac tor  

f o r  i n f a n t s .  I n  ar.y event, the analyses fo r  nei ther  the aquatic,  nor 

4 .1E-1;  Flli, 
P ’  

The value 

This difference may 
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the t e r r e s t r i a l ,  food chains can be considered t o  be indicative fo r  the 

variance expected for  other nuclides,  age groups, o r  c r i t i c a l  organs. 

5. SUMMARY AND CONCLUSIONS 

5.1 .  Aquatic Transport Models 

The one-dimensional models o f  Gloyna and his  ~ o - w o r k e r s ~ ’ ~  which 

have the a b i l i t y  t o  include sorption e f f e c t s ,  tend t o  underpredict the 

maxirnurn concentration o f  radionuclides i n  the water of a model r iver .  

Howwer, i n  t h e  reports we examined, the prediction was never l e s s  t h a n  

65% o f  the observed maximum concentration. 

Shih-Gloyna model 

Raridon e t  a1 .5 modified the 

and predicted Concentration downstream from a mercury 

release s i t e .  The model of Raridon e t  a l .  overpredicted concentration, 

b u t  never more than a fac tor  of 2.0.  

The two-dimensional ( longitudinal -ver t ical  ) model o f  Onishi, SERATRA 

showed some accuracy in predicting the concentrations of 137Cs and 98Sr 

6 in the Clinch River and 65Zn in the Columbia River.7 The SERATRA model 

tended t o  underpredict the observed concentrations, b u t  the la rges t  

discrepancy was a n  underprediction by a fac tor  of 4. 

f i e l d  data were published by Onishi”’ t h a t  the SERATRA model should 

However, so few 

probably be considered only  p a r t i a l l y  validated a t  best. 

The two-dimensional ( 1  ongi tudinal - t ransverse)  model of Jackman and 

Yotsukura” predicted r ive r  temperature to  within 2°C o f  the observed 

temperature in a number of r ive r s  a t  various distances and times down- 

stream o f  a thermal i n p u t  source. Yotsukura and  his  co-workers 

“ve r i f i ed”  the solute  t r a n s p o r t  version o f  t h e i r  models by varying model 

parameters t o  achieve the best f i t  o f  the prediction curve t o  the observa- 

t ion curve; when the varied parameter agreed well with published values 

8,9 
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o f  the same parameter, they considered the i r  model "ver i f ied ."  I n  our 

judgment, the Yotssukura model can probably predict  observed downstream 

and transverse solute  concentrations t o  w i t h i n  about 30% under most 

conditions. 

The FE'TIIA model of Onishi a n d  Wise14 underpredicted b o t h  par t icu la te  

kcpone concentration o f  sediment and  sediment concentration of water. 

However, the prediction t o  observation r a t i o  was never lower t h a n  0 .63 

fo r  kepone or 0.33 f o r  sediment. 

t r a t ions  i n  water were not compared t o  observed dissolved kepone. 

Predictions of dissolved kepone concen- 

I n  conclusion, we can say tha t  the s t a t e  of the a r t  o f  aquatic 

t ransport  modeling has progressed beyond the point where invest igators  

would have been sa t i s f i ed  with order o f  magnitude accuracy. 

models we reviewed overpredicted by more t h a n  a fac tor  of 2 or under- 

predicted by more than a fac tor  of 4 .  

a b i l i t y  t o  predict  aquatic t ransport  o f  materials i s  adequate will  need 

t o  be j u d g e d  by policymakers, However, as environmental re lease o r  

environmental concentration standards t ighten w i t h  time, i t  i s  l i ke ly  

t h a t  more accuracy will  be needed. 

None of the 

Whether the current level of  

5 .2 .  Atmospheric Transpor t  Model s 

R summary o f  the estimated uncertainty associated w i t h  predictions 

made by the Gauss an  plume atmospheric dispersion model has been presented 

(Table 5 ) .  No a t  empt was made t o  compile a l l  validation measurements 

found i n  the l i t e r a t u r e .  Measurement resu l t s  were presented, however, 

which indicate t h a t  the " sc i en t i f i c  judgement" estimates o f  uncertainty 

presented are  qui te  reasonable. Limited Val idation r e su l t s  were also 



presented fo r  o ther ,  more complex, dispersion model s e More d a t a  are  

needed t o  perform a s t a s t i c a l  analysis o f  the uncertainty associated 

w i t h  any atmospheric dispersion model. 

c learer  specif icat ion o f  when complex models should supplement the 

Such d a t a  will a l s o  allow a 

common Gaussian plume model i n  radiolog 

5.3 Food Chain 

Two simple mu1 t ip1 ica t ive  foodchai 

variance o f  predictions i s  estimated by 

cal assessments. 

Models 

models were analyzed. The 

summing the variance o f  the 

'logarithms o f  each lognormal input parameter. For the aquatic foodchain 

model o f  the water-fish-human fo r  137Cs pathway, the one-tailed 95% 

confidence interval  of the predicted exposure i s  1 6  times the median 

exposure fo r  a given concentration in water. 

o f  the air-grass-cow-milk-infant-thyroid pathway for 13'1, the one- 

t a i l ed  95% confidence interval  o f  the predicted dose i s  5.6 times the 

median dose fo r  a known pol lutant  concentration in a i r .  

For the t e r r e s t r i d l  model 
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