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ABSTRACT

Perturbation theory is developed for the nonlinear burnup equations

describing the time-dependent behavior of the neutron and nuclide fields

in a reactor core. General aspects of adjoint equations for nonlinear

systems are first discussed and then various approximations to the

burnup equations are rigorously derived and their areas for application

presented. In particular, the concept of coupled neutron/nuclide fields

(in which perturbations in either the neutron or nuclide field are allowed

to influence the behavior of the other field) is contrasted to the

uncoupled approximation (in which the fields may be perturbed

independently).

Adjoint equations are derived for each formulation of the burnup

equations, with special attention given to the quasi-static approximation,

the method employed by most space- and energy-dependent burnup codes. It

is shown that, based on this formulation, three adjoint equations (for

the flux shape, the flux normalization, and the nuclide densities) are

required to account for coupled variations in the neutron and nuclide

fields. The adjoint equations are derived in detail using a variational

principle. The relation between coupled and uncoupled depletion

perturbation theory is illustrated.

Solution algorithms are given for numerically solving the adjoint

burnup equations, and the implementation of these procedures into existing

computer codes is discussed. A physical interpretation is given for the

burnup adjoint functions, which leads to a generalization of the principle

vn.



of "conservation of importance" for coupled fields. Analytic example

problems are solved to illustrate properties of the adjoint functions.

Perturbation theory is used to define sensitivity coefficients for

burnup-dependent responses. Specific sensitivity coefficients are written

for different types of nuclear data and for the initial condition of the

nuclide field. Equations are presented for uncertainty analysis of

burnup calculations.

Uncoupled depletion sensitivity theory is applied to the analysis

of an irradiation experiment being used to evaluate new actinide cross-

section data. The computed sensitivity coefficients are used to determine

the sensitivity of various nuclide concentrations in the irradiated sample

to actinide cross sections. Uncertainty analysis is used to calculate the

standard deviation in the computed values for the plutonium isotopics.

Coupled depletion sensitivity theory is used to analyze a 3000 MW..

denatured LMFBR model (2 region, sphere). The changes in the final

inventories of 232U, 233U, and 239Pu due to changes in concentrations of

several nuclides at the beginning of cycle are predicted using depletion

perturbation theory and are compared with direct calculation. In all

cases the perturbation results show excellent agreement with the direct

changes.
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CHAPTER I

INTRODUCTION AND BACKGROUND

The area of nuclear engineering known as burnup analysis is

concerned with predicting the long-term isotopic changes in the material

composition of a reactor. Analysis of this type is essential in order

to determine optimum fissile loading, efficient refueling schedules,

and a variety of operational characteristics that must be known to

ensure safe and economic reactor performance. Burnup physics is unique

in that it is concerned not only with computing values for the neutron

flux field within a reactor region, but also with computing the time-

dependent behavior of the nuclide-density field. In general the flux

and nuclide fields are coupled nonlinearly, and solving the so-called

burnup equations is quite a formidable task which must be approached

with approximate techniques.

It is the goal of this study to develop a perturbation theory for

application to burnup analysis. Based on such a technique, a sensitivity

methodology will be established which seeks to estimate the change in

various computed quantities when the input parameters to the burnup

calculation are varied. A method of this type can be a useful analysis

tool, applicable to several areas of practical interest. Two of the

important areas are (a) in assessing the sensitivity of computed

parameters to data uncertainties, and (b) in determining the effect of

design changes at beginning-of-life on a parameter evaluated at some

time in the* future.
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Sensitivity analysis at Oak Ridge National Laboratory (ORNL) (1, 2, 3)

and elsewhere (4, 5, 6) has flourished both theoretically and computation

ally during the last several years, culminating in recent uncertainty

estimates (7) for performance parameters of large LMFBR reactors,

including both differential and integral information. Current work,

however, has been focused largely on the time-independent problem for

functionals of the neutron flux. Much of the advance in this area can be

attributed to the development of "generalized perturbation theory" (GPT)

for eigenvalue equations put forth by Usachev (8), Gandini (9),

Pomraning (10) and others during the 1960's, although groundwork for the

theory was actually developed by Lewins (11) in the late 1950's.

Essentially GPT extended the application of "normal perturbation theory"

(for kff) to include analysis of any arbitrary ratio of functionals
linear or bilinear in the flux and/or adjoint flux.

It is interesting to note that even though nearly all the applied

perturbation theory work of the last decade has focused on the time-
independent neutron transport equation, much of the early work in adjoint

theory was concerned with the time-dependent case. For example, the

classic book by Weinberg and Wigner (12) talks about the effect on

future generations of introducing aneutron into a critical reactor,

although ultimately the effect is related back to astatic eigenvalue.

The important work by Lewins in 1960 is tne first that really dwells in

detail on adjoint equations for the time-dependent reactor kinetics

equations (13). In that work the concept "time-dependent neutron



importance" is clearly quantified and pointed the way for future

developments based on the importance principle. At about this same

time (early 1960's) Lewins published another important paper which is

related to work presented in this thesis. In that work he derived

adjoint equations for a nonlinear system (14). However, his work was

somewhat academic in that it did not address any specific equations

encountered in reactor physics, but merely provided some of the necessary

theoretical development for arbitrary nonlinear equations. Details were

sketchy, and the potential value of this early work was never realized.

Such was the state of the art when this thesis was begun,

with the idea in mind of extending sensitivity analysis based on GPT

for the time-independent neutron field to include burnup-related

parameters, which depend not only on the time-dependent neutron field

but also on the time-dependent nuclide field. In addition the governing

equations are nonlinear, and thus further work in the nonlinear

perturbation theory was required. The original goals of this work have

nearly all been realized, but since the study was begun independent work

has been published by other sources in some of the planned areas of

endeavor. This recent work includes derivation of an adjoint equation

for the linear transmutation equation by Gandini (15), with a modification

to couple with static GPT results by Kallfelz (16), and some interesting

work on nonlinear adjoint equations for fuel cycle costs published by

Harris as part of his doctoral thesis (17). For the most part, these

works represent special cases of the more general developments discussed



herein; however, the quality of this early work merits acknowledgement,

and it is felt that the present work will provide useful and needed

extensions to their work, as discussed below.

From a theoretical viewpoint it is convenient to categorize burnup

perturbation analysis into two types. In this text these types are

called the uncoupled and the coupled formalisms. The distinction lies

in how the interaction between the nuclide and neutron fields is treated.

In the uncoupled perturbation method, it is assumed that a

perturbation in the nuclide-field equation does not affect the flux

field, and vice versa. In effect, the nonlinear coupling between the

two field equations is ignored for the perturbed state; or alternatively,

one might say that for the depletion perturbation analysis, the flux

field is treated as an input quantity, and not as a dependent variable.

With this assumption, it is legitimate to consider the flux field as

data, which can be varied independently along with the other data

parameters. This is the formulation originally addressed by Gandini

and is only valid under limited circumstances. Kallfelz partially

circumvented this problem by linking perturbation theory for the nuclide

field with static GPT; however, his technique has the serious disadvantage

of requiring a separate GPT calculation for each cross section in the

nuclide field equation (16).

In the coupled formalism, the nuclide and neutron fields cannot

vary independently. Any data perturbation which changes one will also

change the other, because the two fields are constrained to "move"



only in a fashion consistent with their coupled field equations. In

developing a workable sensitivity theory for the case of coupled

neutron/nuclide fields, one must immediately contend with the specific

type of formulation assumed in obtaining solutions to the burnup

equations - the perturbation expressions themselves should be based on

the approximate equations rather than the actual burnup equations,

since the only solutions that exist for practical purposes are the

approximate solutions. Harris' study of perturbation theory for generic

nonlinear equations is not directly applicable to the approximation

employed by most depletion codes, hence his "nonlinear adjoint

equations" cannot be implemented into a code such as VENTURE. Further

more, the adjoint burnup equations which were presented are limited to

a simple model; e.g., they do not explicitly treat space dependence, nor

arbitrary energy and angle dependence for the neutron flux field, and

are applicable only to a specific type of response.

At present there exists a need for a unifying theory which starts

from the general burnup equations and derives perturbation expressions

applicable to problems of arbitrary complexity. In particular, the

physical and mathematical consequences of approximate treatments for

the time-dependent coupling interaction between the nuclide and flux

fields should be examined, and the role of perturbation theory in

defining sensitivity coefficients for generic "responses" of the flux

and nuclide fields should be clarified. This study attempts to provide

a general theoretical framework for burnup sensitivity theory that is

compatible with existing methods for treating the time dependence of the

neutron field.



In summary, the specific purposes of the present work are stated

as follows:

1. To further investigate perturbation theory for nonlinear

equations and contrast the technique to that for linear equations.

Attention is given to the order of approximation inherent in "nonlinear

adjoint equations," and the concept of a "first-order adjoint equation"

is introduced.

2. To review various formulations of the burnup equations and to

examine how perturbations affect the equations (e.g., "coupled" vs.

"uncoupled" perturbations).

3. To derive appropriate adjoint equations for each of the

formulations.

4. To present a calculational algorithm for numerically solving

the adjoint burnup equations, and to summarize work completed at Oak

Ridge in implementing the procedure.

5. To examine the physical meaning of the burnup adjoint functions

and to illustrate their properties with analytic calculations.

6. To derive sensitivity coefficients for generic responses

encountered in burnup analysis, both for variations in nuclear data and

in initial conditions, and to establish the relation between coupled and

uncoupled perturbation theory.

7. To present equations for uncertainty analysis in burnup

calculations.

8. To give results of application of uncoupled, depletion

perturbation theory to analysis of an irradiation experiment.



9. To give results of application of coupled, depletion

perturbation theory to analysis of a denatured LMFBR.



CHAPTER II

ADJOINT EQUATIONS FOR NONLINEAR SYSTEMS

In this chapter we will examine in general terms the roles played

by adjoint functions in analyzing effects of (a) perturbations in

initial conditions and (b) in other input parameters on the solution to

linear and nonlinear initial value problems. This discussion will serve

as a prelude to following chapters in which perturbation theory will be

developed for the specific case of the nonlinear burnup equations. Here

we introduce the concepts of an "exact adjoint function" and a "first-

order adjoint function," and contrast perturbation theory for linear and

nonlinear systems. More details of the mathematics involved can be found

in Appendix B.

First consider the reference state-vector y(x,t) described by the

linear initial value problem

L(x,t)-y(x,t) =ft-y(x,t) H-l

with a specified initial value y(x,o) =yQU). In this equation, x

stands for all variables other than time (such as space, momentum, etc.),

and L is a linear operator, assumed to contain no time derivative

operators (however, d/dx operators are allowed). We will assume that

it is desired to know some output scalar quantity from this system which

depends on an integral over x+ of the reference state vector evaluated at

t[ ] indicates integration over x, y,
x,y,•••



specified time T^:

0T =[h(x)-y(x,Tf)]) II-2

The question often arises, How will the output 0T computed with the

reference solution change if the initial condition or the operator L is

perturbed?
t

To answer this, consider the following adjoint equation, which

is a finaCI-value problem,

L*y*(x,t) =-ft y*(x,t) n-3

y*(x,Tf) = h(x)

At this point there are two properties of the above equation which

should be stressed. The first is that y* is an integrating factor for

Eq. II-l, since

[y*Ly]x -[yL*y*]x =[y* ^ y]x +[y f^ y*],

which implies that

afty-y]x-o n-4

Furthermore, integrating II-4 from t to Tf gives

+L* indicates the adjoint operator to L, defined by the commutative
property [f'Lg]x =[gL*f]x_.
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[y(x,t)-y*(x,t)]x = [y(x,Tf)-y*(x,Tf)l =0T II-5

for all values of t.

Thus y* is an integrating factor which transforms Eq. II-l into an

exact differential in time. It is interesting to note that Eq. I1-4

expresses a conservation law for the term [yy*] , which has led to the
A

designation of this quantity as the "contributon density" in neutron

transport theory (18, 19).

Evaluating Eq. I1-5 at t = o gives the fundamental relation

[y*(x,o)-yo(x)]x =0T ,

which shows that the desired output parameter can be evaluated simply by

folding the initial condition of y with the adjoint function evaluated

at t = o, without ever even solving Eq. II-l! This relation is exact,

and is a consequence of the fact that y* is a Green's kernel for the

output. An adjoint equation that provides solutions with the property in

Eq. 11-5 will be called an "exact adjoint equation."

The second important property of the adjoint function for a linear

system arises from the fact that L* is independent of the forward

solution. Since L is linear, it does not depend on y and hence neither

does L*; i.e., a perturbation in the reference value of y will not

perturb y*. This observation leads to the "predictor property" for a

linear-equation adjoint function,

0-r = [y**y'] II-6Tf LJ •/oJx
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for all values of y'(o). Furthermore, subtracting II-5 from II-6 allows

the change in 0 at Tf to be computed exactly, for arbitrary perturbations

in initial conditions,

A°Tf - tno)Ayoix . n-7

where A implies a deviation from the reference state value found from

Eq. II-l. Note that for a linear system, an exact adjoint equation will

always have the property in Eq. II-7.

Now let us consider a nonlinear initial value problem, specified

by the same initial condition y(x,o) =yQ(x),

MCyW-f^y, II-8

where M(y) is a nonlinear operator which now depends on the solution y.

(See Appendix B.) If we proceed formally as before, the following

adjoint equation is obtained:

M*(y)-y* =-ft-y* n-9

y*(x,Tf) = h(x)

This "nonlinear adjoint equation" is actually linear in y*, a

property which has been noted by other authors (20) but it depends on

the reference solution to the forward equation. As before, Eq. II-9

still provides an integrating factor for Eq. II-8, since it implies that
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<L rv*vl = o
dt Ly yjx

In this sense, Eq. I1-9 is the "exact adjoint equation" for the reference

system in Eq. II-8.

However, the predictor property of the adjoint system is no longer

valid for arbitrary initial conditions, because in this case if the

initial value of y is perturbed, Eq. II-8 becomes

M'(y-)-y- =-ft y' • n-10

so that the adjoint equation for the perturbed system is

M-*(y')-y* =-ftyJ • II"11

The change in y has perturbed the adjoint operator, and hence it is

impossible to express the adjoint system independent of the state of

forward system, as could be done for a linear equation.

This problem can be illustrated in the following manner. First,

express y" as the reference solution plus a time-dependent deviation

from the reference state:

y'(t) = y(t) + Ay(t) n-12

The left-hand side of 11-10 is now expanded in a Taylor series

about the reference solution (see Appendix B):

M(y)-yV = I yr-sVy) 11-13
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where 61 is the perturbation operator defined in Appendix B.

When these values are substituted back into Eq. 11-10, an equation

for the time-dependent deviation is obtained:

oo

^ ^j-fiVy) =1^ Ay n-14

As shown in Appendix B, S1 is a nonlinear operator in Ay for all terms

i > 1:

^(M-y) = ^CAy) »

so the left-hand side of Eq. 11-14 is also a nonlinear operator in Ay.

As discussed in Appendix B, an "exact adjoint operator" to this perturbed

operator is given by

XjrAAyJ-y* n"15
i

where 6n*(Ay) is any operator (in general depending on Ay) which

satisfies the relation

[y^CAy)]^ =Uy^VyJ-y*]^ n-16

We thus have the "exact adjoint equation" for the perturbed equation in

11-14:

l\r^^yhy*--w^ n"17

Note that 61 is a linear operator in y*.
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Also, Equation 11-17 explicitly shows how the "exact adjoint equation"

depends on the perturbation in the forward solution. Defining the final

condition in 11-17 to again be y*(Tf) = h, the predictor property is

again exactly

A0T =y*(o)AyQ ,

which is obtained by employing the relation in Eq. 11-16. However, in

this case the above equation is of academic interest only, since the

perturbation Ay(t) must be known in order to compute y*! We can partially

circumvent the problem by truncating the infinite series on the left-hand

side of 11-17 after the first term to obtain a "first-order adjoint

equation"

fiX*.y* =-|_ y* 11-18
1 dt i

Using the relations in Appendix B, 61* is found to be

fi1* =M^y) +(f•yj "-IS
Substituting the above expression into Eq. 11-18 gives

M*y* tfe •Ay?
The perturbed forward equation 11-14 can be written

11-20



or

«lCM-y) + I Ip^CAy)
i=2 n-

15

h»

[M +dM.y)Ay+. j ^^(AyJ^Ay
i=2

11-21

Using Eq. 11-21 and the first-order adjoint equation in 11-20,

the predictor property for the perturbed nonlinear equation is

A0.T = [y*(x,o)-Ay (x)L +
If 1 o *

y* I WtAy)
1 i=2 n' x,t

where 61(Ay) = 6(Ayn) (Note: 6 means "on the order of").

The above equation for the perturbed output is exact, however, it

contains expressions which depend on Ay(x,t) in the higher order terms.

If terms higher than first order are neglected, we again obtain the

linear relation between the change in the final condition and the change

in the initial condition

Ay(Tf)*[y*(o).Ayo]x 11-22

but the relation is now only an approximation, in contrast to the exact

relation for the linear case. Equation 11-18 could also have been

derived by first linearizing the forward equation (11-14), and then

taking the appropriate adjoint operators; i.e., Eq. 11-18 is the "exact"
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adjoint equation for the linearized system, but is only a "first-order"

adjoint, for the true nonlinear system.

Because of the extreme desirability of having an adjoint equation

which is independent of changes in the forward solution, first-order

adjoint functions are usually employed for perturbation analysis of

nonlinear systems. The price which must be paid for this property is

the introduction of second-order errors that do not appear in linear

systems. Since the burnup of fuel in a reactor core is a nonlinear

process, depletion sensitivity analysis is faced with this limitation

and can be expected to break down for large perturbations in initial

conditions.

For perturbations in parameters other than initial conditions, such

as in some data appearing in the operator L on the left-hand side of

II-l, even linear systems cannot be analyzed exactly with perturbation

theory. For these cases, it is well known that (21)

A0T =ff[y*(t)ALy(t)]x dt +8[ALAy]x . H-23
o

For perturbation analysis of nonlinear systems using a first-order

adjoint function, additional second-order terms are obtained, such as

Ay2 as well as higher order terms. In general it is not obvious how

much additional error (above the error normally encountered in linear

systems) these terms will introduce, since the relative magnitudes and

the possibility of cancelling errors must be considered. The accuracy
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of the depletion perturbation method, which will be developed in the

following sections, can only be determined by applying the technique to

many real-world problems until some feel for its range of validity is

established.

A simple extension of the preceding discussion is to allow the

output observable 0 to be an integral over time of any arbitrary function

of y(t) (differentiate in y):

0=[f(y)]Xft n"24

The first observable discussed is a special case of the above

equation with

f(y) = h(x)y(x,t)6(t -tf) , H-25

where 6 is a Dirac delta function. The appropriate first-order adjoint

equation for this general output is (using notation as in 11-18) a fixed

source problem,

(Si*y* = _i_y* _|I 11-26
yi 3t yi 3y

yjCV - 11-27

Again note that Eq. 11-26 reduces to Eq. 11-18 when f is given by

Eq. 11-25, since in that case
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9ffl-= h(x)<5(t - tf) 11-28

sy

This delta-function source is equivalent to a fixed final condition of

y*(Tf) = 3f/3y (21) and therefore Eq. 11-26 is equivalent to Eq. 11-18.

For the more general expression for 0, consider the result of a

perturbation in the initial condition of Eq. II-8. The output is

perturbed to

o' =[f(y')]Xft =Cf(y) +§ ^y +f^ fAy +...]Xft

A0 = &»♦•• x,t
11-29

and the perturbed forward equation is again given by Eq. II-13, with the

time-dependent change in y obeying Eq. 11-21. Now multiply the first

order adjoint equation (11-26) by Ay, and Eq. 11-21 by y*; integrate

over x and from t = o to t = Tf; and then subtract:

dtM»Hx +1 "[iHx- j2[WMx,t »-m

Substituting the value for AO from Eq. 11-29 into 11-30, and

evaluating the first term on the left-hand side [recall, y*(T) = 0] gives

[y*(o).Ayo]x = AO

oo -j i 00

i=2 gy1 !• ,-=9 1- 1i=2
x,t

11-31
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Equation 11-31 is still exact, and explicitly shows the terms

involving powers of Ay higher than first order contained both in the

perturbed response and in the 61 operator. If these terms are neglected,

Eq. 11-31 reduces to

AO =[yMo)-Ayo]x

Again we see that the first-order adjoint function allows one to

estimate the change in the output to first-order accuracy, when the

initial state is perturbed.

We will end this introductory development by summarizing the

following important points concerning perturbation theory for linear

and nonlinear initial value problems:

1. In a linear system, the change in the output due to an arbitrary

change in initial condition can be computed exactly using perturbation

theory (Eq. II-7)

2. In a linear system, the change in the output due to an arbitrary

change in the system operator can be estimated only to first-order

accuracy using perturbation theory (Eq. 11-23)

3. For a nonlinear system, there exists an associated "first-

order adjoint system" corresponding to the "exact adjoint system" for

the linearized forward equation (Eq. 11-26). This system depends on the

reference forward solution, but is independent of variations about the

reference state.
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4. In a nonlinear system, the change in the output due to an

arbitrary change in initial condition can be computed accurate only to

first order with perturbation theory using a first-order adjoint function

(Eq. 11-22)

5. In a nonlinear system, the change in output due to an arbitrary

change in the system operator can be estimated to first-order accuracy

using perturbation theory based on the first-order adjoint function.

Note that this is the same order of accuracy as in item 2 for a linear

system, although usually the perturbation expressions for the nonlinear

system will have more second order terms.

Having completed a general overview of nonlinear perturbation

theory, we can now proceed with developing a perturbation technique for

burnup analysis. Nearly all derivations of adjoint equations in the text

are actually specializations of the general theory discussed in this

chapter. It is an interesting exercise to determine the point in each

derivation at which the assumption "neglect 2nd order terms" is made.

Sometimes the assumption is obvious and sometimes it is more subtle,

but the reader must be aware that this approximation is being made in

each case, since we are dealing exclusively with first-order adjoint

equations.



CHAPTER III

FORMULATIONS OF THE BURNUP EQUATIONS

In analyzing the time-dependent behavior of a power reactor, one

finds that most problems that are encountered fall in one of three

generic time scales. In this development, these will be labeled the

short-range, intermediate-range, and long-range time periods.

The short-range time period is on the order of milliseconds to

seconds, and is concerned with the power transients due to the rapid

increase or decrease in the population of neutrons when a reactor is

perturbed from critical. The study of these phenomena of course

constitutes the field of reactor kinetics. Except possibly for extreme

accident conditions, the material composition of the reactor will not

change during these short time intervals.

The intermediate range involves time periods of hours to days.

Problems arising on this time scale include computing the effect of

xenon oscillations in an LWR, calculating efficient poison management

programs, etc. Unlike the kinetics problem, the overall population of

neutrons does not change significantly during intermediate-range

problems, but the distribution of the neutrons within the reactor may

change. Furthermore, the time-dependent behavior in the concentrations

of some nuclides with short half-lives and/or high absorption cross

sections (i.e., fission products) may now become important. When the

space-dependent distribution of these nuclides significantly affects the

space-dependent distribution of the flux, nonlinearities appear, and

feedback with time constants on the order of hours must be considered.

21



22

The last time scale of interest is the long-range period, which may

span months or even years. Analysis at this level is concerned with

predicting long term isotopic changes within the reactor (fuel depletion,

plutonium and fission product buildup, etc.), especially how these changes

affect reactor performance and economics. Analysis in this time range

must consider changes both in the magnitude and distribution of the

neutron field, although the changes occur very much more slowly than for

the kinetics case. But the most distinguishing feature of this type of

analysis is the importance of time-dependent variables in the nuclide

field. On this time scale the time-dependent behavior of a relatively

large number of nuclides must be considered, and these changes will be

fed back as changes in the neutron field; the nonlinearity appears with

a much longer time constant than in the intermediate range case, however.

In reality, of course, processes in all three time ranges occur

simultaneously in a power reactor, and their effects are superimposed.

It is possible to write a single set of mathematical equations which

fully describe the time variations in both the neutron and nuclide

fields (22); however, in practice the equations cannot be solved effi

ciently due to the nonlinearities and the extremely widely spaced time

eigenvalues. Therefore reactor physicists must assume separability for

the three time scales. Specific solution techniques have evolved for

each time range and are designed to exploit some property of the time

scale of interest (e.g., slowly varying flux, etc.). In this work we will

deal exclusively with the two longest time scales, with the major focus
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being on calculations for the long-range scale; such calculations

comprise the area called burnup or depletion analysis.

The purpose of this section is to review the burnup equations,

expressing them in the operator form which will be followed throughout

the text. We are interested in the interaction between the neutron

flux field and the nuclide density field, both of which change with

time and both of which influence one another.

A material reactor region is completely described by its nuclide

density vector, which is defined by

N(r,t) =(Mr.t), N2(r,t) Nn(r,t)) HI-1

where N^r.t) = atom density of nuclide 1at position r and time t.

While in operation, the reactor volume will also contain a

population of neutrons whose distribution is described by the neutron

flux field <j>(j3), where

P = vector in the 7-dimensional vector space of (r, t, n, E).

Note that the space over which N is defined is a subdomain of p-space.

Given an initial reactor configuration that is described by N (r)

at t = 0, and that is exposed to the neutron flux field for t_> 0, all

future reactor configurations, described by the nuclide field N_(r,t),

will obey the nuclide transmutation equation (Bateman equation)*

*[ L u indicates integration over x,y,... .
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ft N(r\t) =[<j>(p)R(c)]E^ N(r,t) +D(A)N(r,t) +C(r\t) III-2

where

r is a cross section matrix whose elements are

a..(r,E) = microscopic cross section and yield data for

production of nuclide i by nuclide j, and

a.. = -a • = absorption cross section for nuclide i
n ai v

J) is a decay matrix whose elements are

A.. = decay constant for decay of nuclide j to nuclide i, and

A.. = -A. = total decay constant for nuclide i

C(r,t) is an external source of nuclides, accounting for refueling,

control rod motion, etc.

We will find it convenient to define a transmutation operator by

M=M(<|>(j5), c(r,E), A) = L>(p)R(a)]E^ +D(A) . III-3

Then the equation for the nuclide field vector becomes

ft N(r,t) =M((j>,a,A)N(r,t) +C(r,t) IH-4

The neutron-flux field obeys the time-dependent transport equation

expressed by
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1/v ft<l>(P) +^V<f>(p) +N(r,t)-at(r,E)4>(P)

=N(r,t).[as(r,E',n^E,^) +(1 -3) ^ va^E'MP)] E%fr

+ IXD1(E) Vn.(N) III_5

where

a. is the total cross-section vector, whose components are the

total microscopic cross sections corresponding to the

components of U_,

and similarly defined are

a , as the differential-scatter cross-section vector

ygf, as the fission-production cross-section vector,

and

x(E) = prompt neutron fission spectrum

Xn-(E) = delayed neutron fission spectrum for precursor group i

A. = decay constant for precursor group i

d.(Nj = ith group-precursor concentration, which is an effective

average over various components of N_.

3 = yield of all precursors, per fission neutron.

Defining the Boltzman operator in the indicated manner, B = B[N^(r,t),

a(r,E)], Eq. 111-5 becomes
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1/v ^ HP) =B(N,a)<|>(j3) +I xDi(E)X.d.(N) III-7

In the work that follows, the above equation will be called the

"initial value" form of the neutron-field equation. (Note: The usual

equations for describing delayed-neutron precursors are actually

embedded in the nuclide-field equation.)

Equations II1-4 and II1-7 are the desired field equations for the

nuclide and neutron fields within the reactor. In addition to these

conditions, there may also be external constraints placed on the system,

such as minimum power peaking, or some specified power output from the

reactor. In general these constraints are met by adjusting the nuclide

source C in Eq. 111-4, for example by moving a control rod. For this

development we will consider only the constraint of constant power

production:

[N(r,t).af(r,E)cf.(p)]p =P 111-8

In this study the system of coupled, nonlinear equations given by

Eqs. 111-4, 7, and 8 are referred to as the burnup equations. The

unknowns are the nuclide and neutron fields, and the nuclide control

source which must be adjusted to maintain criticality. These equations

are obviously quite difficult to solve; in reality some suitable

approximation must be used. One common approximation assumes that the

Boltzman operator can be replaced by the diffusion operator, thus

reducing the dimension of p-space from 7 to 5. Even with the diffusion
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approximation, however, the system is still coupled nonlinearly. In the

next section we will examine assumptions which will decouple Eqs. 111-4

and 111-7 at a given instant in time, but first let us consider an

alternate formulation for the flux-field equation which is useful in

numerical calculations for the long-range time scale.

Suppose that <f>(p) is slowly varying in time. Then at a given

instant the term 1/v 3/3t <|> can be neglected. We will also assume

that for the long exposure times encountered in burnup analysis, the

fluctuations about critical arising from delayed-neutron transients are

unimportant (i.e., on the average the reactor is critical so that the

precursors are at steady state). With these assumptions Eq. 111-7 can

be approximated by

B(N)4>(0) = 0 , IH-9

if the prompt fission spectrum in Eq. Ill-5 is modified to (1 - 3)x(E)

+l3iXDi(E).
Equation III-9 is homogeneous and thus at any given time will have

nontrivial solutions only for particular values (an infinite number) of

H_. To simulate the effect of control-rod motion, we will single out one

of the components of H which will be designated the control nuclide N .

Also we will express the B operator as the sum of a fission operator

and a loss-plus-inscatter operator:

B = L - AF , 111-10

so that Eq. 111-9 becomes
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[l(N,Nc) -AF(N,Nc)J<|)(p) =0, III-ll

where

A = -~— = instantaneous fundamental lambda mode eigenvalue.
keff

The value for N is usually found indirectly by adjusting its magnitude

until A = 1. The concentration of the control nuclide is thus fixed

by the eigenvalue equation and does not need to be considered as an

unknown in the transmutation equation.

An alternate method of solving Eq. II1-9 is to directly solve the

lambda mode eigenvalue equation (given JN, A is sought from Eq. III-ll).

In this case A may or may not equal one. For both of these techniques,

only the flux shape can be found from Eq. III-ll. The normalization is

fixed by the power constraint in Eq. 111-8.

It is important to realize that both of these methods are

approximations, and that in general they will yield different values

for the flux shape. The former case is usually closer to "reality"

(i.e., to the true physical process) while the latter is usually faster

to solve numerically. For many problems concerned only with nuclide

densities, results are not extremely sensitive to the approximation

used (23, 24).

We will next write <j>(p) as a product of time-dependent normalization

factor, $, and a slowly varying shape function ip, which is a solution to

Eq. III-ll normalized to unity; i.e.,
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4>(p) = *(t)v(p) 111-12

with

[,"(p)]E.n,V =] 111-13

The normalization factor is fixed by the power constraint

H(N,af,ip)«* = P , 111-14

where

He[N-V(p)]E.n.V 111-15

In this form, the burnup equations can be expressed concisely in matrix

notation as

L(N) - AF(N) 0

0 H(N,y,a)

0 V. 0

0 $ = P

M($,ifj,a)_ _N- i-N

111-16

For future reference, Eq. 111-16 will be called the time-continuous,

eigenvalue form of the burnup equations, since both the nuclide and

neutron fields (as well as the eigenvalue A) occur as continuous

functions in time. The only approximations which have been made so far

are to neglect the time derivative of the flux and the transients in

delayed-neutron precursors. However, this time-continuous form of the

burnup equations is not practical for most applications, since at any
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instant in time they contain products of the unknowns N^, ip, and $; i.e.,

the equations are still nonlinear. For numerical calculations we must

make further assumptions which will approximate the nonlinear equations

with a cost-efficient algorithm. Specifically, it is necessary to

minimize the number of times which the neutron transport equation must

be solved, since calculating the neutron field requires much more

computing time than calculating the nuclide field.

The approximation made in most present-day depletion codes is based

on decoupling the calculations for the neutron and nuclide fields at a

given instant in time by exploiting the slowly varying nature of the

flux. The simplest decoupling method is to treat the flux as totally

separable in time and the other phase-space variables over the entire

time domain (tQ, tf). In this case the shape function is time-

independent, and thus

4>(p) =*(t)v0(r,E,n) for 0<t<tf , 111-17

The shape function yQ can be determined from a time-independent

calculation at t = 0 using one of the eigenvalue equations discussed in

the previous section. As before it is normalized such that

^•^E.fl.V =] J11"18

Substituting Eq. 111-17 into Eq. III-2.

|t N(r,t) =$(t) [vQR(a)]E N+DN+C 111-19
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Equation 111-19 can be simplified by writing the first term on the RHS

as

>U) Bo^q) ^(r't} ' III_2°

where R is a one-group cross-section matrix whose components have the

form

oQ(r) = L>0(r,E,a)a(r,E)]Ejn 111-21

The cross-section matrix is rigorously composed of space-

dependent, one-group microscopic data which can be evaluated once and

for all at t = 0. In reality, detailed space-dependent depletion

calculations are rarely performed due to prohibitive computing cost.

Usually the reaction matrix is averaged over some limited number of

spatial zones (for example, a core zone, a blanket zone, etc.); in this

case of "block depletion" the solution to the transmutation equation

approximates the average nuclide field over each spatial region (25).

The cross-section elements of R for region z are given by

oQ(z) = L>0(z,E,ft)a(z,E)]E^ HI-22

where id (z.E.fi) = L> (r,E,ft)L
z

which has a normalization

Hf0(z.E.«)]Eia =1 "1-23



32

Throughout the remainder of this study we will not explicitly refer

to this region-averaging procedure for the nuclide-field equation. This

should cause no confusion since the spatial variable "r" in Eq. Ill-21

can refer to either the region or spatial interval, depending on the

case of interest. There is no coupling between the various r-points in

the transmutation equation except through the flux-shape function, and

therefore the equation for the region-averaged nuclide field appears

the same as for the point-dependent field; only the cross-section

averaging is different.

The value for the flux normalization in Eq. 111-19 is computed from

the power constraint in Eq. II1-8:

*(t) =P/[af(r,E) N(r,t)v0(r,Effi)]E^fi 111-24

For numerical calculations this normalization calculation is only done

at discrete time intervals in the time domain,

P
*,• = -— — , where N. = N(r,t.) 111-25fef(r,E) N1(r)*0]EiV>a "' " i

and is then held constant over some "broad time interval" (t., t. ,).

One should realize that the broad time intervals at which the flux

normalization is performed do not usually correspond to the finer time

intervals over which the nuclide field is computed. To avoid confusion

on this point, we will continue to represent N_ as an explicit function

of time, rather than in its finite-difference form.
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Note the discontinuity in $. at each of the time intervals: at

t = t.j, <2>. = $.j_i> while at t = t., $ = $.. There is no corresponding

discontinuity in the nuclide field; i.e.,

N(r,tp =N(?,t~) ,

but there is discontinuity in the derivative of N^ at t..

Because of the discontinuities in the flux field and the eigenvalue,

this formulation (and the one which follows) is called the "time-

discontinuous eigenvalue" approximation.

With all the preceding assumptions, the nuclide-field equation

becomes

ft N.(r,t) =^ N(r,t) +DN(f,t) +C(r,t) , 111-26

for tj < t < t.+1 with

N(r.tt) = N(r\t~) 111-27

as the initial condition of the broad time interval.

At a given value of r (either a region or a point), Eq. 111-26

depends only on the time coordinate; i.e., it is an ordinary differential

equation in which r appears as a parameter. The assumption of total

separability in the time variable of the flux field has completely

eliminated the need for solving the transport equation, except for the

initial eigenvalue calculation at t = 0 which was required to collapse
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the cross-section data. Some computer codes, such as ORIGEN (26), store

standard cross-section libraries containing few-group cross sections

(^3 groups) that have been collapsed using flux spectra for various

types of reactors (e.g., a PWR library, an LMFBR library, etc.). It is

then only necessary to input the ratios (usually estimated) of the

epithermal and fast fluxes to the thermal flux in order to obtain the

one-group reaction matrix.

In summary, the calculation usually proceeds as follows:

(i) solve Eq. III-ll at t = 0 for flux shape

(ii) integrate cross-section data using Eqs. 111-21 or 111-22

(iii) solve Eq. 111-25 for flux normalization at t = t^

(iv) solve Eq. 111-26 for N(r,t) over the broad time interval

ti<t< Vl
(v) go to iii

This rather simplistic approximation is employed mainly when

emphasis is on computing the nuclide rather than the neutron field, and

when the flux shape is known (or assumed) over the time scale of interest.

Example applications include calculation of saturating fission products

(27), analysis of irradiated experiment samples (28), and determination

of actinide waste burnout in an LMFBR (29).

When the time variation of the flux shape becomes important, or when

accurate values for flux-dependent parameters such as reactivity are

required (as in analysis of a power reactor), a more sophisticated

technique must be used. The most commonly employed calculational method

for this analysis is based on a "quasi-static" approximation, a

mathematical method sometimes referred to as "quasilinearation" (30).
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The quasi-static depletion approximation, as used in this

investigation,* essentially consists of a series of the above type

calculations (31). Instead of assuming that the flux shape is totally

separable in time over the domain of interest, it is only required that

Y be constant over some finite interval (t., t.+,). The flux-shape

function for each broad time interval is obtained from an eigenvalue

calculation at the "initial" state t.,
i

[l(N.) -XF(N.)] Vi(r,E,S) =0 111-28

for t = t., .... (i = 1, through number of time intervals) and the flux

normalization is obtained from the power constraint at t = t.,

*i ^i(^i^f]E,V,^=Pi • "1-29

for t = t. Thus the time-dependent flux is approximated by the

stepwise continuous function

/\ /s

<Kp) ^^-(r.E.n) , tj<t<tT+] . 111-30

After each eigenvalue calculation, a new set of one-group cross

sections can be generated using the new value of y., resulting in a new

cross-section matrix

*Beware of difference in terminology from kinetics studies.
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4,(0,) E[,^]E>fl , I"-31

with components

o.(r) =[a(?,E)Vl(?,E,n)]Ein , IH-32

The transmutation equation is then solved over the next time interval

using the "constant" matrix R.,

4r N(r,t) = $.R,N(r,t) + DN(r,t) + C(r,t), 111-33
dt 1 1

t| <t <t"+1

Note that the time-dependent flux given in Eq. 111-30 is again

discontinuous (this time, both the shape and the magnitude) at the

boundaries of the broad time intervals, while the nuclide field is

continuous (its derivative is discontinuous). The basic procedure for

the quasi-static approximation is as follows:

(i) solve flux eigenvalue equation for y. at t^

(ii) integrate cross-section data using Eq. Ill-32

(iii) solve Eq. 111-29 for normalization at t^

(iv) solve Eq. 111-33 between t. and ti+1

(v) go to (i)

Variations of this basic procedure are presently in use. For

example, some computer programs (32) iterate on the initial and final

conditions of a broad time interval until the average power production

over the interval (as opposed to the end-point values) meets some
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specified value; however, these refinements will not be considered in

this study.

In Eqs. Ill-28, 29, and 33, we have developed the quasi-static

burnup equations. The approximations that were made have reduced the

original coupled nonlinear equations to a series of equations which

appear linear at any given instant. In reality, of course, the equations

still approximate a nonlinear process, since a change in the value of y.

is ultimately fed back as a perturbation in the Boltzman operator for

the calculation of y.+1 . It is this nonlinearity which will make the

adjoint burnup equations derived shortly quite interesting.

Let us now review the assumptions leading to the various

approximations for the burnup equations. Recall that the basic

assumption made for the long-term time scale was that the flux field is

slowly changing with time, which allowed us to transform the original

initial-value problem into an instantaneous A mode eigenvalue equation

(the "time-continuous eigenvalue" approximation). We were then able to

make further simplifications by writing the time-dependent flux as a

product of a normalization and a slowly varying shape function. For

numerical calculations the shape function is approximated by a Heaviside-

function time behavior; i.e., it is assumed to remain constant over

relatively broad time intervals, the most extreme case being a single

broad interval spanning the entire time domain (total-time separability).

This assumption resulted in the quasi-static or time-discontinuous

eigenvalue formulation. Note that the assumptions leading to the
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quasi-static depletion method are related to similar assumptions made in

deriving the adiabatic and quasi-static kinetics approximations for the

short-range time scale, although neglecting delayed neutrons and

introducing a time-varying nuclide field makes the relation somewhat

blurred.

This last formulation is well suited for the long-term time scale

in which the flux shape does not change significantly over several days,

or-perhaps weeks. However there are some problems which arise in the

intermediate time scale which require the initial-value formulation,

such as analysis of Xe oscillations. The usual procedure for this type

of analysis to linearize the initial-value burnup equations in III-2 and

111-7 and to neglect the effect of delayed neutrons (33). Since in the

intermediate range fuel depletion can be neglected, the flux normalization

is constant in time. Furthermore, the nuclide-field vector has a limited

number of components (usually the only nuclides of interest for the Xe

problem are 139I and 139Xe) whose time-dependent behavior must be

explicitly treated.

The appropriate equations describing the deviations in the flux and

nuclide fields about steady-state values are thus:

B(i)-A<J>+f!<DAN =^ft AO "1-34
9M

M(4>)-AN +-^NA* =ft AN , I""35

where for Xe analysis AN is zero except for the Xe and I isotopes. In

matrix notation we have
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B(N) 3B ,
9N * Acf>

9

9t

7A*

9MN

9cj>
M AN AN

111-36

Although most of the work in this thesis will be concerned with

obtaining a perturbation methodology for the eigenvalue formulation of

the burnup equations (i.e., for the long-time scale analysis), we will

also examine a perturbation technique for the initial-value formulation

that can be employed to analyze the above type of problem which occurs

in the intermediate time range.



CHAPTER IV

DERIVATION OF ADJOINT EQUATIONS FOR BURNUP ANALYSIS

The desired end result of virtually all design calculations is an

estimated value for some set of reactor performance parameters. Each

such parameter will be called a "response" in this study. For the case

of burnup analysis, the generic response will be an integral of the flux

and nuclide fields; i.e., it is mathematically a functional of both

fields, which in turn are coupled through the respective field equations.

As an example, the desired response may be the final 239Pu mass at

shutdown (a nuclide response); it may be the time-integrated damage

to some nondepleting structural component (a flux response); or it may

be some macroscopic reaction rate (a nuclide and flux functional).

These functionals all take the general form of

R = R(<|)((3), N(r,t), h) , IV-1

For future reference, we also note that the quasi-static formulation of

Eq. IV-1 is

RQS =R(4if ipr N, h) • IV"2

In these expressions h is a "realization vector" which can have the

form of a cross section or of some constant vector which determines the

response of interest. There may actually be several realization vectors

appearing in the response, in which case h_ will symbolically represent

all realization vectors.

40
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Let us consider several types of specific responses. First,

recall from Chapter II that the system output (for the perturbation

development, "output" is synonymous to "response") is of two generic

types: one is evaluated at an instant in time, while the other is an

integral over a time interval; the relation between the two has been

previously illustrated. The former type response will be called a

final-time response, and the latter a time-integrated response.

One important class of responses depends only on the nuclide field -

a "nuclide-field response,"

R = R(h, N) IV-3

In this case, h^will be a vector with constant components. For example

suppose that R corresponds to the number of atoms of Pu-239 at 100 days

after startup. Then

R= [h-N(r,t = 100)]v , IV-4

where all components of h_ are 0 except the component for Pu-239 which

is 1. For the spatial average Pu-239 concentration, simply change the

1 to 1/V, where V is the volume. If R corresponds to fissile inventory

(kg.) after 100 days, then h_ has nonzero components for all fissile

nuclides, and the values are equal to the respective mass per atom

values.
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These examples were all final-time responses, but similar

definitions will hold for time-integrated responses

R=[h-N(r,t)]Vjt , IV-5

such as for a time-average nuclide density. We may also be interested

in nuclide ratios

[hiN]
R = , IV-6

[h2N]

as for an enrichment parameter.

Another class of responses of interest in burnup analysis depends

on reaction rates. For example, if one wished to know the capture rate

in U-238 after 100 days,

R=[af(r,E)<|>(r,E,ft, t=100), NU8(r,t =100)]VjE^

We see in this case that n_ has all zero components except for U-238,.

where,its value is equal to the U-238 capture cross section; i.e., for

this example the component of h^ is function of space and energy. A very

important response belonging in this class is k ff, which is a ratio of

reaction rates:

[h!(r,E)N(r,t = 100)<f>(r,E,ft,t = 100)1. F 0
kff (t =100) =— y-i^i

[h2(r,E)N(r,t =100)<f>(r,E,Q,t =100)]V>E^

where

hiN = F(N)
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h2N = L(N) IV-7

with F, L being the fission and loss operators previously defined in

Eq. 111-10.

It can be seen that a very wide variety of reactor parameters can

be addressed using the notation discussed. Rather than limit the

following development to any one particular type of response, we will

continue to use R to stand for any arbitrary response depending on either

or both the nuclide and neutron fields.

It is the goal of perturbation and sensitivity analysis to find the

effect that varying some nuclear data parameter (e.g., a cross section,

a decay constant, a branching ratio, etc.) or the initial.nuclide field

will have on the response R. This will be accomplished by defining a

"sensitivity coefficient" for the data in question, which will relate

the percent change in R to the percent change in the data.

For example, let a be a nuclear data parameter contained in either

or both the B and the M operators. Then the sensitivity of R to a is

given by

SR/R =IS(j3) ^ (0)J +second-order terms IV-8

For small 6a, we obtain the familiar linear relation between 6R/R

and 6a/a, with S(£) serving as the sensitivity coefficient at position

p" in phase space. A change in the value of a in general will perturb

both the nuclide and flux fields in some complex manner, depending on

the specific Sa(£).
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Treating the response as an implicit function of a, N_, and <J>, we

can expand R in a first-order Taylor series about the unperturbed state

R' = R +

6R/R s

£)«•«»'(HP dl•R \ - x ,M . /9R\ d* . ,MM) da"6a(p) +{w) d£6a(p)_

a /9R 9R ^ . 9R d$_\ §a,^
R \9a 9N da 9tJ) da/ a ^p;

From this expression it is evident that

S(p) -a/R^ +M3- +_^j .

IV-9

IV-10

IV-11

It is important to realize that the derivatives dN/da and d<J>/da are not

independent, since they must be computed from the constraint conditions

(i.e., the field equations) which are coupled in H_ and <j) (34).

In order to clarify this statement, consider the coupled burnup

equations in Eq. 111-16. The time-continuous eigenvalue form of the

flux equation will be used in the illustration, and so we must first

write Eq. IV-10 in terms of the magnitude and shape functions:

iR= f to +fA* +lfA* +
— -In

IV-12

We wish to show that the variations (and hence the derivatives in

Eq. IV-11) in a, ip, $ and N_ are dependent. This can be seen by

considering variations about some reference state described by Eq. 111-16,

After linearization, the perturbed equations become
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3B ,. -t ^A,-,
V Aip ~ 0"

r 3B , -,
to*

AO
9

" 9t
0 -

1H $
9a

9M

AN AN 9a""

9N

M
9N

Aa IV-13

The coupling between the field variations is apparent in this

equation. In theory the above system of equations could be solved and

AR estimated using Eq. IV-12. In reality this is not practical since the

"source" on the right-hand side of the equation depends on Aa. Instead,

it is much more efficient to use the adjoint system to define sensitivity

coefficients independent of the particular data being perturbed.

We will now obtain appropriate adjoint equations for the various

formulations of the burnup equations discussed in the previous chapter.

A. Time-Continuous Eigenvalue Approximation

From the discussion in Chapter II we already know that the adjoint

system appropriate for the nonlinear equations in III-16 is actually a

first order adjoint; and furthermore we know that the first order

adjoint equations can be obtained in a straightforward manner from the

linearized equations in IV-13. Therefore, let us consider the following

inhomogenous system of equations, adjoint to Eq. IV-13.



B*

>v

9H

9ip
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9 M N \*~

9 M N \*

9$

M

*

r

*

p

*

N

9

" 9t

0

0

*

N

-

3R

9ip

9R

9$

9R

9N

IV-14

Note that the "adjoint source" depends only on the response of interest.

This specific form for the source was chosen for the following reason:

multiply Eq. IV-13 by the vector (r*t P*, N*) and Eq. IV-14 by

(Aip, A$, AN_); integrate over ft, E, and V; and subtract,

ft [A^v (r.|M+P*M, +r9 M N

9cT
Aa

n.E.v

IV-15

Defining N* (t=Tf) = 0, we can now integrate Eq. IV-15 over time

to give

AR/R_=[,/RAVr] +{[|(|i-I^
9 M N

+ N
- 9a

)^1 dt
n.E.v

and thus

P*9H

9a

aVM; R \9a 9a 9a * - 9a = -/ '

IV-16

IV-17
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This last expression represents the sensitivity coefficient to

changes in data in the time-continuous, eigenvalue form of the burnup

equations. It is independent of the data perturbation. From the first

term on the right-hand side of IV-16, one can also see that the

sensitivity coefficient for a change in the initial condition N^ is

simply

SN (r) =N*(r,t =0) •1. IV-18

The adjoint equation in IV-14 is quite interesting in its physical

interpretation. More time will be given to examining the "importance"

property of the adjoint functions in a later chapter. For now simply

note that the adjoint equation is linear in the adjoint variables and

contains the reference values for the forward variables (a general

property of first-order adjoint equations, as discussed in Chapter II).

Also notice that there is coupling between the various adjoint equations,

suggesting that the adjoint functions must somehow interact with each

other.

It was previously pointed out that the time-continuous form of the

burnup equation is not efficient to solve numerically. Such is also the

case for the adjoint system. In the forward case, this problem was

overcome by using a quasi-static approximation for the equations, and

an adjoint system for this formulation will be developed shortly. But

first we should examine a simpler approximation based on Eq. IV-14 which

has been shown to give good results for some types of problems.
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B. Uncoupled Perturbation Approximation

Let us suppose that we have computed or have been given a reference

solution to the burnup equations for some case of interest; i.e., we have

available Njr,t), $(t), ip(r,E,fi,t) and their accuracy is indisputable.

When a perturbation is made in some input data, the perturbation in the

fields will obey Eq. IV-13 to first order. Now if the neutron and

nuclide fields are only loosely coupled, then the perturbed fields can

vary essentially independently about the reference state; i.e., the

perturbations in the neutron and nuclide fields will be uncoupled (this

does not exclude a coupled, nonlinear calculation to determine the

reference state). Mathematically, this approximation amounts to

neglecting the off-diagonal terms in Eq. IV-13 containing derivatives

of one field with respect to the other, so that the adjoint system is

B* M •

o

r* 0
~9R'

9ijj

p* 9

9t
0 -

9R

9$

* N* _N*
9R

L9NJM

IV-19

Note that the 2nd term in row 1 relates coupling between magnitude and

shape of the neutron field (not between neutron and nuclide fields) and

hence must be retained. There is now no coupling between the nuclide

and neutron adjoint functions. There are several cases of practical

interest which we will examine.

c
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First, suppose that the response is a time-independent ratio of

microscopic reaction rates. This response depends only on the flux shape

and is equivalent to a static response of

[hl^Jr Eft
R = ^^^ IV-20

£h2*]r,E,ft

so that

IB. = 0 — = 0
9N u ' 9$ u '

In this case, we simply obtain the familiar generalized adjoint

equation for the static case:

(L* -AF*)r* =h,'[M]r.E.B 'h'[h^]r.E,g

Now suppose that R is a linear, time-independent functional of the form

R=*[h-Y]rfEffl ^ IV-22

This response depends not only on the flux shape but also its magnitude,

which is fixed by the power constraint (actually some other normalization

constraint could be used just as well),

H •* =P= [Zfip]'<



Thus we have

9R

9ip

9N"0

**h

u*r-«f
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IV-23

The problem is again a static one. The appropriate adjoint equations

are now

(L* - AF*) *£i r* $h

IV-24

LVV.E.ftJ [hip]r,E,ftJ

p* = _
[hip]

r,E,ft

tV]r,E,ft
IV-25

and substituting the expression for P* into the adjoint shape equation gives

(L* - AF*)r* = If(r,E)
$[h«ip]

r,E,ft

[W,E,ft
- $-h

h(r.E)(L* - AF*)r* = R
£f(r,E)

LV^r.E.ft [h(r,E)ip]
r,E,ft

IV-26

The above adjoint equation for a linear response functional is

applicable to a static eigenvalue problem in which the normalization of

\

r
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the flux is fixed, a case which has not been addressed with the previous

static generalized perturbation method! Thus we see that the preceding

developments have not only extended GPT to include time-dependent,

neutron and nuclide fields, but have also enlarged the class of responses

which can be addressed with the static theory, as a special case.

As a third example, consider the case when the response is a nuclide

field response for which the neutron field is fixed. We then have

R = [h-Nl + IV-27
r ,t

9R _ 9R _ „ arwH
9? " 9$ -° '3nd

f|=h(r,t) iv-28

The adjoint equation is

M*N* ="fti* "hlr>t) IV"29

N*(r,tf) = o

and the corresponding sensitivity coefficient is

Sa(p)=t^9oTpTMN IV-30

The above equation for a nuclide field not coupled to a neutron

field has been derived previously by Williams and Weisbin using a

variational principle (35). If R is further restricted to be a final-time

functional (recall from Chapter II that a final-time response gives rise

to a final condition rather than a fixed source), then,
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M*N*(r,t) =-ftN*(r,t) IV-31

N*(r,tf) = h(r) , IV-32

These equations were originally published by Gandini (15), and can be

seen to be a special case of a more general development.

One can easily think of even more general time-dependent examples

in which all three adjoint functions are involved simultaneously, though

with no coupling between the flux and nuclide adjoints. For instance in

the second example if the response were evaluated in the future (tf f t )

and h were a function of N_ (as a macro cross section), then a

perturbation in the transmutation operator at t = t could affect the

nuclide field in a manner that would perturb the response even without

perturbing the flux, since h could change. In this case N* is not zero,

nor are r* and P*. However for now we will be mostly interested in the

case of a nuclide-field response, Eq. IV-27. This response is very

common and appears to be the type to which the uncoupled formalism is

most applicable.

Notice that Eq. IV-29 is simply the adjoint equation (not the first-

order adjoint equation) to the reference state transmutation equation;

i.e., if not for the nonlinearity introduced by the flux, Eq. IV-29

would be the exact adjoint equation to Eq. III-4. This observation

suggests an alternate interpretation of the uncoupled nuclide adjoint

equation — if we consider the transmutation equation as a linear

equation, in which the flux field appears as input data (just as a fjfl

cross section is input), then we would obtain Eq. IV-29 as the appropriate \
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adjoint equation. In other words the flux is treated as an independent

rather than a dependent variable. When will such an approximation be

valid? Surprisingly, there are quite a few practical examples when just

this assumption is made. For example, in design scoping studies

sometimes a detailed reference depletion calculation will be done in

which the flux values are computed and saved. These values can then be

input into other calculations that only compute the nuclide field (for

example, using the ORIGEN code) to examine the effects of perturbations

to the reference state. Another case of interest is in analyzing an

irradiation experiment. If a small sample of some nuclide is irradiated

in a reactor for some period of time, then chemical analysis of the

products built up can be used to draw conclusions about cross sections

appearing in the buildup chains. Because of the small sample size, the

flux field will not be greatly perturbed by the nuclide field of the

sample. Usually the value for the flux is either measured or provided

from an independent calculation. In this case the uncoupled approximation

is very good, and sensitivity coefficients computed with Eq. IV-30 can

provide very usual information. Details of such a study will be given

in a later chapter.

Thus we can see that there are indeed cases in which the uncoupled

approximation is expected to give good results. However, in the more

general case, as in analyzing a power reactor, the uncoupled approximation

is not adequate. We will next focus on obtaining adjoint equations for

the quasi-static formulation of the burnup equations.
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C. Quasi-Static Depletion Approximation ^

For the derivation, we will use a variational technique described

by Pomraning (10) and Stacy (36). With this method the quasi-static burnup

equations in 111-28, 111-29, 111-33, and 111-13 are treated as constraints

on the response defined in Eq. IV-2, and as such are appended to the

response functional using Lagrange multipliers. We will specifically

examine the case in which the shape function is obtained by solving the

lambda-mode eigenvalue equation, rather than the case in which ip is

obtained from acontrol variable ("Nc") search. The two cases are quite

similar, the only difference being a "k-reset." (Eq. IV-48 illustrates

the mathematical consequence of the reset.) Let us consider the

following functional

K[N. ipr $., a, A, h] =R[N, ipi, $i, h]

T t

+ I
i=l

:i+1|dt N*(r,t) ([^Rj^n *i +D-ftk(?.t) +Cldt
i;

1i1[r>(L^-v^))*iH0iE.v
]/; (C*i2fVn.E.v#i-pi)-Jt-i^e.v-1) iv"33
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where

T = number of broad time intervals in the quasi-static

calculation,

jl,. = N(r,tn.), and
if ^ ie it

N_ (r,t), r.(p), P.. and a., are the Lagrange multipliers.

* *

If P. and ri are set to zero and space dependence ignored, then the

functional in Eq. IV-33 reduces to the same one discussed in ref. 33,

which was used to derive the uncoupled, nuclide adjoint equation in

Eq. IV-29.

Note that if N_, ip., and $. are exact solutions to the quasi-static

burnup equations, then

K = R IV-34

In general, an alteration in some data parameter a will result in

k - Kir, ip:, *:, a', \', h'] , iv-35

where the prime variables refer to their perturbed values. Again, if

N/> y7» *^ are exact solutions to the perturbed quasi-static equations,

r = R' . IV-36

Expanding K' about the unperturbed state, and neglecting second-order

terms,

K' = K +
9K

9a
««*i«N^«h +̂ «»1+|S-«»lt|^6X1]

IV-37
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If we can force the quantities 9K/9N, 9K/9ipr dK/d$., 9K/9A.J to vanish,

then using Eqs. IV-34, 36, and 37,

or

6R j!to ♦14 •
- P

xR/R - fa flK+3R !=:)*
6R/R " LR \9a 9h 9a/ a

IV-38

IV-39

From Eq. IV-39, it is obvious that the sensitivity coefficient for a is

simply

«.,M _a/9K .9R *-)
S(p) "RV5S" "9h W

IV-40

The partial derivatives in Eq. IV-40 are trivial to evaluate, and

therefore the problem of sensitivity analysis for the quasi-static

burnup equations reduces to finding the appropriate stationary conditions

on the K-functional. We will now set upon determining the required

Euler equations, which will correspond to the adjoint field equations.

Consider first the functional derivative with respect to $..

9K _ 3R
9$. 3*.

Vi [N*C*,aE.a n dt -P^ of H.:E^ IV-41

In order for this expression to vanish, we should choose



57

•1+1 r* i
+•[* N^.E N]v dt

* t

Pi=~
[*i 5Lf Vft.E.V

9R_
90.

Now examine the term 9K/9ip., employing the commutative property of

adjoint operators,

9K _ 9R
dip. ^-^v-v'vK

* *

9ip

t
f

+

i

pi$i^i +

1+1 *
N R N dt - a.

IV-42

IV-43

* *

with L , F = adjoint operators to L and F, respectively. The

vanishing of this term implies that (assuming the "standard" adjoint

boundary conditions)

L (N.) - A.F (N.)

where

*, « *
1^(0) = Qi , IV-44

t.
i+1

X1VK/ 9ip. 1
N (r,t)R(a)N(r,t)dt -^P^N., -a IV-45

At this point it should be noted that Eqs. IV-44 and II1-28 demand that

the flux shape function be orthogonal to the adjoint source; i.e.,
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Wft.E.V =° •at a11 l1 '

From Eqs. IV-45 and IV-42 it is easily shown that this condition

requires

[", 9R
i

E,ft,V

9R

9$.
U

E,ft,V

a. IV-46

which fixes the value of "a." For most cases of practical interest,

this term is zero. For example if R is bilinear in ip. and <£>., or is a

bilinear ratio, then "a" will vanish.

The term 9K/9A. is evaluated to be

f^-BfyWA^B.E.v-O. iv-47

which forces r.(£) to be orthogonal to the fission source at t = t.

This condition requires that I\ contain no fundamental mode from the

homogeneous solution. More specifically, if r is a solution to
* if if

Eq. IV-44 and r I 4>H, where <J>H is the fundamental solution to the
* *homogeneous equation, then r + b<f>H is also a solution for all b.

However, Eq. IV-47 fixes the value of "b" to be zero, so that r* = r*.

This is true only for the case in which there is no k-reset

(i.e., A is allowed to change with data perturbations). For the

case in which A is made invariant by adjusting a control variable

Nc, it is easily shown that the proper orthogonality condition is
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[r>>. ^Ltt,) -x^))*;
ft,E,V

3K_
3N;

= 0

Now the value of "b" is not zero, but is given by

K A(L -XPH
[** 9T <L -AP)*]

ft,E,V

ft,E,V

IV-48

IV-49

Thus the effect of adjusting a control variable is to "rotate" r.

so that it will have some fundamental component. The specific projection

*

along <\> depends on the specific control variable.

The Euler condition corresponding to a variation in N_(r,t) is

slightly more complex than for the other variables. Rather than simply

taking the partial functional derivative, it will be more instructive

to consider the differential (variation) of K with respect to 6N_

6K[6N] [fM

T *1+1^ j+ dt [6NL(?,t)([^R%9E ^+D* +ft) N*],

1I] [(N*;i «n?+1 -<+ *V)]V
T

I
i=l

™i [ri 3HJ-K) "XF^))*i]
ft,E

JV

j <*i h c*! £f]ftsE]v. IV-50
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if it /s if if

where N ", =N (r,tT+1), etc.; and R etranspose R, D = transpose D
if if

(i.e., R and fJ are the adjoint operators to R and D).

This variation will be stationary if the following conditions are

met. The first two expressions on the right-hand side of Eq. IV-50 will

vanish if

* *

WW +DN ="
3 *
— N -
9t -

9R

9N
ft,E

for t. < t < t.+.

IV-51

which can be written

* * *

M N + C =
9 *

IV-52

where

3R

L9lift,E
IV-53

This equation is valid for the open interval (t., t.+,). But the

question of the behavior of N[ (r,t) at the time boundaries t. has not

yet been answered. The remaining terms in Eq. IV-50 will provide the

necessary boundary conditions for each broad time interval. These

terms may be written as

T

I
1=1

6N. V - [ri 917 (•• "^i] - •, Vfo 2f]niE
ft,E

^Aii
v

IV-54
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where we have employed the continuity condition on the nuclide field,

—0

!Lj = j^- = N.+ .

Expanding the summation, we get

*

Mo -[ro %(L -xfK *po *o *o 3f]

{K]+ -N-|-) -

ft,E

rl IRT (L " XF>*1 + pl *1 *1 pf

+ ... - SN_f Hf-
JV

ft,E

IV-55

By allowing a discontinuity in the nuclide adjoint field we can

make all the terms containing 6N. vanish, except at the end points t = 0
if

and t=tf. Therefore we assert the following property of N_ (r,t) at

the time boundaries,

N (r,tT) = N (r,t.) r* ^ (L -AF)iPn. +*, P* £f 1pi
—i

ft,E

=N*(r,t|) -[^S. +P*!!^ , IV-56

where

-1 3N •
L(N.) -X. FtN.))^.

R. = $. £f ^ IV-57
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The second term on the right-hand side of Eq. IV-56 represents a
*

"jump condition" on N at t = ti; its value depends on the magnitude of
if if if ic

the other adjoint variables r. and Pi. Essentially, r. £. and P. n. are

sensitivity coefficients to changes in H..

The term in Eq. IV-55 containing 6Hf will vanish if we fix the
*

final condition of N to be

N (r,tf) = 0. IV-58

(For responses which are delta functions in time, the final condition

will be inhomogeneous — see next section.)

With all these restrictions placed on N_ , the summation in Eq. IV-55

reduces to a single expression,

—o i-^A+PAWflv-K-*^ v

From this equation we can define a sensitivity coefficient for the

initial condition of nuclide m to be

sm = Nm
o o

Nr - tv;+ «ft>E - < *m w

IV-59

IV-60

For no change in the initial condition of the nuclide field, Eq. IV-59

will also vanish. To be general, however, we will not make this

assumption, and will retain the expression in Eq. IV-60 as part of the

sensitivity coefficient.
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This rather involved development has provided the adjoint-field

equations for the quasi-static approximation. We have found that there

exist adjoint equations corresponding to the nuclide transmutation

equation, to the flux-shape equation (transport.equation), and to the

power-constraint equation. In addition, we have found that it is

convenient to ascribe additional restrictions on the adjoint fields -

* *

namely, that r. be orthogonal to the fission source and that N^ be

discontinuous at each time boundary. The adjoint field equations are

coupled, linear equations which contain the unperturbed forward values

for N_, ip., and $.. These equations are repeated below:

Adjoint flux-shape equation

L*(N.) - A. F*(N.)

at t = t.

* *

r. = Q.
i xi

Adjoint flux-normalization equation:

*

pi -

'+,+1 [s.*[*,Bn.E k] dt +H-

»i °f ^i]ft,E,V

Adjoint transmutation equation:

IV-61

at t = t. IV-62

9_ *
9t
N (r,t) =M (*., i|;.)N (r,t) + C (r,t) ,te (t., t.+]) IV-63
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N*(r,t~) =N*(r,tj) -[r*£. +P*n.]njE ,at t=t., it f IV-64

N*(r,tf) eNf(r) =0,at t=tf IV-65

In the limit, as the length of the broad time-step goes to zero,

the flux becomes a continuous function of time and there is no jump

condition on the nuclide adjoint. For this special case, if the

fundamental mode approximation is made for the spatial shape of the

flux, the energy dependence expressed in few-group formalism, and the

components of N_ limited to a few isotopes important to thermal reactor

analysis, then the equations reduce to a form similar to those derived

by Harris (17). Harris' equations are in fact simply an approximation

to the time-continuous adjoint system to Eq. IV-14.

The adjoint field equations previously derived were for an

arbitrary response. A specific type of response which is often of

interest is the type originally considered by Gandini in his derivation

of the uncoupled, nuclide adjoint equation, discussed earlier,

R= R[Nf»llI = R[N(r,t) S(t - tf), hj . . IV-66

i.e., the response is a delta function in time at t= tf. In this case,

the adjoint source is equivalent to a fixed final condition, and the

adjoint field equations will simplify by

C(r,t) =0 for t < tf IV-67

* 3R

*f = 9lT att>tf IV"68



9R_
9$.

9R
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IV-69

If the values for the variables P. and r. are also small (i.e., the

effect of flux perturbation is negligible), then the discontinuity in
*

N_ at t.j will be small, and the nuclide adjoint equation reduces to the

uncoupled form in Eqs. IV-31 and 32.

D. Initial-Value Approximation

The previous developments were aimed at deriving adjoint and

perturbation equations for application to the long-range time scale.

We will now present briefly an adjoint equation for the intermediate-

range problem discussed in Chapter III. The derivation is very

straightforward - since Eq. 111-36 is the linearized form of the

equation of interest -which is the initial-value form for the burnup

equation, the first order adjoint system is

/9MN\*'

B*<*> [w)

9B .

9N ♦ M(<|>)'

with the final conditions

r*(Tf) = 0

N*(Tf) = 0

V 9R

9<J>

9

9t
-

N*
9R

- 9N-

IV-70

IV-71

IV-72
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(Note: the term (3B/9N <j>)*r* in the N* equation is actually integrated

over E,ft, though not explicitly shown).

Using the property that the adjoint of a product of operators is

the inverse product of the adjoint operators (and also recall that

functions are self-adjoint), we can write

9 M N \*

9<j>

and

/9M\*

9B A* „* _ ,/3B \* *
9N * r •" ♦IW ' r

so that Eq. IV-70 can be expressed

<i>
3B*

9N

9M*\n
- 3<j>

r*'

M*

-lr*l
V

i

rt>|ro
9

9t

N*
9R

. 3N .

IV-73

Again, one should realize that the term 4> 9B*/9N r* is actually an

integral over E and ft. As would be expected, the adjoint equations to

a system of initial-value equations is a system of final-value equations.

As usual, the source term can be transformed to an inhomogeneous final

condition if R is a delta function in time. An example application of

this equation would be to analyze a "flux tilt" response, defined as the

ratio of the flux at one location to the flux at another at some

specified time:
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[<p(r!,E,ft,T.)]r n [<p(p)6(r - rx)5(t - T-)]
f'JE,ft _ ILlS.

[<p(r2,E,ft,Tf)]E a [d>(p)6(r - r2)6(t -Tf)]
IV-74

It is usually desirable to minimize a response of this type. In this

case,

** = 0
9N U

and the final condition on the neutron field is

aR |<l>(ri,E,ft,Tf)6(r -rx) <f>(r2,E,ft,Tf)6(r -r2)
9* =R" [<p(r1,E,ft,Tf)]E^ [<f)(r2,E,ft,Tf)]E^

IV-75

which corresponds to point sources located at positions rx and r2,

respectively. The sensitivity coefficient for the flux tilt to some

data a is

a

Vp) =i r*(P)ff *+N*f^MN IV-76



CHAPTER V

SOLUTION METHODS FOR THE ADJOINT BURNUP EQUATIONS

In this chapter we will discuss techniques developed for solving

the adjoint burnup equations for the uncoupled and coupled quasi-static

cases.

A. Uncoupled, Nuclide Adjoint Solution

In the uncoupled case, one is only concerned with solving the

nuclide adjoint equation (not the neutron-field equation) which is simply

a system of simultaneous, linear, first-order equations. Capability for

solving the forward equations was already available at ORNL in the ORIGEN

computer code, and therefore it was necessary only to make modifications

to this basic code to allow for adjoint solutions. An overview of the

basic calculational method is given below.

The burnup equation is a statement of mass balance for a radioactive

nuclide field subjected to a neutron flux. The equation for nuclide

species i can be written:

dN.

dr=-Ki* +VNi +j. <Vi* +Vi)Nj • v"]

In matrix notation, the above equation is:

M(a^)N-|tN
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a. . = probability per unit time that isotope i will be produced
J '

from isotope j, and a.. = -I a. ..
J

In Eq. V-l, the value for H_ can be found with the matrix exponential

technique as

N(t) = exp (Mt) 1^ , V-2

where exp (Mt) is the time dependent matrix given by the infinite series

M2t2
]_ + Mt +-^y- ... e B(t) . V-3

Of course in reality the series is truncated at some finite number of

terms dictated by the tolerance placed on N_(t). The computer code

ORIGEN solves the burnup equations using this method, and a discussion

of the numerical procedures involved in its implementation can be found

in reference (26).

Note that the matrix J3(t) is independent of the initial conditions

N^; therefore, in theory it is possible to obtain a solution for a given

M(4>) that does not depend on the initial reactor configuration. Then

the time-dependent nuclide field is

N(t) = BU)!^ for any f^ , V-4

Unfortunately the nuclear data matrix ^ is problem dependent (through

the flux) and is too large (-^800 by 800 words for each time step in

ORIGEN) to be used efficiently. It is more advantageous to recalculate

N(t) for each N .
— -o
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As previously discussed the adjoint burnup equation is

d n* = MTN* . V-5
dt — = —

Equation V-5 can be expressed in a form compatible with the present

ORIGEN computational technique (i.e., a positive time derivative) by

making a change of variable:

V = tf - t

dt dt'

N*(tf) =N*(t' =0) V-7

Then the adjoint solution is merely

V-6

N*(t') =Sl" N*(r =0), 0<t<tf V-8

N*(t) = N*(tf - t') ,

N*(tf) = N*(t' = 0) = N*F
V-10

Equation V-8 is the same solution obtained by the forward ORIGEN code,

except the data matrix is transposed.

Equation V-8 can be written as

N*(t) =exp [MT(tf -t)] N*f . V-ll

It is easy to show that
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exp (AT) = (exp A)T ,

and therefore

N*(t) =BT(tf -t)N* V-12

It is interesting to note that

NT(t)N*(t) =[e^fCe^ (tf "^N* ]

=Nj [/<* "*+tf)] N*

T ^f T= Nf e Tf^ =N*' Nf =R „v-13

This result was derived in Chapter II as a conservation law.

One of the more puzzling difficulties encountered in providing

adjoint capability for the ORIGEN code arose in the treatment of nearly

stable (both in decay and in reaction) product nuclides such as He", H2,

etc. When the parent-daughter relation among nuclides is reversed by

transposing M, it is possible for nuclides which previously had no

daughters to have transmutation products, since their parents are then

identified as daughters. The presence of a zero (or very small)

transition probability for a nuclide with daughter products causes a

series of numerical problems in ORIGEN, the final result being a "divide

check."
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The solution to this problem is discussed below, for a hypothetical

decay chain of three nuclides - A, B, C- the last of which is stable.

We assume the appropriate burnup equations are the following:

"XA 0 0 NA NA

XAB "AB 0 NB
d

dt NB

0 XBC 0 .NcJ -NC

The adjoint system is

h XAB 0 N*
INA

N*
INA

0 "XB XBC N*
INB

-d

" dt
N*
INB

0 0 0 N*
- c_

N*
_ c

The equation for H* is

d_ N*
dt \

Ni = constant

V-14

V-15

V-16

Therefore Ni = (h.)f, where h is the input realization vector. Since this

value is fixed by the specified final condition, the calculation of

stable-nuclide adjoints is omitted from ORIGEN-A.

Considering Eq. V-15 again, and omitting the equation for N£,

"AB

^BJ LbJ

zd
dt

V-17

L BJ (hUC'BCJ
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Thus we see that a stable nuclide can give rise to a fixed source term

in the adjoint-burnup equation, depending on the value of h.

In summary, Eqs. V-8, V-9 and V-10 can be incorporated into the

ORIGEN to allow uncoupled, nuclide adjoint solutions, with four

modifications:

(a) enter "initial" charge as N|, the response realization vector,

(b) reverse the parent-daughter relationship among nuclides,

(c) reverse flux and time arrays,

(d) interpret all results backwards in the time variable.

With these modifications, as well as several changes in the

numerical methods, the ORIGEN code is called ORIGEN-A, which is presently

in use at ORNL. The input description for this code appears in

reference (35).

B. Quasi-Static Solution

Solving the adjoint quasi-static equations requires not only

computing the nuclide adjoint field, but also computing a special type

of "generalized adjoint" function for the neutron field. The latter

calculation can be quite difficult, but fortunately much work has

already gone into this area as part of the ORNL static sensitivity

program. After much deliberation it was decided to use the VENTURE/

BURNER code system (37, 32) as a starting point for the quasi-static

adjoint solution. This decision was based on the following considerations:

(a) VENTURE/BURNER were the most up-to-date depletion codes

available at ORNL and will be widely used, for burnup calculations not

only at ORNL but also at other installations.
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(b) BURNER had an option of solving the nuclide-field equation by

the matrix exponential technique, which (as previously shown) is easily

adaptable to the nuclide adjoint solution.

(c) VENTURE had the capability of solving the diffusion-theory,

generalized adjoint-flux equation.

(d) Modular code structure allowed independent calculational

modules to be integrated into the system.

The major drawback to the VENTURE system, as far as implementing

adjoint capability is concerned, was the necessity of dealing with a

multitude of interface files which many times were not well formatted

for an efficient adjoint solution algorithm. We will now examine a

general overview of the method used to solve the adjoint quasi-static

burnup equations. But before outlining a computational flow chart, it

may be helpful to make some preliminary observations.

First, it is shown in Eq. IV-45 that the flux adjoint source q* at
*

tj depends on an integral of N. over the future time interval (t., t.+,)

- this fact is strong incentive for solving the adjoint equations

backwards in time. We will not dwell on the difficulties encountered in

solving the adjoint-flux equation, other than to point out that the

operator on the left-hand side of Eq. IV-44 is singular (hence the

requirement that the fixed source be orthogonal to the fundamental

forward eigenfunction). A discussion of the numerical methods required

to solve these "generalized adjoint" equations can be found in ref. (38).
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Second, notice that over any given time interval (t., t-+,),

Eq. IV-52 for the coupled nuclide adjoint is identical to Eq. IV-29 for

the uncoupled case; i.e., it is a final-value equation with constant

coefficients. A method for solving this equation was described earlier.
*

Finally, we see from Eq. IV-56 that the final value of N_ at the

end of each time interval is fixed by the "jump" condition. Its
*

magnitude depends not only on the future behavior of N_ , but also on
if if

r and p at the final time of the interval.

In summary, the adjoint quasi-static equations are coupled in the

following manner:

* if

(a) the variables N_ and p appear in the source term of the
*

equation for r ,
* *

(b) the variable N_ appears in the defining equation for p ,
if if if

(c) the variables r and p appear in the "jump condition" for N^ .

With these conditions in mind, we will now attempt to establish a

suitable computational algorithm for numerical solution of the adjoint

quasi-static equations. Toward this end, consider the following flow

chart:

(i) starting with the 1th time interval (i.e., the last interval),

* +solve Eq. IV-63 for the value of N_ between (tT_,, t~). The
*

final value N_f is fixed by Eq. IV-68.
. . *

(ii) compute the value for p__, at tT_-, from Eq. IV-62
*

(iii) compute QT_, using Eq. IV-45
it

(iv) solve Eq. IV-61 for rT_, at tT_-,
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* *

(v) with the known values for p ,r ,and N. at tj,, compute
*

the value for N_ at tj_, from Eq. IV-64
*

(vi) using this new value for the final condition of H , again

* + -solve Eq. IV-63 for the behavior of N_ between (tj_2» tZ_^)

(vii) etc.

This marching procedure is followed backward through all the time

intervals until the values at t = 0 are obtained, at which time the

adjoint calculation is complete. When all the adjoint values have been

obtained, the sensitivity coefficient for data variations is computed

with Eq. IV-40, and for initial-value variations with Eq. IV-60.

Much progress has been made in implementing the above algorithm

into the VENTURE system. The works cited below have greatly expedited

the development:

(a) The VENTURE/BURNER code system developed by Vondy, Fowler, and

Cunningham would already perform the forward quasi-static calculation as

well as the generalized adjoint flux calculation when the current study

was begun. These computations are the most numerically complex ones

encountered in the adjoint algorithm, and hence the most difficult coding

was essentially already done. The majority of the required programming

involved interfacing between various VENTURE/BURNER calculations and

combining results in the necessary manner. However, this was no trivial

task and much work has been put into the effort by J. R. White (39).

(b) At the request of the author, G. W. Cunningham modified the

BURNER code to allow calculation of the nuclide adjoint vector (40) (anal

ogous to work done for ORIGEN-A).
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(c) J. R. White, as part of his Master's thesis, has programmed

into the VENTURE system a module called DEPTH (Depletion Perturbation

Theory) (39) for applying the methodology established in this

dissertation to design calculations. This module performs the p*

integration, computes the generalized adjoint source for the VENTURE r*

calculation, and accounts for the jump condition in the nuclide field.

There are still many programming details in the adjoint codes which

should be resolved before the system is efficient; however, the ability

does currently exist at ORNL for performing coupled depletion-perturbation

calculations for final-time nuclide responses. Some results obtained

with the codes are discussed in Chapter IX. Work is ongoing in this

area to improve the adjoint calculational efficiency as well as to extend

the capability to more general responses and to automate the computation

of sensitivity coefficients. Further developments will be reported in

White's thesis and in future ORNL reports.



CHAPTER VI

SENSITIVITY COEFFICIENTS AND UNCERTAINTY ANALYSIS

FOR BURNUP CALCULATIONS

In earlier chapters, general expressions in operator notation were

presented for sensitivity coefficients. This chapter will focus on

deriving specific sensitivity coefficients for multi-group calculations

in uncoupled and coupled burnup sensitivity analysis. In the uncoupled

case, sensitivity coefficients are presented for the following types of

data appearing in the transmutation operator: (a) capture, fission, and

(n, 2n) multi-group cross sections; (b) decay constants (half-lives);

(c) yield data; (d) initial condition of the nuclide field. For the

coupled case, we will assume that the neutron-field equation corresponds

to the diffusion equation, as usually done in burnup calculations. These

same types of data are also considered for the coupled, quasi-static

case, as well as the following data which appears only in the diffusion

operator: (a) multigroup scattering cross sections, (b) multigroup

transport cross section, (c) neutron yield per fission.

The notation below will be employed:

N„ M(z»t) = atom density in reactor zone z, at time t for a nuclide

with A protons and M - A neutrons

$. = flux normalization factor at time step i

ip.(z,g) = zone average flux in zone z, group g at broad time

step i
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ip..(r,g) = point flux at position r (= x,y,z), group g, broad time

step i

V = volume of interval r
r

V = volume of zone z

Similar notation holds for the adjoint variables

N*jM(z,t), r*(z,g), r*(r,g)

We assume that the required forward and adjoint values have already been

computed, using one of the methods described earlier. The expressions

for calculating the sensitivity coefficients using these values for a

response R are summarized below.

A. Sensitivity Coefficients for Uncoupled
Approximation

r

1. Multigroup Capture Cross Section, o\T M(z,g)

,(, „, aA.M(z'9) 'VzSi(z,g) = —'- 5 I Vi«z'«» I*1+1 "a.m'2-*)
li

"a^i'2-''""^'2-") dt
f

2. Multigroup Fission Cross Section, a' M(z,g)

an m(z«9) * V,c ,7 n\ - A,MS2(z,g) ^(z.g)
r t.

i+1

<
\Jz.t)
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I Y N* (z,t)
K,L A,M+ h'L

K,L

NJfM(z,t)\ dt

where ya m^. i - yield of N., . from fission of N„ f

2n3. Multigroup (n,2n) Cross Section, a. M(z,g)

s.(,„.^?^ I N^U.g)
,Vi

(HJ^lz.tJ-NJ^z.tljdt

4. Decay Constant, A„ .. K .

rVl

NAiH(z.t)

Sn(z) =
A • V
AA,NkK,L vz

NA,M(Z'^ (NK,l(Z^ N£jM(z,t)) dt

5. Fission-Product Yield, ya m+v i

S5(z) -YA'M;K'LVz l\*i(l ^(z,g)a^M(z,g)
'i+1

NAjM(z,t)N*jL(z,t)dt

6. Initial Condition, N» M(z)

o6^z; ^
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B. Sensitivity Coefficients for Coupled,
Quasi-Static Approximations

7. Multigroup Capture Cross Section, a- M(z,g)

aA m(z»9)S7(z,g) =S^z.g) +-^L j N(z,t.) I r*(r,g)
rez i

1 - 3D: (z,g,t/2)*i<^>\

8. Multigroup Fission Cross Section, a. M(z,g)

S8(z,g) = S2(z,g)+
vaA,M(z'9) I NA>M(z,ti) |JU Y'ir'9n

rzz \g' eff.i

3D: (Zig)ti)v2|v^)V¥i(z^pivz

9. Decay Constant, same as Si, for uncoupled case.

10. Fission-Product Yield, same as S5 for uncoupled case.

11. Multigroup Transport Cross Section, a*rM(z,g) =a* M(z,g) -Vosk M(z,g)

tr / x
afl m(z»9)Sn(z.g) --3-^ I NAjM(z,t.)D2(z,g,ti) I

r^r.gJV^r.gjV,

12. Multigroup Scatter Cross Section, a. M(z,g'->g)

Si2(z,g) -1 I NAjM(z,t.) I r^(.r,g) •1^ ip.(r,g^)as(z,g^)
rez
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13. Neutron Yield, vft M(g,z)

c <7 „\ - VA.M(*'g) ySi3(z,g) *-5 I NAjM(z,ti) ^ ^(r.gjaj^z.g) I
Xq^(r,g')

14. Initial Condition of Nuclide Field, Nft M(z,t )

S„(z)-S.(z)-M^-!l
g rez

3a^M(z,g)D2(z,g,t0)r*(r,g)V2lp0(r,g) +r*(r,g)^*(r,g)a^M(z,g)

+Vo(z'9)^,M(z'9)Po

C. Time-Dependent Uncertainty Analysis

Time-dependent uncertainty analysis for burnup calculations is

similar to the static uncertainty theory previously developed (41). The

established approach is to use the sensitivity coefficients previously

presented in conjunction with covariance files for basic nuclear data

to develop uncertainties in responses of interest.

The existing evaluations of nuclear data can be thought of as

representing the mean value (albeit weighted) derived from a distribution

of microscopic measurements. With the issue of ENDF/B-IV -and greatly

extending into ENDF-V -the second moments of the distribution of

measurements (i.e., the variances and covariances) representing correlated
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uncertainties are specified to provide the analyst with a measure of

the quality of the data (42, 43).

For the derivations which follow, all required nuclear data such as

the various multigroup a's and A's used in the burnup calculation are

assembled in a set that will be called the "reference data vector," Sja).

th
For our purposes, the i component of the data vector, S., corresponds

to the data a. that appears at some location (possibly at multiple

locations) in the burnup matrix or transport operator, and thus the

number of components of £ is equal to the number of different data

parameters required for the burnup calculation. (Note: Each multi-

group constant counts as a separate data parameter.) With this collection

of data, the expected value of the response is calculated to be R(SJ.

If some other data vector S were used in the calculation, then

another value for the response would be obtained, R (S ). The
n —n

distribution of all such possible calculated responses, due to the

distribution of nuclear data, is described by the response variance,

given by

V=i ^ (Rn "R)2 ' n^

with N = number of data vectors used in computing the mean set S_; i.e.,

N is related to the number of measurements for the a's in S_.

Expanding R in a first-order Taylor series about the expectation

value gives
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Rn = R+1§^- (1„ -S) ,
'—n —'

Substituting Eq. VI-2 into Eq. VI-1 results in

V'M (#4
Now defining a diagonal matrix of the form

D = <Xi

0

0

a2

0

0

LO 0 ... a_

Equation VI-3 can be written

V=F I
n —

where ax = first component of S^ ,

a2 = second component of S^ ,

th
a. = i component of S^

frM^n'8

-R2 1 y(= 9R
N J \R as I (t^asJjt; = 9R

,R 9S

VI-2

VI-3

VI-4

Noting that 9R/9S[ is independent of the summation index, Eq. VI-4

is finally expressed as

— = P £ P = relative response variance ,
R2 ~ ~~

VI-5
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where

P=|| VI-6
c=l I (a-'A^sJa-) vi-7

The matrix C formed by the dyadic square of AS is called the

"relative covariance matrix," and the vector P^ is called the "sensitivity

vector." In general the elements of C are energy and nuclide dependent,

as are the components of P_. The off-diagonal terms of £ account for

correlations in data uncertainties; these cross correlations can be

between data at different energies for the same nuclide or between data

of different nuclides. For example, most fission cross sections are

measured relative to U-235 fission, and hence there is an indirect

uncertainty in the fission cross section of most nuclides due to the

uncertainty in the U-235 fission cross section. Data covariance files

are generated by the data evaluators, and are independent of the

sensitivity theory discussed in this text. The components of P^

correspond to the sensitivity coefficients defined earlier for the

various data.

The equations for uncertainty analysis of depletion calculations

are of the: same form as the static case, the only differences being in

how the sensitivity coefficients are defined and in the types of data

contained in the covariance matrix (e.g., depletion uncertainty analysis

requires covariances for decay data, yield data, etc., in addition to
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cross-section covariances). This fact is significant, since it implies

that computer codes developed to fold sensitivity coefficients with

covariance matrices for static analysis can also be used in burnup

analysis.

In theory, the data vector can be "adjusted" to minimize the

difference between some computed value and an experimentally measured

value for a burnup related response, using the uncertainty analysis as

a guide. Such "consistent" adjustment procedures have been studied for

static integral experiments (44), such as measurements in the ZPPR

critical assemblies; and it is possible that, using the methods discussed

in this chapter, integral measurements of the isotopic composition of

irradiated nuclide samples could be factored into the adjustment procedure.

This type of integral data could be obtained from either analyzing spent

fuel elements from power reactors or by controlled irradiation of small,

pure samples placed in a reactor core. Sensitivity coefficients for the

former case would have to be computed using the coupled perturbation

technique, while it would probably be sufficient to use the uncoupled

method for the latter case since it can be assumed that variations in

the sample data do greatly affect the neutron field in the reactor. A

sample uncertainty calculation for the second type of experiment is

given in Chapter VIII.



CHAPTER VII

BURNUP ADJOINT FUNCTIONS: INTERPRETATION

AND ILLUSTRATIVE CALCULATIONS

We will now present a physical interpretation of the burnup

adjoint functions previously derived on strictly mathematical grounds.

This will be done by examining various properties of the adjoint

functions and drawing analogies with neutron transport theory, and by

presenting example problems which illustrate these properties. Recall

from Chapter II that the adjoint burnup equations are actually "first-

order adjoint equations"; i.e., they contain the adjoint operators for

the linearized forward equations given in Eq. Ill-35 for the initial

value formulation and in IV-13 for the eigenvalue formulation. This

fact will be used later in examining conservation laws for the

"response flow."

Let us begin by considering only the linear transmutation equation

for the nuclide field and temporarily neglecting the effect of the

neutron field (i.e., the uncoupled approximation in which the flux can

be specified independently of the nuclide field). Also, all independent

variables except "time" are suppressed for notational purposes, and we

will specifically consider a final-time response R(tp). Therefore, the

nuclide field is described by the linear equation

MN(t) =̂ "N(t) ,i(o) =1^ VII-1
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where M is a linear matrix operator. The corresponding adjoint

equation is

M*N*(t) =-̂ N*(t) ,N*(tf) =f| (tf) VII-2

Note the similarity between VII-1 and the linear neutron transport

equation

B0(t) =7Ht*(t) *(o) =*0 ^ VII-3

with the adjoint equation

B*0*(t) =-}j%i** ,*(tf) =|f (tf) .

It is well known that the solution to the adjoint time-dependent

Boltzmann transport equation can be interpreted as follows (21):

tp*(t) = "importance of a neutron at time t to the response

at time tf." (Note -again, all phase-space variables

except "time" are implicitly treated.)

By analogy we would expect the time-dependent nuclide adjoint to play

a similar role for final-time functionals in burnup calculations. We

assert the following axiom:

If N.(t) = \th component of the nuclide-field vector N_(t), then

N.*(t) = importance of nuclide i at time t to the response at

time tF = average future response contained in atoms of

nuclide i.
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If the nuclide adjoint is normalized properly then this definition

can be stated

N* = fraction of atoms of nuclide i present at time t, which will
i

be transmuted into response nuclides at time tp.

= probability at time t that nuclide i will contribute to the .

response at time t^.

For the burnup equation with a fixed neutron-flux field, the above

definitions show that the adjoint nuclide field is independent of the

forward field, and, therefore, a particular adjoint calculation is

applicable to any nuclide composition exposed to the same flux field

as used in the original calculation. This fact is analogous to the

situation for the neutron adjoint, which is applicable to all neutron-

flux fields that have a common nuclide field. In both instances the

forward field is fixed by the initial conditions, and the adjoint

field is fixed by the final response.

The importance property of the nuclide adjoint can be used to

directly derive the adjoint transmutation equation for an uncoupled

nuclide field using first principles, in amanner similar to the method

used by Lewins to derive the neutron adjoint equation (21). Following

Lewins, we introduce the principle for "conservation of nuclide

importance," which states that anuclide which does not perturb its
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specified neutron environment is as important as its daughters (from

both reactions and decays). From this axiom, it can be seen that the

importance of nuclide i at time t is equal to its importance at t + At

plus the importance of all daughters it produces during At. Let a. be

the total transmutation probability per unit time for nuclide i; then

'(1 - a..At) = probability that nuclide i does not transmute during At.

Let a.^. be the probability per unit time that nuclide i will transmute

into nuclide j. Then applying the conservation of nuclide importance:

N*(t) = N*(t + At)(l - a.At) + I a, ,N*At , VII-4
1 j^i nJ J

rearranging terms,

Nlf(t) - N*(t + At)
At = "^i^ + At) + I <ViNi • VII-5

j7i J J

Finally, taking the limit At -* 0,

? ai+jNj =" dT N? • , VII-6
J

where a^. is defined to -a... This equation can be written in vector

notation as

dTi* = AN*. viI-7

Comparing the elements of A to the elements of the burnup matrix

M, we see that A = transpose M = M*. Therefore M*N* = - d/dt N*.
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The importance conservation property of the adjoint-nuclide field

also makes possible the creation of a "nuclide contributon theory." The

concept of neutron contributon theory has been introduced in earlier

papers as a method to determine the mechanism by which neutrons flow

from the forward source to the response detector, so as to locate spatial

streaming paths (18). A similar idea can be applied to the nuclide

field to find the major "nuclide paths" by which atoms are transformed

from the initial isotopic concentrations into the final response

concentrations.

To this end, a quantity known as the "contributon response-density"

for nuclide i can be defined to be:

c.(t) = total response contribution which can be attributed to the

atoms of nuclide i present at time t.

It is easy to see from the definition of the adjoint,

Cj(t) =N.(t)N*(t) . VII-8

Because the final response must originate from some nuclide present

in the system,

I c.(t) = final response , VI1-9

for all t in the interval [t0,tf]. This can be written as

NT(t)N*(t) =response . VII-10
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Note that this is consistent with the conservation law discussed in

Chapter II (see Eq. II-5).

A knowledge of c.(t) for all nuclides allows one to determine which

isotopes at time t contribute most heavily to the response of interest,

which could possibly be beneficial to optimization studies in reactor

design.

Hence we have found that for a nuclide field which is uncoupled

from the flux field, N_* corresponds to the importance of the various

nuclide concentrations to the response. For coupled neutron/nuclide

fields, a similar interpretation will apply; however, the principle of

conservation of importance must be modified to account for coupling

interactions. Before proceeding to the more difficult coupled adjoint

equations, much insight can be obtained at this point by considering a

detailed example addressing the properties discussed thus far for the

uncoupled case.

The example problem consists of a point-depletion model provided by

EPRI (Electric Power Research Institute) (45) for a homogenized PWR

fuel zone. Initial concentrations are given in Table VII-1, and the

time-dependent thermal flux (which was also supplied by EPRI) is given

in Table VII-2. The ORIGEN-A code discussed earlier computed the forward

and adjoint nuclide fields. Nuclear data came directly from the ORIGEN

library (26). The response was selected to be the inventory of 239Pu +

2*°Pu +21tlPu + 21f2Pu at the end of exposure (tf =25,614 hours).
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Table VII-1. Initial concentrations for homogenized fuel

Nuclide Number density

160 4.37-02

135X 0.0

149Sm 0.0

23MJ 4.45-06

235u 5.67-04

236y 3.53-06

238u 2.13-02

239Pu 0.0

240Pu 0.0

2"*ipu 0.0

242PU 0.0

2WiAm o.O

Table VII-2. Time-dependent thermal flux

Time interval t1 (hr)
* (x 1013)

neutrons/cm2-sec

1 75.34 4.52

2 - 376.68 4.54

3 1506.68 4.51

4 3013.42 4.43

5 4520.13 4.38

6 6026.84 4.37

7 7533.55 4.38

8 9040.26 4.41

9 10546.97 4.46

10 12053.68 4.51

11 13560.39 4.58

12 15067.10 4.65

13 16573.81 4.72

14 18080.52 4.81

15 19587.13 4.89

16 21093.94 4.98

17 22600.65 5.07

18 24107.36 5.17

19 25614.07 5.26



94

The values for the most important time-dependent actinide densities

found in the forward ORIGEN-A calculation are shown in Figs. VII-1 and

VII-2. As expected, the concentrations of uranium and plutonium isotopes

dominate the results of the forward case, with 238U being the most

predominate by far, due to its large initial concentration. Figure VII-3

shows the major chains for plutonium buildup.

Figures VI1-4 - VII-8 summarize the results of the adjoint

ORIGEN-A calculation. For this run the final values were zero for all

nuclides except 239Pu, 21*°Pu, 21tlPu, and 21*2Pu, which had concentrations

of 1.0, since this is the realization vector corresponding to a response

of "plutonium inventory at shutdown."

At first sight it may be surprising to see some of the more uncommon

isotopes (such as 237U, 21|2Cm, etc.) appearing among the important

isotopes for producing plutonium. It may be equally surprising that the

dominant nuclide in the forward calculation — 238U — is not among the

most dominant adjoint values! The results appear more reasonable when

one realizes that the "importance" of a nuclide in the uncoupled case is

independent of its concentration. Even though nuclides such as 2"*°Np

have only a small number of atoms present at any given time, any atom

which is present has a high probability of being transformed into a

plutonium atom by shutdown. The importance of 238U atoms (^10~3) is

comparatively low due to their having a smaller capture cross section*

(S3 b) than more important isotopes such as 237Np (VI70 b). Therefore

*Cross sections quoted are 2200 m/s values,



95

OHHL-0*« TT-1J4'

I I I 1 I I ' I I I I I

= 1 1 1 1 1 1 1 -1 1 1 1 1 1 1 1 1 =

~ ^*^*""^-^ —

—

-

—

—

—
j^

_ /
—

—
—

1 1 1 1 1 I 1 1 1 1
TIME M unit . 1507 hf (

Fig. VII-1. Uranium atom
densities.

tL

B"2.1d 'B"2.4d

OML -W»G T -11441

- 1 1 1 1 i i i i i 1 1 1 1 1 | -
—

—

— —

— —

- -

-
-

— -

*l»pu

— y^ —

/ 240pu
—=

~~ / —

~ / 1^pu_-.

/
"

— / / x**y^ ~

— / / —

— / / —

—/ /—J / -

\\\\ /1 i i / i i iiii 1

-

> S 40 12

TIME ( I unit • 1507 hr )

Fig. VII-2. Plutonium atom
densities.

•a 18 yr•

-a 32 yr-

•a 163 d- .Cm242 (n'Ylcm243 (n->Lcm244

'B"65m

"B"16hr

Jn^„Am241 V"''i-Am242 (n'Yl-Am243 (n,Y). Am244
B~14.3y

Pu238 JmLpJmS (n'YIpj240 (n'Yl Pu241 (n'Yl Pu242 -

(T5hr

Pu243

6"10hr

(n.Y],Np237 ' "WNp238 Np239——^Np240

B'6.8d 8"24m B"14hr

U235- JIU4.U236 (n,Ylu237 fn'Yi.U238 (n'YltJ239 -U240

Fig. VII-3. Major chains for plutonium production.



96

OWNL-OWG 77-13446 OONL-OWG TT-1J4'

TIME [1 unit =1507 h.)

Fig. VII-4. Uranium adjoint Fig. VII-5. Neptunium adjoint
functions. functions.

OBNL-OWG 7T-*S4

TIME (1 unit = 1507 hf)

Fig. VII-6. Plutonium adjoint
functions.



J

%

97

.0°
ORNL -DWG 7 7

-'""

- 1 | 1 | II'' 1 1 1 | =
—

5

-

~

!,!A.

-

2
M'«_

0"'
~ • — •

5
— \ _

2

0~z

—

5

~

- -

— "

2
— -

0"s
1 1 1 1 1 1 1 1 1

TIME (1 unit = 1507 tif)

OBML-OWO 77- 11450

TIME (1 unit =1507 hf )

Fig. VII-7. Americum adjoint Fig. VII-8. Curium adjoint
functions. functions.

a 238U atom has less probability of being transformed into Pu than does

a 237Np atom; i.e., a smaller fraction of 238U will transmute into Pu,

\ although the absolute number of 238U atoms which contribute to the

response is much greater than for 237Np, since there are far more 238U

atoms than Np atoms present in the reactor.

An examination of several nuclide adjoints will perhaps give the

reader a better physical insight. The Pu response isotopes themselves

are obviously important, especially at times near tf. At earlier times,

the high fission cross section makes an atom of a fissile Pu isotope

quite likely to disappear before it lives to tf. The adjoint for 238Pu

decreases near tf because it was not directly contained in the response.

Note that the adjoint functions for all nuclides except those contained
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in the response must go to zero at the final time, a fact which accounts

for the dramatic fall in some adjoints near tf.

Actinides with an atomic number higher than 94 are usually V

important through their decay modes. For example, 21t2Cm has a moderate

absorption cross section (^30 b) and a relatively short half-life

(163 d); therefore it has about thirty times greater probability of

decaying to 238Pu than of capturing a neutron to become 21f3Cm — note

the similarity in the 238Pu adjoint curve and the 21*2Cm, adjoint curve.

Furthermore, even if the 2l|2Cm atom does transmute to 2l*3Cm, there is

still a possibility that the 21t3Cm isotope will decay to 239Pu.

Americium-242 is important because it decays by beta emission to

21t2Cm and by electron capture directly to 21t2Pu, and its short half-life

(ti/2 = 16 hr) makes the transition likely over a long time period. In

fact, even at one time interval before shutdown its adjoint is still

quite high. At early times the isotope 237U is an important nuclide

whose mode of contribution is fairly complicated to assess. Its short (,

half-life (7 d) and large capture cross section (480 b) provide two

possible methods for the nuclide to transmute into Pu. If 237U captures

a neutron, it becomes 238U and follows the familiar procedure for

creating 239Pu. The alternate method is for 237U to decay by beta

emission to 237Np. Since this nuclide has a long half-life (2 x 106 y),

it is probable that an atom will capture a neutron (a = 169) and become

238Np, which then decays (W2 = 2.12 d) into 238Pu. An examination of

Figs. 3 and 4 reveals that over most of the cycle, 237U is more important i\

than 238U but slightly less important than 237Np, a fact which leads one

to believe that the second contribution mode is more important.

i
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Table VII-3 contains the values of the contributon densities for

the major nuclides. It is seen that until near the end of cycle the

response stored in the 238U atoms overwhelms all others, due to its

large initial charge. At time step 17 Pu begins to dominate, as the.

238U atoms are "running out of time" in which they can transmute into

Pu. Notice that the initial contributon density for 238U is 2.15 x 10-1\

which was found to be exactly the value of the plutonium inventory at

shutdown (see last row in Table VII-3). This indicates -as expected -

that initially the entire response is contained in the 238U atoms:

R(tf) =(N0Nt)238u .

We now proceed to examine the interpretation of adjoint functions

for coupled neutron/nuclide fields. The initial value burnup equation

will be studied first because it is the easiest to interpret physically.

The eigenvalue formulations, although convenient for numerical solutions,

are awkward to manipulate and therefore it is wise to consider the

simpler initial-value formulation in order to obtain a hint of what to

expect from the quasi-static solutions N*, r*, and p*. It is also worth

pointing out that for all cases we will be dealing with linearized

equations that describe small deviations in the fields about some

reference conditions. Only under this approximation of linearity can a

physical interpretation be given for the adjoint functions, since we are

dealing with the first-order adjoint equations.
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Table VII-3. Major contributon densitiesa
(atoms/cm3 x 10~21*)

Time

interval 238U 239pu 2,opu 21tlPu 2,2pu

1
2

3
4
5

2.15-4*
2.15-4
2.15-4
2.13-4
2.09-4

0
0

0

2.36-6
4.63-6

0

0

0

0

1.08-6

0

0
0

0

0

0

0
0

0

0

6

7
8

9

10

2.06-4

2.01-4
1.97-4
1.91-4
1.86-4

6.80-6
8.94-6
1.12-5
1.36-5

1.63-5

2.27-6

3.82-6

5.71-6

7.92-6

1.05-5

0

0
0

1.04-6

1.54-6

0
0

0

0

0

11
12
13

14

15

1.78-4
1.70-4
1.60-4
1.49-4
1.35-4

1.91-5
2.24-5

2.63-5

3.11-5

3.71-5

1.35-5

1.70-5
2.09-5

2.53-5

3.03-5

2.13-6
2.89-6

3.82-6

5.02-6

6.57-6

1.18-6
1.76-6

2.53-6

3.50-6

4.73-6

16

17
18

19
20

1.19-4

9.81-5
7.29-5
4.04-5

0

4.43-5

5.39-5

6.70-5
8.58-5
1.14-4

3.58-5

4.15-5
4.73-5
5.22-5
5.48-5

8.65-6

1.15-5
1.55-5
2.15-5

3.02-5

6.22-6

8.10-6
1.03-5
1.30-5
1.62-5

a,N^t) • N*(t).

^Read as 2.15 x 10~\

>v>
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Therefore consider the linearized initial-value equation (111-36)

and its first-order adjoint equation, IV-70. When these equations are

cross-multiplied; integrated over E,fi,V; and subtracted in the usual manners

the following relation is obtained:

d r * i
dt L v -

+ [N*AN]
E.fi.V v

[i^+f«] VII-11

E.n.v

The above equation is the analog to Eq. VII-10 in the uncoupled case,

which expresses the conservation of response. As before, if we assume

that R[N_,<j>] is a final-time response, then Eq. VII-11 can be integrated

from t to tf (recall, r*(tf) = N*(tf) =0) to give

[r*An(t)] +[N*AN(t)] =fe AN(t-) +§| A<|>(tf )1
E,n,V ~ V I-™ r d<p T-Ie,^,V

= AR(N,<t>) VII-12

1where An(t) = change in neutron density field = - A<f>, and t is any time

in [t0,tf].

The LHS of the above equation is again identified as the contributon

response density, but now it is composed of two components — one arising

from response stored in the neutron field, and the other from response

stored in the nuclide field. The total response contained in both fields

is conserved; however, the relative amounts contained in the individual

fields may vary with time; i.e., response contained in the nuclide field

may be transferred to the neutron field and vice versa!
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Hence we must extend the definition of "importance" to address two

simultaneous fields which interact. This can be done only with the

linearized equations, for which the effects of the two fields may be

superimposed. One consequence of this fact is that importance cannot be

expressed independently of the reference forward solution. Within this

limitation, we can state the following definition (for a final-time

response):

The importance of a field at time t is the expected effect it will

have on the response at tf.

Another way of stating this definition is that the importance of a

field at t is the expected change in the response if the field were

perturbed slightly at time t.

This definition of importance is consistent with Eq. VII-12. For

example, suppose that at time t the neutron field is perturbed by

i- A4> <5(r0)6(ft0)6(E0). Then from Eq. VII-12,

Dividing the left-hand side by the number of neutrons perturbed (= — A<J>)

gives the expected (average) effect at time t of a neutron with coordinates

(r ,E ,fi ), which is r*(r ,E ,0. ,t). It is important to realize that even

if the response in Eq. VII-12 does not explicitly depend on the neutron

field (It- = o) ,a neutron may still have importance since it may alter

the future behavior of the nuclide field.

We can now generalize the principle of conservation of importance

originally stated by Lewins for an uncoupled neutron field and subsequently
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extended to the case for an uncoupled nuclide field earlier in this

chapter. The new postulate is the conservation of field importance for

coupled neutron/nuclide fields:

"A field is as important as its progeny plus the importance of
any transformations it induces in the other field."

Lewins' principle of conservation of neutron importance, as well as

the principle of conservation of nuclide importance presented earlier in

this chapter, are special cases of the principle of conservation of

field importance. These special cases occur when one field does not

induce transformations in the other field; i.e., when there is no coupling.

As an example application of this general principle, we will derive

the nuclide adjoint equation for the initial-value formulation of the

burnup equations.

Equation VII-7, which was derived for the uncoupled case, is still

valid for the nuclide-progeny importance, but we must also determine the

importance of transformations in the neutron field induced by nuclide i.,

The average loss in response contained in the neutron field at position

p due to interactions with atoms of nuclide i at position r, time t in

p-space is

r*(p)o-t>i(p)<|>(p)

The average gain in neutron-field response due to neutrons born from

interactions with an atom of nuclide i is
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<Kp) ai(p^p^)r*(p')dp'

Therefore the net expected change in importance of the neutron field at

position p due to nuclide i at r and t is

4>(p) {-°t,ir*(p) + a.(p-P')rMp')dp^Mp)^i^, VII-13<1
where r and t are two components of p. The total change in neutron-field

importance at position (r,t) in p-space due to transformations induced

by nuclide i at (r,t) is

Lfnl 9B*r*(p)
|_4>(p) 9N, J

i E,n

VII-14

Similar expressions can be written for each component of N, and

the general vector relation is

[♦(p) Ik B*r*(P)] VII-15

Esn

When this term is added to Eq. VII-7, the following adjoint

equation is obtained:

M*N* +[<fr IJVJ
E,«

— N*
3t -

VII-16

which corresponds to the nuclide-adjoint equation in Eq. IV-73 (remember,

that equation was implicitly integrated over Eand fi).
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An analogous derivation can be made for the neutron-field adjoint

equation. Thus we see that the burnup adjoint functions do account for

the fact that the neutron and nuclide fields are coupled, at least in

the initial-value formulation. However, one can no longer isolate the

importance of the neutron field from the importance of the nuclide

field, because the importance' of one depends on the importance of the

other.

Unfortunately, things become even more complicated for the

quasi-static formulation, because now there are three variables (N, $, i\>)
and three adjoints (N*, p*. r*), which are discontinuous in time. As in

the initial-value formulation, the importance carried by a neutron can

be transferred to the nuclide field; but now there is the additional

coupling which arises from the fact that the shape of the neutron field

can influence its magnitude.

As before, it is difficult to relate changes in the individual

variables (N, '$,» to a change in the response because the fields cannot

be perturbed individually, i.e., achange in any one of the variables

will automatically perturb the other two. The important fact to be

realized is that the quasi-static adjoint functions account for this

coupling by allowing importance to be transferred through the coupled
adjoint equations. In other words, the adjoint functions not only
account for the direct effect of the change to agiven field, but also
account for the effects of the associated transformations in the other

fields caused by the initial perturbation. However, unlike the initial
value formulation, in the quasi-static formulation the transfer of
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importance can only occur at discrete times; for example, the "jump

condition" expressed in Eq. IV-64 clearly shows how importance contained

in the neutron field is transferred to the nuclide field at the boundary

of each broad-time interval. We will examine the functions N*, P* and r*

one at a time. Consider first the N* function. In Eq. IV-59 we have

shown that

AR = ANoN^

Although this expression was derived for a perturbation in the nuclide

field at t = o, it is easy to obtain the more general relations

AR =ANUj) •N*^) VII-17 (a)

This equation shows that N.*(t.) in the quasi-static formulation

(as in the initial value formulation) represents the importance of a

change in the nuclide field at ti to the final response. Notice that N*

accounts for several effects -the direct effect of the change in the

nuclide field, as well as the indirect effects of change in the flux

shape and magnitude that accompany a perturbation in N_. All of this

information is contained in N*. These various components of N* will be

examined in more detail later.

Consider next the P* term. It can be shown (for example by

perturbing the power in Eq. IV-33) that

AR = P* APi VII-17 (b)



107

Since P. fixes the flux normalization at ti, we conclude that Pt

represents the importance of a change in the flux magnitude at t^.
9RAgain, P* will account not only for the direct effect of ^-, but also

for the indirect effects of the perturbations in N_ and ^ that occur when

the power is perturbed. Finally consider the function of P* (P).

Suppose that the shape of the neutron flux field at ti is perturbed by

inserting a source of neutrons at position (rQ,EQ,fiQ). This amounts to

the addition of a delta function source of neutrons to Eq. 111-28 equal

to Aifj — 6(r-rQ) 6(E-EQ) 6(fi-fiQ) so that

B^ =fMr-V 6(E-EQ) 6(n-fl0)

If this equation is used to replace the unperturbed shape equation

in IV-33, it is seen that

AR =q(r0.E0,n0)]_Aip(r0,E0,n0) . VII-17 (c)
vo

Therefore r^(r ,E ,fi ) represents the importance of a change at

time t. in the shape of the neutron field at (r0,E0,no). As in the

other cases, this importance accounts not only for the direct effect of

the perturbation to ty but also its indirect effects.

It has been stated repeatedly that the various adjoint functions

account for coupled perturbations arising from the interaction between

(N, P, iji). In fact, all three adjoint functions actually depend on the

future behavior of each other! For example,
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N|t) =f[.N*(t- >t), p*(t. >t), r*(t. >t)] .

It is this fact which accounts for the feedback between perturbations

in the forward fields. For example NJ.x depends on the future value of P*

because a perturbation in the nuclide field at time t will cause a

perturbation in the future value of the flux magnitude, which can be

related to a change in the response by P*. At the same time, P* depends

on the future behavior of r* and N*, etc., etc. Because of the complicated

interactions between the fields, it is not possible to speak of the

importance of perturbations only to the nuclide field or only to the

neutron field, since such perturbations are not physically realizable

in general. One must deal simultaneously with perturbations to all

three variables N_, $, and \\>t which is exactly what the coupled adjoint

functions do.

To examine how perturbations in coupled neutron/nuclide fields are

accounted for by the adjoint functions, two analytic example problems

will be considered for the nuclide adjoint. In the first it is shown

that the value for the uncoupled nuclide adjoint, which only accounts

for direct perturbations in the nuclide concentration, is modified for the

coupled case to include a term accounting for the indirect effect of the

change to the flux magnitude. In the second example, a similar type

analysis is performed except that changes in the flux spectrum are

considered.

The first example problem to be solved is the simplest possible case

of an infinite, single-nuclide medium in which the energy behavior of the
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flux is described by one energy group (thus technically this is a point-

depletion calculation). These assumptions are sufficient to assure that

the only importance of the neutron field is through its magnitude (the

"shape" is constant and equal to 1). We further assume that the

calculation is to be performed in a single time step. The specified

purpose of the calculation is to determine the sensitivity of the nuclide

concentration at time Tf to changes in the initial condition at time zero.

The burnup equations for this example are then

N (a - \vof)\\) = 0 (flux shape equation) VII-18
o a to

\i> N $ a,. = P (flux normalization equation) VII-19
y0 0 0 f

~ = - a Ti> $ N (transmutation equation) VII-20
dt aro o

N(p) = N (initial condition) VII-21
o

Because of the simplistic nature of this problem, the lambda

eigenvalue is found independently of N or ty,

A=l =!a_ VII_22
koo wf

and does not vary with time even though the flux and atom density are

time-dependent.
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Equation VI1-18, which is to be solved for the flux-shape function,

is actually satisfied by any constant; however, from the normalization

constraint, the value for ty is fixed to be unity.

The flux magnitude is easily computed from Eq. VlI-19:

$ = rr— , VII-23o NQcf

and the time-dependent nuclide concentration is found to be

aPt
-a $ t Nof

N(t) =NQe a° =NQe °T . VII-24

For this example the response has been defined as the concentration

of nuclide Nat some specified time Tf (a "final-time nuclide response"),

T,
f f "WfReN(Tf) = «(t -Tf)N(t)dt =NQe a°T. VII-25

Now observe the consequences of perturbing the initial condition

by NQ - NQ + ANQ

a) from Eq. VII-23

, P

'o * (NQ +AN0)a

b$ from Eq. VII-24
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a Pt
a

(N+AN )af
N(t) -> N(t) + AN(t) = (NQ + ANQ)e

c) from Eq. VII-25

-a $ T.p -a A<£> T-
R+R+AR =(Nq +ANo)(e aof)(e a °f) VII-26

The expression in (c) corresponds to the "exact" perturbed response,

accurate within the limitations of the quasi-static formulation. Note

that if the flux and nuclide fields were assumed to be uncoupled, a

perturbation in N would not affect $Q (i.e., A<f>Q = 0). Equation VII-25

then reduces to

-a $ t

AN(t) =ANQe a° ,

and the response would be perturbed by

ad AN„
Ai=_°- VI1-27
R NQ

Therefore the initial-condition sensitivity coefficient for the uncoupled

case is 1.

The effect of the flux perturbation in Eq. MII-Z5 can be approximated

in the following manner: using the fact that A$ ^ -$ ANQ/No (accurate

to second order), Eq. VII-26 can be written as
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AN

R+ AR ^ (N +ANQ)e a ° T• e ° VII-28

Expanding the last exponential in a Maclaurin series, and neglecting

all but first-order terms,

AR = AN |e a ° T + V*ne a0T| VII-29
o f a o

This implies that

r-=N~. p +Wo VII-30

with the term in brackets serving as the sensitivity coefficient.

Comparing the sensitivity coefficients for the coupled (Eq. VII-30) and

uncoupled (Eq. VII-27) cases, we conclude that the term Tfa $ arises

from the coupling between the flux and nuclide fields.

Now consider the adjoint system for this example. The value for

r , the shape function adjoint, is obviously zero from the orthogonality

condition. The equation for the nuclide adjoint is

HN* *
-5r-= -a * N , t<T- VII-31

dt a o f

with

N*(Tf) =§|j- =1, t=Tf . VII-32
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This final-value problem has the solution

-a $ (Tf-t)
N (t) = e a ° VII-33

The value for the normalization adjoint at t = 0 is given by

Eq. IV-62, with '3R/3$. = 0:

rTf #
N*(-a )Ndt

P = y— = _ _§__L_L viI-34
GfV afNo

and the value for n in Eq. IV-57 is

n =lof. VII-35
o of

Substituting Eqs. VII-33, 34, 35 into Eq. IV-60 for the sensitivity

coefficient gives, after simplification

s0-{i+v,.0}. vn-36

which is the same value as in Eq. VII-30. Thus we see that the coupled

adjoint equations provide a first-order estimate of the effect of the

nonlinear coupling between the flux and nuclide fields, which does not

appear in the uncoupled case. Of course, if the nuclide/flux coupling
if

were ignored, then P would be zero and the sensitivity coefficient in

Eq. VII-36 would reduce to the uncoupled value of 1.

This example has illustrated that a change in some nuclide

concentration can perturb a response not only through transmutation but
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also by a change in the flux magnitude, which is accounted for with
*

depletion perturbation theory by a "P effect."

For the second example we consider the indirect effect of a change

in the flux shape arising from a perturbation in the nuclide field.

Recall that a change in ip can either be due to a change in the spatial

distribution [the total area under i|i(r) must be one], or due to a change

in the energy spectrum. As an example of this effect, we will examine the

case when the flux spectrum is perturbed. This time the problem will be

described by two energy groups and an infinite homogeneous medium

composed of one fuel nuclide and one poison nuclide (the infinite-medium

restriction can be relaxed if the flux is separable in space, and if the

buckling term corresponding to the finite system is added to the flux

equation). For simplicity we again only consider one time step. The

response considered is the concentration of the fuel nuclide after 600

days of exposure. In this example the following notation will be employed:

ak. = micro-cross-section of type x; for nuclide k, group j.
xj

Cross-section types are indicated by r for removal, a for

absorption, c for capture, f for fission, and s for scatter

Ni(t) = atom density of fuel nuclide

N2(t) = atom density of poison nuclide

£(t) = N2(t)/Ni(t)

N =initial condition =(qjx102lf atoms/cm3

The burnup equations describing the system are assumed to be the

following:
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Flux-shape equation

Ni(t) o^ 0

•Ni(t) olt}_2 Ni(t) 0i2 +N2(t) ^y^

which can be written

arl ° v^X /° vaf2^ /^

•"i.1-2 °a2 +;(t) ac'A*2

Flux-normalization equation

Ni a^2 i^2 $=P,

VII-38

VII-39

$ = l VII-40
Ni a|2 Tp2

Nuclide-transmutation equation

'-(.a*! <h +a*2 ihH 0

ya^2 ^2*$ "^$ac2 ^2 +A^ \ Nz

where

Y = yield of nuclide 2 from fission,

A = decay constant of nuclide 2.

It is a straightforward, though somewhat laborious task, to obtain

closed-form solutions to Eqs. VII-39, 40, 41. For the general case of

VII-41
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several time-steps in the quasi-static calculation, the expressions are

very involved; however, if we stay with our original assumption and use

only a single time-step,' the resulting expressions are more manageable.

The solutions are summarized below:

a\{oU + c(t) c2 )x = rlv a2 c2' VII_42

(a1,•+ ?(t) a2 )^/^ =ia2 * c2_ VII_43
as,l-2

$ =

Ni olf2 Tp1
VII-44

Ni(t) = N1(o)e"ailt VII-45

. N].(o) a r a + a +1N2(t) =N2(o)e"a22t +az2 . a2; [e-ailt - e^22*] VII-46

where a., refers to the elements of the matrix in Eq. VII-41.

The nuclide adjoint equation is obtained by simply transposing the

matrix in Eq. VII-41. The resulting nuclide adjoint solutions are

N*tCt) =M:Crf,e-»CVt) - jJlL-N*(Tf) {e-a^Vt) _e-a„(Vt)}

Nt(t) =NjCT^e"*"^"^ VII-47

where a., again refers to the matrix elements in Eq. VII-41
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The value for the flux-normalization adjoint is given by

JNt(t)a11N1(t) +N2(t)a21N!(t) +Nj(t)a22N2(t)} dt

^an
VII-48

which can be integrated analytically.

The equation for the shape adjoint function is obtained by

transposing Eq. VII-39, and setting the result equal to the adjoint

source defined in Eq. IV-45. For an infinite, homogeneous medium, in
if

which r is orthogonal to the fission source the fission term can be
*

ignored (see Appendix C), which makes the equation for r particularly

simple:

where

*

Qi = $

;s,l-2

0 aa2 + ?(t) a22

f *
dtMtK-aJ^Mt)

VII-49

*

0.2 =$[ dtJNt(t)(-aJl2)N1(t) +N2(t)(Ya^2)N!(t) +Nt(t)(a22)N2(t)j

-$PNi(o)a^ VII-50
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These expressions can be evaluated analytically using the terms in

Eqs. VII-44, 45, 46. For this example the various data values were

assumed to be those given in Table VII-4. These values are not

particularly realistic, and were chosen arbitrarily to illustrate the

technique. Using this data, the values for $, \\> and N were computed

"semi-analytically" (i.e., a computer program was written to evaluate

the analytic expressions and couple the results), and are listed in

Column 1 of Table VII-5.

The response considered in this particular example was the

concentration of nuclide 1 after 600 days of exposure. Therefore, the

appropriate final condition for the nuclide adjoint is

N?(600) =1

Nt(600) =0

The results of the adjoint calculations for this response are given in

Table VII-6.

Now consider the change in the final concentration of the fuel

nuclide, due to varying the initial concentration of the poison nuclide.

A change in the concentration of nuclide 2 does not directly affect

nuclide 1, since nuclide 1 is not produced by nuclide 2 (note that

N*(t) = 0). The poison nuclide was also assumed to have a zero fission

cross section, and hence does not affect the flux normalization directly.

Therefore the only mechanism by which a change in the concentration of

nuclide 2 will affect the final concentration of nuclide 1 is through

a change in the flux spectrum.
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*

Table VII-4. Assumed values for nuclear data in r example

Parameter Value
_

°l.l-2

°C2

°a2

°f2

°C2

Xi

X2

Y

P

A

9 barns

3 b

6 b

1 b

2b

lb

10b

1

0

.5

2..0 x 101"
fissions

sec-cm3

4,.0 x 10"9 sec"1
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Table VII-5. Results of forward calculation in r example

Reference case Perturbed case (AN2 = .1)

t = 0 600 days t = 0 600 days

Ni 1.0 x 102" .96937 xio" 1.0 x 1021t .96436 x 1021+

N2 0.0 .17533 x 1023 .10 x lO2" .95125 x 1023

$«i|;i .6667 x lo1* .74992 x 101" .1000 x 1015 .10323 x 1015

0*ip2 .2000 x 1015 .20632 x 1015 .2000 x 1015 .20739 x 1015

keff 1.500 1.380 1.000 1.005

a •
Table VII-6. Results of adjoint calculation in r example

*

Ni (0+)
*

N2 (0+)
- *

ri

*

r2

t = 0

.96937

0.0

5.0164 x 1017

6.7008 x 1021

1.5076 x 108

a For a response of R = Ni (600 days)

t = 600

1.0

0.0
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Column 2 of Table VII-5 shows the results of the perturbed

calculation, for a change in the initial condition of the poison nuclide

equal to .1 x 1024 atoms/cm3. As one would expect, the addition of the

poison nuclide hardens the spectrum, which increases the rate of

depletion of nuclide 1, because nuclide 1 was assumed to have a higher

absorption cross section in group 1 than in group 2. Consequently,

after 600 days' exposure the concentration of nuclide 1 (i.e., the

response) is slightly lower for the perturbed case than for the

reference case. The amount of the response perturbation is -.52%.

We would now like to predict the response change using perturbation

theory, and compare with the direct calculation. For the perturbation

of

0\ „ -,n24AN = [i)x 10

Equation IV-59 reduces to

AR/R = "-1 X]°2k (rt 0* i|>2) =-.52% .
.96937 x 10"

From this result we see that the perturbation method accurately accounts
if

for changes in flux shape with the r term. This illustrates that the

nuclide importance depends on the importance of the flux shape through

a "r* effect."

We can summarize the results of this chapter as follows:

1. For an uncoupled nuclide field (i.e., one which does not

perturb the neutron field in which it resides), it has been shown that
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*

H can be interpreted as the importance of the nuclide field to the

response. This is analogous to the role played by tf>* for the uncoupled

neutron field.

2. The principle of conservation of nuclide importance for an

uncoupled nuclide field has been demonstrated.

3. For coupled neutron/nuclide fields, the general concept of

"field-importance" has been defined for small deviations about the

reference state solution to the initial-value formulation of the

*

burnup equations. Specifically, R is the importance of the nuclide

*

field and r is the importance of the flux field. It was shown that

the importance of one field depends on the importance of the other.

4. It has been shown that field-importance is conserved for small

deviations (in which the perturbed fields obey the linearized burnup

equations) about the reference state solution; however, "response"

contained in one field may be transferred to the other.

*

5. In the quasi-static formulation it has been shown that N_
*

corresponds to the importance of changes in the nuclide field, P to
*

the importance of changes in the flux magnitude, and r to the importance

of changes in the flux shape. As in the initial value formulation, the

quasi-static adjoint functions are coupled in a manner that accounts

for the coupled perturbations in the forward equations. This fact was

illustrated by two example calculations for the nuclide adjoint

function. The calculations showed that the total importance of the
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nuclide field contains a "P effect" to account for changes in flux
if

magnitude, and a "r effect" to account for changes in flux shape.



CHAPTER VIII

APPLICATION OF UNCOUPLED DEPLETION SENSITIVITY THEORY

TO ANALYSIS OF AN IRRADIATION EXPERIMENT

One of the uses of static sensitivity theory which has evolved over

the last five years is to aid in the design and analysis of integral

experiments used in evaluating nuclear data. In particular, the

sensitivity coefficients may be employed

(a) to assess the effect of uncertainties in differential data on

computed integral responses;

(b) to determine if the measured integral parameters are sensitive

to the data of interest;

(c) to adjust differential data to minimize discrepancies between

calculated and measured integral parameters; and

(d) to assign priorities and required accuracies for differential

data measurements (the "inverse problem").

In the past, the integral parameters have been limited to static

responses, such as reaction-rate ratios, measured in various critical

assemblies. With the development of depletion sensitivity theory,

however, a much wider range of integral experiments can be addressed.

For example, with this technique one may analyze "irradiation

experiments"; i.e., those in which a small sample is exposed to a known

flux field for a relatively long period of time. By chemically

analyzing the transmutation products in the irradiated sample it is

124
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possible to back out useful, integrated reaction rates. Figure VIII-1

is a flow chart depicting how depletion sensitivity calculations could

fit into the data-evaluation stream. By iterating between sensitivity

analysis and cross-section measurement, an acceptable set of differential

data is eventually obtained, which allows reactor design parameters to

be computed to within allowed tolerances.

NUCLEAR DATA MEASUREMENT

ENDF XS AND COVARIANCE DATA

COVARIANCES

FORWARD

AND

ADJOINT

XS PROCESSING CODE

FEW GROUP XS

DEPLETION CODE

EXPERIMENTAL AND COMPUTED

COLLAPSING SPECTRA

REACTOR EXPOSURE DATA

COMPUTED RESPONSE

SENSITIVITY AND UNCERTAINTY ANALYSIS

MEASURED

RESPONSE

DATA EVALUATION AND RECOMMENDATIONS
FOR MEASUREMENTS

Fig. VIII-1
analysis.

Flow-chart of calculations in depletion sensitivity
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There is currently an ongoing project in the ORNL Physics Division

to improve the higher actinide cross-section data (46). One facet of

this project is the analysis of several integral irradiation experiments.

The Engineering Physics Division is providing computational support for

the integral experiment program, and as part of this analysis has

performed depletion sensitivity and uncertainty calculations. Because

of the small sample size (< 100 mg) it can be assumed that the neutron

field is unperturbed by the nuclide field of the sample; therefore it

was decided to use uncoupled perturbation theory for the analysis. This

is the first known application of uncoupled, depletion perturbation

theory to experiment analysis. Details of the experiment are given

below (28).

In 1966, several actinide samples ranging from 232Th to 21tlPu were

irradiated for four years in the fast reactor EBR-II at Argonne National

Laboratory (ANL), Idaho. The purpose of this research was to experimen

tally ascertain the isotopic composition of the irradiated sample. However,

after one sample had been analyzed, the ANL program was halted until 1977

when interest was revived in obtaining better actinide cross sections in

the higher energy range. At that time the other irradiated samples were

sent to ORNL for further analysis as part of its cross-section measurement

program. Oak Ridge has partially completed examination of the second

sample, which was nominally 94.1 mg 239Pu02 with some impurities present.
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The initial composition of this sample is given in Table VIII-1, and

the exposure history and 14-group flux spectrum (both provided by ANL)

are given in Tables VI11-2 and VI11-3, respectively.

Table VIII-1. Initial composition of 239Pu sample

Nuclide Gm-atoms

239Pu 5.45 x 10"1*
21t0Pu 2.62 x 10"5
2l,1Pu 1.86 x 10"6
242Pu 1.07 x 10"7
21tlAm 4.61 x TO"7

Fourteen-group cross sections were processed from preliminary

ENDF/B-V data (47) using MINX (48), and were collapsed to one group

using the EBR-II spectrum. The effective cross sections for important

nuclides are shown in Table VIII-4, and the one-group uncertainties for

some of the plutonium data are given in Table VIII-5 (49). (When this

study was done, these were the only covariance files available.)

Because uncoupled sensitivity theory was deemed adequate for this

study, the forward and adjoint nuclide fields could be computed with

the ORIGEN-A code. Table VI11-6 gives a comparison of the computed

and measured percentages of plutonium isotopes in the irradiated sample

(at present, only the Pu isotopes have been experimentally analyzed).

The agreement for the Pu isotopes is fairly good.

Thus far the results presented here have been obtained with

"standard" analysis methods (except for possibly generating data

uncertainties). But we will now begin to utilize new techniques; namely,
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.aTable VI11-2. Exposure history of 39Pu sample'

Power

(MW) (x 10 '15/cm2^ sec) Days
Power

(MW) (x 10 '15/cm2' sec)

0-25 25.20 1.24 700-709 45.80 2.26
193-260 23.30 1.15 710-712 55.50 2.73
290-297 12.43 .611 722-742 42.60 1.82
309-349 25.73 1.27 743-749 41.50 1.77
351-372 29.48 1.45 750-752 36.00 1.53

424-451 10.48 .515 753-758 44.80 1.91
451-455 44.25 2.18 812-844 18.75 .799
457-461 15.50 .762 853-868 38.40 1.64
480-487 40.86 2.01 871-889 45.67 1.95
488-492 22.50 1.11 890-897 44.28 1.89

494-497 22.67 1.15 905-933 42.93 1.83
498-500 24.5 1.20 937-957 40.00 1.71
506-513 49.43 1.45 959-968 44.44 1.89
514-517 32.00 1.57 972-998 42.71 1.82
520-524 38.50 1.20 1004-1027 42.78 1.82

526-538 25.25 1.45 1032-1045 46.15 1.97
540-557 39.35 1.57 1106-1131 30.84 1.31
568-577 20.89 1.89 1135-1140 37.00 1.58
581-583 12.0 1.24 1140-1149 46.40 1.97
587-594 29.29 1.93 1152-1162 44.3 1.89

597-619 32.27 1.59 1162-1181 48.63 2.07
624-639 43.47 2.14 1185-1205 48.05 2.05
641-643 41.5 2.04 1207-1212 31.90 1.34
645-649 13.00 .639 1229-1259 44.80 1.91
651-655 19.75 .971 1267-1295 48.21 2.06

656-659 26.33 1.29 1298-1317 47.37 2.02
664-668 22.25 1.09 1327-1337 45.60 1.92
675-682 22.71 1.12 1342-1356 46.07 1.96
683-686 25.00 1.38 1359-1374 47.00 2.00
690-698 46.50 2.29

aTotal exposure = 27,676 MWd; *»T = 1.0661 x 10'1 barns"1
br
Days not shown indicate shutdown,
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Table VIII-3. EBR-II flux spectrum

Upper energy bound Multigroup flux spectrum (ip)

.1000 x lo8 .074

.2231 x lo7 .087

.1353 x 107 .120

.8209 x 106 .341

.3020 x 106 .245

.1111 x 106 .098

.4087 x 105 .027

.1503 x 105 .006

.5531 x 10* .0007

.3355 x 101* .0004

.2035 x 104 .0003

.4540 x 103 0

.1013 x 103 0

.1371 x 102 0

Table VIII-4. One-group, preliminary ENDF/B-V
cross sections for EBR-II

Data Effective value

239Pu o> 1.66
239Pu al .154
2"°Pu acf .644
21*°Pu al .213
2,,1Pu ocf .175
21tlPu al .205
2"2Pu acf .506
2"2Pu al .212
21tlAm a% .553
21tlAm a\ .782
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Table VI11-5. Uncertainties in Pu nuclear data

Data Standard deviation (%)

239Pu 6.7
239Pu ac 3.0
2"°Pu a 10.0
2,*lPu ac 12.0
241Pu aj 3.-0
241Pu decay constant 2.7

Table VIII-6. Comparison of measured and
calculated Pu isotopics

Pu Isotope Measured (%) Calculated (%)

238 .020 -012
239 93.15 93.01
240 6.56 6.57
241 .251 .266
242 .026 .030
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sensitivity coefficients and uncertainty analysis. For this particular

sample four responses were considered. These corresponded to the

concentrations of 239Pu, 240Pu, 21|1Pu, and 241Am in the irradiated

sample. Table VIII-7 gives the sensitivities of these concentrations

to the indicated data used in the calculation.

The sensitivity coefficients may be interpreted as follows: If

a. • corresponds to the sensitivity coefficient for response R. to data
• »j l

a., then a 1% increase in the value of a. will cause an increase of
" J

a. . in R.; i.e.,
i ,j i

VRi / lA^ ,

For example, we see that if the 239Pu capture cross section is increased

by 1%, then the 239Pu concentration in the irradiated sample will

decrease by about .016%, while the 21|0Pu concentration increases by

about .24% and the 2ItlPu concentration increases by about .046%. The

21tlAm concentration is quite insensitive to the 239Pu capture cross

section because it is far up the nuclide chain.

Some very important insight into the physics of transmutation can

be obtained by careful examination of these sensitivity coefficients.

Some of the conclusions of the sensitivity study are intuitive, while

others are surprising.

For example, we can see from Table VIII-7 that 239Pu is most

sensitive to the 239Pu fission cross section, and to its initial
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Table VIII-7. Sensitivity coefficients for
irradiated 239Pu sample

Data Parametera Specifi ed Response

Rl R2 R3 R4

Cross-•Section Sensitivity Coeffici ents

P9 a

P9 a~

5.30-3

-2.27-4

4.58-2

-2.75-3

2.45-1
-1.20-3

-1.64-2

-1.77-1

PO a

PO ap
5.47-2

-1.19-3

3.06-1

-1.07-2

-2.01-2

-6.09-2

0

0

PI a

PI ap
PI h

decay constant

-3.39-3

-2.89-3

3.91-1

-1.83-2

-2.56-2

-1.42-1

0

0

0

0

0

0

• Al o-

Al aF
-6.96-2

-4.92-2

0

0

0

0

0

0

Initial Condition Sensitivity Coeff-icients

P9

PO

PI

Al

5.31-3

5.01-2

3.72-1

5.75-1

4.62-2

2.65-1

6.89-1

0

2.48-1

7.54-1

0

0

1.0

0

0

0

aP9 indicates 239Pu, PO indicates 21*°Pu, etc.

^Concentration after 1374 days irradiation: Rl = 2'tlAm!
R2 = 21tlPu, R3 = 2"°Pu, R4 = 239Pu.
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condition. These conclusions are probably obvious, although one may be

surprised that the sensitivity coefficient for the fission cross section

is relatively small. 21*°Pu is most sensitive to its initial concentra

tion, the initial concentration of 239Pu, and the capture cross section

of 239Pu. The sensitivity coefficients for the last two parameters are

essentially the same; i.e., an increase of X% in the concentration of

239Pu has the same effect on 21*°Pu as an increase of X% in the 239Pu

capture cross section. The final concentration of 21*°Pu is relatively

insensitive to its own absorption cross section (sensitivity coefficient

^ .08). 21tlPu is most sensitive to its initial concentration, its decay

constant, and to the initial concentration and capture cross section of

240Pu. 21|1Am is most sensitive to its initial concentration, and to the

initial concentration and the decay constant of 21>1Pu. Note that it is

insensitive to both its fission and capture cross sections.

Recall now that this sample is supposed to be a 239Pu sample - the

other isotopes are merely impurities. However, in many cases we can see

that the response of interest is very sensitive to the concentration of

impurities in the sample. A graphic example is the 21|1Am concentration.

It was originally hoped that this sample could be used to provide

integral data for 21|1Am cross sections, which were known to be poor in

ENDF/B-IV. However, we have already seen that the 2klAm concentration

in the irradiated sample is not sensitive to these cross sections! In

fact, by examining the sensitivity coefficients we conclude that most

of the 21flAm contained in the irradiated sample was either there
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originally as an impurity or came from the decay of the 21tlPu which was

originally in the sample as an impurity.

Uncertainty analysis has also been performed for this sample to

ascertain the effect of uncertainties in the plutonium data on the

computed responses. Using the data uncertainties given in Table VIII-5,

page 130, the values in Table VIII-8 were found for the standard

deviations of the responses. The differences between computed and

measured values for both 239Pu and 21t0Pu are within the uncertainties

due to data, while the 21flPu difference is within two standard

deviations. The computed standard deviations do not reflect

uncertainties in the initial composition of the sample.

Table VIII-8. Computed uncertainties in concentrations
in irradiated sample, due to uncertainties in Pu data

Data« 6R2/R2(%)2> 6R3/R3(%) 6R4/R4(%)

P9 a 3.0-1 1.6 1.1-1

P9 ap 8.3-3 3.6-3 5.3-1

PO a[ 3.1 2.1-1 0

PI c£ 2.3-1 0 0

PI ap
PI Xr

4.7-2 0 0

3.8-1" 0 0

Totals: 3.1% 1.6% .54%

aP9 indicates 239Pu, PO indicates 21t0Pu, etc.

fcR2 = 21tlPu, R3 = 21t0Pu, R4 = 239Pu.

This example shows that depletion sensitivity analysis can be used

not only to determine error bounds on a computed response, but also to

provide insight into the physical phenomena taking place during

irradiation. This method will be used in the future to analyze other

samples for the same cross-section measurement program.



CHAPTER IX

APPLICATION OF COUPLED DEPLETION SENSITIVITY THEORY

TO EVALUATE DESIGN CHANGES IN A DENATURED LMFBR

In the previous chapter depletion sensitivity theory was used to

examine the effect of variations in basic nuclear data on integral

parameters. Although the uncoupled formulation was employed, a similar

type of analysis can be performed with coupled sensitivity theory if the

problem of interest warrants the added complexity. This chapter will

address another area of application for depletion sensitivity theory,

which could be of significant importance in reactor design.

The problem can be simply stated as follows: Suppose that a

reactor designer has determined a "reference" design for some reactor,

and has performed a detailed depletion calculation to evaluate its

performance over several operating cycles. A measure of the "quality"

of the design is usually some set of integral parameters such as end-of-

cycle (EOC) reactivity, net fissile gain (for a breeder) over a cycle,

peak-to-average power ratio, etc., which the designer wishes to

maximize or minimize. To optimize the set of integral parameters the

designer may adjust either the beginning-of-life (BOL) reactor design

or the reactor operating conditions (e.g., the burnup). Depletion

sensitivity analysis is ideally suited for the former case, since it can

efficiently relate changes in the initial condition of the reactor to

changes in integral parameters at EOC without requiring expensive

depletion calculations.

135
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It is possible that an optimization program could be established

using this method, along with a technique such as linear programming,

which could make small variations about the reference design until the

"best" configuration is determined. However, because linear perturbation

theory is being used, only "small" variations are allowed, so that

second-order effects do not become significant. This means that the

reference state would have to be reasonably close to optimum.

-Nevertheless, it is well known that a small improvement in reactor

performance (e.g., areduction in fissile inventory or an increase in
breeding gain, etc.) can mean a substantial savings in fuel-cycle costs.

It is not the purpose of this text to present a detailed plan for

optimization (this is recommended for "future work"); however, we will

now present an example application of coupled depletion sensitivity

theory to a fairly complex LMFBR model, which illustrates that the

method can accurately predict changes in EOC nuclide inventories when

the concentrations of various nuclides at BOL are perturbed.

For this calculation, a one-dimensional spherical model of a 20%

denatured LMFBR was employed. The model consisted of two regions (a

fuel zone with outer radius of 117.6 cm and a blanket zone with outer

radius of 162.1 cm) which were obtained by homogenizing a detailed

six-zone RZ model (50), taken at equilibrium condition. Approximately 50

spatial intervals were used in the calculations. Control rods in the
2-D axial blanket were smeared into the blanket zone for the spherical

model. The enrichment of the 1-D model was adjusted slightly to

ike the reactor critical over the burn cycle. Table IX-1 gives the
mat
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Table IX-1. Beginning-of-cycle atom densities
for denatured LMFBR model

Nuclide

232Th
233U
235U
238U

239pu

2l*°Pu
241Pu
2.2Ru

Na
16Q

Fe

Cr

Ni

55Mn
Mo

Fission Products

ioB

X1B
12C

Density (atoms/barn-cm)

Core Zone

3.08477 x 10'3
7.86960 x lo"4
6.25936 x 10"6
3.93480 x lo"3

1.35231 x 10"1*
8.62243 x 10"6
3.26954 x 10"7
1.11058 x 10"8

8.59359 x 10

1.69594 x 10'
9.69531 x 10'
2.55295 x 10'

1.94792 x 10"3
3.54168 x 10"1*
2.06598 x 10"1*
2.125 x 10""

Blanket Zone

1.14475
1.64215

10"
10"

7.00910 x 10'
2.33575 x 10'
7.68439 x 10'
2.02531 x 10'

1.54384 x 10'
2.80708 x 10"
1.63747 x 10"

7.34638 x 10
1.10186 x 10
4.58398 x 10
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zone-dependent atom densities. Four-group cross sections (see Table IX-2

for energy structure) were obtained by collapsing existing libraries

(51), and a lumped fission product (52) was used. The depletion

calculation consisted of a 300-day burn at 3000 MW.,, for a core burnup

of 41,000 MW-D/T. Table IX-3 summarizes the reactor operating conditions.

Table IX-2. Four-group energy structure

Group

1

2

3

4

Upper Energy (eV)

1.650 x lo7
8.209 x 105
4.090 x 101*
2.000 x 103

Table IX-3. Operating characteristics of model LMFBR

Fissile inventory

keff
Breeding ratio
Specific power
Fuel power density

B0C

3161.5 kg
1.0673

1.08
.13 MW/kg

424.0 w/cm3

EOC

3190.6

1.004

1.15

.14 MW/kg
414.6 w/cm3

A denatured LMFBR (so called because the major fissile isotope,

233U, is "denatured" with 238U in order that it cannot be chemically

separated for use in weapons) was chosen for the analysis because of the

complexity of the transmutation process. In this type of reactor, both

thorium and uranium buildup chains must be considered. Table IX-4 shows

the buildup and decay processes which were assumed in the depletion

calculation. Note that some of the short-lived intermediate nuclides

have been neglected.
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Table IX-4. Transmutation processes in denatured
LMFBR model

232Th(n,Y)2i3Pa("B)2^3U

232Th(n,2n)2^Pa(n,y)2^2U

232U(n,T)2i3U(n,Y)2i,,U(n,Y)2:5U(n,Y)2^U

232U(a decay)

233Pa(n,Y)2^U

238U(n,Y)2i9Pu(n,Y)2i°Pu(n,Y)2^Pu

2ltlPu(~B decay)

Fissionable Nuclides: 232Th, 231Pa, 233Pa, 232U, 233U, 23*U,

235U, 236U, 238U, 239Pu, 21*°Pu, 21tlPu

The forward burnup calculations were done with the VENTURE-BURNER

code system (32). A new flux shape was computed every 100 days by per

forming a simple kff calculation (i.e., no control search was done to

keep k = 1). In addition to the reference VENTURE run, three additional

runs were done in which the initial concentrations of 238U, 233U and 232Th

respectively were increased by 5%. The effects of these perturbations

on three separate responses were considered. The observed responses were

(a) 232U concentration, (b) 233U concentration, and (c) 239Pu

concentration, all evaluated after 300 days of exposure. The results

of these direct calculations are given in Table IX-5.

The adjoint burnup calculations were performed for each response with

the DEPTH module (39) (see Chapter V). The final condition for each of



Table IX-5. VENTURE calculations for perturbed responses"
due to 5% increase in initial concentrations

of indicated nuclides

Initial Condition
Perturbed 5%

Reference (no perturbation)
238U concentration
233U concentration
232Th concentration

Rl

Zone 1

1.86421-7"
1.85042-7
1.83818-7

1.91075-7

Zone 2

3.74582-9

3.69496-9

3.63524-9

3.64674-9

a
Responses are defined as follows (total atoms

Rl = 232U inventory
R2 = 233U inventory
R3 = 239Pu inventory

Read as: 1.86421 x 10"

R2

Zone 1

6.27921-4

6.28503-4

6.59435-4

6.33204-4

}Q'2k)

Zone 2

2.08631-4

2.08301-4

2.14904-4

2.09615-4

R3

Zone 1

2.31638-4
2.37646-4
2.28116-4

2.31319-4

Zone 2

0

0

0

0

-F*

O
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the runs consisted of an "atom density" of 1.0 for the respective

response nuclide, and 0.0 for all others (e.g., the adjoint calculation

for the 232U response had a value of 1.0 for the 232U concentration and a

0.0 for all other nuclides). Using Eq. IV-60, the forward and adjoint

solutions were then combined to give the sensitivity coefficients

corresponding to each of the three responses for the initial conditions

of all nuclides in the system. As in the previous chapter, the initial-

value sensitivity coefficient a. . relates the percent change in response
i »J

R. to the percent change in the initial concentration of nuclide j:

where for this example R. is the final concentration (300 days exposure)

of either 232U, 233U, or 239Pu. Table IX-6 gives the sensitivity

coefficients of the three responses to the initial conditions of 238U,

233U, and 232Th, computed with depletion perturbation theory. The

sensitivity coefficients indicate some interesting phemonena occurring

due to the coupling between the neutron and nuclide fields.

Consider first the response of 232U. This nuclide is produced by

an (n,2n) reaction on 232Th, and hence we expect 232Th to have a large

direct effect, and indeed the Th sensitivity coefficient is quite

large (^ .5). It is more surprising to see a large negative

sensitivity coefficient (^ -.3) for 233U. The reason for this is that

233U is the dominant fissile nuclide, and hence it is largely responsible

X ai ,j Wt-o) ) %'
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Table IX-6. Sensitivity coefficients computed with
perturbation theory for changes in

initial conditions

Sensitivity Coefficient to Indicated Initial Condition

Responsea 238U *»U ^^Th
Rl -1.53767 x 10"1 -3.14563 x 10"1 4.68175 x 10"1
R2 1.105442 x 10"3 8.55001 x 10"1 1.43900 x 10 1
R3 5.21633 x 10_1 -3.13106 x 10"1 -2.73917 x 10"2

a Responses are as follows:
Rl = 232U
R2 = 233U
R3 = 239Pu.

for the power output from the reactor. Since the power is constrained

to stay constant, an increase in the 233U concentration must be

accompanied by a decrease in the flux normalization factor in order to

keep the product the same; i.e., 233U has a large "p* effect." Since

adding 233U makes the flux magnitude decrease, the reactions which

produce 232U must also decrease and therefore the final 232U concentra

tion is lowered. The 238U also has a negative sensitivity coefficient

for this response because the addition of 238U tends to soften the flux

spectrum, due to inelastic scatter. Since 232U is produced by a

threshold reaction (n,2n), its final concentration is sensitive to a

spectral shift, and the end-of-cycle response is lowered. Thus 238U

has a fairly important "r* effect" because it changes the shape of the

flux spectrum.

Consider now the 233U response. As might be expected, this response

is insensitive to the 238U concentration (there is only a small r*



143

effect). An increase in the Th concentration will result in an increase

in 233U since it is contained in the Th buildup chain; however, tne

sensitivity coefficient is not extremely large (^ .14) because much of

the 233U is in the reactor initially and is not produced from the Th.

Obviously, the final 233U concentration will increase if its initial

concentration is increased; however, notice that the sensitivity

coefficient is not 1.0 as would be predicted using uncoupled perturba

tion theory. The coupled perturbation method predicts a sensitivity

coefficient of .85, due to the negative p* effect.

Finally, the sensitivity coefficients for 239Pu production contain

no real surprises. This response is insensitive to the Th concentration.

The 238U has an important direct effect (sensitivity coefficient = .5) and

the 233U has a large negative sensitivity coefficient (-.3) due to the

p* effect.

We have thus shown how sensitivity coefficients computed with

coupled depletion perturbation theory can help our understanding of tne

complicated interactions occurring in coupled neutron/nuclide fields.

The real practical merit of the method, however, lies in its ability to

predict the EOC response changes. Table IX-7 shows the changes in the

three responses predicted by perturbation theory and computed exactly

with VENTURE. The values in the first column were calculated using the

results from Table IX-5, page 137, weighted with the proper volumes.

The values in the second column were obtained by simply multiplying 5%

by the appropriate sensitivity coefficient from Table IX-6. The

agreement is extremely good in all cases. In other calculations not
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Table IX-7. Comparison of direct-calculation and
perturbation-theory results for response changes

due to 5% increase in isotope concentration

AR/R%

Response" Direct Calculation Perturbation Theory

5% Increase in Initial 238U Concentration

Rl -7.6 x lo"1 -7.7 x lo"1
R2 5.2 x lo"3 5.5 x lo"3
R3 2.6 2.6

5% Increase in Initial 233U Concentration

Rl -1.4 -1.6
R2 4.3 4.3
R3 -1.5 -1.6

5% Increase in Initial 232Th Concentration

Rl 2.3 2.3
R2 7.1 x 10"1 7.2 x lo"1
R3 -1.4 x lo"1 -1.4 x lo"1

a
Responses are defined as follows:
Rl = 232U
R2 = 233U
R3 = 239Pu
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reported here, depletion sensitivity theory was used to predict changes

in the EOC k ff due to changes in BOC nuclide concentrations. For these

cases also the perturbation theory predictions were very accurate (53).

Although the reactor model assumed for these calculations is not as

complex as those used in most design calculations, it does embody most

of the general features, such as space-dependent, multi-zone, multigroup

fluxes, and multi-zone depletion with multiple transmutation chains.

Hence there is some promise that the coupled depletion sensitivity method

will be applicable to realistic design problems.



CHAPTER X

SUMMARY, CONCLUSIONS AND RECOMMENDATIONS

FOR FUTURE WORK

The burnup equations are a system of coupled nonlinear equations

describing the time-dependent behavior of the neutron and nuclide fields

within a reactor. Burnup analysis is an essential component of reactor

design and fuel management studies; however, solving the burnup equations

numerically is difficult and expensive for realistic problems. In this

text, a technique based on first-order perturbation theory has been

developed which allows one to estimate changes in reactor performance

parameters arising from small changes in input data without recomputing

the perturbed values for the neutron and nuclide fields. The following

is a summary of the results and conclusions of the study.

The application of perturbation theory to nonlinear operators has

been studied and contrasted to that for linear operators. It was

concluded that in order to obtain adjoint equations which are independent

of the perturbed forward state, one must deal with "first-order adjoint

equations" which are in reality adjoint equations for the linearized

forward system.

Various approximations for the burnup equations have been rigorously

derived. These formulations included the nonlinear initial-value

formulation, the time-continuous eigenvalue formulation, the uncoupled

(linear) approximation for the nuclide field, and the quasi-static

formulation. For each case, depletion adjoint equations have been

146
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developed. Special attention was devoted to the quasi-static

approximation, for which it was shown that there exist three adjoint
if if if

functions - N_ , P , and r -corresponding to the nuclide-field equation,

the flux-normalization equation, and the flux-shape equation.

Numerical techniques have been presented for solving the adjoint

burnup equations. It was shown that currently available computer codes

could be modified in a relatively straightforward manner to obtain adjoint

solutions. An adjoint version of the ORIGEN depletion code has been

developed. In addition, an algorithm was suggested for implementation

into the VENTURE/BURNER Code system to provide quasi-static adjoint

solutions. This algorithm has been programmed by J. R. White into a

new BOLD VENTURE module called DEPTH.

The new technique of depletion perturbation theory (DPT) has been

developed, based on the stationary property of the adjoint burnup

solutions. Using DPT, generic sensitivity coefficients have been derived

to relate changes in reactor performance parameters (e.g. kgff, fissile

loading, etc.) to changes in nuclear data (cross-sections, decay constants,

yield data, etc.) and in the initial reactor loading. Multigroup, multi-

zone sensitivity coefficients were written in detail for important types

of data. Equations have been presented for uncertainty analysis in burnup

calculations.

The relationship between "coupled" and "uncoupled" perturbation

theory has been discussed. In uncoupled perturbation theory, it is assumed

that the neutron and nuclide fields can be perturbed independantly,

while in the coupled case a change in one field will automatically perturb

the other.
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For uncoupled perturbation theory it was concluded that the nuclide

adjoint function can be interpreted as the "importance" of a nuclide to

a computed response. This led to a postulate of "conservation of nuclide

importance" for an uncoupled nuclide field, which is analagous to Lewins'

conservation of neutron importance for an uncoupled neutron field. For

coupled neutron/nuclide fields, it was concluded that importance can be

transferred between the neutron and nuclide fields. A generalization of

the importance-conservation principle to the "conservation of field

importance" has been suggested for interacting fields. Using this

postulate, the coupled nuclide adjoint equation was derived from first

principles. It has been shown that for the adjoint quasi-static burnup

equations N* represents the importance of changes in the nuclide field,

P* the importance of changes in flux normalization, and r* the

importance of changes in the shape of the neutron field. Analytic calcu

lations were performed to illustrate these properties.

An application of uncoupled nuclide perturbation theory to analysis

of an irradiation experiment has been presented. Sensitivity coefficients

were used to determine the relative importance of various cross-section

and decay data affecting the buildup of actinide products in an irradiated

239Pu sample. It was shown that this type of analysis can provide

valuable insight into the physics of transmutation. Time-dependent

uncertainty analysis was used to calculate standard deviations in computed

actinide concentrations resulting from uncertainties in plutonium cross-

section data. For most cases the measured concentrations were within

the computed uncertainties of the calculated values.

\.

*
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Depletion perturbation theory for coupled neutron/nuclide fields

has been applied to the analysis of a 3000 MW.. denatured LMFBR model.

The model consisted of four energy groups, a core, and a blanket zone

treated with approximately 50 spatial intervals, and multiple buildup

chains. This model was chosen to illustrate that DPT can be applied to

complex depletion problems. Sensitivity coefficients were computed to

relate changes in the initial concentrations of various nuclides to the

concentrations of other nuclides after 300 days of burnup. An explanation

of the physical meaning of the sensitivity coefficients was presented

in the context of interactions between the neutron and nuclide fields.

Finally, the perturbed, end-of-cycle nuclide concentrations due to various

perturbations at beginning-of-cycle were computed with sensitivity theory

and by direct re-calculation. In all cases the values predicted with

DPT show excellent agreement with the exact values.

The initial results of DPT presented in this study are very

encouraging, and there is reason to be optimistic about its potential

uses. The basic theory (which will undoubtably be extended as the need

arises) is now well in hand; the numerical methods required to solve tne

adjoint burnup equations appear manageable (computational needs seem

comparable to those for the forward equation); and the examples studied

thus far have given excellent results. However, because the field of

DPT is very new and still evolving, there are numerous interesting

areas which need further study. The following is a list of recommendations

for future work:
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(a) Examine the accuracy of DPT in predicting changes in flux-

dependent functionals (e.g. keff).

(b) Modify (if necessary) adjoint equations to account for batch

refueling and additional reactor constraints.

(c) Implement and test depletion adjoint solution for two-dimensional

VENTURE/BURNER calculations.

(d) Implement and test depletion adjoint equations for LWR nodal

calculations. (This would also require modifying adjoint equations to

account for detailed cross-section averaging and parameterization done

in LWR analysis.)

(e) Apply methodology to realistic fast and thermal reactor analysis..

(f) Examine the feasibility of applying DPT to reactor optimization

studies.
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APPENDIXES



APPENDIX A

MATHEMATICAL NOTATION

A.l. Vector Notation. For this study, vector fields are denoted by

underlining the variable, such as N(r,t). Vectors denoting points

in a phase space (i.e., independent variables) are denoted with a

caret, such as r = (x,y,z). Matrices are denoted with two

underlines, such as M.

A.2. Inner Product of Vectors and Functions. All vector multiplication

used in this work refers to the inner product operation:

A B = AiBi + A2B2 + ... + AnBn .

The inner product of two functions is defined analogously:

[g(x)-f(x)]x g(x)«f(x) d'x

A.3. Vector Derivative (gradient). The derivative of a scalar function

with respect to a vector is defined by

9f m _/9f 3f 3f \ (A-l)9A (A) "(^A- .3A7' ••" 8Aj lA U

This operation maps a scalar into a vector.

A.4. Functional Derivative (gradient). This is a generalization of the

concept of a vector derivative. This operator transforms a
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functional (a scalar) into a function (a vector). If K[f(x)] is

afunctional defined by K=|_f:[f(x)]Jx» where Fis adensity
quantity which is a composite function of f(x), then we have (see

ref. 54 for details) for the functional derivative per unit x,

3K = 3F
3fTx7 3fTx7

(A-2)

A.5. Functional Variation (differential). A functional variation is a

generalization of the concept of a differential. It is defined by

SK[f(x)]
3K

3f
Af %-• Af

3f
(A-3)

In this expression it is assumed that Af is small, such that

second-order terms can be ignored. A functional is stationary at

some function f (x) if the functional gradient (and hence the

variation) vanishes there. At such a point, K will either have an

extremum or an inflection point (55).

A.6. Functional Taylor Series. Using the definitions in A.4 and A.5,

a Taylor series expansion of a functional is defined analogously

to a Taylor series for a function of a finite dimensional vector:

K[f + Af] = K[f] +
3K

3f
Af *\

32K

L3f2
Af2 (A-4)

x,x'



APPENDIX B

NONLINEAR OPERATOR NOTATION

Let y be some function of the independent variables (x, t). Also

assume that y is specified by the relation

F(x,t,y,yx,yt,...) =0 , B-l

where yx = — y, etc.

and where all partial derivatives are assumed to exist. F is, in general,

a nonlinear operator which maps the function y(x, t) into the zero function.

In this study we deal with a special case of Eq. B-l characterized by

asymmetric time behavior:

F(y) = 6(y) -yt . B-2 (a)

or

G(y)=|ry B-2(b)

where again G(y) is some operator which now is assumed to contain no

time derivatives. In the case where G(y) is linear in y, Eq. B-2 can

be written as

M-y =!t-y, B"3 <a>
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with

G(y) = M-y , B-3 (b)

where M is now a linear operator, possibly containing derivative and

integral expressions. This factoring of G(y) into the product of an

operator times the dependent variable is necessary in order to define an

adjoint operator M* by the relation

[fMg]Xjt -[gK*f]x§t B-4

for arbitrary functions f,g that satisfy the necessary continuity and

boundary conditions.

To define an adjoint operator for a nonlinear operator, the same

criterion as in Eq. B-4 is used; therefore it is desirable to express the

general nonlinear operator G(y) in a form similar to B-3 for the linear

case:

G(y)=> M(y)-y . B-5

The operator M is now nonlinear, and depends on y. The assumption

in B-5 was made by Lewins (21) in his study of adjoint nonlinear operators;

however, one must be careful about the implications of replacing a non

linear operator by the product of another nonlinear operator times the

dependent variable. In the most general case G(y) cannot be uniquely

expressed in a term such as B-5. This fact can be illustrated by the

simple expression y2yv, which can be expressed in several ways, such as

iy y^) • y => M(y) =yyx
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(y* fe) •y=> N(y) -y2 |r

etc.

There is obviously ambiguity in deciding which y's are contained in

the nonlinear operator and which one is to be operated on.

This presents a troublesome difficulty when trying to define an

"exact adjoint operator" for M, since M is not unique. In practice the

difficulty is overcome by using "first-order adjoint operators" derived

from the linearized expression for G(y). In this case there is a unique

operator M(y) which operates on Ay. Therefore, even though an exact

adjoint operator may not exist uniquely, the first-order adjoint operator

will exist uniquely.

However, there is an important class of problems (into which the

equations in this study fall) for which the nonlinear operator G(y) can

be uniquely expressed as the product of a nonlinear operator times the

dependent variable. This is the case in which the nonlinear operator only

depends implicitly on the past behavior of the dependent variable through

feedback mechanisms, so that at time t,

G(y(t)) = M[y(V<t)] • y(t) B-6

Now there is no ambiguity of how to define M at any instant t because

it does not explicitly contain y(t), only past values of y. Nonlinear

operators of this type appear frequently in reactor physics and account

for such diverse phenomena as Doppler feedback, voiding feedback,
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depletion and poison feedback, etc., which occur with a wide range of

time-lag constants.

The nonlinear operators discussed in Chapter II are assumed to be of

this type, and hence it is assumed that it is always possible to determine

M(y). This being the case, the "exact adjoint operator" for the nonlinear

operator is defined as being analogous to Eq. B-4 for the linear case:

[fM(y)g]Xjt =[gM*(y)f]Xjt B-7

Now that the definitions of a nonlinear operator and its corre

sponding exact adjoint operator have been stated for the case of interest,

we proceed to an examination of the effects of perturbations on nonlinear

operators. This requires introducing the concept of a variation of an

operator (55).

The variation (differential) of an operator G(y) in the "direction"

Ay can be written (55)

SG(Ay) =yg He" G(y +eAy) B"8

This quantity is related to the derivative of the operator by (56),

6G =§Ay B-9

by

In general, the ith order variation in anonlinear operator is given

61G =1^ ±V G(y +eAy) B-10
de
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Now consider an operator which is perturbed by a change in the

dependent variable y -»• y + Ay:

6(y) - G(y+Ay) . B-ll

The value for the perturbed operator can be expressed by a Taylor series

expansion (55):

00 i
G(y+Ay) = I Wg , B-10

i=o ^

assuming that the infinite series converges. For the case in which G can

be written as in Eq. B-6,

G(y+Ay) =(My)' =I yj-fiVy) B-ll

In general the ith variation, 61, will contain powers of Ay and/or its

derivatives up to the i order,

and hence can be viewed as a nonlinear operator in terms of Ay. An exact

adjoint operator for 61 is defined by

[y*fi1C4y)]Xft =Uyfi1*(Ay) • y*]Xjt B-12

For a given value of i, there may be multiple operators which satisfy

the above relation. An exception to this is the case for i = 1, for which

there is a unique adjoint operator that is independent of Ay.

*
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Also notice that for i > 1, 61 is an operator in terms of Ay. As shown

in Chapter II, this implies that it is impossible to have an exact adjoint

equation for a nonlinear equation which is independent of the perturbation

in the forward solution.



. APPENDIX C

GENERALIZED ADJOINT SOLUTION FOR

INFINITE HOMOGENEOUS MEDIA

The purpose of this appendix is to prove that for an infinite

homogeneous medium the value for r (E), which is orthogonal to the

forward fission source, is given by the first term in a Neumann series

expansion; i.e., Y (E) can be found from a fixed-source calculation

without considering any multiplication. The idea for this proof was

suggested to the author by R. L. Childs (57).

The equation for the shape adjoint function, as derived in the

text, is given for an infinite homogeneous medium by

L r (E) - XF r (E) = Q (E) (c-l)

along with the constraint conditions

00

!p(E)Q*(E)dE =0 , (C-2)

and

r*(E)Fy(E)dE =0 (C-3)

The forward equation for the flux shape is

bp(E) - XFip(E) = 0 (C-4)

166
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The adjoint shape function can be expressed as a Neumann series by

r (e) = r„(E) + ME) +

where the terms in the infinite series are found from

* * *

L ME) = Q

l Me) = M ME)

(C-5)

(C-6)

(C-7)

Multiply Eq. (C-4) by r0, and Eq. (C-6) by y, integrate both over

energy and subtract:

rt(E)Fip(E)dE =f y(E)Q*(E)dE (C-8)

0 0

Therefore, from Eq. (C-2) we see that

(r^)dE = 0 •= j v(E)vEf( E)dE X(EOr0(E')dE' (C-9)

Tf

This equation shows that r0(E) J_x(E), since

X(E-)ME')dE- = 0

Now consider the term on the right-hand side of Eq. (C-7):

(C-10)
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* *F.r0=vIf(E)J X(E')ME')dE- =0, (C-11)
0

if

by Eq. (C-10). Since L is a nonsingular operator, we conclude that
r*(E) = 0. This argument is easily extended to the higher iterates,

i

and the result is that

ME) = r*(E) , (C-12)

if

where r0 is the solution to Eq. (C-6).

)

y

A.
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