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ABSTRACT

A generalized depletion perturbation formulation based on the

"quasi-static" method for solving realistic multicycle reactor depletion

problems is developed and implemented within the VENTURE/BURNER modular

code system. The present development extends the original formulation

derived by M. L. Williams to include nuclide discontinuities such as

fuel shuffling and discharge. This theory is first described in detail

with particular emphasis given to the similarity of the forward and

adjoint quasi-static burnup equations. The specific algorithm and

computational methods utilized to solve the adjoint problem within the

newly developed DEPTH (Depletion Perturbation Theory) module are then

briefly discussed. Finally, the main features and computational accuracy

of this new method are illustrated through its application to several

representative reactor depletion problems.

The examples utilized in the study cover the range from one-group

one-dimensional reactor models to more complex multigroup two-dimensional

calculational representations. A set of multicycle calculations are

also presented as a test of the adjoint formulation for problems

involving discontinuous nuclide fields. Final-time nuclide inventories,

238 239Ke-ff» and the microscopic U capture to Pu fission ratio were

utilized as representative responses of interest. Perturbations to the

reference system included variations in the fissile, fertile, structural

and coolant material concentrations within the fast reactor models

utilized. Material concentrations were perturbed locally and globally

so as to change the distribution as well as magnitudes of the nuclide

xiii
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and neutron fields within the system. The question of nonlinear behavior

for certain perturbation/response pairs was also investigated by varying

the magnitude of the material perturbations.

The comparison of predicted responses with direct computation for

this large calculational data base clearly demonstrates the remarkable

predictive capability of the adjoint depletion formulation implemented

within the DEPTH module. This new method can accurately account for

variations in the time-dependent neutron and nuclide fields arising from

variations in the time-step initial conditions. Thus, multicycle

depletion perturbation theory represents an attractive alternate computa

tional method for certain types of burnup analyses, with the greatest

cost benefits being associated with repetitive-type scoping calculations.



I. INTRODUCTION

General Comments

Recent changes in the U. S. nuclear energy policy have led to a

greatly expanded study of proliferation-resistant nuclear fuel cycles.
1_o

Several preliminary investigations have been performed to assess

the feasibility of these alternate fuel cycle concepts. The increased

interest in fuel burnup analysis, from this viewpoint and others such as

fuel reprocessing and waste management, provides justification for further

investigation of the present calculational methods for predicting the

time-dependent isotopic content of a nuclear reactor.

Over the past several years static perturbation theory methods have

been increasingly used for reactor analyses in lieu of more detailed and

costly direct computations. Perturbation methods incorporating time

dependence have also received some attention and recently several

authors have demonstrated their applicability to fuel burnup analysis.7-9

In addition to time and cost advantages, these perturbation methods

permit a detailed understanding of the physical mechanisms responsible

for the observed behavior of a given response. These benfits could be

especially useful for the repetitive-type scoping calculations being

performed in current alternate fuel cycle studies as well as in the

design analysis of more conventional reactor concepts.
4

Gandini first proposed the use of time-dependent perturbation theory

for the neutron field in connection with the analysis of reactor kinetic

experiments. Starting from these generalized perturbation formulations

in the neutron field which were obtained from the importance conservation
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principle, he later showed that perturbation expressions for the nuclide

field could be derived by analogy. For this analysis he simply replaced

the neutron and precursor densities with the nuclide density and utilized

the buildup and decay matrix in place of the Boltzmann operator. Komata

also showed that a time-dependent perturbation theory formulation similar

to Gandini's could be derived using both a formal mathematical procedure

as used in standard perturbation theory and a variational principle

technique as suggested by Pomraning.

.7 8
Gandini and Tondinelli have applied these new perturbation theory

techniques for the nuclide field to burnup and buildup problems during

the reactor operating history and to sensitivity analyses of actinide

9
production estimates. Williams has also recently implemented a

similar capability into the ORIGEN isotope generation and depletion

code and has applied the theory to compute the plutonium production

in a thermal reactor with an emphasis on sensitivity and uncertainty

analyses.

The above studies, however, did not consider the nonlinear inter

action between the neutron and nuclide fields. The neutron flux field

was assumed unchanged when a nuclide or data perturbation was made.

12
Kallfelz addressed this problem by linking time-dependent perturbation

theory for the nuclide field with static generalized perturbation theory

for the flux field. Using this method he was able to calculate the

+

"indirect effect" of a nuclide perturbation. However, the theory was

still somewhat limited in scope and could not be applied to typical

reactor depletion problems.

*It should be noted that this "indirect effect" is \/ery similar to
the "r* effect" defined later in this study.
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Williams has recently developed a coupled neutron/nuclide

depletion perturbation theory that is sufficiently general to be appli

cable to problems of arbitrary complexity. This theoretical framework,

derived using a variational principle, is compatible with the conventional

"quasi-static" method for solving realistic reactor depletion problems.+

It has been shown that three adjoint equations (for the flux shape, flux

normalization, and nuclide density) are required to fully account for

variations in both the neutron and nuclide fields arising from variations

in initial conditions and nuclear data. The nuclide density adjoint

equation in this coupled formulation is identical to that obtained in the

previously mentioned uncoupled formulations. Thus, the present time-

dependent perturbation theory is the most general in that it takes into

account all first-order effects. Additionally, it should be noted that

the coupled formulation reduces to the uncoupled case when zero flux

normalization and shape variations are assumed.

The final value problem comprising this coupled set of adjoint

equations defines a sensitivity function which relates changes in some

specified integral response function to variations in the material

concentrations initially loaded in the reactor. Once this importance

function has been calculated, the effect of an initial condition pertur

bation can be estimated by the evaluation of a simple integral expression.

Since the importance function is independent of the specific perturbation,

a single adjoint calculation allows one to investigate the effects of any

number of initial condition variations.

Beware of difference in terminology from kinetics studies.



Williams has applied this coupled neutron/nuclide depletion pertur

bation theory to the analysis of two simplistic infinite homogeneous
13

reactor models. In both cases, analytic results obtained using time-

dependent perturbation theory agreed well with direct calculation of

the perturbed responses. However, prior to the present work, the theory

has not been applied to any realistic depletion analysis problems.

In addition, in the derivation of the nuclide adjoint equation,

Willaims assumed that the forward nuclide densities were continuous

across the time boundaries of the quasi-static approximation. In general,

this assumption is not valid. Typical depletion calculations include

simulated control rod movement or nuclide (fuel or poison) concentration

searches at each time step during the depletion cycle. At cycle bound

aries, fuel assembly shuffling and discharge or the addition of makeup

feed also result in large nuclide discontinuities. Thus the present

theory of Williams, although very general in most aspects, is somewhat

restricted by the continuous nuclide field assumption.

Scope and Organization

The objectives of the present work are 1) to extend the capability

of depletion perturbation theory as developed by Williams to include

nuclide field discontinuities, 2) to implement a procedure for the

solution of the resultant adjoint equations, and 3) to evaluate the

overall coupled neutron/nuclide time-dependent perturbation theory for

a variety of realistic depletion problems by comparison with results

obtained using conventional methods.

The achievement of these goals are documented in the remainder of

this report. Section II first presents a review of the conventional



depletion equations and then introduces the system of equations adjoint

to the forward quasi-static multicycle burnup equations. Section III

briefly describes the specific algorithms and computational methods

utilized to solve both the forward and adjoint problems. A rather

lengthly Section IV presents the numerical results from a variety of

test problems utilized to verify the adequacy and generality of multi

cycle depletion perturbation theory. The major conclusions of the study

and some recommendations for future research are presented in Section V.

Lastly, Appendices A and B provide a complete derivation of the multicycle

adjoint equations and a detailed description of the nuclide adjoint

jump condition term involving the generalized adjoint shape function.



II. THE MULTICYCLE DEPLETION PERTURBATION THEORY FORMULATION

The purpose of this section is to present a review of the conven

tional depletion equations and to introduce the system of equations

adjoint to the forward quasi-static burnup equations. It will be shown

how adepletion perturbation theory formulism can be developed using

these adjoint functions and how it may be used as a computational tool

in multicycle reactor depletion analysis.

The Quasi-Static Burnup Equations

In burnup analyses, one is interested in the interaction between the

nuclide density field and the neutron flux field within the reactor over

relatively long periods of time. The nuclide field obeys the nuclide

transmutation equation, while the flux field is assumed to obey the

diffusion theory approximation to the neutron transport equation. In

general, these coupled equations can be written as,

1. Nuclide Transmutation Equation:

|t N(r,t) =M(r,t) N(r,t) (2<1)

where N(r,t) =space and time-dependent nuclide density vector describing

the material configuration of the reactor and,

M(r,t) = space and time-dependent transmutation operator which can

be written as

M(r,t) =T(r,t) +D (2.2)

with T(r,t) = T [a(r,E,t), <J>(r,E,t)]



T(r,t) = microscopic reaction rate matrix whose off-diagonal

elements represent the production rate of nuclide i by

nuclide j and whose diagonal terms are the loss rate of

nuclide i(ex. a^. = J-oa(r,E,t) <j>(r,E,t)dE).
D = decay matrix whose off-diagonal elements represent the

decay rate of nuclide j to nuclide i and whose diagonal

elements are the total decay constant for nuclide i.

2. Diffusion Equation (operator notation):

B<D(r,E,t) =1 ^ 4>(r,E,t) (2.3)

where

B = B[N(r,t), a(r,E,t)]

= diffusion operator (fission operator and a leakage, removal, and

inscatter operator).

For depletion analyses, however, cj)(r,E,t) is usually a slowly varying

function of time. Therefore, the term on the right-hand side of equation

(2.3) can be neglected giving

B(N,a) <f>(r,E,t) = 0 . (2.4)

In writing the above equations, care has been taken to point out that

the flux field is dependent on the nuclide field through the diffusion

operator and that the nuclide field is a function of the neutron flux

through its coupling in the transmutation operator. In addition to this

interaction, the flux and nuclide fields are also coupled through the

reactor power constraint, given by



3. Reactor Power Constraint:

P(t) =

where

NT(r,t) E cf(r,E,t) <|>(r,E,t)dr dE (2.5)

|L = diagonal matrix of nuclide-dependent energy per fission

conversion factors.

In this study, the system of three coupled nonlinear equations given

by equations (2.1), (2.4) and (2.5) is referred to as the general

nonlinear burnup equations. In practice, these equations cannot be

solved exactly, and therefore some suitable approximation needs to be

made.

One practical method for solving the nonlinear burnup equations

essentially decouples the flux and nuclide fields by assuming that the

flux defined in equation (2.4) is separable in time. Under this

assumption, the neutron flux can be written as

4>(r,E,t) =a(t) ip(r,E) for t] <t<t? (2.6)

where a(t) is the time-dependent normalization and ip(r,E) is the space-

and energy-dependent neutron flux that satisfies the homogeneous time-

independent diffusion equation. In this "quasi-static" approximation,

t1 and t2 define the time interval over which \\>(rtE) and the cross-

section data are assumed constant.

Even with these approximations, the transmutation matrix in equation

(2.1) is still a continuous function of time due to the time-dependent

flux normalization factor. However, in practice, the flux normalization

as specified by the reactor power is also approximated as a piecewise
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constant function of time, essentially breaking the interval t| < t < t2

into several subintervals. Within each substep, the transmutation

matrix is constant in time, making the solution of equation (2.1) quite

straightforward. At t2 a new flux-eigenvalue calculation is performed

and the transmutation equation solved once more using the new tjj(r,E).

Utilizing a procedure like this, one can predict the time-dependent

performance characteristics of a nuclear reactor.

A schematic representation of this quasi-static burnup approximation

is given in Figure 2.1. It should be noted that this approximation

introduces discontinuities into the burnup equations. That is, the

nuclide density is discontinuous at cycle and time-step boundaries, the

flux shape becomes discontinuous at time-step boundaries, and the flux

or power normalization is characterized by discrete step changes at sub-

step interfaces. As will be shown later, the quasi-static adjoint

burnup equations exhibit a similar behavior at the time boundaries.

The detailed forward quasi-static depletion equations, employing

the notation described in Appendix A, are summarized in the first half

of Table 2.1. Under the quasi-static approximation, equations (2.7)

through (2.12) completely define the state of the reactor at any point in

time. The first of these equations describes the zone-averaged depletion

process for each ijk time interval within each reactor region. The

sz subscripts represent subzone s in zone z. The terms in the brackets

of equation (2.7) are just a more detailed representation of the trans

mutation matrix given in equation (2.1), showing its dependence on both

the shape and magnitude of the flux. The initial condition at the

cycle boundary represents the refueling process, while this condition
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OPERATION

REFUELING/SHUFFLING/DISCHARGE

CONTROL MOVEMENT/NUCLIDE SEARCHES

FLUX-EIGENVALUE CALC

CROSS SECTION ASSIGNMENT

POWER NORMALIZATION

TIME BOUNDARY WHERE

OPERATION IS ALLOWED

CYCLE TIME STEP SUBSTEP

k i j

X

X

X

X

X

X

X

X

X

NOTATION

xijk INDICATES THAT x IS CONSTANT OVER THE ijk INTERVAL
y''k(t) INDICATES THAT y IS A CONTINUOUS FUNCTION OF TIME WITHIN

THE ijk INTERVAL

z INDICATES THAT z IS INDEPENDENT OF TIME

INCREASING
TIME

TIME STEPi

•+•••—+•

CYCLE k

-SUBSTEP

Figure 2.1. Schematic Representation of Quasi-Static
Burnup Approximation.



TABLE 2.1

FORWARD AND ADJOINT QUASI-STATIC BURNUP EQUATIONS

FORWARD

1. Nuclide Density:

dt ^sz (t) = a
ijk vik ,ik

kz % + D Nijk(t)
—sz v '

with initial condition

where

Tn
i

^ik

>ik

=£^D-k +-'k
^NREG

(2.7)

(2.8)

(2.9)

ADJOINT

1. Adjoint Nuclide Density:

dt

>ijk
sz

(t) = aijk X^k ijk +D f£jk(t)

with final condition

^sz(tf} =%z(tf)
and jump condition

N*1jk = M*10k+ + p*ijk+effect + rT^effect
-sz —sz —sz —sz

where

*iP*;jk+effect =-P*ijk aijk E a\k t'ksz ^ =fsz ^

(2.24)

(2.25)

(2.26) -.

(2.27)

ik-
"M

ik
r!Jjk+effect =--I
-sz V

r*Tik(7)-l (k-XF) iik(r)
,ik-

^MREG
with

Jk
M

%EG

ikPgp = shuffling/discharge operator
ik

M = makeup feed vector
NREG = total number of regions in prnhlpm

9^z
for j = 1

r^jk+effect =0 for j f 1
and adjoint refueling discontinuity

z*ijk- = p ijk z*ijk
=SD _

(2.28)

(2.29)



TABLE 2.1 (continued)

FORWARD

2. Power Normalization:

ijkpijk =Jjk ££ ^T
-sz

E a\k £ikv
=* =fsz ^ sz

z s

3. Flux Shape:

(L -XF)ik iik(r) =0

where £ijk(r) =aijk <j,ik(r)

(2-10)

(2-n)

L_ = leakage, removal and inscatter operator

£ = fission source operator

X =
1

K
eff

lambda mode eigenvalue

2. Power Adjoint:

fijk _ 1
)ijk

f 9R)
a r-

9a

ADJOINT

ijk

(2.30)

-1jk ELVszj^z
substep j

3. Adjoint Flux Shape:

(L-xF)Tijk r*ik(7) =s*ik

N!_ijk(t) Xik iik Nijk(t) dt
=sz ^z -sz v '

where

*ik 3R^ +(A*ik.l)
Z&

ijk

E — T v
j vz V sz

(2-31)

(2.32)

f£zijk(t) xjk NJJk(t) dt
=sz -sz

substep j

1 rijk ijk .. ijk c ik

j z s -•- - sz
sz • " "sz |p gf



FORWARD

4. Flux Shape Normalization:

ik

£ vz £ V = ]

TABLE 2.1 (continued)

(2.12)

ADJOINT

4. Additional Relationships:

x*i jk =

J

*k +
all

space

,/^x 3R

•

all

space

I*T(r) F]t(r)
ik

dr = 0

L vz (^S*)ik =0

ik

dr (2.33)

(2.34)

(2.35)



14

at the time-step interface is to account for control rod movement or

any other discontinuity in the nuclide field.

The reactor power constraint (equation 2.10) along with equation

(2.12) are the defining equations for the normalization constant, a1jk.

Similarly, the time-independent diffusion equation written in operator

notation (equation (2.11 ))defines the spectral and spatial flux distribu

tion. When taken together, the normalization and distribution functions

describe the total group flux vector, £(r), in the reactor system.

The solution of the above equations is straightforward and several

computer codes have been written specifically for this purpose. The

specific calculational scheme utilized for this work will be briefly

outlined in Section III.

The Adjoint Equations of Depletion Perturbation Theory

A detailed derivation of the multicycle quasi-static adjoint burnup

equations is given in Appendix A. The results of this derivation are

summarized on the right side of Table 2.1. Before an explanation of

these adjoint equations is undertaken, however, their role in depletion

perturbation theory will be demonstrated.

The goal of any perturbation theory, whether static or time-

dependent, is the prediction of a perturbed response without direct

recalculation of the forward problem. In generalized depletion

perturbation theory, the specified integral response, R, can be a

functional of both the nuclide and flux fields. This functional takes

the general form of

f[N(r,t), (j)(r,E,t)] dr dE dt . (2.13)
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For the purpose of this study, however, only final-time responses were

considered due to the increased complexity when time integrated

responses are considered. Thus, the response functional is written as

a delta function in time. That is,

R = f[N(r,t), <|>(r,E,t)] <S(t - tf) dr dE dt (2.14)

For the derivation of the perturbation expressions relating a change

in the reference response to a design or data variation, we will use a

variational technique similar to that utilized in reference 13. With this

method, the space-continuous form of the forward quasi-static burnup

equations defined in equations (2.7)-(2.12) are treated as constraints

on the response defined in equation (2.14). These constraint equations

are appended to the response functional using Lagrange multipliers.

Using this technique one can define the following K-functional

K(N,a,i|;,A,6,P,C) - R(N,a,^)

k i

ik/E E an &T (r) [(k-AF) i(r)]iik

space

+ EE E p*ijk [pijk-aijk
k i j

all

space

T. .

dr-N Wtf) f^Cr-)^)]

-ell
k i j

dr

all

space j

k i

dr

all

dt /iJV,t)
substep

dt I lk(r,t)
timestep

^Nijk(^t)-(T1jk(r) +D)Nijk(7,t)"

.ik ik,N1K(r,t)-CIK(r-,t) 6(t-tik)

space i

EE a:
k i

fik ikT,dr (i1k(r).l)-l
all

space

(2.15)
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*ik/^ n*ijk M*ijk/^ ^ __J «*ikwhere r (r), P J , N J (r,t), and A are the Lagrange multipliers.

From the above functional one sees that if K is evaluated with the

exact solution to the constraint equation, then

K = R . (2.16)

A perturbation in either a data parameter 31 ,the reactor power PJ ,

or the initial condition C1 (r,tik) will result in an alteration in

K, or

K + K' . (2.17)

Again, if K1 is evaluated with the perturbed solutions to the forward

burnup equations, then

(2.18)K1 = R' .

Now expanding K' in a functional Taylor series expansion, one has

"9K
K' = K + ^6N

9N -

~9K

d\

30^

&X

9K xir~ 6a
9a

"3K

93
63

U

"US
9P

,nd
+ 2 order terms

6jt

6P (2-19)

where the brackets indicate integration over all phase space. If one

3K r)K
can force the quantities xrr, ^—,

^ 9P[ 9a

equations (2.16)-(2.19), one has

9K 3K 9K 9K
can force the quantities xtt, -t-, -tt, and rr- to vanish, then using

AR
~9K

93
63

"9K_
3P

6P "9K sr"9C 6^
2nd order

terms
(2.20)

Neglecting the second-order terms and assuming 63 is zero (nuclear data

perturbations were not considered in this study), equation (2.20)

reduces to the following perturbation expression



AR =
~9K_
9P

6P
"3K
9C

6C
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From the functional definition in equation (2.15), one has

and

"3K

3P
6P

!k~

E E £ (p Ap)
k i j

ijk

k i

dr (N*T(r) AC(r))ik
all

space

LLLL *,, (11"' AC)
k i z s

T ik

(2.21)

(2.22)

(2.23)

Equations (2.21)-(2.23) are the desired generalized depletion pertur

bation theory expressions. These indicate that if the Lagrange

multipliers, P 1J and N n , can be determined, one can predict the

change in the reference response due to a perturbation in the reactor

power or the time-step initial condition with only the evaluation of a

*i -jk
simple integral expression. It should also be emphasized that P J and

*ikN_ are independent of the specific perturbation and, therefore, only

need to be calculated once for each response of interest. Thus several

different design perturbations can be investigated once the adjoint

functions have been determined.

The true power of depletion perturbation theory as an analytical

tool can be realized only if one fully understands the relationship of

ik
a design change to the initial condition, C^ . A sensitivity analysis for

any design parameter that can be represented as a nuclide density in the

calculational model can be performed using depletion perturbation

theory. Design variables such as material choices (fissile, fertile,
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structural and coolant), material volume fractions, fissile enrichments

and assembly locations (i.e., fuel shuffling), etc., are all represented

as nuclide field variations from a reference model. Thus, design

perturbations such as these can be represented as an initial condition

ik
variation AC_ , and equation (2.23) can be utilized to predict their

effect on some specified response.

The advantages of depletion perturbation theory over static

generalized perturbation theory should also be noted. Not only can the

immediate effect on a design variation be determined, but the effect of

that change on future responses can also be investigated. For example,

the effect of a design variation in the initial core specification on

the reactivity of subsequent cycles can easily be calculated.

The above generic capabilities and benefits of depletion perturba

tion theory can be obtained only if the importance functions in equations

(2.22) and (2.23) (p*1^ and N^k, respectively) can be calculated in a
straightforward and cost-effective manner. As noted previously, the

defining equations for these adjoint functions are derived in Appendix

A and are summarized in Table 2.1. Equations (2.24) through (2.35)

were derived by forcing the functional derivatives of the K-functional

with respect to N_, a, iJj and A to vanish.

Although the adjoint quasi-static burnup equations appear complicated

at first glance, they are very similar in construction and meaning to the

forward burnup equations. The forward equations represent an initial

value problem while the adjoint set define a final value problem. Each

operation performed during the forward depletion calculations has a

corresponding adjoint expression. Table 2.2 attempts to display this

relationship and thus explain the purpose of each adjoint equation.
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TABLE 2.2

ONE-TO-ONE CORRESPONDENCE BETWEEN FORWARD
AND ADJOINT DEPLETION OPERATIONS

FORWARD

Initial condition on nuclide field
(Equation 2.8)

Forward depletion calculation
(Equation 2.7)

Power normalization
(Equation 2.10)

Flux-eigenvalue calculation
(Equation 2.11)

Normalization discontinuity

Flux shape discontinuity

Refueling/discontinuous nuclide
field

(Equations 2.8 and 2.9)

ADJOINT

Final condition on nuclide adjoint
field

(Equation 2.25)

Adjoint depletion calculation
(Equation 2.24)

Power adjoint calculation
(Equation 2.30)

Generalized fixed-source adjoint
calculation

(Equations 2.31 and 2.32)
*

P jump condition
(Equations 2.26 and 2.27)

*

r jump condition
(Equations 2.26 and 2.28)

Adjoint refueling discontinuity
(Equation 2.29)



20

Because of the similarity in the forward and adjoint problems, the

algorithm previously described for solving the quasi-static burnup

equations, if reversed in time, can generally be applied to the adjoint

problem. Thus the same computational methods used to solve the forward

burnup equations can be utilized with only moderate modifications to

calculate the adjoint functions from the expressions tabulated in

Table 2.1, page 11. Therefore, in principle, solving the adjoint equations

should be no more difficult than solving the forward problem. This also

suggests that the adjoint functions needed for the perturbation expres

sions of equations (2.22) and (2.23) can be generated at roughly the

same cost as a standard forward depletion calculation. This means that

considerable time and cost benefits could be obtained by using depletion

perturbation theory as a computational tool when many design variations

need to be investigated. Also, since space and time-dependent

sensitivity coefficients are a by-product of this approach, a more

detailed understanding of various neutronic processes is possible.

The next section will briefly describe the specific algorithms and

computational methods utilized to solve both the forward and adjoint

problems. It will also address some of the details of the adjoint

calculation and point out where possible improvements could be made.
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III. SOLUTION OF THE BURNUP EQUATIONS

As stated previously, several computer codes have been written

specifically for the accurate and efficient solution of the forward

quasi-static burnup equations. Two of these depletion codes readily

available to the author were the CITATION nuclear analysis code and

the VENTURE/BURNER modular code system.17"22 Both of these solve the

forward equations exactly as formulated in Table 2.1, page 11.

The CITATION code was originally chosen as the basis for a system

to solve both the forward and adjoint burnup equations. The two main

reasons for this choice was that CITATION is an older and, therefore,

more widely used code and also the programming details of the code were

much more familiar to the author. It has one major pitfall, however;

it cannot solve a generalized fixed-source adjoint problem. After care

ful study, it became apparent that major code modifications (completely

outside the scope of this work) would be necessary to implement this

particular capability into the CITATION code. For this reason, the

VENTURE/BURNER modular code system was chosen as the basis for the

solution of the adjoint system of equations. The purposes of this

section are to familiarize the reader with the VENTURE/BURNER

computational system and to describe in some detail the solution

algorithm for the adjoint equations within this modular system.

Solution of the Reference Burnup Equations

The VENTURE modular computation system for nuclear reactor core

analysis has been under continuing development for the last several

years. Reactor analysis problems are solved using multigroup finite-

difference diffusion theory techniques. Depletion calculations are
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possible and one-, two-, and three-dimensional geometries can be employed.

Emphasis in the methods development has been placed on satisfying the

requirements for analysis of fast breeder reactors. However, thermal

reactor calculations using a simplified cross-section treatment can also

be performed.

Some of the major code modules in this system and their computa

tional functions are listed in Table 3.1. These modules, along with

many others under development, communicate with each other through the

?V?4
use of standardized interface data files. These data files,

established by the Committee on Computer Code Coordination (CCCC),contain

a variety of information ranging from cross-section data to module

instructions. Many of the more frequently used interface files are

described in Table 3.2.

Of main concern here is the computational path one would follow in

performing a typical burnup analysis with this modular system. If an

adjoint calculation is to follow, the reference depletion solution is

somewhat more complicated due to the amount of information that needs to

be saved for the adjoint calculation. Since the adjoint formulation uses

the unperturbed flux and nuclide fields from the reference case, the

interface files containing this data must be retained. In addition, due

to the method of solution of the fixed-source adjoint calculation, one

also needs to perform (and store data from) a regular adjoint and

perturbation calculation at each time step during the forward depletion

calculation. These additional tasks roughly double the cost of a

reference depletion calculation relative to one that is not to be

followed by an adjoint calculation. However, the data generated from
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TABLE 3.1

MAJOR MODULES OF THE VENTURE/BURNER
COMPUTATIONAL SYSTEM

-MODULI.

VENTURE

BURNER

PERTUBAT

RODMOD

DENMAN

DEPTH

Depletion Perturbation

Theory

FUNCTION

Solves usual neutronic eigenvalue,
adjoint, fixed source, adjoint fixed-
source, and criticality search problems,
treating up to three geometric dimensions.
Also does first order perturbation
analysis.

Solves the nuclide chain equations to
estimate the nuclide concentrations at
the end of an exposure time and also
after a shutdown period.

Performs detailed first order static
perturbation calculations.

Used to position control rods during the
calculation of a reactor history.

Manipulates nuclide interface file. Used
to simulate fuel management until such
a module is available.

New module used to solve adjoint depletion
equations.
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TABLE 3.2

COMMONLY USED INTERFACE DATA FILES

JAML

CONTRL

ISOTXS

GRUPXS

GEODST

NDXSRF

ZNATDN

RZFLUX

RTFLUX

ATFLUX

EXPOSE

PERTUB

FIXSRC

CONTFNT

Module input instructions.

Nuclide ordered microscopic cross-
section data.

Group ordered microscopic cross-
section data

Geometry data.

Nuclide referencing data.

Nuclide concentrations.

Zone average fluxes.

Regular point fluxes

Adjoint point fluxes,
(regular and fixed-source)

Basic exposure data.

Perburbation integrals.

Source for either regular or adjoint
fixed-source calculation.

NOTE: Several additional "interface files" have been defined for
use in DEPTH, the Depletion Perburbation Theory module.
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one reference calculation can be utilized in any number of adjoint

calculations for various responses of interest.

The basic calculational path for a reference depletion calculation

using the VENTURE modular system is shown in Figure 3.1. It is simply

the quasi-static algorithm discussed previously. Additional operations

such as nuclide searches, control rod positioning, and more detailed

perturbation calculations than provided in the VENTURE module could be

performed at each time-step interface as desired. The end-of-cycle

eigenvalue calculation, listed as optional in Figure 3.1, is usually

performed since this point is quite often the final time for the subse

quent adjoint calculation. Data generated at this time point may possibly

be needed for the final condition on N , as specified by equation (2-25).

Solution of the Adjoint Depletion Equations

Based on the similarity of the forward and adjoint equations, a

time-dependent sensitivity module was developed and integrated within the

VENTURE/BURNER modular code system. Called DEPTH (for DEpletion

Perturbation THeory), the new module solves for the nuclide adjoint

vector and normalization or power adjoint (N (r,t) and P*(t), respectively).

It then calculates the generalized adjoint source necessary for the

flux adjoint calculation. Using this source, the VENTURE module solves

for the generalized adjoint shape function, r (r,E), and evaluates several

integrals involving both the forward and adjoint shape function.

Calculational control is then returned to DEPTH where the time-step jump

conditions are applied using the previously computed adjoint functions.

This procedure is repeated for each depletion time step, backwards
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PROBLEM SETUP

A. Cross section preparation

B. User input

LOOP OVER NUMBER OF CYCLES

LOOP OVER NUMBER OF TIME STEPS PER CYCLE

1. VENTURE

A. Flux-eigenvalue calculation and power normalization

B. Regular adjoint calculation

C. Perturbation calculation

D- Write regular flux, adjoint flux and perturbation
integrals on interface files

2. BURNER

LOOP OVER NUMBER OF SUBSTEPS PER TIME STEP

A. Depletion calculation

B. Power normalization

C. Write time-step nuclide densities on interface
files

3. VENTURE (optional)

A. Through D. above

4. FUEL MANAGEMENT MODULE

A. Perform fuel shuffling/discharge/refuel

B. Write nuclide densities on interface file

INTERFACE FILE MANIPULATION

Figure 3.1. Computational Path for Reference Depletion Calculati on.
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through time, until the initial time (in the forward sense) has been

reached.

The above sequence of calculations is outlined in Figure 3.2.

Comparison of this solution algorithm for the adjoint equations with

that of Figure 3.1 once again emphasizes the parallelism of the two

burnup formulisms. In addition to Figure 3.2, a simplified flow chart

of the calculational path within the modular system, emphasizing the

communication links between modules, is displayed in Figure 3.3.

The detailed calculational logic programmed into the DEPTH module

is illustrated in Figures3.4 and 3.5. A close analysis of this flow chart

as well as the programmed equations given in Table 2.1, page 11, should

provide sufficient detail even for the most interested reader. As can

be seen, much of the coding in DEPTH was devoted to interface file

processing and data management. The only numerical computations of

interest in the DEPTH module are the solution to the transmutation

* *

equation and the evaluation of the time integrals in the P and S

equations. The numerical techniques utilized are quite standard

however.

A straightforward matrix exponential solution was applied to the

19nuclide chain equations. A system of linear first-order equations

given by

^•N(t) =4N(t) (3.1)

has the solution

N(t+At) = B N(t) (3.2)

with
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PROBLEM SETUP

A. Use cross section and input from reference calc.

B. Interface files produced in reference calc.

C. H(tf) = ttvj- |. and other user input

LOOP OVER NUMBER OF CYCLES (Plus 1)

LOOP OVER NUMBER OF TIME STEPS PER CYCLE

1. DEPTH (skip to F on first call to DEPTH)

A. Calc. r* effect using PERTUB interface files
B. Apply r* jump condition

C. Write N^k on NSTAR "interface file"
D. Exit if t = tQ
E. Apply adjoint refueling jump condition

F. Prepare necessary data for present time step from
interface files

LOOP OVER NUMBER OF SUBSTEPS PER TIME STEP

G. Adjoint depletion calc.

H. Calc. P and apply jump condition

I. Calc. S* and write FIXSRC interface file

2. VENTURE

A. Read FIXSRC and other interface file data

B. Generalized fixed-source adjoint calc.

C. Perturbation calc.

D. Write perturbation integrals on PERTUB interface
file

Figure 3.2. Computational Path for Adjoint Depletion Calculation.



STACKED RZFLUX,
ZNATDN, RTFLUX,
ATFLUX, AND PERTUB

INTERFACE FILES FROM

FORWARD CALC.

r
CALC. N*f P*# AND S*
IN 'DEPTH' r-

I

INTERFACE FILES
USER

INPUT

FIXSRC

1
CALC. T*(f, E) AND
PERTURBATION

INTEGRALS IN

'VENTURE'

LOOP OVER NUMBER OF TIME STEPS

N*(r, t)
SPECIFIC

APPLICATION

PERTUB

Figure 3.3. Simplified Flow Chart of Calculational Path Within Modular System.

to
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DETAILED FLOW CHART OF CALCULATION PATH
WITHIN THE DEPTH MODULE

PROCESS THE FOLLOWING
INTERFACE FILES

CONTRL NDXSRF

EXPOSE 'DATAIN'

SAVE BEGINNING

OF SUBSTEP

DENSITIES

CALC DIFFUSION
COEFF. AND

WRITE 1 D CROSS

SECTION DATA ON

'DATAIN'

\
\

/
/

PROCESS STACKED

ZONE FLUX AND

NUCLIDE DENSITY

FILES

NORMALIZE FLUX

SHAPE AND

MAGNITUDE

SETUP MICROSCOPIC

REACTION RATES

AND DECAY DATA

DO FORWARD

DEPLETION CALC

AND SAVE

SUBSTEP DENSITIES

DO N\ P* AN

S' CALC

SEE FIG. 3 5

Figure 3.4. Detailed Flow Chart of Calculational Path
Within the DEPTH Module.
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DETAILS OF THE N\ V, AND S- CALCULATIONS

PERFORMED IN THE DEPTH MODULE

»

•"

READ REACTION

RATE DATA FOR

PRESENT REGION

I

FORWARD DEPLETION CALC

1. SETUP MATRIX EXP. TERMS

2. MATRIX EXP. SOLN.

3. SAVE SUB SUBSTEP DENSITIES

FOR SUBSEQUENT INTEGRATIONS

_

tn

F- ADJOINT DEPLETION CALC (N- CALCI
m tfi 1. SETUP MATRIX EXP TERMS

C/l o 2. MATRIX EXP SOLN.

O

O u.

Q. O

8 if,

3. SAVE SUB-SUBSTEP DENSITIES

03 °Z
PART OF P- CALC £P

cc

>

-» CO

Z

1. SETUP MATRIX EXP. TERMS

2. DO P' TIME INTEGRATION FOR PRESENT REGION

3. KEEP CUMULATIVE SUM OVER REGIONS

z> z
z g

Q.

O
o

4. KEEP CUMULATIVE SUM OVER SUBSTEPS

IF NECESSARY
> V.
o z
r °

en ofe

-i a:

PART OE S" CALC

1. SETUP MATRIX EXP. TERMS

r. O 2. DO S' TIME INTEGRATIONS FOR PRESENT REGION
O or
O UJ
—J CO

3. KEEP CUMULATIVE SUr/I OVER SUBSTEPS

Z

CALC P/\RT OF

LAST TERM IN

S' EXPRESSION

_

AT SUBSTEP LEVEL CALC P\ ?•
'

IF POWER NORM IS

EFFECT AND

APPLY JUMP
,

PERFORMED AT CONDITION

SUUSIEP BOUNUAHY

CALC

/S*lr, flvlr, fldrdc
CALC S'

PROCESS STACKED

RTFLUX, ATFLUX,

AND PERTUB

INTERFACE FILES

SAVE PRESENT

TIME STEP N"

Figure 3.5. Details of the N. , P , and S Calculations.
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B = exp [AAt]

I+A_At +Jp (AAt)2 +
(3.3)

Thus, for a given At (calculated by DEPTH), the matrix exponential, B,

can be easily calculated with convergence limits set by user input. Once

B_ has been determined, successive matrix multiplications are performed

using equation (3.2) to obtain the nuclide density vector at various

time points.

In practice only the nonzero elements of A and B are stored. In

addition to memory requirements, this technique also reduces the

computational time required for the evaluation of equation (3.2) since

multiplication by zero is eliminated. This simple, efficient, and

relatively inexpensive method is utilized to solve both the forward and

adjoint burnup equations.

The time integrals are also evaluated using an accurate and efficient
25

numerical scheme. The expression within the integrals is first

evaluated using the data generated and stored during a depletion substep.

A cubic spline is then fitted to this tabular data. Finally, the fitted

spline function is integrated in closed form. The resulting approximation

is equivalent to the trapezoid rule plus a correction term involving

second derivatives of the spline function. This technique is applied in
* *

the evaluation of both P andS , equations (2.30) and (2.32), respectively.

Details of the adjoint flux calculation and subsequent evaluation of

the perturbation integrals performed within the VENTURE module are

documented elsewhere. It should be noted, however, that additional

data files from the forward calculation are required for VENTURE to

complete its assigned tasks.
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The RTFLUX, ATFLUX, and PERTUB data files are necessary for the

calculation of the "uncontaminated" generalized adjoint flux. To

clarify this statement, recall the generalized adjoint equation

(equation (2.31)),

k k k

(k-*£) I = S (3.4)

with the associated orthogonality condition (equation (2.34)).

r*TF ± dr =0 . (3.5)
all

space

Equation (3.4) is an inhomogeneous equation having a general solution

made up of homogeneous and particular parts. The regular adjoint flux,
*

± , saved in ATFLUX from the forward calculation, is the solution to the

homogeneous equation,

(k-*£.)* i* =0 . (3.6)

*Letting r^ denote a particular solution, the general solution to equation

(3.4) can be written

I* =I^ +a^ , (3.7)

•ft

where "a" is some arbitrary constant. After r_ is calculated in the
*

VENTURE module, the unique solution, £ , is determined by "sweeping out"

the fundamental mode solution, <j>„. That is, a unique generalized adjoint

function can be defined only if a unique value of "a" exists.

For the problem at hand, the auxiliary condition specified in

equation (3.5) can be used to define "a". Substituting equation (3.7)

into equation (3.5), one has
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(3.8)

The denominator of equation (3.8) is contained in the PERTUB interface

file generated in the forward calculation. The numerator can be

evaluated using the contaminated generalized adjoint and the forward

point flux file, RTFLUX, also saved from the forward burnup solution.
*

The uniqueness of £ is then guaranteed by the application of equation

(3.7). VENTURE'S role is then completed with the evaluation of the

following perturbation integrals using the "uncontaminated" generalized

adjoint flux.

r (r,E) ij. (r,E) dr

k O

r (r,E) / i> (f,E) dr

* (r,E) X(E) r (r,E) dE

(3.9)

(3.10)

dr (3.11)

These integral evaluations are passed to DEPTH via the PERTUB data file

and are then utilized in the evaluation of the r jump condition.

A key feature built into the DEPTH module is the option to bypass

the fixed source adjoint calculation. As apparent from Figure 3.4

and 3.5, the use of this option eliminates a considerable portion of

the operations performed in DEPTH. Even more important, however, is the

savings associated with bypassing the r (r,E) calculation within VENTURE,

since for many realistic calculational models the forward/adjoint flux
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solution completely dominates the overall depletion calculation. Thus,

the use of this option allows a fast, inexpensive but less accurate

determination of the adjoint importance functions needed for the depletion

perturbation expression of equation (2.21).

There are, however, limitations associated with this approximation.

When using this option, one implicitly assumes that the perturbation to

be investigated will not have a large effect on the spectral or spatial

distribution of the flux or that the response of interest is insensitive

to such changes. As will be shown in the next section, it is not always

obvious which design variations fall into this category. At this point,

it will suffice to say that care should be exercised when using this

option.

A second feature that may be useful in some instances is available

if no r (r,E) calculation is to be performed. The H (r,t) and P (t)

adjoint importance functions may be determined for any number of responses

in one calculation. This option cannot be exercised if the full set of

adjoint equations are to be solved because a fixed-source calculation

would be necessary for each response. This would be prohibitively

*

expensive in a single calculation. When using the no-r switch, however,

approximate sensitivity coefficients for several responses may be

calculated in a single computer run.

Calculational redundancy is also apparent in Figures 3.4 and 3.5,

especially in the calculation of the forward nuclide field, iN(r,t). The

time-dependent nuclide densities were first calculated in the reference

depletion calculation. However, only the beginning of time-step

concentrations can be saved with the present interface file structure.

These concentrations are then passed to DEPTH via a stacked "interface
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file." The proper nuclide densities are chosen for the present time

interval and another forward depletion calculation is performed so that

the beginning of substep densities can be stored. This computation of

the nuclide field is necessary because the adjoint solution is performed

in reverse time order, thus requiring that the last substep (in the

forward sense) be used first in the adjoint calculation. A third

forward burnup solution is then performed (see Figure 3.5) so that

the nuclide field will be defined at intermediate substep timepointo
* *

for the subsequent P and S^ time integrations.

An alternate procedure would be to modify the BURNER module to store

the forward nuclide concentrations at the desired times and then have

DEPTH use these directly. Although this method may be more efficient

in terms of computer time, it could create large data-handling problems.

In any case, the method programmed seemed to be easier to implement at

the time, and, considering the speed of a typical depletion calculation

relative to that of an eigenvalue or fixed source problem,it does not

compromise a considerable amount of efficiency.

It should be noted that DEPTH was developed as an aid in the

evaluation of a time-dependent perturbation method applicable to burnup

analysis. As such, it was not intended to be widely distributed as a

production module of the VENTURE system. On the other hand, care was

taken during the programming phase of this work to insure that the

conversion to a fully acceptable and operational module would be a rather

straightforward task. The majority of the work would involve the data

transfer and storage portions of the code. However, only minor

modifications would be required for DEPTH to meet the CCCC's interface

file specifications.
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Several sample problems have been utilized to examine the

adequacy of the DEPTH module as well as the coupled neutron/nuclide

perturbation theory concept in general. The following section will

describe the details of these test problems and, hopefully, give the

reader a better understanding of depletion perturbation theory.



38

IV. NUMERICAL EXAMPLES

The simplest way to check the validity of a new calculational

method is through comparison of results with other well-established

numerical techniques. This was the approach taken in this study. Several

representative test problems were run using both the DEPTH module and the

direct recalculation method to determine various perturbed responses.

These sample problems progressed in complexity from simple one-dimensional,

one-group cases to more realistic multidimensional, multigroup depletion

problems. Multicycle perturbation calculations, utilizing the adjoint

refueling discontinuity as discussed previously, were also performed and

compared with direct multicycle burnup calculations.

Responses of interest included K ff, reaction rate ratios and

nuclide inventories. Due to the simplicity of the adjoint sources

involved, the nuclide inventory response was utilized most often. However,

the more detailed sources required for the other responses were

determined for several cases of interest.

Perturbations to the reference system included variations in the

fissile, fertile, structural and coolant material concentrations within

the fast reactor models utilized in this study. Material densities were

perturbed locally and globally so as to change the distribution as well

as magnitude of the nuclide field within the system.

Interpretation of the Adjoint Functions

Perturbations and responses were matched so that the three components
k k k

of the perturbation formulism (N , P and r effects) could be studied

separately. Before presenting detailed calculation results, however, the
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general effects of any perturbation to the nuclide field should be

completely understood. For the purpose of this study, the effect of a

nuclide density variation in the mathematical model of a nuclear system

is broken into three distinct components. As noted earlier, the response

of interest is a functional of the nuclide field, the flux normalization

and the flux distribution in both energy and space. That is,

R = f[N(r,t), a(t), iKr.E.t)] 6(t-tf) drdEdt . (4.1)

Therefore, the change in a response due to some design perturbation is

reflected through the subsequent variation in the nuclide field, flux

normalization and/or flux distribution. These three components fully

account for the observed response in the perturbed state.

In the examples to follow a variation in R due to a nuclide change

is termed the "direct effect" or "N effect," a variation in R due to a

flux normalization change is called the "P effect" and a change in the

response due to a variation in the flux distribution is said to be the

*

"r effect." It should be noted, however, that the contribution of these

separate effects to the overall response is somewhat blurred in multistep

problems due to the jump conditions that are applied at the time bound-

k k k

aries. However, for one time-step problems the N , P and r effects

can be tabulated separately displaying the relative contribution of each

effect to the overall perturbed response.
*

The "N effect" is due to a direct nuclide change or one coupled

through the burnup chain. For example, if the desired response was the

233
U inventory at the end-of-cycle (EOC), then a perturbation in the

• . 233
initial U concentration would directly contribute to the perturbed

pop

response. Likewise, a variation in the Th density at beginning-of-cycle
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233(BOC) would contribute to the perturbed EOC U inventory through

the burnup chain,

232 Th (r^233pa _X^ 233U .

However, aperturbation in 238U cannot directly affect the response of
* ?38

interest. Thus, the N effect for U would be zero. Thus one can

interpret the adjoint nuclide density vector, N (r,t), as the "direct"

importance of a nuclide variation to the desired response.

The "P* effect" is the contribution to the total perturbed response

due to a change in the overall flux normalization. The reference normal

ization is calculated from the power constraint imposed upon the system,

a = P . (4.2)

NT(r) L, af (r)i(r)dr
Jail ^ ~
space

From this one sees that if any nuclide having a nonzero microscopic

fission cross section is perturbed, there will be a corresponding varia

tion in a. This normalization factor also appears in the transmutation

equation and, therefore, will result in a perturbed nuclide field at

future times. Thus the P*(t) adjoint function represents the importance

of a normalization change to the integral response of interest.
k

It should be noted that the P effect is not nearly as well behaved

as the N* effect. Much of the direct contribution to the response can

be estimated by an analysis of the burnup chains involved. In many cases,
*

however, it is not even clear what algebraic sign the P contribution
233

should have. Considering the same example as above (i.e., U response

and perturbation), one sees that a would decrease with an increase in
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poo 232
U. This would result in less Th capture which would tend to

233 233 233
decrease the U EOC inventory. However, the Pa and U loss rates

233
would also decrease, thereby increasing the U inventory. Since these

*

tend to cancel each other, it is not clear what sign the P effect should

232 233
carry in systems containing comparable amounts of Th and U.

The last and probably most interesting contribution to the total

change in the response is due to the "r effect." The spectral and

spatial redistribution of the neutron flux field induced by some material
* ->

perturbation is accounted for in this term. The r (r,E) adjoint function,

therefore, represents the importance of a variation in the neutron flux

field within the system to the desired response.

It is the addition of this term that makes the time-dependent

perturbation theory utilized in this study superior to those presented

by others. In most cases the importance of a change in the flux field

to the response of interest was assumed to be minimal and therefore

excluded from the perturbation formulisms. Thus, the depletion perturba

tion theory presented here represents the most general approach to the

problem, in that all first-order effects are considered.

The price of this generality is the added complexity associated

with the computation of the generalized adjoint flux. However, its

benefit is that it allows a complete analysis to be performed and also

permits the analysis of perturbations not possible with theories that

exclude the flux effect. For example, variations in structural, coolant

or fission product densities quite often have no direct effect on the

response of interest. Also, since they are nonfissionable nuclides,

they cannot contribute to the P effect. Thus,their contribution to the

perturbed response is due solely to their indirect effect on the neutron
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balance of the unperturbed system. Several cases where the r effect

plays a dominant role will be illustrated in the numerical examples to

follow.

One-Dimensional Calculations

Several sample problems illustrating the use, accuracy, and benefits

of depletion perturbation theory have been formulated. However, a one-

dimensional spherical fast reactor model was the real workhorse of this

study. It was first utilized as a check on the equations coded into

DEPTH and later used to validate the depletion perturbation theory in

general.

This simplified 1-D calculational model, shown in Figure 4.1, con

sists of a three-region core surrounded by two radial blanket regions.

The reference nuclide concentrations for this system, listed in Table

4.1, are representative of an "equilibrium cycle" 233u/238u denatured

LMFBR with a Th02 radial blanket. Some of the data employed in the

burnup calculations performed using this model are given in Table 4.2.

Information concerning the transmutation processes modeled in the

calculations may be useful in understanding some of the results to

follow. In addition, selected data from reference depletion calculations

using both 1-group and 9-group cross sections are tabulated in Table

4.3. The unperturbed responses are presented so that actual perturbed

responses can be calculated from the AR/R values given later.

Lastly, given in Table 4.4 are the material perturbations made to the

reference system. It should be noted that only one nuclide was varied for

each case. This was done so that the interpretation of the results would

be a rather straightforward procedure. When several perturbations are
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RB = Radial Blanket
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Figure 4.1. 1-Dimensional Spherical Reactor Calculational Model.
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TABLE 4.1

REFERENCE BOC NUCLIDE DENSITY VECTORS FOR 1-D MODEL

Nuclide CZ #1 CZ #2 CZ #3 RB #1 RB #2

TH228 0.0 0.0 0.0 0.0 0.0

TH232 2.7669E-03 2.7669E-03 2.7669E-03 1.4475E-02 1.4475E -02

PA231 0.0 0.0 0.0 0.0 0.0

PA233 0.0 0.0 0.0 0.0 0.0

U 232 0.0 0.0 0.0 0.0 0.0

U 233 8.2324E-04 8.2324E-04 8.2324E-04 1.6422E-04 1.6422E-04

U 234 0.0 0.0 0.0 0.0 0.0

U 235 6.2594E-06 6.2594E-06 6.2594E-06 0.0 0.0

U 236 0.0 0.0 0.0 0.0 0.0

U 238 4.1970E-03 4.1970E-03 4.1970E-03 0.0 0.0

NP237 0.0 0.0 0.0 0.0 0.0

NP239 0.0 0.0 0.0 0.0 0.0

PU238 0.0 0.0 0.0 0.0 0.0

PU239 1.5467E-04 1.5467E-04 1.5467E-04 0.0 0.0

PU240 8.6224E-06 8.6224E-06 8.6224E-06 0.0 0.0

PU241 3.2695E-07 3.2695E-07 3.2695E-07 0.0 0.0

PU242 1.1106E-08 1.1106E-08 1.1106E-08 0.0 0.0

AM241 0.0 0.0 0.0 0.0 0.0

AM243 0.0 0.0 0.0 0.0 0.0

CM244 0.0 0.0 0.0 0.0 0.0

FP RL 0.0 0.0 0.0 0.0 0.0

NA 8.5936E-03 8.5936E-03 8.5936E-03 7.0091E-03 7.0091E-03

SS COR 1.4757E-02 1.4757E-02 1.4757E-02 0.0 0.0

0 16 1.6959E-02 1.6959E-02 1.6959E-02 2.3358E-02 2.3358E-02



1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)
21)
22)
23)
24)

TABLE 4.2

DATA SPECIFIED FOR TRANSMUTATION PROCESS

Transmutations Specified

Parent Daughter

TH232

TH232

PA231

PA233

PA233

PA233

U 232

U 232

U 233

U 233

U 234

U 235

U 236

U 238

U 238

NP237

NP239

PU238

PU239

PU240

PU241

PU241

PU242

AM243

PA233

PA231

U 232

U 232

U 233

U 234

TH228

U 233

U 232

U 234

U 235

U 236

NP237

NP237

NP239

PU238

PU239

PU239

PU240

PU241

PU242

AM241

AM243

CM244

Process

(N,G)
(N,2N)
(N,G)
(N,2N)
DECAY

(N,G)
DECAY

(N,G)
(N,2N)
(N,G)
(N,G)
(N,G)
(N,G)
(N,2N)
(N,G)
(N,G)
DECAY

(N,G)
(N,G)
(N,G)
(N,G)
DECAY

(N,G)
(N,G)

1)
2)
3)
4)
5)
6)
7)
8)
9)
10)
11)
12)
13)
14)
15)
16)
17)
18)
19)
20)

Decay Data

Nuclide Decay Constants (1/Sec)
TH228 1.155999E-08
TH232 1.579999E-18
PA231 6.311998E-13
PA233 2.970999E-07
U 232 2.967999E-10
U 233 1.359999E-13
U 234 8.859997E-14
U 235 3.080000E-17
U 236 9.149999E-16
U 238 4.870000E-18
NP237 9.979996E-15
NP239 3.413998E-06
PU238 2.539999E-10
PU239 8.999998E-13
PU240 3.339998E-12
PU241 1.559999E-09
PU242 5.779996E-14
AM241 4.800001E-11
AM243 2.749998E-12
CM244 1.219999E-09

en
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TABLE 4.3

SELECTED DATA FROM REFERENCE 1-D DEPLETION CALCULATIONS

Reactor Power Level 1000 MW(t)

Selected 1-Group Calc 9-Group Calc
Data Time (Days) Time (Days)

0.0 91.3 274 0.0 91.3 274

Keff 1.0523 1.0136 0.9686 1.0116 0.9707 0.9245

C8/F9
in cz #1 0.1463 -- -- 0.1490 0.1508

232u

Inventory (KG) 0.0 0.0698 0.2879 0.0 0.0592 0.2404

233
"JU
Inventory (KG) 1016.1 980.70 981.98 1016.1 984.33 998.91

239D
Pu

Inventory (KG) 125.07 148.90 192.68 125.07 149.50 194.60
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TABLE 4.4

MATERIAL PERTURBATIONS MADE TO REFERENCE SYSTEM

Nuclide Perturbed
Case # at BOC Location

1
232
"^TH All core zones

2
233
"°u All core zones

3
233
"^u Core zone #3

4 Stainless steel All core zones

5 Stainless steel Core zone #1

6 Stainless steel Core zone #3

7 160 All core zones
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made simultaneously, it often becomes an impossible task to fully

understand a particular observed behavior. In many cases cancellation

occurs and it is usually not intuitively obvious which effect should

dominate. Thus, throughout most of this study, only simple material

perturbations were made to the reference system.

Nuclide Inventory Responses (one time step). With the background

information now completed, we can finally get to the numerical results.

As mentioned earlier, the method used to benchmark the DEPTH module was

by comparison of perturbation theory results with direct calculation.

Tables 4.5 and 4.6 display the first of several comparisons to be pre

sented. They compare time-dependent linear perturbation theory results

with direct calculations for nuclide inventory responses after one

depletion timestep (91 full power days). Results using both 1-group

and 9-group cross sections are tabulated.

Several points need to be emphasized regarding these results. Let

us first concentrate on the last few columns of both tables. Except
poo poo

for a few perturbation/response pairs ("0u/"^U combinations), the

depletion perturbation theory (DPT) results and direct calculations are

in excellent agreement. The percent error in the predicted AR is

generally in the range of only a few percent or less. It should be noted

that the perturbation theory in general is only accurate to first order.

Thus, these are extremely good results for perturbations on the order of

10% or more.

A second area needing some emphasis is the individual contribution

of the three adjoint functions to the total perturbed response. The one

depletion-step problems being discussed were designed for exactly this

purpose. Perturbation/response pairs were chosen to highlight individual



TABLE 4.5

COMPARISON OF DPT RESULTS WITH DIRECT COMPUTATIONS FOR THE 1-D, 1-GROUP CALCULATIONS

a

Case

#

1

2

3

Percent Chanqe in Response

Perturbation Results

Direct

Calculation

1.8262

-1.4181

-0.7180

Specified
Response

(Tf = 91 days)

232
"^U
Inventory

N* Effect P* Effect r* Effect Total

%

Diff.

1.9667

7.1593

4.0180

-0.1259

-8.7678

-4.7849

-0.0132

-0.0432

-0.0079

1.8275

-1.6517

-0.7748

0.07

16.47

7.90

233u
Inventory

1

2

3

0.1802

5.8338

4.2197

0.0035

0.2420

0.1321

-0.0083

-0.0256

0.0591

0.1754

6.0502

4.4109

0.1752

6.0901

4.4148

0.11

-0.66

-0.09

239Pu
Inventory

1

2

3

-- -0.0160

-1.1119

-0.6068

0.0019

0.0075

-0.0062

-0.0141

-1.1044

-0.6130

-0.0141

-1.0443

-0.6071

0.00

5.76

0.97

aSee Table 4.4.

-pi



TABLE 4.6

COMPARISON OF DPT RESULTS WITH DIRECT COMPUTATIONS FOR THE 1-D, 9-GROUP CALCULATIONS

Percent Change in Response

%

Perturbation Results

DirectSpecified
Response

(Tf = 91 days)

232

Inventory

Case3 N Effect P Effect r Effect Total Calculation Diff.

1

2

3

4

2.1705

7.3401

4.0213

-0.1189

-8.8703

-4.8351

0.0534

2.5673

1.5027

-2.8108

2.1050

1.0370

0.6890

-2.8108

2.0985

1.2806

0.8531

-2.7300

0.31

-19.02

-19.24

2.96

233u
Inventory

1

2

3

4

0.8134

5.8030

4.1991

0.0029

0.2162

0.1178

0.0058

-0.0465

0.0929

-0.0698

0.1805

5.9726

4.4099

-0.0698

0.1801

6.0735

4.4145

-0.0687

0.22

-1.66

-0.10

1.60

en

O

239D
Pu

Inventory
1

2

3

4 --

-0.0154

-1.0646

-0.6253

-0.0306

-0.2058

-0.1330

0.1294

-0.0460

-1.2704

-0.7583

0.1294

-0.0468

-1.2716

-0.7425

0.1291

-1.70

-0.09

2.13

0.23

See Table 4.4.
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233 233
effects. In particular, the U perturbations paired with the U

*

response has the "N effect" as the dominant term. The change in the

239 *
Pu inventory due to perturbation cases 1-3 are mainly due to the "P

*

effect". Finally, as indicated in Table 4.6 the r effect" is

singled out with the stainless steel material variation (case 4). This

method of separating the different effects was used to prove that each

adjoint function was being properly computed in DEPTH and that they could

accurately predict changes in the response due to direct effects,

normalization effects and/or flux distributional variations. Careful

examination of Tables 4.5 and 4.6 clearly shows that this goal has been

accomplished.

With the assurance that everything was being calculated correctly,

an attempt was made to explain the isolated discrepancies apparent in

Tables 4.5 and 4.6. Further investigation has shown that the observed

differences relative to the direct calculations can be directly attributed

to nonlinear effects. In fact, if the magnitude of the perturbation is

reduced to only a few percent, then the direct and perturbation results

become essentially identical.

The degree of nonlinearity varies markedly among the different

233 232
perturbation/response pairs investigated, with the U/ U pair being

the worst offender. Figures 4.2 through 4.4 show the nonlinear nature of

several perturbation/response pairs. The straight lines represent the

linear perturbation results while the indicated points are based on

232
direct calculations. Figure 4.2 displays the nonlinearity of the U

239
and Pu responses in the 1-group calculations due to the increase in

233
the U concentration throughout the core. In both these cases the

nonlinear behavior can be attributed to the large flux normalization
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233
change associated with the U perturbation. For example, a 7% decrease

233
in flux normalization resulted from the 10% increase in U concentra

tion. Figure 4.3 emphasizes this observation even further by displaying

233
the effects of different perturbations; one ( U) causing a large

232
normalization change and the other ( Th) affecting the flux magnitude

only minimally. Here one see that the results of perturbations of

232
up to 50% in the Th density can be accurately predicted. This is

*

due to the N effect being the dominant contribution to the perturbed

232 232
U response for a Th perturbation. It should be emphasized that

* *

in the limit of no flux change (P and r effects are zero), the

N effect can predict the perturbed response exactly. Therefore,

whenever this term dominates, accurate results can be expected for

even large material perturbations.

*

The converse of this statement is also true. If the P effect

contributes significantly to the overall response, then nonlinear

behavior will become apparent with an increase in the perturbation

magnitude. This is just the observation made from Figures 4.2 and

233 232
4.3. The reason for the extreme nonlinearity of the U/ U combina-

233 239 *
tion relative to the U/ Pu pair is that the P effect is

232
approximately eight times the magnitude of the total U response

variation.

Another source of nonlinear behavior is from the r contribution

to the overall response. Nonlinearities can be expected when there are

large spatial and spectral variations in the flux distribution.

232
This type of nonlinearity can be observed in Figure 4.4 for the U

poo
and Pu responses. The stainless steel density variation in the

9-group problem mainly affected the neutron spectrum rather than
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232its spatial distribution. Since the production of U through (n, 2n)

232 233 232
reactions with Th and U has a high energy threshold, the U

inventory can be expected to be very sensitive to the first group flux.

Figure 4.5 compares the important energy ranges of the reference spectrum

at core center to that for the case of the 50% increase in structural

material in the core. In this case the first group flux is reduced

by about 8% relative to the reference calculation. This large

232
difference is the reason for the nonl inearities observed for the U

239
response in Figure 4.4. On the other hand, the Pu inventory in the

232
reactor is not nearly as sensitive to spectral changes as the U

response and, therefore, exhibits a relatively linear and very weak

relationship to the stainless steel density in the core.

A final point needs to be made concerning the nonlinear nature of

some perturbation/response pairs. Since we are admittedly working with

a linear perturbation theory, one cannot expect reliable results for very

large perturbations. However, numerical experiments to date have

indicated that in many cases very accurate predictions can be made for

perturbations as high as 50%. It seems that behavior similar to the

233 232
U/ U combination is an exception rather than the rule. Therefore,

*

one should exercise caution when cancelling effects (N = 7.3% and

P* =- 8.9%) similar to that for the 233U/232U case are observed. In

most other cases, experience and intuition should be used as a guide in

judging the reliability of perturbation theory results.

By this time the reader should be confident that the DEPTH module

is working properly and that the Depletion Perturbation Theory (DPT)

utilized in this study can be used to provide reliable estimates of

perturbed responses. However, before continuing with examples of more
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realistic depletion problems, one should be aware of some of the details

that went into the generation of Tables 4.5 and 4.6.

pop
A Detailed Example. Consider, for example, the U response after

91.3 days of reactor operation. The 9-group case (instead of the 1-group

calculation) will be considered for the same reasons as mentioned earlier.
* * *

Although the N and P effects are very similar, the r effect is much

more interesting for the multigroup calculation. This is due to the

232
strong energy dependence of the U response. This energy importance is

illustrated in Figure 4.6 where a comparison of 1-group and 9-group U

responses is made. As apparent, the 1-group response is relatively

insensitive to the r effect caused by the stainless steel perturbation.

The first step in performing a depletion sensitivity analysis is

the definition of the desired response functional.+ In the present

case the response is to be a nuclide inventory at some final time, tf.

Therefore, the response functional can be written as

R = aH !lT(^) N(r,tf) dr , (4.3)
space

where h[r) is a vector that selects the appropriate nuclides for the

response of interest. In this instance, it is a constant vector that

232
is only nonzero in the U position. The constant converts from atoms

232
to kilograms, since the desired response is kilograms of U.

One next needs to determine the three adjoint sources (•—, ~ and
9N 3a

3R ~"g- from equations (2.25), (2.30) and (2.32), respectively) that must be

It is assumed that a forward reference depletion calculation has
already been performed. See Figure 3.1, page 26.
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supplied to DEPTH. For a pure nuclide response 3R/3a and 3R/3^ are zero,

and 3R/3iN is given by,

3R _ 1

3NZ " v2

v

f 3R .•*
vz 3N(r) dr

i f (4-4)1 h(r) dr =hz .

The result of the operation in equation (4.4) is N*(tf), as shown in
Table 4.7.

The DEPTH module is then given calculational control of the problem.

* * +Starting with N.z(tf) as the final-time boundary condition, N (tQ) is cal

culated via equation (2.24). Table 4.8 displays the results of this

calculation. As apparent, the only nonzero terms are those that can con-
pop

tribute directly to the U response. Examination of Table 4.2, page 45,

231 233 233
shows that Pa, Pa and U have a direct parent/daughter relation-

232 23?
ship to U through the burnup chains. Also, Th is involved in the

232 ?31 P0!^
production of U through its production of Pa and Pa. In fact,

the relative magnitudes of the N(tj) terms indicate that the main 232U
production path begins with 232Th, with the chain, 232Ti/n>2nr) 231pa (n.,y) 232,,

During the calculation of N(tj), DEPTH also preserved the data
"A" k

necessary for the P and S integrals given in equations (2.30) and (2.32).
*

A P value of 6.899E-11 kg/watt was calculated using equation (2.30).
k

This was then used to evaluate the P effect jump condition in equation
k

(2.27), with the resultant P effect being given in Table 4.9. Here it

can be seen that only the fissionable isotopes have nonzero P effects.

Also the nuclides with the largest fission cross sections (233U, 235U,
239 241

Pu, and Pu) dominate this contribution to the overall response.
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TABLE 4.8

N (tn) FOR ^U INVENTORY RESPONSE
(1-D, 9-GRP. PROB.)

Nuclide CZ #

0.0

] CZ #2 CZ #3 RB # ] RB #2

TH228 0.0 0.0 0.0 0.0

TH232 7.5411E--06 4.4361E--06 1.2074E--06 5.2982E--08 6.3133E-10

PA231 4.3597E-•02 3.4025E--02 1.8826E--02 6.6132E-•03 1.0329E-03

PA233 6.0386E-•05 4.7032E--05 2.4323E--05 3.2087E-•06 2.4978E-07

U 232 3.5585E- 01 3.6250E-•01 3.7277E-•01 3.8048E- 01 3.8377E-01

U 233 4.8482E- 05 3.8249E- 05 2.0167E- 05 2.7024E- 06 2.1144E-07

U 234 0.0 0.0 0.0 0.0 0.0

U 235 0.0 0.0 0.0 0.0 0.0

U 236 0.0 0.0 0.0 0.0 0.0

U 238 0.0 0.0 0.0 0.0 0.0

NP237 0.0 0.0 0.0 0.0 0.0

NP239 0.0 0.0 0.0 0.0 0.0

PU238 0.0 0.0 0.0 0.0 0.0

PU239 0.0 0.0 0.0 0.0 0.0

PU240 0.0 0.0 0.0 0.0 0.0

PU241 0.0 0.0 0.0 0.0 0.0

PU242 0.0 0.0 0.0 0.0 0.0

AM241 0.0 0.0 0.0 0.0 0.0

AM243 0.0 0.0 0.0 0.0 0.0

CM244 0.0 0.0 0.0 0.0 0.0

FP RL 0.0 0.0 0.0 0.0 0.0

NA 0.0 0.0 0.0 0.0 0.0

SS COR 0.0 0.0 0.0 0.0 0.0

0 16 0.0 0.0 0.0 0.0 0.0



o o
->

c
o

c
o

o o 7
3

z
z

7
3

r
~

o 2 r
o

-p
a

-p
a

> 2 r
o

•P
a

C
O

> 2 r
o

-P
a

c
z

r
o

-P
a

r
o

•o c
z

r
o

-p
a

c
z

r
o

-P
a

o

c
z

r
o

C
O

C
D

"
O

c
z

r
o

C
O

C
O

z
z

-
o

r
o

C
O

C
O

r
o

C
O

c
z

r
o

C
O

C
O

c
z

r
o

C
O

c
n

c
z

r
o

C
O

c
n

c
z

r
o

c
o

•P
a

c
z

r
o

C
O

C
O

c
z

C
O

r
o

> r
o

C
O

C
O

3=
>

r
o

c
o

—
I

r
e

r
o

C
O

r
o

-H r
c

r
o

r
o

c
o

c
:

o —
J

Q
-

ft
)

o
o

o
o

1
1

e
n

1 c
r>

i
1

e
n

1

C
D

-P
a

r
o

i 0
0

C
D

i
i

r
o

i

•P
a

1

^
~

l

i

c
n

i

C
D

-P
a

i -P
a

i

r
o

o

o
o

o
o

e
n

o o m

C
O

-P
a

c
n

m

C
O

c
n

e
n

C
O

m

c
n

c
n

O O m

^
i

c
n

r
o

m

e
n

e
n

c
n

e
n

m

r
o

e
n

o c
n

m

C
O

o c
o

m

C
O

^
1

m

r
o

e
n

e
n

C
O

m

-p
a

-p
a

c
n

m

c
n

C
O

C
O

C
O

m

r
o

•~
J

m

C
O

r
o

0
0

-P
a

m

o C
O

^
j

e
n

m

o r
o

c
o

m

c
n

C
o

e
n

c
n

m

C
T

i
C

O
e
n

e
n

m

c
n

o r
o

m

o
C

D

*

o e
n

o C
T

l
O C

T
l

o C
T

o e
n

o c
n

o e
n

O c
n

o c
n

o c
n

o c
n

o c
n

o e
n

O c
n

o e
n

o C
T

l
O c
n

o c
n

o
m -
n

-
n

m

o
o

o
o

i
i -P

a
i -p
a

e
n

i -P
a

i

•~
j

i

C
O

i

r
o

i

c
n

i

C
O

i

C
O

i c
n

i

-p
a

i

C
T

i
i

C
O

i

C
O

i

o

o
^
—

I

o
o

o
o

C
O

C
O

o m

o C
O

o C
O

m

c
o

r
o

m

C
O

O C
O

m

C
O

0
0

r
o

m

r
o

-P
a

C
O

c
n

m

r
o

r
o

m

r
o

o r
o

c
n

m

C
O

o C
O

-p
a

m

o C
O

-P
a

m

c
n

C
O

C
O

o m

C
O

r
o

r
o

o m

r
o

4=
»

-P
a

c
n

m

o r
o

-p
a

m

c
n

r
o

C
O

r
o

m

C
O

•
fa

C
O

C
T

i
m

c
n

c
n

C
O

C
O

m

e
n

e
n

C
O

C
O

r
n

C
O

C
O

-~
J

c
n

m

o
o r
s
i

=
«=

r
o

r
s

f=
>7

3

C
O

o
o

—
1

3
=

o e
n

o c
n

O
o c

n
o e

n
o c
n

o c
n

o e
n

o c
n

o c
n

o
o c
n

o e
n

o c
n

o e
n

o C
T

O C
T

i
o C

T
i

o
1

r
o

T
J
m

•
z
z

C
O

I
-

m

i
,

•p
a

o
o

o
o

e
n

r
o

r
o

r
o

r
o

C
O

C
O

c
o

-P
a

C
D

C
O

r
o

C
O

—
—

•
C

O
o

-
u

r
n

2
-
"

c
o

o
•

7
3

—
'-

<

C
O

o
o

o
o

•^
i

c
n

e
n

C
D

m

o o C
D

C
O

m

-P
a

o c
n

C
O

m

C
O

o C
O

r
o

m

C
O

o C
O

c
n

m

c
n

e
n

r
o

m

C
T

l

C
O

o m

c
o

e
n

C
D

m

-p
a

O c
n

C
O

m

c
n

C
O

e
n

m

C
O

C
O

r
o

m

c
n

c
n

C
O

-P
a

m

o -P
a

-P
a

r
n

o -p
a

C
O

m

-P
a

r
o

•P
a

C
O

m

•p
a

C
T

l

C
T

i
m

C
O

-p
a

m

•~
~i

c
o

-p
a

m

•P
a

C
O

e
n

m

o
o M C

O

o c
n

o c
n

O c
n

o c
n

o e
n

o c
n

o e
n

o e
n

O c
n

o c
n

o -
^
i

o
o e
n

o c
n

o c
n

o C
T

l
O c
n

o C
T

l
o C

O

7
3

m c
o

-
a

o
o

o
o

i
i

r
o

i C
O

i 4
a

i

c
n

i c
n

-P
a

i

r
o

e
n

i

e
n

i

e
n

1
i e
n

-p
a

i
1

C
T

i
i r
o

1

r
o

i

o

o z
z

c
o

o
o

o
o

o c
r>

r
o

m

C
O

C
O

•P
a

m

c
n

-P
a

r
o

c
n

m

~~
1

r
o

C
O

C
O

m

C
O

r
o

o m

-P
a

C
O

C
O

C
O

m

e
n

C
D

C
O

c
n

m

r
o

r
o

-
^
i

m

-F
a

-P
a

c
n

c
n

m

C
O

r
o

c
n

m

C
O

C
O

c
n

C
O

m

C
O

e
n

-P
a

m

o C
T

l
C

O
r
o

m

C
O

C
O

C
D

-p
a

r
n

o C
O

C
O

m

e
n

o r
o

C
T

i
m

o r
o

m

o r
o

^
j

m

r
o

C
O

m

o
7

3
C

O

=
tf

c

m

o c
n

o -
^
i

o •^
i

o •^
i

o c
n

o
o c
n

o c
n

O ^
i

o ~
v
l

o C
O

o -
v
l

o c
n

o
o c
n

o
o

o
o C

O

o
o

o
o

i
t

r
o

c
o

i •p
a

i

c
n

C
n

C
O

i -P
a

e
n

i

•P
a

L
i

i -P
a

i
i

r
o

r
o

L>
o

o
o

o
o

r
o

-P
a

m

•P
a

0
0

C
T

i
O m

o O -P
a

^
J

r
n

-P
a

C
O

O c
n

m

o o -P
a

o m

r
o

c
n

c
n

m

-P
a

r
o

-P
a

m

c
n

C
O

r
o

m

C
O

C
O

C
O

m

e
n

e
n

e
n

o m

c
n

•-
vi

o -p
a

m

o c
o

C
O

m

-p
a

O O r
n

•v
j

r
o

C
C

r
n

o e
n

c
n

m

r
o

C
D

m

C
O

•p
a

C
O

m

C
O

•P
a

C
O

m

o o C
T

l
o m

o
7

3
C

O

r
o

o
O C

O
C

D
C

O
o C

O
o c
n

O C
O

o
o

O C
O

o C
O

o C
O

o C
O

O ~
v
l

o C
O

o C
T

l
o C

O
o C

O
o C

O
o C

O

c
n

c
o



64

poo *

In fact, comparison of Tables 4.8 and 4.9 show that the U P effect

233 *
more than cancels the U N effect. This is the same observation

made for the specific examples given previously.

DEPTH'S next task is to calculate the generalized adjoint source
k

needed for the r (r,E) calculation to be performed in the VENTURE

module. The final source as calculated using equation (2.32) is given

in Table 4.10. The most obvious characteristic here is the shape of
pop

the source as a function of energy. As mentioned earlier, the U

inventory is highly sensitive to the first group flux. The generalized

adjoint source reflects this high energy importance with a large positive

source in group 1 and negative sources elsewhere. An increased flux

232in group 1 increases the U inventory through various (n,2n) pro

duction routes while an increased neutron density in the other groups

232
decrease the U inventory through neutron capture reactions.

As a check on this adjoint source, the orthogonality condition of

equation (2.35) was calculated. The integral of the forward flux and

adjoint source over space and energy gave a value of 1.50E-07. This is

about as close to zero as can be expected for numerical calculations of

this type, considering that the flux shape magnitude is on the order of

unity. Thus, this source calculation is considered quite reliable.

Calculational control is now given to the VENTURE module where the

r (r,E) adjoint function and the perturbation integrals of equations

(3.9)-(3.11) are calculated. The details of these calculations are

beyond the scope of this report. However, it is quite interesting to

examine the "uncontaminated" generalized adjoint flux. This is displayed

as a 3-D plot in Figure 4.7. As apparent it quite generally displays

the same characteristics as the generalized adjoint source. The large
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TABLE 4.10

9^9
ADJOINT SOURCE VECTORS FOR U INVENTORY RESPONSE

(1-D, 9-GRP. PROB.)

Group

1

CZ #1

1.5885E 01

CZ #2 CZ #3 RB #1 RB #2

1.5063E 01 1.3791E 01 6.4016E 00 2.9478E 00

2 -1.1504E-01 -1.1342E-01 -1.1115E-01 -4.2227E-02 -4.3118E-02

3 -5.2105E-02 -5.2158E-02 -5.2553E-02 -6.3252E-03 -8.6478E-03

4 -5.0199E-02 -5.2799E-02 -5.7314E-02 -5.6561E-03 -1.0596E-02

5 -6.6003E-02 -7.3513E-02 -8.6604E-02 -5.3297E-03 -1.7821E-02

6 -1.0744E-01 -1.2329E-01 -1.5107E-01 -5.4242E-03 -3.0464E-02

7 -1.4984E-01 -1.7648E-01 -2.2504E-01 8.6523E-04 -5.2911E-02

8 -1.0061E 00 -1.0392E 00 -1.1172E 00 9.1377E-02 -2.7706E-01

9 -1.2991E 02 -1.2814E 02 -1.2498E 02 -2.3366E 01 -2.4119E 01
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Figure 4.7. U "Uncontaminated" Generalized Adjoint
Flux.
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positive peak at high energies and negativity elsewhere, therefore,

232
characterizes the U response. This plot is essentially a map of the

importance of a change in the flux shape to the response of interest as a

function of space and energy.

To be more precise, r (r0,EQ) is the importance to the response of

a change in the neutron source at the phase space point rQ, EQ. To see

this, we insert an arbitrary neutron source, Q(r,E), into the first term

of the K-functional in equation (2.15). The functional now becomes

K(Q) = R- £ E
k i

£* ik(r)[(k- ^f.) i(r) -Q(r)]ik
all

space

+ other terms

(4.5)

Also, equation (2.2.1) would have to be modified to include this additional

term,

AR
3P

SP
"3K
9C

6C "1^

But from equation (4.5) one sees that

wfia
k i Jail

(r*T(r) AQ(?))ik dr .

space

(4.6)

(4.7)

"k

Thus, the above interpretation of r (r,E) as an importance function to

a change in the neutron source seems to be correct.

Now returning to our present example, one sees that if the r (r,E)

shown in Figure 4.7 is multiplied by the change in the neutron source

caused by the perturbation and integrated over space and energy, then

the change in the response due to this effect will result. The estimate

of the variation in the neutron source at each point in the reactor,
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-> k

AQN(r), is just the term that makes up the r effect in equation (2.28).

That is,

%{^=mF) {(k-AF)i(r)} AN(r) . (4.8)

The detailed derivation of how the r effect is calculated is given

in Appendix B. Of importance here is the fact that the total r* effect

is comprised of several components, one accounting for each term of the

time-independent diffusion equation. The neutron source at a point can

be affected in four ways; by leakage, removal, inscatter or fission. The

total variation in the neutron source due to a nuclide perturbation can,

in general, have all four mechanisms present. For example, a material

perturbation in a given region will change the diffusion coefficient

and thus the leakage from the region. It will also change the absorption

and scattering properties of the region. Therefore, variations in the

removal (absorption plus outscatter) and inscatter sources can be

expected. Finally, if the material has a nonzero fission cross section,

the local fission source will also be altered. The sum of these four

components will give the total variation in the neutron source. This

source variation when folded with its importance to the response of

interest will give the change in the response due to the nuclide

perburbation.

Each component of the r effect for the 232U response for each

nuclide in core zone #1 of the 9-group calculation is given in Table

4.11. These numbers when multiplied by the region volume and nuclide
232

perturbation give the change in the U inventory due to the indirect

flux (neutron source) variation within the reactor. Consider, for

example, that a 10% increase in the stainless steel concentration in
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core zone #1 is made. For a one time-step problem, the only contri-
*

bution to the perturbed response is due to the r effect. Thus one

sees from the "total" column in Table 4.11 that a decrease in the

232
U inventory at 91.3 days can be expected due to this perturbation.

In fact, the amount of decrease will be approximately

AR/R = [(r* effect) (AN$$) V^IOOJ/R

= (-1.1170-6) (1.4757-3) (7.5449+4) (100)/(5.9184-2)

= -0.2101%

This agrees very well with the direct calculational result of -0.2058%.

Of this total change, one sees from Table 4.11 that the major

contribution was due to a change in the inscatter source for that

region. This agrees with our intuition since we already know that

stainless steel has a relatively large effect on the neutron spectrum
pop

in the system. Thus, it is not surprising to see a change in the U

response due to a change in the scattering source.

The final step in an adjoint depletion calculation is the

* _

determination of N (tQ). This importance function is a combination
* * *

of the N , P , and r effects. The jump conditions specified in

equation (2.26) and (2.29) are used for this purpose. In the present

example, the shuffling/discharge operator, f>, is the identity matrix.

The result of the time-step jump condition is displayed in Table 4.12.

It is this sensitivity function that is used in equation (2.23) to

determine the change in the final-time response function due to initial-

time design variations.
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It should be noted that the values of N(tQ) given in Table 4.12

are not sensitivity coefficients as written. However, they can easily

be converted into standard sensitivity coefficients. First, redefine
* *

Nz to be Nz multiplied by the zone volume, V (see Table 4.13),

£ - h Vz (4-9)

Now the perturbation expression becomes,

AR= £ N;TANz= ££ N*zANyz , (4.10)

where the y index refers to nuclide y. Now define the sensitivity co

efficient, sx>yjZ>t»as the percent change in response x due to a

1% change in nuclide y in zone z at time t. From this definition it

can be seen that,

N

Sx,y,z,t =-R^- Nx,y,2,t > (4.11)

where Ny,z,t and Rx are the reference nuclide density and unperturbed
response, respectively. This equation is valid since if one multiplies

by AN/N, AR/R, which is the desired result, is obtained.

The problem with expressing the importance of a nuclide variation

to the response in this manner is that if the reference density is zero,

then the sensitivity coefficient is also zero. Also, a problem exists

in defining the percent change in the nuclide concentration, AN/N, for

a zero reference concentration. For these reasons, the redefined N*

as given in equation (4.9) will generally be used as the measure of

the importance of a nuclide change to the response of interest.

*

—z
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Hopefully, with the insight gained from the simple example calcula

tion just presented, we can now consider a set of more challenging

depletion problems. For the present, we will remain with the 1-D

reactor model but extend the depletion perturbation theory analysis to

multiple time-step problems and also to more complicated response

functionals.

Nuclide Inventory Responses (multiple time steps). Table 4.14

presents a comparison of DPT results with direct calculation for the same

perturbation/response pairs discussed earlier. However, the response for

this set of calculations was after one year (274 full power days) of

reactor operation. The forward and adjoint depletion calculations

employed 9-group cross sections,and the total burnup interval was

divided into three equal time steps of 91.3 full power days.

As in the single time-step examples, there is excellent agreement

233 232
with direct calculation except for the U perturbation/ U response

pair. As noted previously, this is due to the large nonlinear effects

233 232
observed for the U/ U combination. Also it should be noted that

the percent difference calculated for the multistep problem is compar

able to that determined for the one time-step examples. Thus the

nonlinear effects are not cumulative with time. This is important since

many realistic depletion analysis problems involve the calculation of

the reactor operating history over several time steps. If the errors

inherent in linear time-dependent perturbation theory were cumulative

with time, then the realistic application of the theory would be very

restricted.
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TABLE 4.14

COMPARISON OF DEPLETION PERTURBATION THEORY METHODS

WITH DIRECT METHODS FOR MULTIPLE TIME STEPS
(9-GROUP CALCULATION)

Response r aCase AR/R (DPT) AR/R (Direct)
(tf = 274

232u

days) # (%) (%) % Diff.

1 4.0489 4.0178 0.77

2 -2.7896 -2.3456 18.93
Inventory

3 -1.4545 -1.2645 15.02

4 -2.6772 -2.6014 2.91

233 1 0.6589 0.6559 0.45

2 4.3256 4.4651 - 3.12
Inventory

3 3.6202 3.6391 - 0.52

4 -0.2535 -0.2496 1.58

239
"yu
Inventory

1 -0.2013 -0.2004 0.48

2 -2.4427 -2.3279 4.93

3 -1.4336 -1.4039 2.12

4 0.2703 0.2677 0.96

10% increase in nuclide concentrations at BOC (see Table 4.4,
page 47).
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Another area of interest in multistep calculations is the relative

contribution of the three adjoint functions. As mentioned earlier,

the N , P , and r effects cannot be easily separated in adjoint

calculations involving more than one time step. However, options have

been built into DEPTH so that the P* and r* adjoint calculations can be
k

bypassed. The option to neglect the P effect was implemented mainly

as an aid in the study of the relative contribution of the various

adjoint functions and has no effect on the overall calculation time.
*

The no-r switch, on the other hand, may be used to eliminate the fixed

source adjoint calculation in VENTURE, and thus reduce the computing

cost by as much as 90-95%. Therefore, the latter option may

be used to some advantage in certain situations where the r* effect

is small relative to the N and P* effects. An attempt to single out
* * *the N ,P ,and r effects for the same perturbation/response pairs as

given in Table 4.14 is displayed in Table 4.15. The first column con

tains the calculated AR/R values with both the P* and r* effects set

to zero, the second contains just the N* and P* effects, and the last

tabulates the AR/R values computed from the full depletion perturbation

theory.

Similar observations as made for the one time-step problems are

apparent. Most notable are the large P* and r* contributions to the
233..,232.. . n ±. , *

U/ U pair relative to the direct N effect. More important,

however, is the fact that for some of the cases shown, the r* effect

is small relative to the N* +P* effect. In these cases sufficient

accuracy can be obtained without the three costly fixed-source adjoint

calculations. In many instances a preanalysis of the specific



77

TABLE 4. 15

RELATIVE
*

N , P*, AND ]
(1

^* EFFECTS
-D, 9-GRP.

IN MULTISTEP

PROB.)
CALCULATIONS

'S) Case

1

2

3

4

Percen t Chanqe in Response

Response
(tf - 274 daj

232U
Inventory

N*
Effect

CD

4.514

4.584

2.701

N* + P*
Effects

(2)

3.970

-4.886

-2.719

N* + P* + r*
Effects

(3)

% Diff.

2 - 3

3

4.049

-2.790

-1.455

-2.677

-1.9
75.1

86.9

-100.0

233
"°u
Inventory

1

2

3

4

0.673
4.385

3.337

0.681

4.330

3.312

0.659

4.326

3.620

-0.254

3.3

0.1
8.5

-100.0

239Pu
Inventory

1

2

3

4

0.000

0.000

0.000

-0.115

-2.048

-1.171

-0.201

-2.443

-1.434

0.270

- 42.8

- 16.2

- 18.3

-100.0

a10% increase in nuclide concentration at BOC (see Table 4.4, page 47)
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perturbation/response pair to be investigated can determine if the full

perturbation theory is cost-effective.

K .p-r Response. To illustrate the use of depletion perturbation

theory (DPT) for the calculation of perturbed responses other than nuclide

inventories, consider the straightforward task of determining the re

activity change from some reference state associated with various design

options (i.e., fissile enrichments, material volume fractions, or fuel

shuffling strategies, etc.). Typically, the variations in both the

beginning-of-cycle (BOC) and end-of-cycle (EOC) reactivities are desired.

The most direct solution method for this problem is to perform a complete

burnup analysis for each design variation to be considered. In this way

both the BOC and EOC K .,-s can be determined exactly. For realistic
ett J

calculational models, however, direct solutions such as this quickly

become prohibitively expensive, even for only a small number of design

variables.

Static perturbation methods have alleviated the problem of determin

ing the effect of BOC design variations on the BOC reactivity. Likewise,

the effect of EOC perturbations on the EOC K ff could also be determined

using static perturbation theory. However, what is needed in this case

is a sensitivity function that relates the EOC state of the reactor to

design perturbations at the beginning of the cycle. Depletion

perturbation theory can be utilized to bridge this time gap and provide

the necessary importance functions.

Table 4.16 illustrates the difference between the sensitivity

coefficients just described for the case of our 1-D spherical fast

reactor model operating with 20% denatured uranium fuel. The
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TABLE 4.16

COMPARISON OF STATIC AND TIME-DEPENDENT SENSITIVITY
COEFFICIENTS FOR A ONE TIME-STEP PROBLEM

Nuclide Location

Case 1

(AK/K) tQ
(AN/N) tQ

Case 2

(AK/K) tf
(AN/N) tf

Case 3

(AK/K) tf
(AN/N) tQ

% Diff.

Case 3 - Case 2

Case 2

232
CZ1

CZ2

CZ3

-0.0145

-0.0570

-0.0360

-0.0137

-0.0560

-0.0378

-0.0101

-0.0460

-0.0353

-26.0

-17.9

- 6.6

233U CZ1

CZ2

CZ3

RBI

RB2

0.0544

0.2235

0.1810

0.0061

0.0003

0.0480

0.2117

0.1891

0.0080

0.0003

0.0438

0.2060

0.2046

0.0084

0.0007

- 8.9

- 2.7

8.2

5.2

111.7

238U CZ1

CZ2

CZ3

-0.0128

-0.0480

-0.0240

-0.0119

-0.0469

-0.0249

-0.0069

-0.0315

-0.0191

-42.1

-32.9

-23.4

Note: tn = 0 days and tf = 91 days.
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first two columns represent static perturbation theory results

calculated at the beginning-of-cycle (O and after 91 full power days

(tf) of operation. Differences in the nuclide importance to K ff for

these two cases can be attributed to a shift in the flux shape toward

the outer core regions during the 91-day burn. The last column of

sensitivity coefficients, calculated using DPT with (AK/AN), as the

initial condition for the adjoint equations, represent the percent

change in the EOC K ff due to a 1% perturbation in the BOC nuclide

concentration. The difference between case 2 and case 3 sensitivities

represent the time-integrated importance of the depletion process to

the response of interest. As apparent from the last column in Table

4.16, this contribution can be significant even for short depletion times.

A similar comparison was made for a three time-step calculation

which included a full year of reactor operation at 75% capacity factor

(274 full power days). Table 4.17, which is constructed similar to

Table 4.16, displays the results of this multistep calculation. In

this case one sees more pronounced differences between the final-time

sensitivities and the time-dependent K „ sensitivity coefficients.
r eff

This is due to the increased depletion period over which the sensitivities

are determined. Thus, as would be expected, the time-integrated importance

of the burnup process to the response of interest becomes more significant

with increased burnup.

238Consider, for example, the sensitivity of K ff to the U concentra

tion in core zone #1. From Tables 4.16 and 4.17 one sees that at time

poo
zero an increase in the U density in CZ #1 would result in an

immediate reactivity decrease relative to the reference system. This

statement is also valid at any instant throughout the cycle. However,
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TABLE 4.17

COMPARISON OF STATIC AND TIME-DEPENDENT SENSITIVITY
COEFFICIENTS FOR A MULTIPLE TIME-STEP PROBLEM

Case 1 Case 2 Case 3 % Diff.

(AK/K) tQ (AK/K) tf (AK/K) tf
Case 3 - Case 2

Nuclide Location (AN/NT tn Tan/nT tf (AN/N) tQ Case 2

232Th CZ1 -0.0145 -0.0121 -0.0011 - 90.6

CZ2 -0.0570 -0.0529 -0.0145 - 72.6

CZ3 -0.0360 -0.0399 -0.0225 - 43.6

233,
CZ1 0.0544 0.0391 0.0254 - 35.1

CZ2 0.2235 0.1866 0.1495 - 19.9

CZ3 0.1810 0.1923 0.2058 7.0

RBI 0.0061 0.0142 0.0116 - 18.4

RB2 0.0003 0.0005 0.0013 179.7

238,
CZ1 -0.0128 -0.0105 0.0021 -120.1

CZ2 -0.0480 -0.0440 0.0008 -101.9

CZ3 -0.0240 -0.0263 0.0038 - 85.5

Note: tQ =0 days and tf = 274 days
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if one considers the effect of a BOC perturbation on the reactivity

of the system at future times, an interesting observation can be made.

Comparison of the time-dependent sensitivity coefficients for the response

at 91 and 274 days show that not only has the magnitude changed but

poo

that a sign reversal has also occurred. Thus an increase in the U

concentration at the BOC actually increases the reactivity at 274 days

relative to the reference case.

Effects such as this may be important in certain reactor designs.

Large heterogeneous fast breeder reactors, for example, have large amounts

of fertile material in high flux regions of the reactor. This results

in a small reactivity swing over the cycle (with possible increasing

reactivity). The ability to quantify such effects using depletion

perturbation theory may prove to be an invaluable design tool.

The sensitivity coefficients for the K ff response generated using

the DEPTH module have also been tested against direct computational

methods. Table 4.18 displays the results from both the single and

multiple time-step problems. As may be observed in Table 4.18, excellent

agreement is achieved in all cases except for the stainless steel

perturbation in all three core zones for the one time-step problem.

This one exception has the interesting characteristic of a space

cancellation effect, giving rise to nonlinear behavior for this particular

perturbation/response pair. This nonlinear behavior is displayed in

Figure 4.8. However, Figure 4.9 also shows that the percent change in

K ff due to a stainless steel perturbation has a linear relationship in

each of the separate core zones. The straight lines in these plots

represent the linear perturbation results while the indicated points are

based on direct calculations. Only with the combined perturbation is the
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TABLE 4.18

COMPARISON OF DPT RESULTS WITH DIRECT
CALCULATION FOR AK„ RESPONSE

eff

Percent Change in Final-Time K ^f
—————eff

Perturbation tf

DPT

= 91 days

Direct % Diff.

tf_
DPT

= 274 days

DirectNuclide Location

CZ1-2-3

% Diff.

232Th -0.915 -0.902 1.44 -0.381 -0.374 1.77

233U CZ1-2-3 4.544 4.431 2.55 3.806 3.802 0.10

233
"°U CZ3 2.046 2.038 0.39 2.058 2.052 0.27

SS CZ1-2-3 -0.078 -0.085 -8.43 -0.148 -0.145 1.72

SS CZ1 -0.049 -0.048 1.41 —

-- --

SS CZ2 -0.149 -0.150 -0.77 -- — —

SS CZ3 0.120 0.116 2.98 -- -- --

16o CZ1-2-3 0.211 0.203 3.94 -- -- --

*l 0% increase in nuclide concentration at BOC
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positive CZ 3 effect cancelled by the negative CZ 1 and CZ 2 contributions,

This same nonlinear behavior is not as apparent in the multiple time-

step calculation. In this case, CZ 2 dominates the overall reponse as

shown in Table 4.19. Although cancellation is still present, it is

considerably reduced for the 274-day burn relative to the 91-day

depletion calculation.

The nonlinear behavior occurring here is similar to the effects

233 23?
previously observed for the U perturbation/ U response pair.

In both cases cancellation of competing effects was the source of the

nonlinearity. The U/ U pair had competing N and P effects while

the uniform stainless steel perturbation for the K ,, response had
eff ^

cancellation due to geometry effects. Regardless of the source, cancella

tion results in nonlinear behavior which cannot be treated with linear

perturbation methods. Therefore, caution must be exercised when applying

depletion perturbation theory results in these instances.

In addition to the above analyses, the importance of the r effect

to the global Keff response was investigated. Table 4.20 compares the
k k k

relative contribution of the N , P and r effects to the total response

for the single time-step problem, while Table 4.21 quantifies the r*

effect for the three time-step calculation. From these one can see
*

that in most cases the r effect is quite small and could be neglected

with little error. Here, as in some of the nuclide inventory responses,

the costly fixed-source adjoint calculation does not seem to be

justified. This is especially important for multistep problems where
* ->

several r (r,E) calculations are required.

Even though not of much importance to the overall response for the

Keff example, the generalized adjoint flux can usually provide valuable
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TABLE 4.19

COMPARISON OF ZONE-WISE CONTRIBUTIONS TO THE
TOTAL AK/K FOR THE SINGLE AND MULTIPLE

TIME-STEP CALCULATIONS

Percent Contri bution to Total
AK/K for 10% Increase In SS

Perturbation
Location tf = 91 Days

62.5

tf = 274 Days

33.2CZ #1

CZ #2 190.6 121.3

CZ #3 -153.1 - 54.5
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TABLE 4.20

RELATIVE CONTRIBUTION OF THE N*, P*, AND r* EFFECTS
TO THE TOTAL AKEFf- RESPONSE

Percent Contribution to Total

'

Perturt

Nuclide

)ationa

Location

CZ1-2-3

AK JX
eff-

N* Effect

Response at

P Effect

91 Days

r Effect

Total AK/K

(%)

232Th 99.42 0.44 1.02 -0.915

233u
CZ1-2-3 93.72 6.64 - 0.36 4.544

233
"°U CZ3 89.71 8.04 2.25 2.046

SS CZ1-2-3 83.74 -- 16.26 -0.078

SS CZ1 102.56 -- - 2.56 -0.049

SS CZ2 95.42 -- 4.58 -0.149

SS CZ3 105.93 -- - 5.93 0.120

16o CZ1-2-3 99.37
— 0.63 0.211

10% increase the nuclide concentration at BOC.
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TABLE 4.21

RELATIVE CONTRIBUTION OF THE r* EFFECT TO THE TOTAL
AK/K RESPONSE IN THE MULTIPLE TIME-STEP CALCULATION

jj^^^eff^-i
—̂

Per turbation N* + P* N* + P* + r*
Nuclide Location Effects Effects % Diff.

232
"^Th CZ1-2-3 -0.351 -0.381 - 8.03

233
"Ju CZ1-2-3 3.874 3.806 1.78

233"°u
CZ3 1.987 2.058 - 3.46

SS CZ1-2-3 -0.133 -0.148 -10.29

10% increase in nuclide concentration at BOC.
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information about the neutronic behavior of a particular system.

Figures 4.10 through 4.12 display the calculated 9-group K ff generalized

adjoint flux at 182.6, 91.3, and 0.0 days,respectively.

Several interesting observations can be made from these plots. At

any given time point, one can observe the spatial and spectral distribution

of the importance of the addition of a unit neutron source to the EOC

Keff response. A low energy source particle near the center of the

reactor has a strong negative effect on K ff since the relatively large

absorption cross sections of the fissile material at low energies cause

an increased burnup of these nuclides. Therefore, a decrease in K rr
eff

will result at later times. However, a low energy neutron in the

blanket region, where there is a high concentration of fertile material,

will tend to breed fissile isotopes and thus cause an increase in K „
eff

at some future time.

At high energies the explanation of the behavior of the K ,,
eff

generalized adjoint flux is not as straightforward, mainly due to the

downscatter process. Also, in this energy region there is not as

significant a difference between the fertile and fissile capture rates

as in the low energy groups. However, a rough analysis shows that the

fertile capture rate in the first three groups is about 2-3 times the

fissile burnup rate over the entire core region. Thus an additional

source particle in this space-energy region has a greater probability

of creating a fissile isotope than destroying one, and therefore, affects

the reactivity of the system in a positive manner at future times.

This brief explanation accounts for the observed distribution of the

Keff adJ°int flux at a single time. However, since there are no drastic

changes in the nuclide density field or flux distribution within the
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Figure 4.10. EOC Kff Generalized Adjoint Flux at 182.6 Days,
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Figure 4.11. EOC Keff Generalized Adjoint Flux at 91.3 Days.
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Figure 4.12. EOC K f~ Generalized Adjoint Flux at 0.0 Days.
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reactor over the 274-day burn, one sees that the K adjoint flux

distribution remains relatively unchanged over this same period. However,

the magnitude of the importance to Keff at 274 days does change with time

as shown in Figures 4.10-4.12. This is best seen by concentrating on

the lower limit in the adjoint flux plots. The mechanisms responsible

for the observed changes with time have not been isolated. If this

could be done, one might be able to approximate the Kff adjoint flux
at 91.3 and 0.0 days from that calculated at 182,6 days. This approach

has been tried with some simple approximations without much success.

The whole area of finding some suitable approximation for the generalized

adjoint flux needs much further investigation and is beyond the scope of

the present study. However, it does represent an interesting area for

future research.

Also, although not clearly displayed in the plots, the value of

the Keff adjoint flux ranges from +6 to -10 cm3-sec over most of the space-
energy domain of interest. This small variation around zero is the

main reason that the r* effect contribution was small for most of the
perturbations listed in Table 4,20 and 4.21. In addition, in the

calculation of the r* effect, the adjoint flux is weighted with the
forward neutron flux and then integrated over energy and spatial regions.

This procedure essentially eliminates effects from the observed structure

at low energies since the forward flux is relatively low in these

groups for the fast reactor model being investigated.

The final point to be made concerning the EOC Kff response is a
comparison between the time-dependent generalized adjoint flux distribu

tion and the space-energy distribution of the instantaneous regular

adjoint flux. This time-independent importance function is displayed
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in Figure 4.13. As can be seen, Figure 4.13 bears no resemblance at

all to Figures 4.10-4.12. At any instant in time, a low energy neutron

has a higher probability of causing a fission and thus increasing the

neutron multiplication factor. Thus, in contrast to the time-dependent

case5the instantaneous importance function is relatively high at low

energies. Also, the slight increase at very high energies is due to
poo

the U fission threshold. Lastly, as should be clear, the importance

of an additional source neutron to the reactivity cannot be negative.

Thus, the regular adjoint flux is always a positive function.

Reaction Rate Ratio Response. The final example to be given utilizing

the 1-D spherical reactor model has a microscopic reaction rate ratio as

pOQ pOQ

the response of interest. The U capture to Pu fission ratio (C8/F9)

was chosen because of its importance to the breeding ratio calculation

in a PuU0? fast breeder reactor. In addition, the final time for this

response was chosen as t~, thus illustrating a static generalized

perturbation theory application. This should emphasize the fact that

static perturbation theory is just a special case of the more general

time-dependent perturbation formulation utilized in this work. In

addition, it will point out the usefulness of the DEPTH module for

sensitivity studies in areas other than fuel depletion analysis.

First, define the response of interest as the initial C8/F9 ratio

in core zone 1, or

C8

ol(r) £(r) dr

q^ir) £(r) dr
R=^=-^ (4.12)

czl
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where

a (r) =microscopic 238U capture cross-section vector (IGM groups)
pqq

af(r) =microscopic Pu fission cross-section vector (IGM).

Then, the three adjoint sources needed as input to DEPTH are given by,

and

3R

8a

3R

8R

3N(r) = 0

c^fr)
3i(r) = Ra

C8

o_f{r)

3R
—,+., = 0 for r not in cz 1
3'JHr)

(4.13)

for r in cz 1 (4.14)

Using equations (4.13), (4.14) and (2.32) and the fact that the integrals

over time approach zero as the interval of integration becomes zero, one

has

3R

3<L

Ra
0 i-cl

C8

0 for z f 1

a

fl
F9

for z = 1

(4.15)

Now, with this adjoint source and the adjoint solution algorithm

given in Figure 3.2, page 28, for a one time-step problem (0.001 days),

one can perform a static generalized adjoint flux calculation for the

C8/F9 response. Thus a static generalized perturbation theory calcula

tion is performed in the same manner as a time-dependent calculation.

However, the depletion step in the static case is essentially zero.

A static generalized perturbation theory calculation was performed

for the C8/F9 response using the above procedure. In this case,

the only contribution to the response is the r* effect. The generalized

adjoint source used in this calculation is shown in Table 4.22 and the
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TABLE 4.22

ADJOINT SOURCE VECTORS FOR C8/F9 RESPONSE IN CZ 1
(1-D, 9-GRP. PROB.)

Group CZ #1 CZ #2

0.0

CZ #3

0.0

RB #1

0.0

RB #2

1 -3.0490E OO 0.0

2 -2.1330E OO 0.0 0.0 0.0 0.0

3 -1.2578E OO 0.0 0.0 0.0 0.0

4 -5.0822E-01 0.0 0.0 0.0 0.0

5 2.3576E OO 0.0 0.0 0.0 0.0

6 6.9509E OO 0.0 0.0 0.0 0.0

7 4.3784E OO 0.0 0.0 0.0 0.0

8 -4.6585E 01 0.0 0.0 0.0 0.0

9 -7.7650E 01 0.0 0.0 0.0 0.0
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k k

calculated r effect is displayed in Table 4.23. The r effects in the

*

latter table are also the N_ *V adjoint nuclide density vectors which are

a measure of the importance of a nuclide change to the desired response

(see equation (2.23)).

As mentioned earlier, the generalized adjoint flux calculated using

an adjoint source similar to the C8/F9 source in Table 4.22 can generally

provide useful information about the system being analyzed. However,

since the adjoint fixed sources investigated in this study have similar

spatial and spectral distributions as the generalized adjoint fluxes,

the more easily calculated source functions can be utilized as an aid in

understanding the relationship of the neutronic behavior of the system

to the response of interest.

The first point to note from Table 4.22 is that the adjoint source

is only nonzero in regions where the response is defined. Thus, core

zone 1 can be expected to be the most important spatial region.

Additionally, since the power normalization factor cancels out of the

response, the C8/F9 ratio in CZ 1 is only sensitive to a change in the

energy spectrum of the weighting function, ip(r,E). Table 4.24, which
poo pog

displays the U capture to Pu fission cross-section ratio
poo pog
( o / af) versus energy, indicates that a shift in the weighting

function towards groups 5, 6, and 7 would tend to increase the C8/F9

ratio. In contrast, a further softening of the spectrum would greatly

decrease the response of interest. This general trend is the same as

observed in Table 4.22. A positive C8/F9 source in groups 5, 6, and 7

and a relatively large negative adjoint source in the lower two energy

groups are observed.
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TABLE 4.24

238U CAPTURE TO 239Pu FISSION
CROSS-SECTION RATIO

Group
238 ,239oc/ af

1 0.320

2 0.031

3 0.048

4 0.115

5 0.312

6 0.349

7 0.231

8 0.048

9 0.004
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The detailed spatial and spectral information contained in the

generalized adjoint flux (and source) is lost in the evaluation of the
*

r effect. However, the overall importance of a nuclide perturbation

to the desired C8/F9 response as shown in Table 4.23 is the real quantity

of interest. For example, one sees that, in general, an increase in the

fission product or heavy metal concentration would decrease the micro-

scopic U capture to Pu fission ratio in CZ 1. However, an increase

in the stainless steel, sodium, or oxygen content tends to increase the

microscopic C8/F9 reaction rate ratio.

To test the accuracy of the static perturbation theory calculation,
•j c

several 0 perturbations of varying magnitude were made to all three

core zones. The "sensitivity coefficients" in Table 4.23 indicate that

the C8/F9 ratio should increase with an increase in the oxygen concen

tration. In fact, a uniform 10% increase in the 160 density in the

core regions would increase the reference C8/F9 ratio by 1.409%.

This agrees very well with the directly calculated value of 1.385%.

Although there is no fundamental difference, only positive nuclide

perturbations have been investigated up to this point. For completeness,

negative perturbations of the 0 concentration were performed for the
1 fi

0 perturbation/(C8/F9) response pair. As can be seen from Figure 4.14,

good agreement is attained for perturbations as large as 50%. A

slight nonlinear behavior is observed for large decreases in the 160

concentration. Figure 4.15 shows that this nonlinearity is due to the

rather large change in the zone-averaged flux spectra in CZ 1 for the

no-oxygen case relative to the reference calculation. However, even



o
n

Discrete points - direct results
Solid line - linear perturbation theory result

i
-120.0 100.0

I

-80.0
I

-60.0

CHANGE

i
-40.0

0-16 CONC.X IN

-20.0 0.0

Figure 4.14. Nonlinear Behavior of Microscopic C8/F9 Response in Core Zone 1

—1
20.

o
CO



X

3 i(rt

2 io"2d

>-

° -3
5 10 -d

10,

a 10 ;

x

10'

10'

t—i I i i mi 1 i i i i mi r I I I I I MI I I I I 1I MI I I I JJJJJL I I I ! I I I1

II I I I I I I I

10

REF. CALC.

NO 0-16 IN CORE

______ j

I I I FT mi i i i 11111 • 111111 i i i i 11111

105 10610 10
NEUTRON ENERGY (eV)

Figure 4.15. Comparison of Flux Spectra in CZ 1 for a 100% Decrease in the
0-16 Concentration Relative to the Reference Case.

i i i i 11

10'

o
-Pi



105

for a 100% perturbation, the AR/R values calculated with DEPTH and

direct methods only differ by about 17%.

The C8/F9 response concludes the analyses performed using the 1-D

spherical model shown in Figure 4.1, page 43. The analyses have included

a wide range of perturbation/response pairs which illustrated several

important characteristics of depletion perturbation theory. In addition,

both multigroup and multiple time-step problems were investigated. For

all these examples, depletion perturbation theory compared extremely

well with the direct re-calculation method. Thus, the DPT methods

utilized in this study have proved to be an accurate calculational

tool for both static and time-dependent generalized perturbation theory.

Two-Dimensional Calculations

The next step in the evaluation of depletion perturbation theory as

an alternate calculational method for burnup analysis, is its application

to more realistic two-dimensional reactor analysis problems. The

calculational model utilized in this portion of the study is shown in

Figure 4.16. The design is based on a General Atomic 1500 MWe PuU0~/U02

Gas-Cooled Fast Reactor (GCFR) used as a reference model in the evaluation

of some alternate GCFR fuel cycles.

The RZ calculational model contains four homogeneous core zones

with corresponding axial blanket regions. A three-row radial blanket con

figuration is modeled as two separate zones, one containing the first row

of assemblies and the second consisting of the outer two radial rows.

The whole core is then surrounded by a stainless steel structure and

shield region. These eleven separate regions are then further subdivided

into subzones. The core and axial blanket zones have three subzones. The
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two radial blanket zones have six subzones and the shield consists of only

one subzone. Each subzone is depleted with the zone-averaged flux and

the nuclide concentration within a zone can be written as,

N = — T N v„-z v ^ -sz sz

where

•N = zone-averaged nuclide density vector (NNUC isotopes)

N = subzone-averaged nuclide density vector (NNUC)

v = volume of zone z

v = volume of subzone s in zone z.
sz

The purpose of the subzone modeling is to allow for fuel management

operations in multicycle calculations. For example, the core and axial

blanket regions would be on a three-year refueling schedule since they

each have three subzones. One subzone in each zone is discharged and

refueled each year. For the present analysis, however, it is only

necessary to understand that there is a total of 37 regions (subzones)

being depleted with eleven different zone-averaged fluxes. Each region

can be perturbed separately and the desired response can be defined

in a single region or a combination of regions.

A depletion perturbation analysis, similar to that performed for

the 1-D spherical model, has been performed for this two-dimensional

GCFR configuration. However, the responses investigated were limited

to nuclide responses. This type of response functional was chosen

because of its relatively simple expressions for the adjoint sources

needed as input to DEPTH. A computer code for the evaluation of the

sources for the more complex responses (K «, C8/F9, etc.) is not
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presently available and hand calculations for a 37-region, 9-group

model could be extremely tedious. However, with the experience gained

from the 1-D calculations, it is felt that the nuclide inventory responses

investigated provide a representative set of typical two-dimensional

depletion perturbation theory calculations.

Table 4.25 gives a complete description of the perturbation/response
239 upairs utilized in the 2-D analysis. The Pu inventory was chosen as

the most important nuclide response for a PuU02/U02 GCFR. The plutonium

inventory in the entire reactor as well as in the fourth axial blanket

zone was chosen as responses of interest. This allows the investigation

of the effects of a perturbation on both a global and localized response.

As will be shown later, the r* effect plays the dominant role in the pre

diction of localized responses. Lastly, it should be pointed out that

the third perturbation contains a set of nuclide variations. This is more

realistic of an actual design variation to be considered in a core design

situation since it involves an exchange of materials rather than an

increase or decrease in a single nuclide.

Table 4.26 summarizes a comparison of DPT results with direct
pOQ

calculation for the total Pu inventory response after one depletion

time step. This table, in contrast to those shown previously, gives

23Q
the actual change in kilograms of the perturbed "Pu inventory relative

to the reference case. Excellent agreement is obtained with the total

DPT result and the directly calculated perturbed response. In all

cases, the percent difference in the calculated and predicted AR is only

on the order of a few percent. Thus, two-dimensional problems seem to

create no problems for the time-dependent perturbation theory methods

within the DEPTH module.
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TABLE 4.25

DESCRIPTION OF PERTURBATION/RESPONSE PAIRS
UTILIZED IN THE 2-D ANALYSES

Reference Model:

PuU02/U02 1500 MWe GCFR

Homogeneous four core-zone model

Nine-group GCFR cross sections

Responses:

239
1. Pu inventory in entire reactor

pOQ
2. Pu inventory in axial blanket #4

Perturbations:

1. Increased fission product concentration in CZ 1
(1.0E-3 atoms/barn-cm)

239r2. Increased Pu concentration by 10% in CZ 1

Replaced
blankets

3. Replaced 10% of 238U with 232Th in radial
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TABLE 4.26

DPT VERSUS DIRECT CALCULATION FOR THE TOTAL 239Pu
INVENTORY AT 91 DAYS IN THE 2-D GCFR MODEL

3

Change in Response JKQ)_

Perturbation Results
J> „•

* * * Direct Diff.
Perturbation N Effect P Effect r Effect Total Calc. _0O_

A FISSP -- -- 7.93 7.93 8.11 -2.2

A "-"Pu 102 .90 -4 34 -5 .80 92 .76 92 62 0 .2

A238U
232
A"^Th

-16 25 0 39 13 .13 -2 73 _. _ .

-16 25

-0

0

08

31

-15

-2

.97

84

-16

-18

05

78

--
--

SUM -18 45 1 8

3 poq

Reference Pu inventory = 4151.4 kg.

bTha 238I1/232T. . . . , . , , .
The U/ Th variations represents a single perturbation to the
reactor, therefore, there are no direct results for the individual
variations.
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Particularly interesting in this set of examples is the relative

contribution of the three adjoint functions to the total perturbed

*

response. The r effect is the only contributor for the fission product

perturbation with excellent agreement obtained with direct calculation.

* 239
Also, as would be expected, the N effect dominates the Pu perturba

tions. However, the relative contributions for the last set of

*

perturbations are not as obvious. Here one observes large competing N

* 238
and r effects for the U variation and a large decrease in the response

232 *
due to the Th perturbation's r effect. Thus, the indication from

239
the total column of Table 4.26 is that the majority of the Pu inventory

232
decrease is due to the addition of the Th rather than the reduction

pop

of the U concentration in the radial blankets.

At first glance, this is a rather surprising result. However,

further investigation verifies this observed phenomena. Clearly, a

* 238
negative N effect due to a decreased U concentration is expected.

*

However, the observed r effects are not as apparent. Assume for the

moment that the radial blanket can be approximated as a nonmultiplying

infinite slab. In this case, the one-group flux at some thickness

27
x in the olanket can be written as,

<{>(x) =Ae_x/L (4.16)

where A is a constant proportional to the neutron source strength from the

core and L is the neutron diffusion length. The diffusion length can be

written as

tr a

where
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ltr - NT atr and h - NT cr .

Thus, the diffusion length is inversely related to the nuclide density

238vector, N_. Therefore, a decrease in the U concentration will increase

the diffusion length and tend to flatten the flux distribution across the

slab thickness. This increased average flux in the blanket will
poo P3g

increase the U capture rate and Pu inventory at some later time.

Similarly, the addition of thorium to the system reduces the average
poq

flux level and subsequent Pu inventory. Thus the results indicated

in Table 4.26 can be readily explained.

The above observation for the perturbation to the radial blanket

zones can be generalized to include any region whose flux distribution

and magnitude are determined by the neutron removal characteristics of

the region. Included in this category are both axial and radial blankets,

control rods, and structural or shielding material regions of the reactor.

In all of these regions the average flux level is a strong function of

the nuclide density vector N. Thus perturbations in these types of
*

reactor environments can be expected to have large r effects relative to

the total perturbation effect. This is emphasized in Table 4.27 which
*

gives the spatial distribution of the percent contribution of the r

238
effect for a unit U density perturbation in the respective zones.

*

As can be seen, the contribution of the r effect is very large in regions

away from the main neutron source of the reactor (central core regions).

Thus, in general, one can conclude that the r (r,E) calculation is

essential if perturbations are to be made in other than the central core

regions of the reactor.
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TABLE 4.27

SPATIAL DISTRIBUTION OF THE RELATIVE CONTRIBUTION

OF THE 238U r* EFFECT TO THE TOTAL 239Pu INVENTORY

Location

CZ 1

CZ 2

CZ 3

CZ 4

AB 1

AB 2

AB 3

AB 4

RB 1

RB 2

238[J r* Effect/236u Tota1 Effect (%)

12.8

-5.0

-35.5

-116.7

-80.9

-99.2

-137.9

-234.4

-475.9

-491.3
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The above general effect is especially magnified for the present

239
case of the Pu response because of the importance of the blanket

239
regions to the overall Pu inventory. The spatial distribution of the

239
energy-averaged generalized adjoint flux for the total Pu inventory

is shown in Figure 4.17. From this one sees that, in general, the

addition of a source neutron in either the axial or radial blanket regions

will increase the response, while increased source strength in the

239
central core regions will decrease the Pu inventory at 91.3 days. This

indicates that the conversion ratio is less than unity in the core and

greater than unity in the blankets.

It should be noted that Figure 4.17 displays only the higher energy

239
features of the Pu adjoint flux. The energy averaging was performed

using

*^ £ r*(r) AE f
Mr) =-LJl-L-iLJl , (4.18)

L, AE f
g g g

with f = 1.0 for all g. Therefore, the group-wise adjoint fluxes were

averaged using the weighting function shown in the first half of Table

4.28. In contrast, the second half of Table 4.28 gives a weighting

function that tends to display the low energy features of the importance

239
function. The total Pu inventory adjoint flux averaged over groups

6 through 9 is displayed in Figure 4.18. In general, the same features

as displayed for the higher energies are apparent. However, the gradient

of the adjoint flux at the core/blanket boundaries is much steeper at

lower energies.

An analysis similar to that just presented for the total 239Pu
239

inventory was performed for a Pu inventory response in the fourth
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pOQ
Total JPu Generalized Adjoint Flux Averaged
Over All Energy Groups.
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TABLE 4.28

WEIGHTING FUNCTIONS3 FOR ADJOINT
FLUX AVERAGING

Energy Upper Ener gy Averag ing Over Avera<gi ng Over
Group

—

Boundary (ev]
—

Grou ps 1-9 Gro jps 6-9

g fg wg f
g wg

1 1.492+7 1.0 5.934-1 0.0 0.0

2 6.065+6 1.0 3.323-1 0.0 0.0

3 1.108+6 1.0 4.090-2 0.0 0.0

4 4.979+5 1.0 3.063-2 0.0 0.0

5 4.087+4 1.0 2.515-3 0.0 0.0

6 3.355+3 1.0 4.974-5 1.0 2.212.1

7 2.613+3 1.0 1.072-4 1.0 4.768.1

8 1.013+3 1.0 6.790-5 1.0 3.019-1

9 1.000-1 1.0 6.697-9 1.0 2.978-5

aw =
f

g S
wg

g
giEg
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Total 239Pu Generalized Adjoint Flux Averaged
Over Groups 6-9.
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*

axial blanket zone. This response was chosen to highlight the r effect

for all of the perturbation cases. A comparison of DPT results with direct

calculation for this response is given in Table 4.29. The percent change

239
in the desired response is presented since the reference Pu inventory

in AB#4 is only 7.21 Kg. As in most cases, good agreement between

calculated and predicted response variations is obtained. These show that

accurate predictions can be made for localized responses. In addition,

these examples emphasize that the effects of perturbations in regions

far removed from the location of interest can easily be determined.

Table 4.29 shows that the fission product perturbation in CZ 1

239
caused an 8.5% increase in the Pu inventory in the fourth axial

239
blanket region. Similarly, a 10% increase in the BOC Pu concen

tration in CZ 1 produced a 6% decrease in the desired response. Lastly,

one sees that the radial blanket perturbation had little overall effect

239
on the axial blanket Pu inventory after 91 days of reactor operation.

The ability to quantify region to region coupling effects such as these

may be quite useful in reactor design analyses.

239
The AB #4 Pu generalized adjoint fluxes shown in Figures 4.19 and

4.20 display the geometric coupling for the present example. Figure

4.19 emphasizes the higher neutron energies while Figure 4.20 displays

the low energy importance of a neutron source variation to the Pu

inventory in AB #4. Obviously, this importance peaks in the region where

the response is defined and approaches zero in the unimportant outer

shield regions of the reactor. At all energies, an increased neutron

source at the center of the core decreases the response. However, the

importance of a low energy neutron source in the blankets and outer



119

TABLE 4.29

DPT VERSUS DIRECT CALCULATION FOR THE 239Pu
INVENTORY AT 91 DAYS IN THE FOURTH AXIAL
BLANKET ZONE OF THE 2-D GCFR MODEL

Percent Change in Response

Perturbation Results

* * * Direct Diff.
Perturbation N Effect P Effect r Effect Total Calc. (%)

A FISSP -- -- 8.903 8.903 8.504 4.7

A 239PU -- -2.321 -3.690 -6.011

A238U -- 0.211 0.958 1.168

A232Ttl -- -0.045 -1.624 -1.669

SUM — 0.166 -0.666 -0.500 -0.497 0.8

a 239
Reference Pu inventory = 7.215 kg.

• ?"3P) ?'\9
The U/ Th variations represent a single perturbation to the
reactor; therefore, there are no direct results for the individual
variations.
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Figure 4.19. Axial Blanket #4 239Pu Generalized Adjoint Fl
Averaged Over All Energy Groups.

ux



Figure 4.20.

121

Axial Blanket #4 239Pu Generalized Adjoint Flux
Averaged Over Groups 6-9.
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core regions is nearly zero except for the large positive spike

centered over the fourth axial blanket zone.

The above examples were for a one time-step depletion calculation
*

and were primarily intended to emphasize the r effects contribution to

the overall perturbed response. A comparison with direct calculation

239
was also performed for the total Pu inventory response after one

year. The main goal here was to confirm the predictive capability of

DPT for more realistic burn times when utilizing the more complicated

2-D geometry. Table 4.30 clearly shows that this goal has been

achieved. In all cases there is excellent agreement between calculated

and predicted perturbed responses, with a maximum difference between the

two methods of less than 2%.

Since this latter calculation is representative of a typical

depletion calculation, it will also be employed to compare the relative

computing requirements of the forward and adjoint computations. Table

4.31 makes this comparison for only the central processing unit (CPU)

time and number of input/output operations (10) since the memory

requirements of the forward and adjoint calculations are identical.

As mentioned in Section III, a reference forward calculation differs

from a base case in that a regular adjoint and perturbation computation

are required at each flux-eigenvalue calculation. Thus a forward

calculation to be followed by a set of adjoint solutions requires roughly

2.3 times the CPU time and 2.5 times the 10 operations as a base depletion

calculation. However, this penalty has to be paid only once, since only

one reference calculation is needed for any number of adjoint solutions.

However, the penalty incurred in the adjoint calculation (45% greater
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TABLE 4.30

DPT VERSUS DIRECT CALCULATION FOR THE EOC TOTAL 239Pu
INVENTORY RESPONSE IN THE 2-D GCFR MODEL

Change in Response9 (KG)

Perturbation
DPT

Result
Direct1-5
Result

Diff.

(%)

A FISSP 28.22 28.24 -0.1

A 239pu 54.33 54.12 0.4

A238U -8.79 _„

A 232Th -47.21 _ —

SUM -56.00 -55.07 1.7

Reference EOC Pu inventory = 4525.8 kg.

The 238u/232yn variations represent a single perturbation
to the reactor; therefore, there are no direct results
for the individual variations.
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TABLE 4.31

COMPARISON OF RELATIVE COMPUTING REQUIREMENTS FOR THE
FORWARD AND ADJOINT DEPLETION CALCULATIONS3

Relative
CPU Time

Relative
10 Count

Base Forward

Calculation
1.00 1.00

Reference Forward
Calculation

2.29 2.46

Adjoint Calculation13 1.45 1.35

Four flux-eigenvalue solutions were performed in the
forward calculations and only three flux computations
were done in the adjoint case.

Very recent improvements in the numerical calculation
of the generalized adjoint flux within VENTURE will 9R
essentially eliminate the additional cost noted here.
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CPU time and 35% more 10 operations) relative to the base forward

case will be observed for each response to be investigated.

The additional computing requirements of the adjoint calculation

can be attributed to the convergence properties of the generalized

adjoint flux. In the calculational models investigated in this study,

the forward flux was a slowly varying function of space and energy.

However, the same cannot be said for the generalized adjoint fluxes.

The 232U 1-D adjoint flux, for example, had a large spike in the first

energy group and the AB #4 239Pu 2-D adjoint flux had somewhat of a
spatial discontinuity in the response domain at low energies. Because

of this erratic distributional behavior and the fact that there is less

experience with the numerical methods utilized to solve the generalized

adjoint equations, one should not be surprised that the adjoint solutions

converge much slower than the forward flux-eigenvalue solution. In fact,

many of the adjoint solutions could not be converged below amaximum

relative point flux deviation of .01 - .001 compared to .0001 - .00001

for the forward calculation. However, investigation has shown that

although point convergence is relatively poor, integral parameters are

converged very well. Since only integrals of r*(r,E) are involved in
the calculation of the r* effect, the poor point convergence presents

no problems when considering the accuracy of the perturbation results.

For the present comparison, the outer iteration limit in the adjoint

case was set at 30 whereas the average number of iterations per eigenvalue

calculation in the base case was only 16.8. Thus, the main difference

between a forward and adjoint calculation is in the number of iterations

required for convergence of the point fluxes. Limiting the adjoint

iteration count to 20-25 would result in a 15-30% reduction in
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computing requirements for the adjoint calculation and put the forward

and adjoint flux computation on a more equal base. Such an iteration

limit should not seriously compromise the accuracy of the integral
*

parameters needed for the evaluation of the r effect.

Although the cost per computation is slightly greater for the

adjoint depletion calculation, its real cost benefit results from the

fact that the effect of any number of perturbations can be analyzed with

only one adjoint computation. For example, only one adjoint calculation

was required to obtain the DPT results for the three perturbations given

in Table 4.30. However, three complete forward depletion calculations

were required to obtain the direct results for these same perturbations.

Thus, even for this simple example, DPT has a considerable cost advan

tage over direct methods. Therefore, in more realistic parametric

design studies where the effects of many design alternatives are desired,

depletion perturbation theory would definitely be the most cost-effective

analysis technique.

Lastly, it should be emphasized that Table 4.31 contains only a

rough comparison of computing requirements for the forward and adjoint

solutions. It is primarily intended as a guide not an absolute

comparison of the two methods.

Multicycle Calculations

The final set of examples to be presented in support of depletion

perturbation theory will involve multicycle calculations utilizing the

2-D GCFR calculational model described in the last section. These

examples will require the application of the adjoint refueling disconti

nuity equation (equation (2.29)). This operation is necessary because of
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the nuclide density discontinuity associated with the forward refueling

operation.

The time-step initial condition for the nuclide field within the

reactor can be written as,

Clk =Pjk Zlk +Mlk (4.19)

where

ik

.ik ,ik

^NREG

with

^ik

Jk

^IREG

*1

M
^NREG

ik

C = initial condition vector (NREG) of region-averaged nuclide

,ik

vectors (NNUC)»

vector (NREG) of region-averaged final nuclide density field

vectors (NNUC) for the time step prior to the ik time interval,

.ikM = region vector (NREG) of nuclide vectors (NNUC) specifying

makeup feed composition for the ik time interval,

p!k = shuffling/discharge matrix (NREG*NREG) consisting of the

identity matrix (NNUC*NNUC) in various locations so as to

represent the desired nuclide discontinuity,

NREG = number of regions in problem,

NNUC = number of exposure nuclides.

i kIt is the change in this initial condition, AC , which, when multiplied

by the importance function and integrated over space, gives the predicted

variation in the response of interest (see equation (2.23)). A change in

the initial condition from the reference state can be written as,
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AClk =AP^k Zlk +AMlk (4.20)

Thus, an initial condition perturbation can be caused by a variation in

either the shuffling/discharge operator or the makeup feed vector.

The initial condition equation also fully describes the reactor

ik~
refueling operation. The Z vector represents the state of the reactor

ik ik~prior to refueling. The P<~D matrix operates on Z , relocating or

discharging fuel assemblies as desired. Lastly, the M vector represents

the addition of makeup fuel to the reactor, thus completing the refueling

process. The completely refueled reactor represents the initial condition

for the next cycle.

With only slight modification the above sequence could also be used

to describe nuclide discontinuities other than the refueling process.

Control rod movement or nuclide searches at time-step boundaries can also

ik
be easily accommodated. In these cases the M vector will have a

different meaning but it will be treated mathematically the same as

ikbefore. Also in many cases of interest, the Pcn operator will just be

a diagonal matrix with the identity matrix (NNUC*NNUC) in each position

along the diagonal. This dictates that no fuel shuffling or discharge

is to occur.

An example illustrating the application of equation (4.19) may be

helpful. Consider a simple three-region problem. The nuclide density

field prior to refueling is

¥
Z =
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Assume we wish to discharge zone 3, shuffle zone 1 to zone 3, and add

fresh makeup fuel to the now empty zone 1. This can be accomplished by

the following,

or

with

"N

N2
"0 0 0" [VI r^i
oio N2 + 0

I 0 0
1_- J L-3J

0

p-ll ~v

H2 = N2

IaJ ^

p
^SD

"0 0 0"

0 10

1 0 0

(4.21)

Thus, in general, any fuel management scheme can be represented by

equation (4.19).

Continuing this illustration to the adjoint mode may also be helpful.

Recall the adjoint refueling discontinuity given by equation (2.29),

7*ijk = p ijk *ijk
- ^5D - (4.22)

Additionally, it must be remembered that since the adjoint equations are

solved backwards in time, Z*1J is known before Z 1J . Therefore, assume

that the adjoint nuclide density vector prior to the application of the

refueling discontinuity is given by



*

*1
*

N2
*

A.
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Now application of equation (4.21) gives

with

o o x
*

*1
*

^3
0 I_ 0

*

N2 =

*

N2

0 0 0
*

A
0

0 0 I

P1 =
^SD

0 I_ 0

0 0 0

(4.23)

The physical interpretation of the transformation observed in

equation (4.23) is not very straightforward, even for this simple example.

Adjoint importance shuffling, in general, can be somewhat difficult to

comprehend. To help with the explanation, we will further assume that

the desired response for this example is a nuclide inventory response in
k k

zone 3 and that the P and r effects are small compared to the N* effect.

Table 4.32 qualitatively shows the expected value of the importance

function in the three zones at various times. Since zone 3 is the region

of interest, it will have some nonzero importance at the final time, tf.

Before the application of the adjoint refueling discontinuity at t,,

zones 1 and 2 will have acquired a small amount of importance to the
k k

response through the P and r effects. The direct effect at this point
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TABLE 4.32

QUALITATIVE VALUES OF THE IMPORTANCE
FUNCTION IN THE THREE-REGION EXAMPLE

Qual itative Val ue

Time

*

Nl
*

N2

0

*

N3

V 0 Large

h Small Sma 11 Large

h Large Small 0

1°.
Large Small Small

a tf = final, t-j = refueling time, tQ = initial ti
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is still assumed to be relatively large compared to these effects. The

spatial distribution of the importance at the next time, t-j, is the
*

result of the adjoint refueling jump condition. Lastly, at tQ, the P

and r effects again add a small contribution, making the zone 3 impor

tance some nonzero value. However, the zone 1 importance is still large

relative to that in zone 2 and 3.

With the expected value of the importance function at tQ, we can

determine the effect of a nuclide perturbation at tQ on the response at

tf. Remembering that the response of interest is in zone 3, we see that

a perturbation in zone 3 has little effect on the response. However,

an initial-time perturbation in zone 1 has a large effect on the desired

response. Since we are assuming that the direct effects are dominant,

this seems to be contradictory. However, zone 3 is discharged after the

first cycle and, therefore, cannot directly contribute to a zone 3 nuclide

inventory response at the end of the second cycle. On the other hand,

zone 1 assemblies become zone 3 assemblies after refueling and thus a

perturbation in zone 1 at tQ contributes directly to the nuclide inventory

variation in zone 3 at the end of the second cycle.

Although somewhat lengthy, the above rationalization seems to validate

equations (4.22) and (4.23). In addition, it helps one visualize the

adjoint importance refueling operation and the relationship to its forward

counterpart. Fuel management operations in a multicycle forward depletion

calculation have corresponding importance management operations in the

multicycle adjoint mode. In general, if zone y is shuffled to zone z in

the forward calculation, then in the adjoint mode, the importance associated

with zone z would be shuffled to zone y. Additionally, if zone z was
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discharged in the reference calculation, then, after shuffling, the zone

z importance would be set at zero.

Numerical calculations confirming the validity of the complete multi

cycle adjoint formulation just described are not possible at present. A

general fuel management module, capable of performing fuel shuffling

operations, is not available. However, multicycle depletion calculations

can be performed within the VENTURE system if only simple charge/discharge

operations are allowed. The nuclide density manipulator module, DENMAN,

is used for this purpose.

A simple charge/discharge capability during the adjoint mode has

been built into DEPTH. This was a relatively easy process since a dis

charge fuel management operation in a region causes the adjoint density

vector to be set to zero in that zone. This was observed for zone 3 in

the previous example. Thus a straightforward but stringent test of

equation (4.22) is possible.

The 2-D GCFR calculational model described previously was used to

test the multicycle charge/discharge adjoint operation. As before,a

nuclide inventory response was chosen as the response of interest. The

same perturbations as listed in Table 4.25, page 109, were utilized for the

comparison of DPT with direct calculation. However, for multicycle

calculations, perturbations from the reference case can be applied to any

of the reload batches as well as to the initial core loading.

A four-cycle depletion calculation was chosen as a representative

multicycle computation. One-third of the core and axial blanket regions

were refueled on an annual basis. In addition, one-sixth of the radial
239 241

blanket zones were replaced per cycle. The Pu and Pu inventories

in the entire reactor at the end of the fourth cycle (E0C4) were chosen as
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the desired responses. The fourth cycle for the above fuel management

scheme represents a near equilibrium condition for the core and axial

blankets. Thus the end of equilibrium cycle fissile inventories are a

natural choice as a response of interest.

The following three tables summarize the results of this comparison.

239
Table 4.33 contrasts the calculated and predicted E0C4 Pu inventory

239
response for the fission product and Pu perturbations in core zone 1.

239
Similarly, Tables 4.34 and 4.35 compare the perturbed E0C4 Pu and

9A1 ?^P* 9^9
Pu inventories due to the 10% U/ Th perturbation in the

radial blanket zones. These perturbation/response pairs included both

239
isolated perturbations as in the case of the Pu increase in CZ 1 and

multiple nuclide variations over the four cycles as in the fission pro-

poo 9rK9
duct and U/ Th perturbations. In all these cases, multicycle

depletion perturbation theory agrees extremely well with direct

calculation.

It should be noted that initial loading perturbations in the core

region are not even physically present in the reactor during the fourth

cycle. However, the effects of these perturbations are predicted with

239
remarkable accuracy. For example, the isolated initial core Pu

239
perturbation's effect on the E0C4 Pu inventory was predicted to with

an accuracy of 1.7%! Thus the reactor has a memory and DPT can

account for this memory effect with excellent precision.

This memory effect is just the combination of the P* and r* effects

made more visible because of the nuclide discontinuity at cycle boundaries.

Obviously, a fuel assembly that is no longer in the reactor at the desired

response time cannot have any direct effect on the response of interest.
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TABLE 4.33

DPT VERSUS DIRECT CALCULATION FOR E0C4 239PU
INVENTORY RESPONSE FOR FISSION PRODUCT AND
PLUTONIUM PERTURBATIONS IN CORE ZONE #1

Change in Response (KG)

Design
Variation

Time of

Perturbation
DPT

Result
Direct9
Result

Diff.

A FISSP initial core

1 reload

ond n J
2 reload

3 reload

56.23

30.61

21.46

10.97

SUM 119.27 115.98 2.8

239
A Pu initial core -27.68 -27.21 1.7

pon t-i

A^Pu rL reload -2.35 -2.43 -3.3

3 pon

The response of interest here is the E0C4 Pu inventory*
therefore, there are no direct results prior to the end of
of the fourth cycle.
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TABLE 4.34

DPT VERSUS DIRECT CALCULATION FOR E0C4 239Pu
INVENTORY RESPONSE FOR THE 10% 238U/232Th
PERTURBATION TO THE RADIAL BLANKET ZONES

Change in Response (KG)

Design Time of DPT Direct9 Diff.
Variation Perturbation Result Result (%)

A238U initial core -16.01

A 232Th -88.13

A238U 1 reload -8.60

A 232Th -17.94

A238U o^d , ,
2 reload -5.05

A232Th -13.68

A238U ord -, ,
3 reload -2.15

A 232Th -7.74

SUM -159.30 -157.10 1.4

j pon

The response of interest here is the E0C4 Pu inventory;
therefore, there are no direct results prior to the end of
the fourth cycle.
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TABLE 4.35

DPT VERSUS DIRECT CALCULATION FOR E0C4 "'Pu

INVENTORY RESPONSE FOR THE 10% 238U/232Th
PERTURBATION TO THE RADIAL BLANKET ZONES

241,

Change in Response (KG)

Design
Variation

Time of

Perturbation
DPT

Result

Direct3 Diff.
Result (%)

A238U
A 232Th

initial core .0463

-.1264

A238U
A 232Th

1 reload .0134

-.0361

>>roro COCO roco —1cz

2nd reload .0308

-.0604

A238U
A 232Th

3rd reload .0290

-.0572

SUM -.1606 -.1590 1.0

a 241
The response of interest here is the E0C4 Pu inventory;
therefore, there are no direct results prior to the end of
the fourth cycle.
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However, it still can have affected the response through a flux magnitude

or distributional variation prior to its removal from the system.

239
Consider the increase in the Pu initial loading to CZ 1. This

239
perturbation increased the Pu inventory in the reactor during the

first three cycles. However, the last of the assemblies with increased

239
Pu concentration are discharged during the third cycle refueling

operation. Thus,there can be no direct contribution to the desired

response. The initial perturbation, however, reduced the overall magni

tude of the flux and shifted the spatial distribution of the neutron flux

toward core center. Both effects, P and r ,respectively, resulted in

a decreased average flux in the blanket region over the first three

239
cycles. Thus,the decreased Pu production rate in the blanket regions

239
is the major cause of the observed 27 kg deficit in the E0C4 Pu

inventory relative to the reference depletion calculation.

The other perturbation/response pairs shown in Tables 4.33-4.35

have characteristics similar to those discussed previously. Since the

main point to be made is the good comparison of DPT with direct calcula

tions, the fine details of the calculations will be ignored. However,

in view of the main objective of the study, the excellent predictive

capability of the time-dependent perturbation theory under investigation

will be reemphasized one final time. This can be done quite nicely by

concentrating on the multiple perturbation cases shown in Tables 4.33-

4 35

The three multiple perturbation examples illustrate the predictive

power of multicycle perturbation theory. The four distinct fission pro

duct perturbations,when summed to give the total perturbed response,

only differ from direct calculations by 2.8%. Similarly, the
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eight separate nuclide variations in the radial blanket, when combined
239 241

to produce the total AR, predict the change in the E0C4 Pu and Pu

inventories to an accuracy of 1.4% and 1.0%, respectively. These kinds

of results are remarkable when considering the complexity of the prob

lem being solved. Apparently the space, energy and time dependence

of the adjoint importance functions of multicycle depletion perturbation

theory are taken into account in a consistent and accurate manner.
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V. SUMMARY

The goals of the present investigation have been to develop a multi

cycle depletion perturbation theory formulation, to implement this theory

into an existing calculational system, and lastly to verify the accuracy

and usefulness of this time-dependent perturbation theory. Although

these goals have been realized, there is still a considerable amount of

research to be performed in the relatively new field of time-dependent

perturbation theory. Therefore, this final section will not only

summarize the conclusions of the present study but also recommend

several areas needing further research.

Conclusions

The adjoint quasi-static depletion perturbation theory formulation

summarized in Table 2.1, page 11, and implemented in the DEPTH module has

been shown to fully account for variations in the neutron and nuclide

fields arising from variations in the time-step initial conditions. A

wide variety of numerical calculations have been performed to verify the

accuracy of the coding within the DEPTH module as well as the adequacy

and generality of the multicycle depletion perturbation theory. The

examples utilized covered the range from 1-group, 1-dimensional reactor

models to more complex multigroup, 2-dimensional calculational representa

tions. In addition, several multicycle calculations were performed as a

test of the adjoint refueling jump condition. Remarkably good agreement

was achieved with direct computation for most of the cases investigated.

The few cases whose accuracy was considered marginal were dominated

by nonlinear behavior due to cancellation of competing effects. This

nonlinear behavior seems to be the exception rather than the rule.
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However, careful examination of the time-dependent importance functions

can isolate perturbation/response pairs that have large competing effects.

In these cases, experience should be used as a guide in judging the

reliability of perturbation theory results.

Also, it has been determined that the full perturbation theory
k k k

including the N , P , and r effects, is generally needed to accurately

describe the effect of a particular perturbation. However, certain
*

situations may allow the r effect to be neglected and thus considerably

reduce the cost of the adjoint calculation. Although definite guidelines

are not available, perturbation/response pairs dominated by the N effect

fall into this category. Some preanalysis may be required but one can

usually determine with relative ease whether or not the N effect should

dominate. Additionally, it should be noted that the previous statements

are restricted to perturbations near the central core regions of the

reactor since it has been determined that the r effect is quite important

in blanket, control rod, or structural regions of the reactor.

Since the full perturbation theory formulation is needed for general

application, the computational cost of a complete adjoint calculation

relative to a base depletion calculation becomes important. It was shown

in the previous chapter that a reference forward calculation had about

2.0-2.5 times the computing requirements as a base case. However, this

penalty occurs only once for any number of adjoint computations.

Additionally, the cost of the adjoint calculation for each response of

interest can be expected to be about 25-50% higher than a base forward

4-

calculation.

\lery recent improvements in the numerical calculation of the
generalized adjoint flux within VENTURE will essentially eliminate
this additional expense.?°
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Thus, there seems to be a trade-off in the cost and the type of

information desired from a specific depletion analysis. If one only

wishes to determine the effects of a few specific perturbations, then

the direct calculation method would be less costly. However, if the

investigation of the effects of a large number of design variations on a

few specific responses is the desired goal, then depletion perturbation

theory is the most cost-effective method. Depletion perturbation theory

would also be utilized if a generalized static or time-dependent sensi

tivity or uncertain!'ty analysis were to be performed.

Lastly, it shQuld be noted that static and time-dependent perturba

tions theory share the same trade-offs. In general, direct calculation

is utilized for analysis of problems containing few perturbations and

several responses, whereas perturbation theory is employed when the

effects of several design variations on a few responses are to be

investigated.

In summary, one can conclude that the multicycle depletion

perturbation theory capability described in the present document

represents an attractive alternate computational method for certain types

of burnup analyses. The method has been shown to predict perturbed

responses under a variety of circumstances with remarkable accuracy. This

technique also allows a considerable savings in time and cost when several

design variations or a general sensitivity analysis are to be performed.

These benefits could be especially useful for repetitive-type scoping

calculations such as those being performed in current alternate fuel

cycle studies.

In addition to time and cost advantages, perturbation theory methods

permit a better understanding of the mechanisms responsible for the
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observed behavior of a given response. In depletion perturbation theory,

both space and time-dependent sensitivity coefficients are generated.

Analysis of these importance indicators for a variety of important

responses can provide a more detailed understanding of the neutronic

processes underlying the observed behavior. Thus, multicycle depletion

perturbation theory may also lead to improvements in core design and

optimization techniques since the indirect effects of design changes on

final-time responses such as Keff, fissile inventory, net fissile gain,

breeding ratio, power variance, fluence, etc., can be easily quantified.

Recommendations

This report cannot be properly concluded without emphasizing the

fact that there is still a considerable amount of research to be per

formed in the relatively new field of time-dependent perturbation theory.

The present investigation has only verified the generality and accuracy

of the theory. Many areas need further investigation before depletion

perturbation theory becomes a widely used analytical tool. Only three

of these general areas will be briefly mentioned here. These include

the generalized adjoint flux, multicycle effects, and future applications

of DPT.

The determination of the generalized adjoint flux accounts for most

of the computing requirements of a complete adjoint depletion calculation,

Thus it seems only rational that some effort be made to either improve

the numerical calculation of the adjoint flux and/or find some suitable

approximation so that at least some of the adjoint flux calculations in

a multiple time-step problem can be eliminated. This latter suggestion

may not be as impossible as it seems. It should be remembered that only
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integrals of the adjoint flux over spatial regions are utilized in the

r* effect calculation. Furthermore, the generalized adjoint source is

a good indicator of the integral spatial behavior of the pointwise flux.

Since the adjoint source is relatively easy and inexpensive to calculate,

some reasonable compromise between accuracy and expense may be achievable.

The multicycle capability of the generalized depletion perturbation

theory utilized in this study has only been verified for a simple charge/

discharge set of fuel management operations. Although its application

when using complex fuel shuffling patterns should create no difficulty,

the effects of importance shuffling in the adjoint mode should be

studied in more detail. In addition, the verification of the predictive

capability of the multicycle formulation for a perturbation in the

shuffling/discharge operator, as suggested by equation (4.20), should be

performed. These tasks would involve the implementation of importance

shuffling capability within the DEPTH module.

A second area related to multicycle perturbation theory is the

effect of fuel recycle. In the present investigation, the makeup feed

vector, Mik, was assumed to be independent of the operating history of

the reactor. However, if self-generated recycle is present, the avail

able feed will be a function of the nuclide densities discharged during

previous cycles. This added complication should only affect the adjoint

refueling jump condition. Further development of this concept would

enhance the capability of the present DPT to include fuel recycle effects,

The last and probably most important area needing further work to

be mentioned is the area of realistic application of DPT. The present

study has demonstrated the predictive capability DPT. However, at

present, the sensitivity coefficients generated in the DEPTH module can
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only be manipulated by hand calculation. Therefore, a module to calculate

perturbed responses utilizing user-defined design variations would be

particularly useful. Similarly, a module to generate the adjoint sources

needed as input to DEPTH is required so that a variety of response

functionals can be employed. With the development of these modules,

depletion perturbation theory could be utilized as an effective tool for

time-dependent perturbation analyses.

A somewhat more futuristic application and ultimate goal of static

and time-dependent perturbation theory is its use in computer-automated

core design studies. The design of a nuclear reactor from neutronic,

thermal-hydraulic, structural, and economic viewpoints obviously require

that compromises in the material configuration of the reactor be made.

Now that time-dependent effects can be treated, perturbation theory

methods can generate sensitivity coefficients that reflect the importance

of these material compromises on various neutronic, thermal-hydraulic,

structural, and economic performance indicators. A library of nuclide

sensitivity coefficients for the importance indicators along with a set

of user-defined system constraints could be utilized in an optimization

package to provide a best estimate design in a single computer calculation.

The possibilities of such a system as outlined here are enormous.

The first realistic application of design optimization on this scale

may be in determining the optimum fuel shuffling pattern for an operating

light water reactor. In this case the design variations may be limited

to reload enrichment and fuel location. Since perturbation theory can

predict the changes in the desired responses due to an interchange of

assemblies (nuclide perturbation), in principle at least, the optimum

location of each assembly based on certain system constraints can be
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determined. Thus, an automated optimization package based on static and

time-dependent perturbation theory, as indicated here, could prove to

be an invaluable aid for core design and fuel management analyses.

Finally, it should be emphasized that the above recommendation list

of items requiring further study is by no means exhaustive. Its primary

goal is to indicate that time-dependent perturbation theory is arelatively

new field requiring much further development and that it is a research

area that has an enormous potential for useful applications.
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APPENDIX A

The purpose of this Appendix is to derive the equations programmed

into the DEPTH module. An approach similar to that utilized in Refs. 13 and

29 will be taken. The main difference, other than slight variations in

notation and the use of discrete variables where possible, is the treat

ment of nuclide discontinuties at the time-step and cycle boundaries.

This additional feature in the present work allows for nuclide searches

and multicycle refueling operations during the forward depletion

calculation. Such operations are necessary for realistic multicycle

depletion analyses.

The notation for the complete set of forward quasi-static depletion

equations utilized in this study is given as follows:

1• Nuclide Density Equation:

^Nijk(r,t) MT%) H) N%,t) (AJ)

i ik ->•

where N (r,t) =Space-dependent nuclide density vector (NNUC isotopes)

at time twithin substep j, time step i, and cycle k.

D = Matrix (NNUC*NMUC) of nuclide decay constants.

and X1Jk(r) =aijk Xik(?) ^tf) (A.2)
iik -*•

with J_ (r) = Space-dependent transmutation matrix (NNUC*NNUC) for

ijk interval. Diagonal terms represent loss mechanisms

and off-diagonal terms represent production routes.

a - Flux normalization constant, held fixed during ijk

interval.
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^_lk(r) = Space-dependent flux shape group vector (IGM) held

constant during ik interval.

i k -*X_ (r) = Space-dependent burnup operator. Consists of a matrix

(NNUC*NNUC) of microscopic cross-section vectors (IGM)

held constant during the ik interval.

2. Initial Condition on N(?,t):

N(r,t)|+ =Cik(r) (A-3)
rik

where N(r,t-,,) = Initial nuclide density vector (NNUC) for the ik time

interval.

and Cik(f) =^(r) Nik""(r) +Mik(?) (A.4)
with Nlk~(r) = Final nuclide density field vector (NNUC) for time step

prior to the ik time interval.

pjr) =Shuffling/discharge operator for ik time interval.

Mik(r) = Space-dependent nuclide vector (NNUC) specifying feed

composition for the ik time interval.

3. Power Normalization Equation: (Defining equation for a J )

pijk = aijk T,,
N ijk(r) L, £fV) i1k(?) ^ (A.5)

all =*
space

where P1J = Specified reactor power for ijk time interval.

Ep = Diagonal matrix (NNUC*NNUC) of nuclide-dependent

energy per fission conversion factors.

ik -»•ajr (r) = Space-dependent microscopic fission cross-section
=f

matrix (NNUC*IGM) held constant during ik interval.
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4. Flux Shape Equation: (Time-independent diffusion equation)

(k-AF)ik iik(r) =0

I = Leakage, removal and inscatter operator.

Fission source operator.

1

where L

F

X
K
eff

5. Flux Shape Normalization:

all

space

(iikT(r)-l) dr =1

(A.6)

(A.7)

tik,±Nwhere the inner product of $_ (r) and 1_ represent an integration over the

discrete energy variable.

Now using equations (A.1)-(A.7) as constraints on the desired

response as described in Section II, one can define the following

K-functional,

K(N,a,iM,3,P,C).= R(N,a,^)

EE d?[r*T(r)(L-AF) «,(?)]
k i ^all - ~ ~ J

space

(A.8)

ik

+E E E P*ijk [pijk-aijk
k i j all

space

T

drN^^rlU^^t?)]

EEE K dt»^1Jk^t)[^N^k(r,t)-
k i j Jail Substep LCK

space j .. . ..
(T1Jk(r)+£)N1Jk(r,t)J

dt N* ik(r,t) [Nik(r,t)-Cik(7,t)] 6(t-ti|{)-EE
k i Jall

space
timestep

i
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£ Z A*1k ' dr (^ik(r) • 1) "- 1

k i L Jall
space

•

where £ lk(r), P*1jk, N1jk(r,t), and A*lk are Lagrange multipliers. The
desired adjoint depletion equations defining these Lagrange multipliers

are derived by forcing the functional derivative of the K-functional with

respect to ±lk(r), a1jk, N1jk(r,t), and Xlk to vanish. Taking one term
at a time, one has,

1. Setting 9K/8^lk(r) to Zero:

T
ik *ik/->-x *iik,-*»(L-AF) IK £ 1K(f) = S 1K(r)

9Rwith S 1K(r) =
W)

*ik
(A *1)

+ E
j

*TiJk(r,t) -^ (j^tf) N^^t)dt N

substep
j

„,il(;^
9^ (r)

- E P*1jk a1jk N^k(r) E alk(r) .

2. Setting 9K/9a1jk to Zero
*i -iijk 1 r r 9Ri

a 7T—
3a

ijk

pijk Ll

..ijk
dr

all

J. -,

"dt N* Wtf.t) Xiktf) ^k(r) Nijk(r,t)
substep =

(A.9)

(A.10)

(A.11)

space j

3. Taking' Variation with Respect to N1J (r,t):

Before taking the variation with respect to Nljk(r,t), one needs to

rewrite the fourth term on the right-hand side of equation (A.8).

Integration in the forward time direction yields,
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dr

all u
space

N*T(r,t) N(r,t)

-N*T(f,t) N(r,t)|. +
1ri jk

+

'ijrk+l

(A.12)

'ijk T
dt

:i jk + 1
_dtN ijk(?,t) (^N*ijk(^,t) +(Tijk(f)+£)N*ijk(r',t))

Now substituting (A.12) into (A.8) and taking the variation with respect

to N1jk(f,t) gives,

d? dt
8Kf(fjt) 6N(*.t) =0 = d? dt fb,t) ™&-v

LZ [d
k i

£*T(r) -^ {(L -XF) i(f)} 5N(r)
3N(f)

ik+

EV" v \aZ n*ijk+ ijk+ ,- ik+/->x , ik+,->-\ rMijk+/-KE E dr P a E af (r) ^ (r) 6N (r)
k i j J =* -r

k i j

k i j

EEE
k i j

dr

dr

dr

N*T(r) 6N(r)/->"» .../->!

N*T(r) 6N(r)

rtijk
dt

tijk+l

(ijk+l)"

ijk+

1 N*ijk(r,t) +

(A.13)

(Iijk(?) +D)TN*ij'k(?,t)l6Nijk(?,t)

k i
dr" (/ik(r) 6Nik(r)) - (/ik(r) ^) 5Nik-(?))



158

Equating similar integrands, noting that

6Nik+(r) =oNik(r) =£^(7) mik'(r) , (AJ4)

and defining (restricted to final time responses)

3N(r,t) =^ (r'V • (A.15)

one obtains the following adjoint equations,

£ N*ijV,t) +(fktf) +£)T N^Jk^.t) =0 (A.16)

and

fi*Uk<f) .,*^(?) tr*'*<(?Wt +P*1^(?)effect (A.17)
where

'̂Jk<?>effect "-I*T,k<?) -TCT7 «k - »£) i,k<?»for j - ,
9N_ (r) ~~ ~

r*ijk/^ n * -,. (AJ8)
1 (r)effect = ° for J ^ ]

P*ijk/-£N _ D*ijk ijk c ik,-K ,ik,->, ,„ ,„,
- (rjeffect"_P a |p £f (^) i (r) (A.19)

and

N*1Jkl?> - £JJk<?) I*1jk(?) (A.20)
*i k /"*• i k ->where f^ (r) is the adjoint operator to J> (r) (See Section IV for more

^=SD

detailed description of P.jn(r)).

4. Setting 9K/9Xlk to Zero:

L 1k(r) £iik(r) dr =0 (A.21)
a 11

space



5. Additional Relationships:

From equation (A.9) one has

iSr) S*ik(?) =0dr

all
space
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(A.22)

ik,Using this result and equation (A.9) multiplied by i1K(r) and integrated

over all space along with equation (A.10) gives the following definition
*ikfor A 1K,

h-k dr £k(r)
Jall 3i'N(r)
space

3R V / 9Rv
ijk

(A.23)

Equations (A.9)-(A.10) and (A.15)-(A.23), define a consistent set of

space-continuous burnup equations adjoint to the forward quasi-static

depletion formulation described in equations (A.1)-(A.7). The meaning

and use of these adjoint equations are fully detailed in the main text

of this report.

The above derivation was performed with the dependent variables as

continuous functions of space. In realistic depletion problems, zone-

or subzone-averaged quantities are almost always used. The zone-averaged

flux is calculated and used in the transmutation matrix to produce zone/

subzone-averaged nuclide density fields. In problems with subzones it

is assumed that the following relationships are true.

Nz(t) f- E.JWtJvsz

where

and

V, = y V
z V sz

s

(A.24)

(A.25)
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where N (t)

N«<t>

*****;

SZ
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v ±{r) dr =i^.

zone-averaged nuclide vector (NNUC)

subzone-averaged nuclide vector (NNUC)

zone-averaged flux vector (IGM)

volume of zone z

volume of subzone s in zone z.

(A.26)

Using these definitions, a straightforward averaging of the space-

continuous adjoint depletion equations can be performed with the following

results.

1. Space-Averaged Nuclide Adjoint Equations:

Nuclide adjoint equation:

d N^t) +(jjJ'k +D)T N*lJk(t) =0dt ^sz =sz -sz

where

Tijk = ijk ik ik
=sz ^sz^-z

and final condition

N *(t ) = -^^V 9N (t)
-szv '

and jump condition

9R

sz Vsz 9N(r,t)
d7

N*iJk =N*^k+ +r!p+ effect +P*p effect
-sz —sz —sz —sz

with

(A.27)

(A.28)

(A.29)

(A.30)
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d?/ik(?) 9

= 0 for j f 1.

9Nlk
-sz

(L -AF)ikiik(r) fforj =l

(See Appendix B for details of equation (A.31).)

P^jk+ effect P*ijk aijk E alk tik
=p fsz *z

and adjoint refueling discontinuity condition

7*ijk- = pTijk *ijk
- ^SD -

with

rijk

Ni

*

*

^REG

= Vector (NREG) of region-averaged adjoint
nuclide vectors (NNUC).

(A.31)

(A.32)

(A.33)

pijk =
^SD Shuffling/discharge matrix (NREG*NREG) consisting of the

identity matrix (NNUC*NNUC) in various locations so as to

represent the desired nuclide discontinuity. (See Section

IV for more details.)

Note when j / 1

"I

pijk
=SD

with I

(NRES*NREG)

Space-Averaged Power Nprmajization Adjoint Equation:

J

(NNUC*NNUC)

>*ijk 1

,ijk
substep j

z s

(A.34)
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3. Space-Averaged Generalized Adjoint Shape Equation:

(L - AF) ik r*ik(r) =S*ik

where

5*ik =^R_ _ (A*ik#i)
1 9il

ijk
+ x; ^— y v

J z s

dt N* ijk(t) X^k N^k(t)
substep j

T_. .,
- E - E vc P*1jk aijk N"Jk E afk*-r> v ^-> SZ -SZ £p =fSZ

J Z S ^

4. Space-Averaged Auxiliary Equations:

a

space

"T,-* +\\ik .->-n (r '(f) Ejtfr))'* dr =0

E vz(4s.z>1k =0
z

*ijk .-> ,ik/->-x 9R
all * ^ —W^~
space ^- * '

4-(ot 3^
ijk

(A.35)

(A.36)

(A.37)

(A.38)

(A.39)

Equations (A.36)-(A.39) represent the depletion perturbation formulation

programmed into the DEPTH module. Although the detailed notation has

been somewhat cumbersome, these adjoint burnup equations look quite

similar to the FORTRAN equations in DEPTH and thus allow a fairly easy

understanding of the coding within the new module.
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APPENDIX B

The purpose of this Appendix is to evaluate the nuclide adjoint

jump condition term involving the generalized adjoint shape function,

£(r). In addition, it will be shown that the resultant volume

integrals are equivalent to the perturbation integrals calculated with

in the VENTURE modular system and stored in the PERTUB interface file.

The first goal is to evaluate the following integral expression,

L, = dr-sz |v
I*T(r) Jj— {(k-A£) i(r)}

—sz

(B.l)

where the term in the { } is just the time-independent multigroup

diffusion equation written using operator notation. The form of the

diffusion equation solved by VENTURE is,

-Dr,9V2 *r.g +Ga.r.g +E Xs,r,g. n+Dr,g Bg^r,g
(B.2)

E^s,r,n+g +K~Z *r,g <vS>f,r,n] *r,n

where r refers to the space variable, g and n refer to the. energy variable

and D, E . E_, (vEf) and X are the diffusion coefficient, macroscopic
a S T

absorption, scattering, and neutron production cross sections, and

distribution function for fission neutrons, respectively.

Rewriting equation (B.2) in matrix form and assuming that the cross

sections are constant within subzone s in zone z, one has

-P^z V2 tfr) +[^ +|£ +M2]SZ jfc(r)
(B.3)

-[!s +K77 xv£f]szi(r) =0
eff ~~
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where j" and Zg are the outscatter and inscatter terms, respectively.

Now taking the derivative of (B.3) with respect to N ,one has (neglecti
^z'

the DB2 term),

ng

*tr V2 +^ ^S K
eff

X vo. ±(r) = 0 (B.4)
sz

where

3D2a
tr,

Ur ~~ ~ dN S

2r

a
=s

VOf

r,

-^(z +i°)dN ^ + |^

dN ks

2T
o^»

ai->IGM
—s

3D2a
-tr

IGM

a +Va ,
-ai Z-.-s,l->n

rtfl .

IGM*IGM

^IGm'tT^1^"
n/IGM

a3+l
—s

IGM+T

^s

J IGM*IGM

IGM*IGM

wfl vaf2

dN ^:f Mfl va.
f2

fl -^f2 va
fIGM

IGM*IGM
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and

XIGM
'-1 IGM*IGM

with the microscopic cross-section vectors (NNUC) within the matrices now

representing the nuclide dependence of the cross sections.

Now substituting equation (B.4) into (B.l), one obtains the following

relations,

I = [I +1 +1 +U,7
—SZ —l —2 —3 4 SZ

with

I =
—i

I =
—2

I = -
—3

dr r*T(r) gtr V2 i(r)

dr £*T(r) p^ ±{r)

dr £ '(r) tj. ±{r)

k'~*eff

dr r*T(r) Xvaf ±{r)
v

(B.5)

(B.6)

(B.7)

(B.8)

(B.9)

Equations (B.6)-(B.9) can also be written using summation notation as

follows,

I,sz =£ (3D9 Wsz j

-2SZ £ <2.g + 5
n/g

r (r) V2 ib (r) dr ,
v gv V

g v ^s-^nsz Jv r*(r) *g(r) dr ,

(B.10)

(B.ll)
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I3sz
/" *

g'sz jv rg(r) *n(r) dr , (B.12)

-^sz
KT7 E(-f)szjv (Exnr;(r))V?)d? . (B.13)
eff g z x n

Using this last set of equations, a numerical result can be obtained for
*

I_sz and the r^ effect jump condition. The volume integrals in the above

equations are stored in the PERTUB interface file as the following

quantities,

(2D RECORD)

1

'z,g =K^ z v,4v„

(3D RECORD)

5 y v. r* ip.z,n,g X£ i i,g ^i^

(4D RECORD)

n = E v. r. v2 ip.
»9 {TL 1 1,9 M,(

icz

(B.14)

(B.15)

(B.16)

Finally, using (B.10)-(B.16), the expression in equation (B.l) can be

written as,

hz -E (3D* otrg)s2 ^g (B.17)

n/g

g.g
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y y (o ) sg n "^n^9 sz z,n,<
n^g

y (vo> ) Tjf —fg'sz z,g

It is equation (B.17) that is evaluated within the DEPTH moduli
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