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Abstract

This report presents original experimental data in tabular and
graphical form for electron impact ionization cross sections of the ions

33 oM 3+, 04+, 05+, and Ar4+ for energies

B, C ', C
between the ionization thresholds and 1500 eV, with absolute accuracy
varying between 6% and +17%. At present there are no other measurements
of comparable accuracy for ijons of initial charge greater than 2+. C(Cal-
culated cross sections from the Lotz formula and scaled-Coulomb-Born
prescription are compared with the data. Ionization rate coefficients
for plasmas with Maxwellian electron energy distribution were computed
from the measured cross sections for each ion species. These rates are

compared with available theoretical and measure “jonization rates.
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Electron Impact Ionization of Multicharged Ions

1. Introduction

Electron impact ionization (together with electron-ion recombination)
controls the state of ionization of fons occurring in high temperature
plasmas and thus indirectly determines many of the plasma properties
(conductivity and light radiated, for examples). There are several
theoretical approximations used to estimate ionization cross sections, but
there have been little data of sufficient accuracy to test the reliability
of these estimates for ions of initial charge greater than 2+. The
experimental data presented here were acquired both to test available
theory and for direct use in plasma physics.

The experiments were carried out with crossed beams of electrons
and ions as shown schematically in Fig. 1. The ion source] is the
prototype of the source used in the Oak Ridge Isochronous Cyclotron
(ORIC), and the electron gun is modeled after that developed by Taylor
et a1.2 for use in crossed-beams experiments at the Joint Institute for
Laboratory Astrophysics (JILA), Boulder, Colorado. Details of the
experimental geometry are given in references 3 and 4, which present the
first ionization results obtained from this research project.

Theories of electron impact ionization date to the 1912 work of J.

J. Thomson,5 and, in fact, the most commonly used theoretical estimate

is a semiempirical adjustment of the Thomson formula agiven by Lotz.6
Another modification of classical theory is the exchange classical
jmpact parameter (ECIP) description,7~9 which, by specifically allowing
for the known quantum phenomenon of exchange of the incident electron

and a bound electron, reduces the ionization cross sections from those

given by the purely classical formula of Thomson. Exact quantum mechanical



ORNL-DWG 77-410577R

QUADRUPOLE LENS

ONE - DIMENSIONAL EINZEL LENS

EINZEL LENS
CHARGE PURIFIER
: 7, y
1 - ]
nco— _H_J
[—— N ——]

ELECTRON /
/s

GUN ///

T DIFFERENTIAL
- é 2 PUMPING AND

BEAM MODULATION

\ _/ \ONIZED IONS MULTIPLY-CHARGED 1ON SOURCE

DEFLECTOR PLATES
MAGNET POLE

ION SOURCE

PHOTOMULTIPLIER NG = {ORNL ~ PIG)
4 =Ny 32° CYLINDRICAL ANALYZER
IN-LINE AN \ FINAL VERTICAL
CURRENT COLLECTOR , DEFLECTOR
CHARGE ANALYZER PRIMARY ION BEAM

ULTRA-HIGH VACUUM CHAMBER
{P < 0~2 Torr)
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representation of the jonization process has not been formulated.
However, Born and Coulomb-Born quantum approximations have been developed
and specifically calculated for a few of the ions studied in the present

expem’ments.m’H

Recently, a prescription has been given for scaling
the Coulomb-Born results for hydrogenic ions of infinite nuclear charge
to cases of partially ionized multicharged ions. This scaled Coulomb-
Born p1r'escr1'p’c1'on12 can be applied to all of the measured cases presented
here (except Ar4+).

In this report the measured cross sections for electron impact

3+’ A 3+9 N4+, N5+, 03+’ o o5t a4+

ionization of B , C, N , 07, and Ar re
compared with the commonly used Lotz formula, with the scaled Coulomb-
Born formula, and, for the few published cases available, with the
specific Coulomb-Born calculations. Ionization rate coefficients, cal-
culated from the present cross section data integrated with a Maxwellian
distribution of plasma electrons, are compared with rates given by the
Lotz and scaled-Coulomb-Born formulas. Few details of experimental
technique or underlying physics and comparison with other work are

presented here, but have been3’4

and will be discussed in open Titerature
publications on this research. The results presented here should be
immediately useful for plasma physics research and for comparison with
developing theories of electron impact jonization and excitation of

multicharged ions.



2. Results

2.1. Cross Sections
The Lotz formula has been specifically taken to be:

r.
o(£) = 4.5x 107y o omiky o,

J ] J

™

where rj is the number of electrons in Tevel j, Ij is ionization energy
of that level in eV, and E is the collision energy in eV. The ionization

energies Ij for inner shells can be obtained from the calculations of

13 The scaled Coulomb-Born results are calculated

according to the Golden and Sampson prescm’ption.]2 In Figs. 2-11 the

Clementi and Roetti.

measured cross sections are compared with values calculated from these
two prescriptions. Tables 1-3 present the measured cross section values.
For Li-Tike ions the incident beams contain purely ground state

jons. For He-like ions there may be as many as 1% of B3+ ions in the

3 4+ ot

metastable 1S and °S states, but for ' and N the beams should contain

3+, and O4+ beams contain

3+

no more than 0.1% metastables. However, 03+, N

significant fractions of incident ions in metastable states. For O

2252p2) %p

the fraction of metastables is estimated to be 16% in the (Is
state. The estimate is obtained from the magnitude of the observed
cross section between the 68.6-eY threshold for jonization of the
metastable ions and the 77.4-eV threshold for ionization of the ground
state ions. Since the cross section for ionization out of the ground
and metastable states js expected to be nearly the same for this case,

no correction of the data or theories has been applied. For N3+ an

O4+ (Be-1ike ions) the fraction of ions in the (152252p) 3P metastable

d

state is roughly 50%, and the theoretical cross sections for ionization



out of this state are significantly larger than for ionization out

of the (152252) ]S ground state. Thus the theories have been calculated

for a 50-50 mixture of these states for comparison with the present N3+

and O4+ data.

The inner-shell excitation-autoionization contribution to the total

.. . . . . + +

ionization cross sections is apparent in the C3 > N4 s 05+, O4+
+ . . N .

Ar4 cases. The onset of excitation-autoionization causes an abrupt

, and

increase in the ionization cross sections at energies above the peaks in

3+

the direct ijonization. For the C° case (Fig. 2) the sum of excitation

Cross sections 15225 + 1s2s2% has been calculated by J. B. Mann]4

and
added to the scaled Coulomb-Born ionization calculation beginning at the
294-eV excitation threshold. Comparison of this theoretical excitation
result and present data assumes that all of the inner-shell excitation
decays by autoionization before the jons are charge analyzed in the
experiment (within about 0.3 usec). The excitation cross sections 15225 >

21 3+ 4+

1s2s2% have recently been calculated by R. J. W. Hehry for C N,

and 05+, and good agreement is obtained with the increase in ionization

cross section observed in the present data for C3+ and N4+ >t

, but for O
the predicted excitation contribution is significantly smaller than in
present data. This process may be more significant for higher charge

states and particular electronic configurations.4’18"22

The process was
specifically anticipated near 550 eV in the 03+ case (Fig. 9) and near
420 eV in the N3+ case (Fig. 8) but was not discernible within statistical

uncertainty of the data. The classical theory as calculated by Sa]op]6

for Ar4+ (Fig. 11) includes excitation-autoionization and predicts
structure in the jonization cross section similar to that found in the

present experimental data near 250 eV.



Table 1. Ionization cross sections for Li-like ions for energies in threshold
units (Figs. 2-4)

c3+ i+ 05+

o3y (10718 cm?) oys (10718 ¢m?) ogg (10718 cm?)
E/Eth Eth = 64.45 eV Eth = §7.86 eV Eth = 138.1 eV
1.09 0.46+.204 0.28+.04
1.17 1.07+.20 0.56+.08 0.31+.18
1.25 1.20+.19 0.74+.04
1.40 1.43+.17 0.93+.04 0.45+.17
1.70 1.21+.05
2.00 1.27+.05
2.2 2.51+.11 0.82+.15
2.5 1.45+.04
3.0 1.47+.04 0.75+.10
3.6 2.59+.04 1.40+.04 0.67+.05
4.0 2.37+.05 1.47+.05 0.76+.05
4.2 2.40+.04 1.33+.04 0.84+.10
4.4 2.33+.04 1.41+.04
4.6 2.37+.03 1.42+.04 0.89:.08
4.8 2.47+.03 1.44+.04
5.0 2.49+.04 1.46+.04 0.88+.12
5.25 2.39+.04 1.42+.04
5.6 1.41+.04 0.88+.14
6.0 2.41+.07 1.40+.04
7.0 2.25+.06 1.35+.04 0.74+.36
8.0 2.10+.11 1.30+.02 0.70+.14
10.0 2.00+.07 1.22+.03 0.48+.10
12.0 1.92+.08 1.16+.04
15.0 1.78+.04 1.05+.05
18.3 1.47+.08
22.9 1.37+.06

3The uncertainties listed are 90% confidence level counting statistics.
Additional systematic uncertainty of +6% for C3* and N** and of +10% for 05+
should be added in quadrature with individual statistical uncertainty to obtain
good confidence absolute uncertainty.



Table 2. Ionization cross sections for He-like jons for energies in threshold
units (Figs. 5-7)

3t ut 5+
o3, (10712 cm2) ous (1071 cm?) o5 (10717 cm2)
E/Eth Eth = 259.4 eV Eth = 392.1 eV Eth = 552.1 eV
1.057 0.41+0.762
1.115 0.57+0.16 0.30+0.19
1.25 0.39+0.16
1.30 1.51+ 0.17
1.43 0.85+0.16
1.50 2.62+ 0.18 1.17+0.18
1.75 3.15+ 0.24 1.63£0.26 1.21+0.20
1.87 3.51+ 0.1
1.99 3.72+ 0.23 1.77+0.08
2.15 1.37+0.19
2.25 4.67+ 0.19
2.50 2.33+0.20
2.65 4.62+0.19 1.06+0.18
3.01 4.53+0.12 2.200.11
3.59 4.85%0.11
3.77 2.34+0.10
4.16 4.74+ Q.12
4.92 4.14+0.10
5.69 3.99+ 0,12

% isted uncertainties are one standard deviation counting statistics (67%
confidence level). Additional systematic uncertainty of +10% should be added
in quadrature to obtain absolute uncertainty.



Table 3. Ionization cross sections for N3+, 03+, O4+, and Ar4+ ions for
energies in units of the ground state threshold energy (Figs. 8-11)

N3+ O3+ 01++ Aru-f
o4 (10718 cm?) o3, (10718 cm?) oys (10718 cm2) ays (1018 cm?)
Eth = 77.5 eV Egh = 77.4 eV Egh = 113.9 eV EEh = 75.0 eV
E/E,, (Epey = 69-1 eV) (Eper = 68.6 eV) (Epey = 103-7) (Epet = 73-0)
0.885 0.24+.06° 0.11:.11 .09:.09
0.905 0.49+,06 0.20:.10
0.94 0.75+.04 0.36:.13
0.96 0.98:.05 0.36+.09 .37+.09 .04+.36
0.98 1.08+.05 0.48+.10 .47+.09
1.01 1.37+.06 0.99+.08 1.09+.36
1.03 1.60:.06 1.25+.10 .79+.09
1.07 1.91:.08 2.10+.16 3.21+.35
1.15 2.98+.08 2.58+.16 1.09+.11 4,20+.31
1.25 3.40:.17 1.61+.09 6.08+.35
1.50 3.92+.07 5.31+.20 2.204.12 8.20+.28
1.83 4.52+.04 6.26:.18 2.65+.12 8.92+.30
2.14 6.44+.15 2.82+.06 9.17+.20
2.50 4.99+.03 6.60+.07 2.92+.05 9.30+.13
2.97 6.80£.10 2.88+.05 9.45+.12
3.72 5.28+.07 6.93+.10 2.80+.04 10.28+.13
4.35 6.83:.15 2.67+.05 10.20+.21
5.00 4.83+.06 6.60+.11 2.671+.05 9.50+.15
6.09 4.47+.03 2.59+.07
6.25 4.45:.03 6.17:.18 2.50+.07 8.35+.18
7.50 4.22+.06 5.60+.13 2.21+.04 7.96+.18
8.70 4,10+.06 5.17+.14 2.04+.04 7.48+.18
10.10 3.70+.05 4.91+.14 1.87+.04 6.88+.17
11.37 3.57+.05 4.62+.09 6.42+.18
13.00 3.15+.05 4.19+.08 1.46+.04 5.88:.18
15.20 2.86+.05 5.35:.18
16.50 3.57+.11 5.04+.18
19.06 2.32+.05 3.14+.10 4.44+.18

%The 1isted uncertainties are 90% confidence level counting statistics for the indi-
vidual data points. Additional systematic uncertainty of :6% should be added in
guadrature to obtain good confidence absolute uncertainty.
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2.2. lonization Rates

Ionization rates for these ions in a plasma with Maxwellian electron
temperature distribution have been calculated from the measured cross

2 .
3 For convenience

sections employing a computer code developed at JILA.
and most direct comparisons, the ionization rates for scaled-Coulomb-
Born and Lotz theoretical estimates were also computed with the JILA
rate code with discrete cross sections calculated according to the cross
section formulas. As a check, the Lotz jonization rates obtained from

the code have been compared for a few cases with the analytic expression:

o = 30x106§:

3
cm”/sec
\[_,

where rj is the number of electrons in subshell j, Ij is the ionization
energy for electrons in subshell j (in eV), KT is the electron temperature
in eV, E] is the exponential integral of index one, and o is the rate
coefficient in cm3/sec. The analytic formula agrees with the quoted

Lotz ionization rates to between 1 and 5% for the cases checked. An
analytic expression for the rates predicted by scaled Coulomb-Born is

b and

given in Ref. 12. The ionization rates are given in Fig. 12 for N
in Tables 4-7 for all of the present cases.
The rates given in Tables 4-7 are for ionization out of the ground

state except as noted for the Be-Tike jons. Thus the results are appli-
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14

cable to plasmas of low density (ne <10 cm”3) where excited states of

these jons should not be abundant. The measured ionization rates of

24 25 26

Kunze, Kallne and Jones, which are shown

on Fig. 12 were observed at densities near Ng = 1016 cm"3 where the

and Rowan and Roberts

presence of excited ion species in the plasma is significant. In Refs.
24-26 the measured rates are given and compared with the Lotz formula as
corrected for excited states due to high plasma density. For the present
comparison (Fig. 12) these measured rates have been reduced to represent
jonization out of the ground state only. The reduction is the same per-
centage as given in Refs. 24-26 as an increase to the Lotz result in each
specific case. Similar comparisons of present rates to plasma measured

5+ .3+ 3+

rates can be made for O c”, B, and C4+ by adjustments of values

given in Refs. 24-27.



Table 4. Ionization rates for Li-Tike ifons in units of ]0'9 cm3/sec.
Temperature ¢3* Rate N4t Rate 05+ Rate
106 K eV Present | Scaled C-B { Lotz Present | Scaled €-B | Lotz Present | Scaled C-B | Lotz
0.2 | 17.2 0.042 0.052 0.058 0.003 0.004 0.004
0.4  34.5 0.292 0.399 0.465 § 0.070 0.076 0.084 0.013 0.013 0.014
0.6 51.7 0.612 0.792 0.955 0.202 0.215 0.243 ° 0.056 0.056 0.060
1.0 86.2 1.137 1.365 1.720 0.487 0.497 0.582 0.187 0.181 0.202
2.0 172 1.865 2.000 2.700 1.003 0.920 1.147 0.491 0.437 0.516
4.0 345 2.436 2.328 3.361 1.522 | 1.216 1.626 0.827 0.671 0.842
6.0 517 2.773 2.385 3.567 1.761 i 1.306 1.819 0.967 0.756 0.991
10 862 3.036 2.356 3.649 2.007 § 1.345 1.956 1.050 0.835 1.116
20 1720 2.888 2.172 3.507 2,008 E 1.296 1.967 1.026 0.862 1.166
50 4310 2.641 1.818 3.036 1,786 f 1.097 1.773 0.860 0.819 { 1.073
100 - | 8620 2.327 1.527 2.599 1.530 ? 0.931 1.548 0.727 0.733 i 0.940
600 | 51700 1.450 0.881 1.546 0.897 E 0.545 0.947 0.412 0.478 | 0.577

Le
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Table 5. Ionization rates for He-like jons in units of 107 cm3/sec.

§
Temperature B3* Rate C4* Rate N5+ Rate

106 ey Present | Scaled C-B | Lotz Present | Scaled C-B | Lotz | Present | Scaled C-B | Lotz

T | |
0.2 7.2 | | |
0.4  34.5 | 0.001 0.002 0.002 |
0.6 © 51.7 = 0.022 0.033 0.036 | 0.001 |  0.007 0.001
1.0 ¢ 86.2 ‘ 0.221 0.290 0.322 % 0.020 ] $.028 0.032 0.002 0.002 0.003
2.0 % 172 1.415 1.6G0 1.755 ¢ 0.303 ! 0.358 0.393 $.083 0.077 $.084
4.0 i 345 | 3.813 3.963 4,235 % 1.322 i 1.348 1.448 0.587 0.469 | 0.506
6.0 . 517 f 5.329 5.390 5.694 ; 2.194 2.141 | 2.264 1.057 0.886 0.940
10 862 | 6.867 6.791 7.144 | 3.260 3.101 | 3.235 | 1.676 1.492 1.557
20 1720 % 8.049 7.704 8.176 | 4,208 3.968 4,139 2.329 2.173 2.253
50 4310 ? 8.060 7.384 8.116 4,447 4,251 4.463 2.6%4 2.527 2.663
100 | 8620 | 7.379 6.579 | 7.352 4.119 3.929 4,224 2.645 2.445 2.626
600 51700 4.834 4.100 i 4,822 i 2,718 2.620 2.914 1.924 | 1.720 1.908
|

¢l




Table 6. Ionization rates for Be-like jons with 50-50 mixture of ground state
and metastable state ions in units of 10-9 cm3/sec.

Temperature N3t Rate 04+ Rate
100 eV Present | Scaled C-B | Lotz Present | Scaled C-B | Lotz
0.2 17.2 0.059 0.048 0.049 0.004 0.003 0.003
0.4 34.5 0.524 0.487 0.528 0.110 0.091 0.090
0.6 51.7 1.127 1.077 1.203 0.346 0.289 0.298 N
1.0 86.2 2.17% 2.029 2.365 0.897 0.742 0.801
2.0 172 3.738 3.143 3.951 1.907 1.481 1.740
4.0 345 4.807 3.671 5.014 2.783 2.001 2.572
6.0 517 5.275 3.726 5.325 3.104 2.147 2.887
10 862 5.323 3.593 5.424 3.260 2.168 3.077
20 1720 5.101 3.221 5.182 3.123 2.043 3.074
50 4310 4.400 2.559 4,442 2.737 1.702 2.741
100 8620 3.758 2.083 3.784 2.331 1.424 2.386
600 51700 2.228 1.131 2.232 1.371 0.812 1.459




Table 7. Ionization_rates for O3+ and Ar4+ in units
of 10-9 cm3/sec

Temperature 03* Rate Ardt Rate

100 eV Present | Scaled C-B | Lotz Present | Lotz

0.2 17.2 0.059 0.035 0.034 | 0.107 0.063

0.4 34.5 0.616 0.466 0.476 | 0.982 0.783 |

0.6 51.7 1.406 1.125 1.196 | 2.150 1.885

1.0 86.2 2.808 2.285 2.559 | 4,160 3.914
i 2.0 172 4,894 3.787 4,575 | 7.031 7.012
| 4.0 345 6.348 4,587 6.023 | 9.071 9.535
| 6.0 517 6.906 4.687 | 6.482 | 9.630 10.49
C 10 862 6.941 4,507 6.686 | 9.604 11.08

20 1720 6.476 3.919 . 6.443 | 9.125 10.97

50 4310 5.371 2.927 5.520 | 7.641 9.678
100 8620 4,465 2.319 4,778 | 6.395 ' 8.364
i 600 51700 2.514 1.142 2.838  3.65] 5.042
{

ve
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4+ Fig. 12. Ionization rates for ground state

N* as a function of plasma electron temperature.
Solid curve is present result; open circle is plasma
observed rate of Kunze (Ref. 24); solid circle is
plasma observed rate of Kallne and Jones (Ref. 25);
open triangle is plasma observed rate of Rowan and
Roberts (Ref. 26); long-dashed curve is scaled
Coulomb Born (Ref. 12); dot-dashed curve is Lotz
(Ref. 6); and dotted curve is ECIP calculation

of Summers {(Ref. 9). Error bar on present result at
200 eV is cross section uncertainty at high confidence
(equivalent to 90% confidence level).
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3. Conclusion

Except for the C3+ case, the simple Lotz formula is remarkably
accurate. However, this conclusion may not apply to untested cases and
may be accidental for the present data. For N4+ and O5+ cases the scaled-
Coulomb-Born calculations are better than the Lotz formula at Tow
energies, and only the occurrence of the excitation-autoionization
contribution (not included in any of the theories) brings about better
agreement of experiment and Lotz formula at higher energies. For Be-Tlike

O4+ 3+

and N° the Lotz formula appears best, but this may again be acci-
dental and applicable only to Be-like ions. For the He-like cases

(by far the most difficult experiments) the difference between theories
cannot be tested by the data. Nevertheless, the Lotz formula is found
to be more accurate than the factor of two uncertainty frequently
ascribed to it. While detailed Coulomb-Born calculations including
such effects as excitation-autoionization may eventually prove to be

the most accurate theory, the approximate scaled-Coulomb-Born results are

not better than the simple Lotz formula for the present cases.
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