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FOREWORD

This is one of a series of reports describing research, development,
and demonstration activities in support of the National Program for
Building Thermal Envelope Systems and Insulating Materials. The national
program involves several federal agencies and many other organizations in
the public and private sectors that are addressing the national objective
of decreasing energy waste in the heating and cooling of buildings.
Results described in this report are part of the national program through
delegation of management responsibilities for the DOE lead role to
Oak Ridge National Laboratory.

Other reports in this series include the following, which are
available from NTIS:

1. DOE/CS-0059, The Natiomal Program Plan for Building Thermal
* Envelope Systems and Insulating Materials (January 1979);

2. ORNL/SUB-7556/1, Assessment of the Corrosiveness of Cellulosic
Insulating Materials (June 1979).

3. ORNL/SUB-7504/3, Recessed Light Fixture Test Facility (July 1979).

4, ORNL/SUB-7559/1, Problems Associated with the Use of Urea-
Formaldehyde Foam for Residential Insulation (September 1979).

5. ORNL/SUB-7551/1, Interim Progress Report on an Investigation of
Energy Transport in Porous Insulator Systems (October 1979).

6. ORNL/TM-6494, A Technique for Measuring the Apparent Conductivity
of Flat Insulations (October 1979).

7. ORNL/SUB-79/13660/1, Minnesota Retrofit Insulation In Situ Test
Program Extension and Review (February 1980).

8. ORNL/TM-7266, An Experimental Study of Thermal Resistance Values
(R-Values) of Low-Density Mineral-Fiber Building Insulation Batts
Commercially Available in 1977 (April 1980).

Ted S. Lundy

Program Manager

Building Thermal Envelope Systems
and Insulating Materials

Oak Ridge National Laboratory

E. C. Freeman

Program Manager, Buildings Divison
Office of Building and Community Systems
Department of Energy






EDITOR'S NOTE

Although ORNL has a policy of reporting its work in SI metric units,
this report uses English units. The justification is that the insulation
industry at present operates completely with English units, and reporting
otherwise would lose meaning to the intended readership. To assist the
reader in obtaining the SI equivalents, these are listed below for the

units occurring in this report.

Property Unit Used SI Equivalent

Dimension in. 25.4 mm

Dimension ft 0.3048 m

Density 1b/ft3 16.02 kg/m3

Power Btu/h 0.2929 W

Thermal conductivity Btu in./h ft2 °F 0.1441 W/m K

Thermal resistance h ft2 °F/Btu 0.1762 K m%/w

Temperature °F °C = (5/9)(°F — 32)

Temperature difference °F °C = (5/9)°F
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ANALYSIS OF HEAT TRANSFER IN BUILDING THERMAL INSULATION

H, A. Fine, S. H. Jury, D. W. Yarbrough, and D. L. McElroy
ABSTRACT

The measurement of the apparent thermal properties
(i.e., conductivity, resistivity, and resistance) of insulation
by the guarded hot-plate technique is mathematically simulated
on a computer by assuming that coupled conductive and radiative
heat transfer occurs in an absorbing and emitting single-phase
gray medium. Calculations are performed for insulation
extinction coefficients between 0.001 and 1000 ft'l, thicknesses
between 0,0208 and 1.0 ft, continuous—-phase thermal conduc-
tivities between 0.1800 and 0.1980 Btu in./(h ft2 °F), hot-plate
temperatures between 485 and 635°R, and cold-plate temperatures
between 435 and 585°R.

A three—-region approximate solution to coupled conductive
and radiative heat transfer in an infinite slab of absorbing and
emitting gray material bounded by black surfaces is also
developed and shown to agree to within *0,5% of the numerical
results for most cases. The approximate solution to the coupled
problem and the exact solution to the uncoupled problem are used
to establish the effect of test conditions (such as specimen
thickness, plate emissivity, plate temperatures, and continuous-
phase thermal conductivity) on the measured apparent thermal
properties of an insulation specimen.

Examples of the temperature profiles within the insulation
and a table of representative thicknesses for guarded hot-plate
test specimens (i.e., the minimum specimen thickness required
for measurement of an apparent thermal resistivity that is
within 2% of the value at infinite thickness) are also presented.

A means to extrapolate thermal resistance data from thin to
thick specimens is suggested by this analysis. Predictions from
the extrapolation are shown to be consistent with existing
thermal resistance data on low-density mineral fiber building
insulation batts.

1. INTRODUCTION

Heat transfer within insulation may occur by conduction and radiation
in the solid phase and by conduction, convection, and radiation in the gas
phase. These mechanisms interact and combine to produce the total heat

flux through the insulation and the temperature profile within the



insulation. The primary goal of this study is to understand how conduc-
tion and radiation interact to yield the thermal properties of insulation
without the influence of convection.®

In general, a useful understanding of a complicated heat transfer
problem is sought from analysis of experimental data using theoretical
models of the interacting phenomena. Although several theoretical models
exist,l’2 virtually no experimental data can be found in the literature
for the problem of interest. Several significant events have occurred
since 1976 that have focused attention on the need for additional
theoretical and experimental analyses of heat transfer in insulation.
These events are outlined below. A new theoretical approach that clearly
shows the relationship between two modes of heat transfer within insula-
tion and the properties of the insulation and test facility follows.

First, in 1976, the American Society for Testing and Materials (ASTM)
approved a significant change in the ASTM Cl177 specification for the
standard guarded hot-plate test method.3 Among the changes, ASTM Cl77-76
provided a new method to estimate the maximum thickness of specimens that
can be used in the guarded hot-plate apparatus; the specification also
noted that the thermal properties of a specimen may change with specimen
thickness. Prior to this change, the maximum thickness was limited to
one~third of the lateral dimension of the central section of the apparatus.,
Since the lateral dimensions of most central sections were less than 6 in.,
the majority of tests were conducted at a specimen thickness of less than
2 in. Thus prior to 1976, few studies provided data sets on the specimen
thickness effect, and a linear extrapolation of any available data to
design thickness was employed. The Cl77-76 specification, however, indi-
cated the need for measurements on insulations at their design or full or
actual-use thickness.

Second, since 1976, a number of laboratories have increased the
central section dimension to 12 in., which by the pre-1976 specification

would allow sample thicknesses up to 4 in. but by the new specification

* . . . , , .
In this analysis convection is estimated as enhanced conduction
(Sect. 2.7).



allow thicknesses of 6 in. or more. These devices should provide direct
experimental data on the effect of thickness, assuming that the increased
thickness does not increase the measurement error.,

Although ASTM has endorsed the philosophy of full-thickness testing, a
cautionary statement has been appended to C177-76 and a position statement
prepared.4 Both suggest that identification of measurement accuracy and the
full-thickness effect require calibration standards, which do not exist,

Third, in 1979, the Federal Trade Commission (FTC) issued a final
rule on labeling and advertising of home insulation that includes
prescribed standardized test methods for determining R-values of home
insulation materials.? The rule states all tests must be performed at
a specimen thickness greater than that for which the apparent thermal
resistivity of the material does not change by more than 2% with further
increases in thickness. The effective date of this rule was to have been
November 30, 1979, but this has been delayed.

Later in 1979, the Department of Energy (DOE) Residential Conservation
Service (RCS) program issued a final rule,® which became effective
December 7, 1979, and would recognize the FTC final rule as including
requirements for thermal resistance testing. Since the RCS program is
a major federal effort to encourage energy conservation measures, such as
application of home insulation, the understanding of full-thickness
testing is an important part of the national effort for energy
conservation.

For an infinite planar section of insulation at steady state, the
total heat flux is a constant that is independent of position within the
specimen. Thus, the thermal conductivity, resistivity, and resistance
to heat transfer of an insulating material may be defined by analogy to
pure conductive heat transfer. (See Appendix Al for the definitions given
in ASTM Cl177-76.) However, while the total heat flux must be constant,
the fraction of energy carried by each mechanism varies, with a nonlinear
temperature profile resulting even when the properties are not a function
of temperature. Because of the presence of radiative heat transfer, the
thermal properties of insulation are apparent thermal properties that are
a function of the physical and optical properties of the insulation and

its bounding surfaces.



Realizing that measured values for the thermal properties of insula-
tion may depend on the apparatus as well as the insulation, several
investigators have employed limiting-case solutions to the actual heat
transfer problem to define the effect of measurement conditions on the
measured result.7'9 These attempts have generally been based either

on uncoupled (i.e., noninteracting) conductive, and radiative heat transfer
7,8

9

in an absorbing, emitting, and scattering single—phase gray medium
or on conductive plus radiative heat transfer with only scattering.

Exact solutions to the coupled conductive and radiative heat transfer
problem for absorbing, emitting, and isotropically scattering single-phase
gray materials bounded by nonblack isothermal infinite parallel plates
have been developed by Viskantal and by Lii and 0zisik.2 These analyses
show that a linear temperature profile exists only for the pure scattering
case and that as the importance of scattering relative to absorption
decreases the nonlinearity of the temperature profile increases. The
worst limiting case, as indicated by the most nonlinear temperature
profile, occurs for black bounding surfaces and no scattering within the
material.

In the current work, the measurement of the apparent thermal proper-
ties (i.e., conductivity, resistivity, and resistance) of insulation by
the guarded hot-plate technique is modeled using a digital computer that
solves the coupled conductive and radiative heat transfer problem for an
absorbing and emitting single—phase gray medium bounded by infinite
parallel black isothermal plates. The results of these calculations for
the worst limiting case and the previously determined results for the best
limiting case are used to bracket the effect of sample thickness on the
apparent thermal properties of insulation and to develop an extrapolation
equation that shows the relationship between the apparent thermal proper-
ties and the measurement conditions (e.g., hot— and cold-plate emissivi-

ties and temperatures and specimen thickness).
2, THEORETICAL CONSIDERATIONS

In a properly designed and operated guarded hot plate, the guards
minimize lateral heat exchange with the metered section so that a net flux

occurs only in the direction normal to the hot and cold specimen surfaces.



Under these conditions, the specimen is equivalent to an infinite slab of
the same thickness. The heat flux and temperature profile within the slab
and the specimen are identical, Thus, heat transfer by coupled conduction
and radiation in an absorbing and emitting single-phase gray slab bounded
by infinite, black, isothermal, parallel plates approximates the worst
limiting case for heat transfer within an insulation sample contained in a

guarded hot plate with the hot plate up.

2.1 The Viskanta and Grosh Analysis

The temperature profile and total heat flux for the general coupled
radiation and conduction problem are functions of the emissivities of the
bounding surfaces and four dimensionless parameters that describe the

sample and test conditions:

T

6y = cold surface absolute temperature - -g-(reduced temperature) , (1)
hot surface absolute temperature Vi

0 = L _ sample thickness (optical thickness) , (2)
1/E  photon mean free path within sample

KéE conductive heat flux (3)
= —= = (radiation~conduction number) ,
r 40T% radiative heat flux
and

(4)

scattering coefficient

(albedo) ,

g
W =—=
E extinction coefficient

where the parameters are defined in Table 1.

In the case of interest, the emissivities are equal to one and the
extinction coefficient is equal to the absorption coefficient, that is,
the pure absorption case for which the scattering coefficient and the
albedo equal zero. Also, the thermal conductivity was assumed to be that

of the continuous phase (i.e., air).



Table 1. Nomenclature

A, A(E), A(Ty), Constants in appropriate relationship

Ala), A(0)
B, B(E), B(Tp), Constants in appropriate relationship
B(w), B(0)
dr; Thickness of region 1
E Extinction coefficient, E =a + O
En(T) nth-order integral exponential function of T
Fg Volume fraction of fibers in insulation
G(1) Parameter defined by Eq. (8)
h Heat transfer coefficient
I(0) Intensity of light incident on a sample at x = 0
I(x) Intensity of light emerging from a sample of thickness x
Kair Thermal conductivity of air
kapp Apparent thermal conductivity
ka Cont inuous—phase thermal conductivity
Keff Effective thermal conductivity, see Eq. (23)
K. Radiative conductivity, see Eq. (21)
Ktot Total or enhanced thermal conductivity, see Egs. (56) and (57)
L Sample thickness
Lp Full or actual-use thickness
Lp Representative thickness for guarded hot-plate apparatus test
specimens
M Weighting factor in Eq. (62)
n Refractive index T
n(1) Refractive index at
N Number of increments within simulated sample
N, Radiation-conduction number defined by Eq. (3)
qe Conductive heat flux
gy Radiative heat flux
q+ Total heat flux
qt, 1 Total heat flux through region 1
Q Parameter defined by Eq. (29), (30) or (31)

r Correlation coefficient



Table 1. (Continued)

R Thermal resistance

R; Thermal resistance of region %

Ry, Differential thermal resistivity

Rg Apparent thermal resistivity, l/kapp

T Absolute temperature

T(t*) Absolute temperature at T~

Trin(T) Absolute temperature for a linear temperature profile, 7Tp;,(T)
=Ty + (T/T°)(T1'- Tp)

Tm Modified mean absolute temperature defined in Eq. (55)

T Hot-plate absolute temperature

Ty Cold-plate absolute temperature

TT Absolute temperature at interface between regions I and II

Tg Absolute temperature at interface between regions II and III

x Position

a Absorption coefficient

B Dimensionless slope at T = 0, see Eq. (12)

B(1) [6(T)]4

Y Constant equal to 1.42089

§ Convergence limit

€ Emissivity

€] Emissivity of hot plate

€2 Emissivity of cold plate

) Dimensionless or reduced temperature, T/T;

8(1) Dimensionless temperature at T

ei(r) ith value of the dimensionless temperature at T

8o Dimensionless temperature at cold plate, TZ/TI

o} Scattering coefficient

E- Stefan-Boltzmann constant

T Dimensionless position, Ex

T° Variable of integration in Egs. (7), (9), and (10)

T° Optical thickness, EJ

Tg Parameter in Eq. (60), position at which T = Puin

w Albedo, Eq. (4)




The temperature profile for the pure absorption case with black

boundaries was found by solution of the nonlinear integro-differential

equation developed by Viskanta and Grosh,lo’11

N .éz_e_(z'r_)- = nz(T)ea(T) - 1/2[B(T)E2(T) + B(TO)EZ(T" — 1)

r
‘dT o (5)
T2 4
+./~ n (T’)El(IT-— e’ (t?) dT’] ,
0
subject to boundary conditions

Viskanta and Grosh have shown that the dimensionless temperature e(T)

equals

T Y 2. . .
8(1) = G(D) +3N—f0 2= 1)+ )

r 7
s Llo,ae — 1) - Byan|pet )
<o 3(T T 3(T T T
where
1 T 1 T
G(T) = 55— {B(O) [—E (1) + = E,(1°) + 5 (1 ——o)]
2, ( 4 T° T4 3 T
+ B(T*) [(1 ~ IE, () — B (r° = D) + %g—] (8)
T °
+ ZNr 8(0) + ¥;{6(T ) — 6(0)]}) .
Since a closed-form solution for Eq. (7) is not available, a numerical
10,11

technique was used to obtain a solution for the temperature profile.

Having determined the temperature profile, Viskanta and Grosh show

that the total heat flux through the sample equals



‘E(T— )+2‘T4[E(°)+iE(°)—i]
9t = 1 2 ol Y A o 24(T 370

pes
Ly

41 o 1 o
+ le—F,Ez‘(T ) —§+3—a] +-/()- n(T)E,(1° — 17)

T
(9)
+ T%[__EB(TO —-T17) — EB(T))]$T4(T)) dT’) + 5'];‘
pui 4 -] ~ To 2 - - 4 - -
— 20T2E3(T ) — 20/ n(t )E2(T° —T)T(17) dt” ,
0

where the conductive heat flux is given by the first fwo terms in Eq. (9)

and the heat flux due to radiation by the last three terms. 1l Combination

of the integrals in Eq. (9) yields

“ T) + 25 T4[—l— E, (1°) ———l—]
Q=7 T =T 2170 “4 37°

4 1 o 1 (10)
+ Tl[—‘,[—G‘E4(T ) + 3—1_-5-]
TO
+ / nz(T')io[E (t° —1t°) — F (T’)]T4(T’) dT’g
0 T 3 3
Equation (7) can be differentiated to show that
de/dr = (1/2N1,)<B(o) 250 + 5,00y - 1/317]
+ B(1°) —E4(T°)/T° - E3(T° - 1) + l/3'l'°]
(11)

o

o 0 T .
+ (@ /T )[9('[‘ ) — 9(0)] +f0 n(t”) EZ(IT -1

+ (1/1t°) Eg(1® —17) — EB(T’)] f64(T') dT’)
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By inspection of Eq. (11) one can show that the dimensionless slope B must

satisfy the inequality

T, — T
8 =d 1 2 > 1
T]_-—T2 - (12)
d(=)
™ T=20

for a solution to be correct. An iterative technique different in detail
but similar in principle to that used by Viskanta and Groshlo’11 was
developed in the curreat work for determination of the temperature profile

and heat flux.
2.2 The Lii and Ozisik Analyses

An alternate solution technique was developed for the foregoing
problem by Lii and 0zisik.2 This solution is based on a normal wmode
expansion of the combined conduction and radiation heat transfer problem
in an absorbing, emitting, and scattering medium. For further details of

this analysis, the reader is referred to the original paper.9

9.3 Some Limiting Case Analysis (Thin, Thick, Rennex)

Sparrow and Cessl? show that for the optically thin limit, the mean
free path of a photon, 1/E, within an object is large compared to the

thickness of the object, L. Thus

o -

L .
= —— = FL << 1 . (13)
T 1/E E

For this case, it was assumed that the radiant heat flux is not affected
by the material and the conductive and radiative mechanisms do not

interact.12 The total heat flux through the object then equals

gt = de + dp » (14)
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where g, is given by Fourier's law, which for a planar object of thickness

L, constant properties, and unidirectional heat flow at steady state equals

T, —T 15
x L 2 (15)

The radiant heat flux between two infinite parallel plates at Ty and T

and with emissivities €] and €y equals

(4 4
_ 0<Tl'Tz>

q, = 16
r i_'_i_l (16)
!

Substitution of Egs, (15) and (16) into Eq. (l4) yields

T, —T 5T4—T4>
—x L 2 + 1 2
U =% 71T T, 1 (17)
El €2
For black plates €1 = €2 =1, and Eq. (17) becomes
T, -7
1 2 =
= _ L — . 18
a, =k, 252 + 5t — 1) (18)

When the limit of zero optical thickness is substituted into Eq. (12)
and L'Hospital's rule is used to evaluate the indeterminant term that
arises, Eq. (10) simplifies to Eq. (18).

Siegel and Howelll3 discuss the optically thick limiting case, where
the dimensions of an object are large compared to the mean free path of a

photon in the object,

,_.1
]

=—==FEL)) 1 R (19)



12

and the photons that carry radiant energy within the object behave in a
manner similar to photons in the conductive heat transfer process. The

radiant heat flux is approximated by

where for a gray medium the radiative conductivity k., equals

k . 16 250 (21
r 3 « ’ )

For combined conduction and radiation heat transfer,

qe = —Keff éz'a (22)
dx

where Kgffs the effective thermal conductivity, equals
keff = ko + Ky o (23)
Eliminating both kogf between Eqs. (22) and (23) and k, between the
result and Eq. (21) and integrating the result yields the approximate

total heat flux at steady state for one-directional heat flow in an

optically thick slab,

4 4>
— T
1 2 (24)

Combining the total heat flux for the optically thin limiting case
solution, Eq. (18), with the definition of the apparent thermal

conductivity

Kapp = q¢ U/(T1 — T9) (25)
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vields a linear relationship between kapp and [ for constant values of the

plate temperatures:

Substitution of the total heat flux for the optically thick limit,
Eq. (24), into Eq. (25) shows that the asymptotic approach of the
apparent thermal conductivity to an upper limit that is dependent on the
absorption coefficient of the sample occurs at large sample thicknesses

and high absorption coefficients. The asymptotic limit equals

(27)

A review of several methods for treating the effect of thickness on
the apparent thermal properties of insulation was recently prepared by
Rennex. ’ The models discussed by Rennex assume that interaction does not
occur between conduction and radiation within the insulation and that the
heat fluxes are additive.

Rennex discusses three solutions to the pure radiative heat transfer
problem. At thermal or radiative equilibrium, the radiant heat flux
between two infinite parallel plates at Ty and Tp separated by a gray

medium equals

so(rh ~ )
LR (YCRIE R cVa =y (28)

An exact solution for ¢ developed by Heaslet and Warming14 shows that for

T° > 1:

- _4/3
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where vy = 1.42089. The exponential-kernel app]:oximationlz’15 to this
problem yields

___4/3
9= T+ 473° (30)
while Rennex/ proposes
_ 4/3
Q =T ¥ 4/3[1 + 0.0657 tanh (21)] (31)

as a replacement for Eq. (29).

Assuming that the radiative and conductive heat fluxes do not
interact and that the total flux equals the sum of the two independent
fluxes, Rennex’/ developed the following equations for the effect of
thickness on the apparent thermal conductivity by combining Eq. (29),
(30), or (31) with Eq. (28) and Egs. (28) and (15) with Eq. (14) to

obtain q¢. This value of g was then inserted into Eq. (25) to yield

_T3

Lo m
k =k + 5 L, 32
app ¢ -25—1+3—Z—+0.0657 (32)

kapp=kc+_2__1+iﬂL’ (33)
€ 4
and
_m3
% _ AOTm I
° bl
app %_ 1+ —3%— + 0.0657 tanh (2T°) (34)

when it is assumed that €] = €9 = € and (T?-— Tg)/(Tl-— T9) = 4T%.
For conduction and radiation with pure scattering (w = 1), interaction
between the two modes of heat transfer does not oc:c:ur,l’z’12 and the con-

ductive and radiative heat fluxes through the specimen are added to find
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the total heat flux. For pure scattering, g, is given by Eq. (28) and ¢
is given by Eq. (29) with 1° equal to oL.12 71t ig therefore clear that
Eq. (32), developed by Rennex,7 is exact for combined conduction and
radiation with pure scattering (w = 1),

For 1° greater than 2, tanh (27°) is equal to unity and thus Egqs. (32)
and (34) are identical. As all cases of interest in this analysis have
values of 1° greater than 2, only Egs. (32) and (33) need to be discussed
further. The only difference between Eqs. (32) and (33) is the constant
in the denominator of Eqs. (29) and (30). The value 1.42089 was found
for the exact solution,14 while 1,3333 was found by the approximate
technique.lz’15 As this is the only difference, only the exact solution
which yields Eq. (32) will be used in subsequent analyses.

Since the thermal resistivity equals the inverse of the thermal
conductivity, inverting Eq. (32) yields an expression for the apparent

thermal resistivity. For the pure scattering case,

B
Hoe -4+ T(E? : (35)
app
where
A(o) = 1
42 =3
. 3(e ~2) +v{ 1607~ (36)
e 1+ TS + 3G
and
& -2 4y
B(o) =
Y22y vy 16503 (37)
k)1 +3€ + i
e T® 30
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2.4 Numerical Value of the Extinction Coefficient

In general, the extinction coefficient is a function of wavelength.
To date, spectral or average extinction coefficients have not been
measured for fibrous insulation for the wavelength range of interest,
3 to 20 pm. Pelannel® has, however, measured the percent transmittance of
visible light, 0.4 to 0.7 pm, through fiberglass insulation, which can be

converted to extinction coefficients using Beer's law:13

~

x)

oy - exp (—Ex) . (39)

~

The results of these calculations, which represent an approximation to the
values of interest, indicate that the extinction coefficient for fiberglass
insulation lies in the range of 50 to 150 ft~l., The optical thicknesses

of the majority of insulation test specimens will, therefore, lie in the
region where Eqs. (26) and (27) do not apply. Thus, we turn to the
development of the relationship between the apparent thermal conductivity
and sample thickness for intermediate optical thicknesses. For this

purpose, the three-region approximation is a useful concept.

2.5 Development of a Three—Region Approximation

In principle, the effective thermal conductivity is an intensive
property of a material. The radiation conduction approximation, defined
by Eq. (20), however, is mnot a valid concept near the surfaces of an
object. In this region, photons may pass through the object without
interacting, a situation similar to the optically thin limit. It is,
therefore, appropriate to approximate a planar insulation sample as an
optically thin section of thickness dL; which is immediately adjacent to
the hot surface in the test apparatus (region 1), an optically thick
central section (region II), and an optically thin section of thickness
dL, which 1is immediately adjacent to the cold surface in the test
apparatus (region I11). The total heat fluxes through each region will

then equal



o NS WY R
Clt,I = kc—rl + O(Tl - Tl*> > (39)
T % — T % 45T4*—T4*
q = % 1 2 + 1 2 (40)
t,1II eli—dL — dL, = 3o(L — dLl - sz)
and
T e — T
2 2 . <=4 4
=k = __ £ - 41
U 111 = Ko a, * c’<Tz* Tz*) > (41)

where T) and Ty are the temperatures at the interfaces between regions T
and II and II and III, respectively.

To simplify the analysis, it will be assumed that the thicknesses of
regions I and III are equal. As some photons will be absorbed as soon as
they enter the sample and others will travel well into the sample, an
average thickness for regions I and III will be defined as the distance
which will absorb one-half the incident radiant energy. According to

Eq. (38), for the pure absorption case this thickness equals
dLy = diy = —(&n 0.5)/E = 0.69315/F . (42)

Combining Eqs. (39) through (42) yields

R
1
T x =T — (7. —7T , (43)
1 1 (1 2)B1+B2+B3
Ry )
Tk =T +<T —T) , (44
2 2 1 2 B1+R2+B3
and
/e
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where R1s R2» and R3 are the thermal resistances of the regions. The

values of these resistances are

1
R =
1 = (2 2 ’ (46)
(k 2/0.69315) + o<¢1* + T1><¢1* + T1>
° — 2(0.69315) ]
Rz ) k o +-i o T2* + T2 T % + T.% ’ (47)
e 3 1 2*J\"1 2
and
By = i '
(k_/0.69315) + o<¢2* + T2><¢2* + T2> (48)

A relationship between the apparent thermal resistivity and specimen
optical thickness was obtained by combining Eqs. (45) through (48) and

the inverse of Eq. (25) for the pure absorption case. The resulting

relationship is

1 B
B === Alo) + . (49)
app
where
1
A(o) =
= 7 7 ,
kc + (40/3a) (Tl* + T2*> (Tl* + T2*> (50)
and
B(a) = . ]-TZ >
(k_/0.69315) + (o/a)( T T1><f1* + Tl>
+ . 7 3
(k_/0.69315) + (0/a)<T2* + TZ)QTZ* + T2> (51)
2(0.69315) /a

- kc + (40/30) <Ti* + Tg*) (Tl* + T2*> )
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The foregoing analysis provides simplified equations, such as
Eqs. (35) and (49), for interpretation of the dependence of the apparent
thermal conductivity and resistivity of insulations upon measurement
condition. These equations clearly show the dependency of the apparent
thermal resistivity (or conductivity) on optical thickness and are finite

for infinite t°.
2.6 Effect of Temperature on Apparent Thermal Conductivity

The apparent thermal conductivity is dependent on temperature and
strongly dependent on the term T% when the continuous-phase thermal
conductivity, extinction coefficient, and plate emissitivity are approxi-
mately constant over the temperature range of interest and when the albedo
equals one (pure scattering):

= 3
kapp = A(Ty) + B(Tp)Ty - (52)
The values of A(T,), B(T,), and T, are established by the solution to the

uncoupled heat transfer problem [Eq. (32)] with

A(Ty) =k, , (53)
4oL
B(T) = 376y =1 + (31°/4) + 0.0657 ° (54)
and
4 4 11/3
T=—Tl——€?;—— = +T2T+T/4l/3

The dependence of the apparent thermal conductivity on temperature
for the pure absorption case (w = 0), as given by the three-region
approximation, appears to be more complicated than Eq. (52). As a first
approximation, however, it can be assumed that kapp is linearly dependent

on T”? when the albedo equals zero.
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2.7 Effect of Convection and Solid-Phase Conduction

Ideally we would like to include the effect of solid-phase conduction
and convection in our solution efforts. At present, we can only estimate
these effects. The contribution of solid-phase conduction to the apparent
thermal conductivity of the insulation may be estimated by analyzing the
insulation as an air-fiber composite. This composite will consist of a
continuous phase with low thermal conductivity (i.e., air) and a randomly
distributed phase with high condutivity (i.e., fibers). The thermal
conductivity of the composite is given by the Maxwell-Eucken equationl7

and equals
1 + 2F
S

k =k — . (56)

Convection within the insulation will occur in parallel with
conduction. Analysis of the parallel heat transfer problem yields an

enhanced or total thermal conductivity,

_ hL
ktot - kc<l + E;) . (57)

Rearrangement of Eq. (32) yields

4T
m

app e = (2/e) — 1 + (3/4)T° + 0.0657 L.

(58)

Thus for the pure scattering case, the quantity kapp'_ ko will be
unaffected by changing the value of the continuous-phase thermal con-
ductivity [i.e., substituting kior from Eq. (56) or (57) for kol. 1If
changing k, does not affect kapp" ko (i.e., the apparent k), then for

any total thermal conductivity,
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kapp = kapp + (ktot — 0.18) .

(59)

= = 0.18
kc tot kc

3. PROCEDURE

An iterative technique different in detail but similar in principle
to that used by Viskanta and GroshlOs1ll yag developed in the current work
for determination of the temperature profile and heat flux. In this
solution, the interval (0, L) was divided into N subintervals of equal
length L/N and Eq. (7) was solved for the temperatures at the N — 1
interior points.

To begin a numerical calculation, values were selected for the
absorption coefficient, thickness, refractive index, continuous-phase
thermal conductivity, and hot- and cold-face absolute temperatures. The
computer program is given in Appendix A2, and a flow chart of the program
is shown in Fig. 1. The series approximation for the exponential integral
functions!8 and the function G(1) [Eq. (8)] were then evaluated, and an
initial estimate for the dimensionless temperature profile was calculated

from the equation

o(t) — o, [(5 =@ -1/t + 1] (t/1°)
1-— 92 - 1+ (BR—1@Q —'T/Ts)(T/T°)

. (60)

Finally, the iterative solution was begun by calculating the N — 1

interior temperatures, ei+1(r), of Eq. (7) using the trapezoidal rule
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and the initial estimate for 6(t), 61(1), to evaluate terms on the right
side of Eq. (7). A run was successfully terminated when Eq. (12) was

satisfied and

67'+l(‘r).— 6% (1) <s (61)
6% (1)

for all interior points. The convergence limit § was usually set equal
to 0.0001.

If either or both of the convergence criteria were not met, a
weighted average of the current and previous values for 6(t) was used
to produce a new estimate for the temperatures at the internal points.

The new estimate equaled

6%l (1y + Mo% (1) (62)

1+2 _
67 (1) = M+ 1 ’

where M was initially set equal to one. If, however, the calculated error
became large, the computer set M equal to 2M + 1 and Eq. (60) was used to
restart the iterative procedure. The new estimates for 6(t1) were used in
Eq. (7), and the iterative process continued until both convergence
criteria were met.

After successful convergence of the temperature profile was obtained,
the trapezoidal rule was employed to calculate the total heat flux through
the specimen and the apparent thermal conductivity using Eqs. (10) and (25).

4. RESULTS

Calculations were performed for guarded hot-plate conditions that
would approximate building-insulation test conditions., In all cases, the

refractive index of the sample was assumed to equal one. The effect of
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the number of subintervals, convergence criterion (&), absorption
coefficient, thickness, continuous-phase thermal conductivity of the
specimen, and hot- and cold-plate temperatures was investigated. Calcula-
tions for conditions identical to those studied by viskantalOs>1l and Lii
and Ozisik? were also run.

When the optical thickness t° of the simulated sample was increased,
the solution diverged in the initial calculations. At first the
divergence problem was controllable for certain cases by increasing M
(i.e., slowing the initial divergence of the solution). Increasing M,
however, also slowed the convergence of the solution and led to long run
times. In many cases, 100 iterations were made without convergence.

Extensive testing of the program indicated that if the number of

subintervals was chosen such that

T° _ EL
1 - L2 <go.12 (63)
N N 1z,

convergence of the program generally occurred with M equal to one. In the
few cases where convergence did not occur, the origin of the problem was
traced to a poor initial estimate for 6(t), which generally resulted from
setting B in Eq. (60) too close to one. In these few cases, the program
would have eventually converged. However, as each iteration takes
approximatelly 11 ° (¥/50)2 min on a PD/8e computer, these runs were
stopped and restarted after increasing B.

The variation of the calculated total heat flux resulting from
changing the size of convergence limit & from 0.1 to 0.00001 was studied
for a sample with an absorption coefficient of 100 ft~1l, a thickness of
0.25 ft, a continuous—phase thermal conductivity of 0.1800 Btu in./(h fr2 °F),
and hot— and cold-plate temperatures of 560 and 510°R, respectively. For
§ equal to 0.001 and 0.00001, the calculated total heat fluxes were within
0.01% of the value obtained for 6§ equal to 0.0001, while for § equal to
0.1 and 0.01, the calculated total heat fluxes were within 0.077% of the
value for § equal to 0.0001. While the run times for § greater than 0.0l
were substantially less than those for § less than 0.001 (3.5 vs 10.5 h),
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it was concluded that a small value for § should be used to obtain the
most accurate value for the total heat flux. Thus, in all ensuing rums,
the convergence limit § was set equal to 0.0001.

The relationships between the apparent thermal properties and sample
thickness were investigated for hot- and cold-plate temperatures of
560 and 510°R, respectively. As the absorption coefficients for fibrous
insulation are not known, calculations were performed for absorption
coefficients between 0.001 and 1000 ft~! at a thickness between 0.25 and
12 in. (0.0208 and 1 ft). The total heat fluxes, apparent thermal
conductivities, and apparent thermal resistances for these calculations
are given in Tables 2 through 4. The total heat fluxes through samples
of thickness 0.042, 0.083, 0.292, and 1.0 ft are also plotted as functions
of the absorption coefficient in Fig. 2. The apparent thermal conductivi-
ties are shown in Fig. 3. The apparent thermal resistances and resistivi-
ties for a = 50, 100, 150, and 200 ft~! are shown in Figs. 4 and 5,
respectively.

Examples of the nonlinearity of the temperature profiles obtained in
the present solution technique are shown in Fig. 6. To highlight the
nonlinearity of the profiles, the difference between the calculated
temperature T and the temperature for a linear profile Ty, are plotted
versus the fraction of the optical thickness of the sample 1/1°. 1In all
cases, the temperature gradients at the hot and cold surfaces are steeper
than those for uncoupled radiation and conduction. Substantial differences
from the arithmetic-mean test temperature that would be expected at the
midpoint of the specimen for uncoupled heat transfer [((T] + T3)/2] were
also evident in all the cases studied.

The effect of varying the hot- and cold-plate temperatures on the
apparent thermal conductivity was determined for sample thicknesses of
1 and 3 in. (0.0833 and 0.25 ft) with absorption coefficients of 50, 100,
150, and 200 ft~1l, A slight increase in the values of the apparent thermal
conductivity was found when the test temperature difference, T} — Ty, was
increased (see Table 5). Increasing the mean test temperature, with a
constant 50°R temperature difference, however, resulted in a marked

increase in the apparent thermal conductivity (see Table 6).



Table 2. Total Heat Flux Through a Sample with n
Contained Between Black Plates at 560 and 510°R

1 and k, = 0.1800 Btu in./(h ft? °F)

Heat Flux, Btu/(h ftz), for Various Sample Thicknesses, ft

o
- l R
(££79)  0.0208 0.042 0.083 0.1667  0.292 0.5 0.75 1.0
0.001 88.6081 70.4637 61.6411 57.1019  55.1660 54,0902 53.3226
0.01 88.60102  70.4502 61.6148 57.0494 55,0742 53.9329 53,0052
0.1 88.5355 70.3186 61.3561 56.5355  54.1733 52.3828 49.8406
1.0 87.9557 69.0594 58.9432 51.8902  46.4435 40.3550 31.1361
10.0 82.5162 59,3525 43,1394 29.1116  19.7842 12.9430  9.1395 7.0820
25.0 75.6693 49,2417 31.0268 17.9210 11.0037b 6.6915  4.5509 3.4480
50.0 67.7297 39,9042 22.6427 12.0500 7.0850 4,2055  2.8267
75.0 62.3065 34,7119 18.8298 9,7325 5.65360 3.3287
100.0 58.3839 31,4447 16.6607 8.4994 4.9034
125.0 55.4303 29.4128¢  15.2161 7.7335 4.4509D
150.0 53.1351 27.6071 14.25574 7.2157
200.0 49.8217 25.6095¢  13.01524 6.5548
500.0 42.3077 21.2300¢  10.65914
1000.0 39.2559€  19.6532€
AThickness = 0.020833 ft.
bThickness = 0.2917 ft.
CThickness = 0.0417 ft.
dThickness = 00,0833 ft.
€Thickness = 0.04167 ft.

9¢
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able 3. Apparent Thermal Conductivity of a Sample with n = 1 and
°F) Contained Between Black Plates at
560 and 510°R

ks = 0.1800 Btu in./(h ft2

Thermal Conductivity, Btu in./h (ft2 °F),

for Various Sample Thicknesses, ft

o
(fe7h 0.0208 0.042 0.083 0.1667  0.292 0.5 0.75 1.0 a
. . » . . . . . @
0.001  0.4430 0.7103 1.2279 2.2841  3.8660 6.4908 12.7974
0.01  0.4430 0.7101 1.2274 2.2820  3.8596 6.4720 12.7213
0.1 0.4427 0.7088 1.2222 2.2613  3.7965 6.2859 11.9617
1.0 0.4391 0.6961 1.1742 2.0756  3.2548 4.8426 7.4727  17.0145
10.0 0.4119 0.5983 0.8593 1.1647  1.3064 1.5532  1.6451 1.6997  1.8634
25.0 0.3777 0.4964 0.6181 0.7170  0.7704®  0.8030 0.8192 0.8275  0.8534
50.0 0.3381 0.4022 0.4510 0.4821  0.4965 0.5047  0.5088 0.5167
75.0 0.3110 0.3499 0.3751 0.3894  0.3958%  0.3994 0.4045 '
100.0 0.2915 0.3170 0.3319 0.3400  0.3436 0.3483
125.0 0.2767 0.2944¢  0.3042d 0.3094 0.3116D 0.3147
150.0 0.2652 0.2783 0.28504 0.2887 0.2922
200.0 0.2487 0.2563¢  0.26024 0,2622 0.2642
500.0 0.2112 0.2125¢  0.2131 0.2137
1000.0 0.1962€ 0.196f 0.1968

ACalculated from Eq. (27).
bThickness =

CThickness
dThickness
€Thickness

fThickness

0.2917 ft.
0.0417 ft.
0.0833 ft,
0.020833 ft.
0.04167 ft.

LT



Table

4, Apparent Thermal Resistance of a Sample with n =
ko = 0.1800 Btu in./(h ftz) Contained Between Black Plates

at 560 and 510°R

1 and

Thermal Resistance, h ft2 °F/Btu, for Various Sample Thicknesses, ft

(£t~
0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0
0.001 0.564 0.710 0.811 0.876 0.906 0.924 0.938
0.01 0.564 0.710 0.811 0.876 0.908 0.927 0.943
0.1 0.565 0.711 0.815 0.884 0.923 0.955 1.003
1.0 0.568 0.724 0.848 0.963 1.077 1.239 1.606
10.0 0.606 0.842 1.159 1.718 2.527 3.863 5.471 7.060
25.0 0.661 1.015 1.612 2.790 4.544Q 7.472  10.987 14.501
50.0 0.738 1.253 2.208 4,149 7.057 11.889 17.688
75.0 0.802 1.440 2.655 5,137 8.8442 15,021
100.0 0.856 1.590 3.001 5.883 10.197
125.0 0.902 1.700b 3.286C 6.465 11.2344
150.0 0.941 1.811 3.507¢ 6.929
200.0 1.004 1.952D 3.842C 7.628
500.0 1.182 2.355D 4.691C
1000.0 1.274d  2.544¢
AThickness = 0.2917 ft.
bThickness = 0.0417 ft.
CThickness = 0.0833 ft.
dThickness = 0.020833 ft.
€Thickness = 0.04167 ft.

8¢
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Fig. 2. Variation of Total Heat Flux with Absorgtion Coefficient
°F), T) = 560°R,

a (£t71), and Thickness for k, = 0.1800 Btu in./(h ft
and T = 510°R.

Calculations were performed to determine how the apparent thermal
conductivity of samples with an absorption coefficient of 75 ft~! and
sample thicknesses of 0.0883, 0.1667, and 0.2917 ft (1, 2, and 3.5 in.)
changed as the thermal conductivity of the continuous phase was increased
from 0.1800 to 0.1980 Btu in./(h ft2 °F). As can be seen in Table 7, an
increase in the continuous—-phase thermal conductivity resulted in an

increase of similar magnitude in the apparent thermal conductivity.
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Table 5. Effect of Test Temperature Difference on the Apparent Thermal Conductivity@

Thermal Conductivity, Btu in./(h ft2 °F), at

(fé) (fg) (5§3b a =50 £l a = 100 fe—1 a = 150 £l a = 200 fel
L =0.0833 ft L = 0,25 ft L =0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft

550 520 535.14 0.4509 0.4927 0.3317 0.3426 0.2849 0.2897 0.2601 0.2627
560 510 535.39 0.4510 (0.4933)¢ 0.3319 0.3428 0.2850 0.2898 0.2602 0.2629
570 500 535.76 0.4519 0.4939 0.3323 0.3432 0.2853 0. 2900 0. 2604 0.2630
580 490  536.26 0.4521 0.4948 0.3327 0.3436 0.2856 0.2903 0.2606 0.2633
585 485 536,55 0.4532 (0.4953)¢ 0.3330 (0.3439)¢ 0.2858 0.2905 0.2608 0.2634
590 480  536.88 0.4537 0.4960 0.3333 0. 3442 0.2860 0.2907 0.2609 0.2635
600 470  537.62 0.4549 0.4973 0.3339 0. 3449 0. 2864 0.2912 0.2612 0.2639

%Sample properties were n = 1, k, = 0.1800 Btu in./(h ftZ °F), and € = 1.
bTm defined by Eq. (55).

CInterpolated value.

£t



Table 6. Effect of Mean Test Temperature on the Apparent Thermal Conductivity

for a Test Temperature Difference of S50°F4

Thermal Conductivity, Btu in./(h ft2 °F), at

T,/ Ty (fg) a =50 fel a =100 ft~! a = 150 fr1 a = 200 fr1
L = 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 fr L = 0.0833 fr L = 0.25 fr
435/485  460.5 0.3308 0.3576 0.2554 0.2621 0.2255 0.2284 0.2096 0.2112
475/525  500.4 0.3904 0.4252 0.2942 0. 3030 0.2560 0.2598 0.2357 0.2378
505/555  530.4 0. 4400 0.4819 0.3261 0.3367 0.2808 0.2854 0.2566 0.2592
510/560  535.4 0.4488 0.4919 0.3317 0.3426 0.2851 0.2898 0.2603 0.2629
515/565  540.4 0.4576 0.5020 0.3373 0.3486 0.2894 0.2943 0.2639 0.2666
545/595  570.4 0.5134 0.5661 0.3726 0.3860 0.3164 0.3222 0.2865 0.2897
585/635  610.3 0.5956 0. 6607 0.4238 0. 4406 0.3553 0.3626 0.3188 0.3227

Asample properties were n = 1 and k; = 0.03160 + 2.768 X lO‘ATm [Btu in./(h fe2 °F)]. Also, € = 1,
region approximation.

Calculated using the three-

e
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Table 7. Effect of Continuous-Phase Thermal
Conductivity? on the Apparent Thermal
Conductivity for a = 75 ft~

Thermal Conductivity, Btu in./(h ft2 °F)

Length
ft
(ft) ke kapp kapp-— ka
0.0833 0.1800 0.3751 0.1951
0.1809 0.3761 0.1952
0.1858 0.3810 0.1952
0.1980 0.3934 0.1954
0.1667 0.1800 0.3894 0.2094
0.1809 0.3903 0.2094
0.1858 0.3952 0.2094
0.1980 0.4075 0.2095
0.2917 0.1800 0.3958 0.2158
0.1809 0.3967 0.2158
0.1858 0.4016 0.2158
0.1980 0.4139 0.2159

dTest conditions were n = 1, T| = 560°R, Ty =
510°R, and € = 1,

Finally, several calculations were made to duplicate the results
of Viskanta and Grosh10,11 gp4 Lii and Ozisik.2 The conditions for
these calculations assumed an arithmetic-mean test temperature of
535°R, (71 + T»)/2, and a thermal conductivity of air equal to
0.1800 Btu in./(h ft2 °F). The remainder of the conditions were then
calculated from the values of the dimensionless parameters. The differ-
ence between the calculated total heat fluxes and the values given in
the literature varied from less than 0.1% to slightly more than 4.5%

(see Table 8),
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Table 8. Results of Validation Calculations
o L decalc dref Error
(£e™h) (ft) [Btu/(h £t2)] [Btu/(h ft2)] (%)
Optically Thin Limit%
0.001 0.0208 88.6646 88.6654 0.001
0.042 70.4637 70.4649 0.002
0.083 61.6411 61,6439 0.005
0.292 55.1660 55.1762 0.019
0.5 54.0902 54.1077 0.032
1.0 53.3226 53.3577 0.066
Optically Thick Limit%
25 1.0 3.4480 3.5557 3.03
50 0.75 2.8267 2.8705 1.53
75 0.5 3.3287 3.3705 1.24

125 0.2917 4.,4509 4,4949 0.98

200 0.1667 6.5548 6.6030 0.74

500 0.0833 10.6591 10.6877 0.27

1000 0.0417 19.6532 19.6677 0.074
Lii and Ozisik (ref. 2)

280 0.00357 5,835.7b 5,833.7 0.034
56 0.0179 2,259.1P 2.262.4 —0.146
28 0.0357 1,821.3 1,821.4 —0.0055

Viskanta and Grosh (ref. 10)

100 0.001 571,132c 571,100 0.006

10 0.01 78,842¢ 78,900 —0.086
1 0.1 29,600c 29,500 0.339

100 0.01 70,402¢ 71,400 —1.398

10 0.1 21,088¢ 21,900 —3.708
1 1.0 15,569¢ 16,300 —4.485

100 0.001 203,168d 203,800 —0.310

100 0.01 85.7844 89,900 —4.573

100 0.1 16,3944 16,300 0.577

Viskanta (ref. 11)
100 0.01 70,402c 70,377 0.050

AConditions: T

0.015 Btu/(h ft °F).

bConditions: Vel

0.015 Btu/(h ft °F).

CConditions: T

0.547 Btu/(h ft °F).

dConditions: T

0.054 Btu/(h ft °F).

[}

1070°R, T

2000°R, T»

3000°R, To

1000°R, and kg

1500°R, and kg

560°R, Tp = 510°R, and k, =

0°R, and k, =
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5. APPLICATIONS

The effects of thickness and other test conditions on the apparent
thermal conductivity, resistivity, and resistance of insulation is widely
recognized, although the magnitude of the effects is not well defined. To
establish the magnitude of the effects, equations that relate the apparent
thermal properties of insulation to the test conditions were developed in
an earlier section. To bracket the magnitude of the effects for tests
performed on building insulations, the results for the numerical solution
and the three-region approximation to the coupled heat transfer problem
are compared with the limiting solutions for which no interaction is
assumed between conduction and radiation. The accuracy of the numerical
solution of the coupled heat transfer problem which is used to model the
measurement of the apparent thermal conductivity in a guarded hot plate

must, however, be discussed first.
5.1 Analysis of Errors

To assess the accuracy of the numerical solution used in this work,
the solution results should be compared to the results of an analytical
solution to the same problem. An analytical solution to the problem of
interest is, however, not available. Thus, the results of the numerical
solution can only be compared with the limiting solutions for the
optically thin and thick cases; the results reported by Viskanta and
Grosh, 1510511 yhich were obtained using a similar numerical technique; and
the results of the Lii and Ozisik2 method.

When the total heat fluxes calculated using the numerical solution
technique for t° < 1073 are compared with the values calculated from
Eq. (18), the agreement between the results obtained from the numerical
solution and those calculated using Eq. (18) is better than 0.07% in all
cases, as shown in the first six rows of Table 8.

While the optically thick limit is generally considered to be
applicable for optical thicknesses greater than 10, rows 7 through 13 of

Table 8 indicate that the total heat flux obtained from the present
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iterative solution does not approach the limiting value until 1° is
greater than 40. At this point, however, the agreement is better than
0.3%. It must be remembered that Egs. (23) and (24) are approximations
and that exact agreement betweeen the present iterative solution and the
approximate solution will only occur at infinite optical thicknesses. The
fact that the iterative and approximate solutions approach the same value
at 1° values as low as 40 is further evidence that the present iterative
solution technique yields correct results.

An alternate solution technique based on a normal-mode expansion of
the combined conductive and radiative heat transfer problem in an
absorbing, emitting, and scattering medium has been developed by Lii and
Ozisik? (see Sect. 2.2). The total heat flux through an infinite slab
was calculated for several cases, including that of black plates (e = 1)
and no scattering (w = 0), for an optical thickness of one. Results from
Lii and Ozisik and from the present work are shown in Table 8 (rows 14
through 17). As can be seen from the table, the agreement is better than
0.04% for two cases and 0.15% for the third case.

A final check on the accuracy of the present iterative solution
involved repeating some of the cases reported by Viskanta and Grosh.10
All the Viskanta and Grosh cases were not repeated, as disagreements of
more than &4.5% occurred for some of the first cases treated (see Table 8).
Thus, a careful check of all the data reported by Viskanta and
Groshl’lo’ll’lg was undertaken in an attempt to explain these discrepan-
cies before redoing additional cases.

When the first three Viskanta and Grosh publicationslo’lls19 were
compared, it was found that the total heat fluxes for similar cases in all
three agreed. However, it was also seen that the conductive and radiative
heat fluxes did not agree. in many cases. Furthermore, in the cases for
which the largest disagreements occurred between Viskanta and Grosh's
results and the current work, the largest disagreements also occurred for
the conduction and radiation heat fluxes in Viskanta and Grosh's own
publications.

It appears that Viskanta and Grosh's problem arises from the procedure
used to calculate the conduction heat flux. Their original work!l

clearly stated that the conductive heat flux equals the first fwo terms
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of Eq. (9). However, in their first paper, it appears that only the first
term was used. This error was probably carried over into their second
paper,19 which was prepared concurrently with their first paper.

A further comparison of the first three workslO,11,19 with a later
paperl shows that the error may have been corrected. This comparison
showed disagreement of the total heat fluxes for identical cases in
Viskanta and Grosh's own papers but excellent agreement of the last
paper's results with the present work (see the last row of Table 8).
Further comparisons with Viskanta and Grosh's work were not attempted, as
it was not possible to state with complete certainty which of their
results were correct.

Based on the excellent agreement between the total heat fluxes
obtained from the present iterative solution and the values calculated
for the optically thin and thick limits (1° < 1 and t° > 40) and the
agreement with the results reported by Lii and Ozisik?2 and Viskanta,l
it was concluded that an error of less than 0.1% should be expected

between the present results and the value of the total heat flux.
5.2 Thickness Effect

The effect of sample thickness on the appdarent thermal conductivity
is shown in Fig. 3. The linear behavior for small sample thicknesses and
low absorption coefficients is easily explained by the optically thin
limiting case of Eq. (26). As the optical thickness increases, the
apparent thermal conductivity asymptotically approaches a limiting value,
Eq. (27). The intermediate regime will be discussed in terms of the
apparent thermal resistivity, as the three-region approximation shows a
linear dependence of R% on 1/1°,

Equations (43) through (48) are easily solved using an iterative
technique as indicated in Appendices A3 and A4. The iteration quickly
converges when T;* and To* are set equal to T and Ty, respectively, in
Eqs. (46), (47), and (48). The values of R1s Hp, and R3 are then used to
find 71* [Eq. (43)] and To* [Eq. (44)]. The process is repeated until the
values of T1* and To* used in Eqs. (46), (47), and (48) approximate those
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obtained from Eqs. (43) and (44). [A convergence limit similar to

Eq. (61) may be employed to establish a criterion for successful
convergence.] The total heat flux through the sample is then calculated
using Eq. (45), and the apparent thermal resistivity or conductivity is
calculated.

As it is not possible to have a negative thermal resistance, it is
clear from Eq. (47) that the minimum optical thickness of the sample must
be 1.3863. However, as region II is assumed to be optically thick, it is
likely that this three-region approximation will only be valid for optical
thicknesses considerably greater than 1.3863. Table 9 shows the values of
the apparent thermal conductivities calculated using the three-region
approximation and the percent difference between these values and the
apparent thermal conductivities calculated for corresponding conditions
using Eqs. (10) and (25). As can be seen in this table, the largest error

is less than 2%. For a greater than or equal to 50 fr=1 and t° greater

than 4, the largest error is only —0.55%. The three-region approximation
is an excellent one for the analysis of the coupled conduction and
radiation heat transfer problems of interest,

The apparent thermal resistivities obtained from the numerical
iterative solution are plotted versus the reciprocal of the sample
thickness in Fig. 5. As can be seen from this figure and the results of
the least squares analyses given in Table 10, Rg varies linearly with
1/1° as suggested by Eq. (49) for t° > 2.

The data used in the analyses in this and following sections were
obtained from the numerical solution for optical thicknesses less than 40
and from the three-region approximation for t1° greater than 40. The
numerical solution of Eqs. (7) and (10) was limited to optical thicknesses
less than 40 because of computer limitations.

A comparison of Eq. (50) with the definition of the effective thermal

conductivity suggests that

1
Al = Keff (64)



Table 9. Apparent Thermal Conductivities? Predicted by the Three-Region Approximation
1 and k, = 0.1800 Btu in./(h ft2 °F) Contained Between

for a Sample with n =

Black Plates at 560 and 510°R

Thermal Conductivity, Btu in./(h ft2 °F), for Various Sample Thicknesses, ft

a
(£e~1)
0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0
25 0.6064 0.7096 0.7649 0.7994 0.8166 0.8255
(—1.89) (-1.03) (-0.72) (—0.44) (—0.31) (—0.24)
50 0.3973 0.4485 0.4804 0.4953 0.5040 0.5082 0.5103
(—-1.22) (—-0.55) (—0.46) (—0.28) (—0.13) (—-0.13)
100 0.2900 0.3168 0.3316 0.3398 0.3434 0.3455 0.3464 0.3469
(—0.51) (—0.059) (—0.077) (—0.067) (—0.059)
150 0.2656 0.2784 0.2851b 0.2866 0.2902¢ 0.2910 0.2914 0.2916
(+0.12) (+0.037) (+0.028) (—0.025)
200 0.2492 O.2565d O.2603b 0.2622 . 0.2630¢ 0.2635 0.2637 0.2638
(+0.19) (+0.66) (+0.023) (0.00)
500 0.2114 O.2125d 0.2131b 0.2134 0.2135¢ 0.2136 0.2136 0.2136
(+0.075) (+0.019) (—-0.010)
1000 0.1963%¢ 0.1966f 0.1967b 0.1968 0.1968¢ 0.1968 0.1968 0.1968
(+0.013) (+0.003)
QValues in parentheses are percent difference of two solutions.
DThickness = 0.0833 ft.
CThickness = 0.2917 ft.
dThickness = 0.0417 ft.
€Thickness = 0.02083 ft.
fThickness = 0.04167 ft.

184



42

Table 10. Least Squares Analysis Results

E 1/kess

f .
(£e71)  [h £e2 °F/(Btu in,ja AW B(E) »

w=20, e=1, t° > 2
10 0.5366 0.5344 0.5463 0.99995

25 1.1718 1.1713  0.9274  0.99999
50 1.9354 1.9350 1.1589  0.99996
75 2.4724 2.4717 1.2147  0.99997
100 2.8707 2.8715 1.1691  0.99993
125 3.1779 3.1781 1.1348  0.99999
150 3.4220 3.4216 1.0863  0.99999
200 3.7854 3.7848  0.9797  0.99998
500 4.6801 4.6798  0.5679  0.99977
1000 5.0804 5.0803  0.3165  0.99992
w=1, e =1, 1°> 2, [ > 0.0833 ft
10 0.5366 0.5403  0.6481 0.99996
25 0.1718 1.1840 1.1346  0.99946
50 1.9354 1.9424 1.5856  0.99962
75 2.4724 2.4769 1.7554  0.99972
100 2.8707 2.8737 1.7982  0.99979
125 3.1779 3.1800 1.7809  0.99983
150 3.4220 3.4235 1.7349  0.99987
200 3.7854 3.7863 1.6118  0.99990
500 4.6801 4.6802 1.0162 1.0
1000 5.0804 5.0804  0.6071 1.0

ACalculated from Eq. (27).

The comparison of the regression analysis intercepts A(a) and the inverse
of keff calculated from Eq. (23) shows that the intercept of Eq. (49)
equals the inverse of the effective thermal conductivity (see Table 10).

A comparison of Eq. (49) for the coupled conduction and radiation heat
transfer case (w = 0) and Eq. (35) for the uncoupled conduction and
radiation case (w = 1) is shown in Fig. 5 for black plates (e = 1) and
extinction coefficients of 50, 100, 150, and 200 ft=l., This figure
clearly shows that a linear relationship exists between the apparent
thermal resistivity and 1/t° for both the coupled and the uncoupled cases.
Furthermore, Fig. 5 shows that the intercepts for both cases equal the

inverse of the effective thermal conductivity and that the only difference
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between the linear relationships predicted by the two cases results from
different values of the slopes. A comparison of the values of the slopes,
B(a) and B(g), is shown in Fig. 7 and Table 10. The pure absorption case
(w = 0) has the smaller slope.

Finally, Rennex’

correctly concludes that the apparent thermal
resistance has a linear dependence on sample thickness as the sample
thickness approaches infinity. As the apparent thermal resistivity
equals the apparent thermal resistance divided by thickness, extension

of Rennex's analysis also shows that Rf is inversely dependent on T°,

Rg=%=7<—1—=A+%, (65)
app
4= —g
k R (66)
e kc
and
2/e — 1 + 0.0657) J4oT3
B=(/e ) /40T (67)
k/k +1 ’
C ]
where
1607 3
o= — (68)
8 30

The slope obtained from Rennex's equation is incorrect for sample
thicknesses of less than 1 ft. As can be seen in Fig. 5, Rennex's equation
yields the correct intercept for infinite thickness, 1/L = 0, but has a
slope that is much greater than the correct slope for the pure scattering
case (w = 1), This difference resulted because Rennex developed the
relationship assuming infinite thickness, which is inappropriate for the
building-insulation case. This has subsequently been changed to yield a

value for B [Eq. (67)] that agrees with B [Eq. (37)1.20
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Fig. 7. Comparison of the Slopes for Extinction Coefficients Between
10 and 1000 ft~! in the Relationship Between the Apparent Thermal Resis-
tivity and 1/t° for the Pure Absorption Case (w = 0), the Pure Scattering
Case (w = 1), and the Rennex (ref. 7) Relationship.

5.3 Temperature Effect

The plate temperatures in a guarded hot-plate apparatus establish the
test temperature difference (7| — T7) and the modified-mean absolute test
temperature (Tm). The effect of these parameters on the measured results
was examined in the theory section.

To test the validity of the assumptions made in the theory section,
calculations were performed at several mean test temperatures for 1- and
3-in.-thick (0.0833- and 0.25-ft) samples with absorption coefficients of
50, 100, 150, and 200 ft~! (see Table 6). The resulting apparent thermal
conductivities were then fitted by the method of least squares to a linear
relationship similar to Eq. (52) for each value of « and L. The correla-
tion coefficient was determined. Even though continuous-phase thermal
conductivity used in the calculations were allowed to vary with Tp,
linear relationships similar to Eq. (52), but having different intercepts
and slopes, fit each set of data with a correlation coefficient of

0.998 or better.
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Calculations were also performed to establish the effect of the test
temperature difference on kapp (see Table 5). Prior to these calculations,

it was believed that the mean test temperature could be approximated as

p o~ 1*T (69)
m 2 :

However, least squares analyses of these results showed that the slight
but significant variation of kapp shown in Table 5 resulted from Ty — 1Ty
changing T,, Eq. (55), even though the approximate value of T Eq. (69),
was constant. Thus, the test temperature difference does not have a
direct effect on the measured value of kapp’ but rather an indirect effect

that results from the dependence of Tmon Ty and Ty as shown in Eq. (55).
5.4 Emissivity Effect

The emissivities of the plates in a guarded hot-plate apparatus
affect the measured value of the apparent thermal conductivity. The
plate emissivity effect is examined in this section.

The plate emissivities were easily incorporated into the analysis of
the uncoupled conduction and radiation heat transfer problem (w = 1), The
results of this analysis [Eq. (32)] clearly show the relationship between
the apparent thermal conductivity and the emissivity of the plates.

The iterative solution and the three-region approximation assumed
that the bounding surfaces were black (e = 1). Viskantal has, however,
reported a set of results that shows the effect of emissivity on the total
heat flux for coupled conduction and radiation. These values may be
inserted into Eq. (25) to show the effect of the emissivity on the
apparent thermal conductivity of a sample with an optical thickness of
one. As can be seen in Table 11, decreasing the plate emissivity decreases
the calculated apparent thermal conductivity. Furthermore, the decrease
is larger for the pure scattering case than for the pure absorption case
or, conversely, the increase in the apparent thermal resistivity is more

for the pure scattering case than for the pure absorption case for
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Table 11. Effect of Albedo and Emissivity on the
Apparent Thermal Conductivity for N, = 1.0,
1° = 1.0, and 09 = 0.5

Apparent Thermal Conductivity,@ Btu in./(h £t2 °F)

w = 0P w = 0.5 w= 1.0C

1.0 0.2316 0.2295 0.2273
0.75 0.2215 0.2185 0.2143
0.5 0.2127 0.2085 0.2025
0.25 0.2055 0.1990 0.1914
0.1 0.1994 0.1937 0.1847

acalculated from dimensionless heat fluxes given
by Viskanta (ref. 1) assuming T} = 713.33 °R and k, =
0.1800 Btu in./(h ft2 °F).

bpure absorption.

Cpure scattering.

identical test conditions. As the intercepts in the relationships between
Rfland 1/1° equal the inverse of k.¢g¢ and this value is independent of ¢,
the larger increase in Rg for the pure scattering case must correspond to

a larger increase in the slope, B(o).
5.5 Conduction in the Solid Phase and Convection Effect

In an attempt to include solid-phase conduction and convection in
the present analysis, the continuous-phase thermal conductivity can be
enhanced as shown in the theory section to include contributions due to
these other mechanisms. The enhanced value for the thermal conductivity
is then used in the calculations, in place of the value for air, to
determine what effect these mechanisms have on the apparent thermal
conductivity.

For insulations with densities between 0.37 and 1.56 lb/ft3, Eq. (56)
yields total thermal conductivities that are 0.5 to 3.2% larger than the
value for air. Values for ki, equal to 1.005, 1.032, and 1.1 kyi, (the

case for hL/k, = 0.1) were used in place of ki, for several calculations
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(see Table 7). As can be seen from the last column in the table, changing
k. does not affect kapp'— ke (i.e., k,). Thus, the assumption of Eq. (58)

is applicable., These calculations show that k, does change with thickness.
5.6 Albedo Effect

Prior sections have examined the effect of thickness, temperature,
emissivity, and continuous—phase thermal conductivity on the apparent
thermal conductivity or resistivity. These analyses were based on the
solutions for the pure absorption case (w =0) and the pure scattering
case (w = 1). However, both absorption and scattering occur in insulation,
and the actual case of importance has an albedo somewhere between zero
and one.,

Viskantal has developed a solution for coupled conduction and
radiation in an absorbing and scattering medium. Combination of
Viskanta's results and Eq. (25) permits the dependence of the apparent
thermal conductivity on the albedo to be demonstrated for t° and N, = 1.0,
8 = 0.5, and various values of the plate emissivity. As shown in
Table 11, the apparent thermal conductivity for an intermediate value of
the albedo (w = 0.5) consistently falls between the values for the albedo
equal to 0 and 1.0. Since this trend occurs for any combination of
thickness, temperature, emissivity, and continuous-phase thermal conduc-
tivity which yields the specified values of the dimensionless parameters,
the effectsbof thickness, temperature, emissivity, and continuous-phase
thermal conductivity (resistivity) which were developed in the previous
sections for w = 0 and 1.0 bracket the effect of these variables on the

apparent thermal conductivity for an albedo between 0 and 1,0.
5.7 Full-Thickness Calculations

Definitions of the thermal properties and a method for establishing
the minimum or representative thickness for which these properties can be
defined for low-density materials are set forth by the ASTM3 in C177-76.
(A portion of this specification is reprinted in Appendix Al.) The ASTM

method for establishing the representative thickness and R-values are used



48

by the FTC.? These specifications are discussed in this section. It is
also shown how the equations that represent the effect of thickness on the
apparent thermal resistivity for the pure scattering calculation [Eq. (35)]
and for the pure absorption calculation [Eq. (49)] may be used to
establish the value of the representative thickness and the full-thickness
resistance of building insulation.

The ASTM Cl177-76 specification requires that the thermal resistance
be a linear function of the sample thickness and that the function have a
value of zero at zero thickness. Further, the specification recognizes
that a minimum sample thickness may exist above which the definitions
apply and a procedure for estimating this thickness is set forth (see
Sect. XI.4.6 in Appendix Al).

For a material whose thermal properties are a function of thickness,
the ASTM specification appears to define two thermal resistivities — an
average or mean thermal resistivity and an instantaneous or differential
thermal resistivity. The mean thermal resistivity is defined as the slope
of the resistance versus thickness curve, which is assumed to go through

zero at zero thickness; that is,

& - B = RO) _ RWI) (70)
L L—0 L -

The differential thermal resistivity is the incremental change in the

resistance for an incremental increase in thickness,

R(L.)) — R(L.)
R =2 1=%. (71)

L L2 "Ll

In the limit of Ly approaching L;, the differential thermal resistivity

equals the derivative of the resistance function:

dR
1lim R = ==
L drL - (72)
Ly>Ly
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Then, according to C177-76, the representative thickness is the minimum
sample thickness for which the differential thermal resistivity is

within 2% of the mean thermal resistivity of the largest sample that is to
be characterized or that can be measured in the test apparatus.

The FIC final rule? requires that all measurements for the resistance
of building insulation be made at a specimen thickness greater than that
for which the apparent thermal resistivity of the material does not change
by more than 2% with thickness increases to full thickness. The FTC final
rule does not specify whether the mean or the differential thermal
resistivity must be used to establish the representative thickness Lp.
While it is believed that the intent of the FTC rule was to require that
the mean value be used, it will be shown that using the differential
thermal resistivity leads to another criterion for establishing Lp.

In the current work, the apparent thermal resistivities were

calculated from the total heat flux through the specimens,

(73)

Thus, these resulting values equal the average or mean thermal resistivi-

ties. Rearrangement of Eq. (73) yields

a
R =RrL , 4

and combination of Eq. (74) with Eq. (35) or (49) yields

BE) (75)

The values of A(E) and B(E) have been determined for t° > 2 and are given
in Table 10.

Substituting Eq. (75) into Eq. (71) or (72) shows that the differ-
ential thermal resistivity is equal to A(E), a constant, for a material

with a fixed extinction coefficient and for t° > 2. Since A(E) is the
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same for w= 0 or 1, the differential thermal resistivity has the same
value for a given material whether thermal photons are scattered, absorbed,
or both. Since A(E) equals 1/k.¢f, the differential thermal resistivity

equals

R = L
L k + (16n26T3)/3E
C m

(76)

for t° > 2 and any albedo.

The ASTM method for determining Lp requires the determination of the
thickness at which the value of the differential thermal resistivity is
within 27 of the value for the mean thermal resistivity of the biggest
sample that is to be characterized or that could be tested. As the
differential value is a constant for a given material for t° > 2 and as
the mean value will be decreasing as [ increases, the ASTM method
establishes the minimum thickness for an insulation above which the
definition of the thermal conductivity applies. For products with full-
use thickness less than Lp, testing should be done at conditions
applicable to their use.

The representative thickness, Lp, as defined by ASTM Cl177-76 is the
value of [ for which the mean thermal resistivity [Eq. (35) or (49)] is

1.02 times the differential thermal resistivity, Eq. (76),

A(E) + B?(Lil = 1.024(E) , (77)
or
Iy = 50 o (78)
The representative thickness Lp is given by
5 o S0 Kere 79
R o
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for the pure absorption case, and

4,2 5Oks kc
12[—(— —2) + y] -
o 3'e keff %eff (80)
R o

for the pure scattering case, where q and ¢ are in ft~! and Lp is in inches.
Equation (80) is in agreement with Rennex.’ Representative thicknesses
for specimens having extinction coefficients between 10 and 100 ft~! are
given in Table 12,

The value for B(F) with w = 0 and € = 1 [i.e., B(a)] was the lower
limit for B(E) at a given value of E. The value of B(E) with w = 1 and
€ # 1 [i.e., B(0)] was the upper limit. Since A(E) is independent of
w and € the values of Lp given in Table 12 represent the upper and lower
limits of the representative thickness as set forth by the ASTM specifica-
tion. If the extinction coefficient is in the range 50 to 150 ft=1 as
calculated from Pelanne's data,16 then the representative thickness is in
the range 1.27 in. (F = 150, w =0, € = 1) to 13.3 in. (& = 50, w =1,
€ = 0.9)., If an average E of 100 ft~l is assumed typical, then Lp

Table 12. Representative Thicknesses for Guarded
Hot-Plate Test Specimens

Representative Thickness, in.

E
(ft 1) w=0, € =1 w=1, € =1 w=1, € = 0.9
10 61.1 76.9 92.9
25 19.0 26.8 32.3
50 7.19 11.0 13.3
75 3.93 6.21 7.50
100 2. 44 4.03 4,87
125 1.71 2.84 3.43
150 1.27 2.11 2.55
200 0.78 1.30 1.57
500 0.15 0.24 0.29

1000 0.037 0.057 0.069
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varies from 2.44 in. (w =0, € = 1) to 4.87 in. (w =1, € = 0.9). This
large range of Lp values indicates the importance of the characteristics
of the apparatus and the insulation optical properties.

Equations (35) and (49) show that the apparent (mean) thermal
resistivity continues to decrease until L reaches infinity. Thus, an
alternate definition of Lp could be the thickness at which the thermal
resistivity equals 1.02 times the value at infinite thickness. The

criterion based on the mean thermal resistivity is

ol
i~

A(E) +

|

E) _ B(E) | -
7, = l.OZ[A(E) + F] = 1.024(E) . (81)

As Eqs. (77) and (81) are identical, the ASTM method and this alternate
method based on the mean thermal resistivity are identical. As noted
above, above this Lp the ASTM definition of thermal conductivity applies.
For products with full-use thickness Ly < Lp, this criterion leads to the

following expression for Lgp:

L. 50B(E) /EA(E) 62)
R~ 1+ [S1BE][FABL,] (

A third method for fixing Lp is to use the differential thermal
resistivity. This procedure would require the determination of the
thickness above which the differential thermal resistivity would not
change by more than 2% with further increases in thickness. The analyses
performed earlier in this section and in Sect. 5.2, however, show that the
value of A(E) and, hence the differential thermal resistivity, does not
change for t° > 2. Therefore, this third method would be independent of
w and € and fix Lp as

g <=. (83)

=

Based on this criterion, for F equal to 50, 100 or 150 ft'l, Lp equals

0.48, 0.24, or 0.18 in., respectively.
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If the third method for determining Lp is used, the full-thickness
resistance of the material can be determined from two or more measurements
of the thermal resistance of the material at thicknesses greater than Lp.
The measurements are then used to empirically establish the linear
relationship between R and L. Table 13 shows the ratios of the resistance
obtained from either the numerical or three-region solution to the value
calculated from a one-parameter line based upon a measurement on a l-in.-

thick sample, where

R = Rg(l in.)L . (84)

The values from Eq. (84) show errors as large as 17.8% (a = 50 ft-1,
w=1, and L = 12 in.). They are within 2% of the numerical solution's
R-value for L less than 2 in. and F less than 150 ft-1 or 3.5 in. for
E = 200 ft~1,

Table 14 shows the ratio of the solution resistance to that calculated
from a least squares line obtained from the values of R calculated at
0.042 (1/2 in.), 0.083 (1 in.), and 0.1667 ft (2 in.). Table 14 shows
that the resulting R-values from the two-parameter fit are within 27 of
the value obtained by the numerical or three-region solutions.,

The above observations have been further tested using R-value data
recently published by Tye et al,2l The data include R-values for a range
of specimen thicknesses from 1.44 to 7.22 in. The R-values at specific
insulation densities were calculated from measurements of apparent thermal
conductivity and a correlation of apparent thermal conductivity and
density. Apparent thermal conductivities were determined to within 37
from full-thickness guarded hot-plate measurements. An analysis was made
using sets of measured R-values of fiberglass insulation from three
manufacturers. The R-value data for a given manufacturer's product were
divided into groups having density ranges of 0.1 1b/ft3, For example,
R-value data at various thicknesses with densities in the interval from
0.55 to 0.65 1b/ft3 were grouped for the analysis. Finally, each group

of R-values was adjusted to constant density using an empirical expression
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Table 13. Ratio of Thermal Resistance
from Eq. (75) to the Value
from Eq. (84)

Ratio for Various F at

Thickness
(in.) 50 ft~1 100 £e71 150 ££71 200 fel
w=0, =1
1 1.0 1.0 1.0 1.0
2 1.067 1.024 1.013 1.008
3.5 1.099 1.034 1.018 1.011
6 1.117 1.040 1.021 1.013
9 1.126 1.043 1.022 1.014
12 1.130 1.045 1.023 1.014
w=1, e =1
1 1.0 1.0 1.0 1.0
2 1.090 1.036 1.020 1.013
3.5 1.133 1.053 1.029 1.018
6 1.159 1.062 1.034 1.021
9 1.172 1.066 1.036 1.023
12 1.178 1.068 1.037 1.023

Table 14. Ratio of R from Eq. (75) to R
Obtained from a Two—Parameter Line Fit
to Data at 0.5, 1, and 2 in.

Ratio for Various E at

Thickness
(in.) 50 ft-l 100 £e-1 150 ft~1 200 fr-l
w=20, €=1
1 1. 00085 0.99991 1.00021 1.00007
2 0.99985 1.00001 0.99997 0.99999
3.5 0.99965 1.00008 1.00035 1.00028
6 0.99995 1.00068 1.00042 1.00035
9 0.99962 1.00068 1.00045 1.00039
12 1.00064 1.00069 1. 00047 1.00041

w=1, €= 1

1. 00485 1.00163 1.00075 1.00041
0. 99652 0.99988 0.99949 0.99973
0.98948 0.99672 0.99853 0.99921
0.98448 0.99523 0.99788 0.99887
0.98184 0.99447 0.99754 0.99869
0.98045 0. 99406 0.99737 0.99860

NWO LN
*
w




55

for thermal conductivity versus density that was reported by Tye et al,21
Seven sets of R-values at constant density and given manufacturer were
so generated.

The seven sets of data were used to test the applicability of Eq. (75)
for describing the R-value data and to compare Eq. (75) with Eq. (84).

For each set of data the constants in the two equations were computed
using the method of least squares and the variances were calculated. As
expected, the variances obtained using Eq (75) were always less than those
obtained using Eq. (84). The differences between the two equations were
not dramatic. The results, however, which are summarized in Table 15,

are fully supportive of Eq. (75).

A more revealing test of the applicability of Eq. (75) was provided
by four sets of data of R-values on approximately 1.5 in., 3 in., and
full-thickness specimens. The approach was to calculate a value for R
at full thickness using both Eq. (84) with the constant determined from a
thin specimen and Eq. (75) with the slope AR/AL determined from two thin-
specimen R-value measurements. The calculated R-values at full thickness
are compared with the experimental values in Table 16. The results in the
table clearly show an improvement resulting from the use of Eq. (75) to

obtain full-thickness R-values.

Table 15. Summary of Results Obtained Using Eqs. (75) and (84)
to Describe Experimentally Determined R-Values

Manufacturer ?i:?;tg Number in Eq. (84) Eq. (75) Eq._(84) Eq..(75)
t?) Data Set Slope Slope Intercept Variance? Variance
A 0.5 8 2.699 2,607 0.3904 0.088 0.076
A 0.6 8 2,801 2.616 0.8649 0.689 0.633
A 0.7 8 3.065 2.955 0.5990 0.461 0.432
B 0.4 19 2.616 2.383 1.179 0.635 0.555
C 0.5 10 2.841 2.568 1,035 0.686 0.628
C 0.6 19 2.994 2.968 0.124 0.303 0.300
C 0.7 18 3.141 3.031 0.508 0.131 0.061
a

n
2:[ki(exp) - Ri(calcilz/(n‘— 8), where n = number of points in the data set and
=1
e = 1 for Eq. (84) and 2 for Eq. (75).
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Table 16. Comparisons of Full-Thickness R-Values from
Eqs. (75) and (84) with Experimental Results

R-Values for each Data Set@4

Method Used to Obtain

Full Thickness R-Value A B C D Average
(1204-3) (1205-3) (1206-3) (1206-4)
Eq. (84) with data at 18.79 18.75 17.39 18.49 18.4
thickness of 1l.44 in.b
Deviation from 4,6 10.3 9.8 5.5 7.6
experimental value, %
Eq. (75) with data at 18.48 16.25 16.36 17.59 17.17
thickness of 1.44 and
2.88 in.
Deviation from 2.9 4.4 3.3 0.4 2.8¢
experimental value, 7%
Full-thickness measurement 17.96 17.00 15.84 17.52 17.08

Full-thickness, in. 6.00 6.00 5.10 5.64

AData from ref. 21 are for measurements on quadrasected nominal 6 in.
fiberglass batts coded in the reference with the numbers in parentheses.

PExact thicknesses are given in ref., 21,

CAverage of the absolute deviations.

6. CONCLUSIONS

The most significant accomplishments and conclusions are enumerated
below.

l. A numerical procedure was developed and applied to solve the
coupled conductive and radiative heat transfer problem of an infinite
slab of an absorbing and emitting gray medium bounded by black plates.
This procedure allowed an assessment of the effects of boundary conditions
and media properties on the apparent thermal properties of the media.

2. The accuracy of the total heat flux obtained from the numerical
procedure was established as 0.1% of the calculated value. This accuracy
was determined by comparing the numerical solution results with the heat
fluxes obtained from the optically thin and thick analytical solutions and

with alternate solutions found in the literature.l’2
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3. The numerical solution was used to model measurement of the
apparent thermal conductivity of insulation for specimens with optical
thickness less than 40. Calculations were performed for absorption
coefficients between 0.001 and 1000 ft™1 and specimen thicknesses between
0.0208 and 1.0 ft,

4. A three-region approximation to the coupled heat transfer problem
was developed and shown to yield results within *0.5% of the apparent
thermal conductivity obtained from the numerical technique for optical
thicknesses greater than 4.

5. The three-region approximate solution to the coupled problem
(w = 0) and the numerical solution to the uncoupled problem (w = 1) were

used to show that

z (85)

The values of B(F) were determined for the limiting cases of pure
absorption (w = 0) and pure scattering (w = 1).

6. Data available in the literature! were used to show that the
plate emissivity had an effect on B(F) and that the value of B(E) for the
pure absorption case with black plates fixed a lower limit for B(E),
while the value obtained for the pure scattering case with nonblack
plates fixed the upper limit.

7. The apparent thermal conductivity for the pure absorption
and pure scattering cases were shown to depend on Ty, where Tp =
[(T% + T5)(Ty + Ty)/4)1/3,

8. A small change in the continuous-phase thermal conductivity
resulting from solid-phase conduction or convection produces the same
change in the apparent thermal conductivity.

9. The results of the analysis provide a method to establish how
critical parameters define the range of apparent thermal conductivity of
building insulations, for example, representative samplé thicknesses.

10. An analysis of existing data for fiberglass batts supports the
use of Eq. (75) for the correlation of R-values with specimen thicknesses
above 1 in. The slope in Eq. (75) can be used to determine full-thickness

R-values from thin specimen measurements more accurately than Eq. (84).
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7. RECOMMENDATIONS

The three-region approximation and the numerical solution are
valuable tools for the analysis of coupled conductive and radiative heat
transfer in an absorbing and emitting slab bounded by black surfaces. The
usefulness of these solutions can, however, be greatly increased by
extending the analyses to include varying emissivity and albedo. With
these analyses completed, it may be possible to determine the properties
of insulation, such as extinction coefficient and albedo, by making
apparent thermal conductivity determinations at several mean test tempera-
tures. Furthermore, once the extinction coefficient and albedo are
determined, the effects of sample thickness and plate emissivity will also
be established. Thus, one set of experiments may lead to a thorough
understanding of the relationship between sample properties and test
conditions for all similar types of insulation.

Further development of theoretical analyses must incorporate accurate
experimental data, which should be obtained on well-characterized
specimens. The aim of this program should be the validation of the
theoretical analyses through accurate measurement of apparent thermal
conductivity as a function of thickness, temperature, emissivity, and
continuous—-phase thermal conductivity. Development of techniques for
extinction coefficient and albedo measurments on insulation must also
be part of the experimental program.

Since insulation is often used in shapes that have cylindrical or
spherical symmetry, analyses of heat transfer in cylindrical and spherical
coordinates should be undertaken to develop an understanding of how the
properties of insulation are affected by these geometries and how the
results of measurements on planar samples must be corrected when the
insulation is used in another shape.

Finally, an effort should be made to use Eq. (75) for the deter-
mination of full-thickness R-values from measurements on relatively thin
specimens. The Eq. (75) extrapolation of measured R-values to full-
thickness R-values when combined with improvements in determining R-value
density dependence should be considered in the development of improved

standards for measurement.
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APPENDIX A
DEFINITIONS AND TECHNIQUE FOR MEASUREMENT OF THERMAL PROPERTIES*®
4. TERMINOLOGY

Note 9 — As Definition C168 is under revision, the definitions and

symbols given here should be used.
4.1 Definitions

4.1,1 Thermal Resisténce, R

The temperature difference required to produce a unit of heat flux
through the specimens under steady-state conditions. For a flat slab,

it is calculated asg follows:

4.1.2 Thermal Conductance, T

Under steady-state conditions, the heat flux required to produce a
unit temperature difference; the reciprocal of the thermal resistance of

the specimen. For a flat slab, it is calculated as follows:

>

r = g =
A(T& ——Ib) R

4.1.3 Thermal Conductivity, 2

Under steady-state conditions, the heat flux per unit temperature
gradient in the direction perpendicular to an isothermal surface. For

thin specimens or low-density materials this definition must be applied

the permission of the American Society for Testing and Materials (ASTM).
This standard may be obtained from ASTM, 1916 Race St., Philadelphia,
Pennsylvania 19103,
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with caution., Thermal conductivity of a material can be defined only
where several conditions are met (see 1.6): the thermal resistance of
specimens of a material must be sufficiently independent of the area of
the specimen, of where the specimen is selected in the sample, of the
temperature difference across the specimen, and, for a flat slab specimen,
the thermal resistance must be proportional to the thickness. The latter
can be demonstrated by plotting the thermal resistance of a number of
specimens of the material against specimen thickness. The line through
the point must increase linearly with thickness from zero thermal
resistance at zero thickness. When this condition is met, the thermal
conductivity can be determined as the inverse of the slope of the straight

line and the thermal conductivity can be calculated as follows:

. _axD

|

The above requirement assumes that the heat transfer within the specimen
is independent of thickness and temperature difference. It recognizes the
existence of a minimum thickness and maximum temperature difference for
which thermal conductivity can be defined. For the purposes of this

method, a 2% dependence will be considered maximum for each.

4.1.4 Thermal Resistivity, 7

Under steady-state conditions, the temperature gradient, in the
direction perpendicular to the isothermal surface, per unit heat flux;
the reciprocal of the thermal conductivity. It can only be defined when
thermal conductivity can be defined. For a flat slab, it is calculated

as follows:

A(Tl-— T
Q@xD

2)

I
T

9l

r =



63
4.2 Symbols

The symbols used in this method have the following significance
(Note 10):
A = thermal conductivity, Wem™lex~1 4p WemeK~Lep=2

thermal resistivity, Kem*w~! or Kem2ew~lepl

p =

I' = thermal conductance, Wem~2.g-1

R = thermal resistance, Kem2e.y—l

¢ = time rate of heat flow, W

q = heat flux, that is, time rate, of heat flow per unit area, Wem™2

A = area measured on a selected isothermal surface, m2

D = thickness of specimen measured along a path normal to isothermal
surfaces, m

T) = temperature of warm surface of specimens, K or °C

T) = temperature of cold surface of specimens, K or °C

Note 10 — Various units may be found for the thermal properties in
the literature. The International System of Units is used exclusively
in this test method and conversion factors to inch-pound and kilogram—-
calorie systems can be found in Tables 2a and 2b for thermal resistance

and thermal conductivity,
Xl.4 Determining the Thermal Conductivity and Resistivity of a Material

Xl.4.1 General — A thermal property of a material can be determined
by a single measurement only if the sample is typical of the material, and
the specimen(s) are typical of the sample. The procedure for selecting
the sample should normally be specified in the material specification,
or directly by the parties concerned. The selection of the specimen from
the sample can be partly specified in the material specification and
partly in the test method. The specification in the test method must be
given priority and disregarded only after careful technical consideration,
A number of these requirements have been given above. The thermal
resistance of a material is known to depend on the relative magnitudes of

the heat transfer process involved. Thermal conduction, radiation, and
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convection are the primary mechanisms. Of these, only conduction is
linearly dependent on AT. These processes are well researched, but they
can combine, or couple, to produce nonlinear effects that are difficult to
analyze, and even more difficult to measure.

X1.4.2 Dependence of Specimen Thickness — 0f the process involved,
only conduction produces a heat flow that is directly proportional to the
thickness of a specimen. The others result in a more complex relationship.
The thinner and less dense the material, the more likely that the resis-
tance depends on processes other than conduction. The result is a
condition that does mnot satisfy the requirements of the definitions for
thermal conductivity and thermal resistivity, both defining intrinsic
properties, since the apparent respective values show a dependence on the
specimen thickness. For such materials, it may be desirable to determine
the thermal resistance at conditions applicable to their use. There is
believed to be a lower limiting thickness for all materials below which
such a dependence ocCCUIS. Below this thickness, the specimen may have
unique thermal transmission properties, but not the material. It remains,
therefore, to establish this minimum thickness by measurements.

X1.4.3 Dependent on Temperature pifference — The magnitude of all
the thermal transfer processes depends on the temperature difference
across the specimen. The dependence is more complex than direct propor-
tionality for all processes except conduction. For many materials the
complex dependence occurs at temperature differences that are typical of
use. In such a case, it is wise to use a value for the test that is
typical of use, and to determine an approximate relationship for a range
of temperature differences. The dependence can be linear for a wide range
in temperature differences.

Xl.4.4 Method of Determining Dependence on Temperature Difference —
If the temperature-difference dependence of the thermal properties is not
known for a material, a minimum of three measurements is necessary. These
are made with widely differing temperature differences. A second-order
dependence can be revealed by these measurements. When a simple linear
relationship is known to occur, only two measurements, that is, one extra,
need be made. This establishes the linear dependence for that particular

sample.



for which the thermal conductivity and resistivity can be defined is not
known, it is necessary to estimate thisg thickness. There is no established
procedure for determining this thicknesg (Note X1). The somewhat crude

procedure outlined below may be used for determining the thickness and

Note X1 — If improved methods for determining the thickness in
question are developed or proposed, ASTM Subcommittee C16.30 would
appreciate receiving information about then, Contact the chairman of
the subcommittee through ASTM Headquarters.

Xl.4.6 Procedure:

Xl.4.6.1 Select a uniform sample of material of thickness equal to
the greatest thickness to be characterized, or to the maximum allowable
thickness for the test apparatus. This thickness is termed D5.

Note X2 — This particular test may be conducted in the Guarded Hot
Box, Method (236,

X1.4.6.2 Cut five sets of specimens from the samples, These should
range in thickness from the smallest thickness likely to be used in
practice, termed D1, to D5 in approximately equal increments, The sets
of specimens are then designated Si to S5 according to their thickness,

X1.4.6.3 Measure the thickness and thermal resistances of 81, 83,
and S5,

Xl.4.6.4 Calculate (R3-R1)/(D3-D1), (R5-R3)/(D5-D3), and R5/D5.
These are termed AR/AD values.

Xle4.6.5 If thesge three values differ by less than 2%, then the
material can be characterized by a thermal conductivity and resistivity,

X1l.4.6.6 If the three values differ by more than 2%, then measure
the thickness and thermal resistance of S2 and S4, Calculate the values
of (R2—R1)/(D2—Dl), (R3—R2)/(D3—D2), (R4—R3)/(D4—D3), (R5-R4)/(D5-D4) and
R5/D5.
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Note X3 — It 1is important to differentiate between added thermal
resistance in measurements caused by the placement of the thermocouples
below the surfaces of the plates, added resistance caused by poor specimen
surfaces, and added thermal resistance caused by the coupling of the
conduction and radiation modes of heat transfer in the specimens. All
three can affect the measurements in the same way, and often the three
may be additive.

X1.4.6.7 Thicknesses above which all the AR/ AD values agree with the
value of R5/D5 to within 2% may be characterized by thermal conductivity
and thermal resistivity. Allowance must be made in interpretation of the
results for experimental error. A plot of the AR/ AD's and R5/D5 versus
thickness may aid in reducing the uncertainty. Least squares curve
fitting of R versus D may also help. A larger number of specimens may be
used where greater definition 1is required. Thickness dependence may be a
function of mean temperature and temperature difference across the
specimens. For the purposes of this method, this single check, if
performed at typical operating temperature and temperature differences,

shall be adequate to indicate the degree of thickness dependence.
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APPENDIX B

PDP/8e FOCAL PROGRAM LISTING, TYPICAL OUTPUT AND
NOMENCLATURE LIST FOR THE NUMERICAL SOLUTION

C-FOCAL.J 4. CODASII1 33534W

Pl. 9! C RADI ATION/ CONDUCTION IN SLAB. FILE 3. SHJ 1 AUG 79

P1eP2 L S 345G 14.01

Pl. 60 F 1=@,N;D 2

21.70 F J=@,N3D 9

P1. 7S S A=@3 F J=|.N3 S A2 A+ (FSTR(9502+J)+FSTR(9500+J~- 1) )% AL%L/ ( 2%N)
Pl.88 S Q=CA*( TH- TC)/L+ 2% SI % TC* 4x( FST.R( 3502+N)- 1/ 3)/ CALxL)

Pl.85 S Q=0#2*SI*TH'4*(-FSTR(3500#N)/(AL*L)-l/2+l/(3*AL*L))#SI*THL4
P1.86 S Q= Q+ 2« SI*A

21.90 T 1T "a=*S % A" @' Q" K EFF=', 28.06, QeL/(TH-TC), I 1!
21796 G 15.21

02. 85 S TL=TC/ TH+(1/N)*( 1- TC/ TH)

92. 97 S T2=FSTR(9220+1)

2. 99 S DF=T2-TL3S T33T2%xTH: S T4& T3~ TC~-( TH-TCY*1/N
22 11 T %3,1,2%8.06, T2, DF, 210. 23, T3, T !

2.081 C EVALUATION OF @

9. P2 S NK=N-J; S DI=FSTR( 32@8+NK)- FSTR( 3000+J)
#9. 05 S EG=(RI* 2/(L*AL) )= DI*( FSTR(9000+J) % TH) t 4
99.86 S DU=FSTR(95802+J,EG); R

15«21 C-MULTIPLE INPUT

1596 A 'NO. OF CALCSe TO ENTERE',NO, 3 T "ENTER AL,K,L, T.C, TH, RI, *, |
1516 F 11=1,N03 A ALCI1),CACII),L(CII), TCCII), THCII), RICIL),

1519 S I1=]

15¢21 1 (NO-II) 15.99, 15.26

15626 S AL=AL(II)3S CARCACII)3 S L=L(II)3S TC=TC(I1); 3 TH=TH(II)

1S+ 27 S N=FI TRCAL%L/(5%¢ 12)+.5)3 S N=SxN

1528 I (N-50)15.3;1 (N-495)15.315S N=495; G 15. 31

15 30 S N=5¢9

15¢ 31 S RI=RICII)3S II=11+15S SI=. 1714E-8

15. 32 S RC=CA*AL/(4xSI*TH? 3); S DU=FSTR(9 200, TC/TH); & DU=s FSTRC(9 9PO+N, 1)
15. 33 S [V= 19000; S DUsFSTRCIV+ 1, AL); S DU=FSTRC(IV+2,CAY3 S DUsFSTRC(IVs 3,L)
1534 S DUrFSTR(IV+ 4 TC)3 S DU=FSTR(I WS, TH); 3 DUsFSTR(I Vs 6, RI)

15-35 S DUrFSTRCIV+7,N); § DUsFSTRCIV+9, S1)5 S DU=FSFRCI W+ | 1, RC)

15¢ 40 T 11, "CASE NO.=*, 23, 11-1, 1 13T "AL=", 212. B4, AL, |

15442 T "CA", 21806, CA " L=",L," RC=", RC, !

15¢45 T * TC="", 26, TC, " TH=", TH, " RI=*, RI, * N= ‘>N

15¢ 46 L S 3,9:G 11.02

1SS0 L P 3

15460 T “TIME,HR=", 26. 82, FTIM(C2)/ 3600, 1L $ JLWG 1.11

15.99 @

*
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C- FOCALe«J 4e CODASJ 11 33534W

@1. 81 C RADI ATION/ CONDUCTION IN SLAB. FILE 4. SHJ 16 JULY 79
@le®2 D 1s36;L S 4,93G 1.51

@t 1l S IW=100005S AL=FSTR(1V+1); 5 CAsFSTR(1IV+2)3 S L=FSTR(1V+ 3)
#1.12 S TC=FSTR(1V+4)3 S TH=FSTRCIV+5)3 S RI=aFSTR(1 W 6)

Ple 13 S N=FSTR(IV+ T3 S, SI=FSTR(IV+9); 5 RC=FSTR(IW 1)

01.32 S VWi=AL#L3 D 125 S DU=(TC/THI* 4

@133 S BEs 1+( 1-DU)*( 1/ 3-E4) /7 102« RCx( 1~ TC/ TH))

P1e34 S XS%1-05%xFSQTCTC/ TH) /CC 1+ FSAT(W1) ) *( 1+ 19 RC))

1. 36 F I1=@,NJD 3. 15§ D&FSTR(ASOG’I:(TC*(D#l)#l*(N-TC)/(N#DﬁI))/‘I‘H)
Ple 40 T. "XS=', %7 83,XS, * BETA=*, BE, | 13 F I=@,N; & Wi=AL*xIxL/N;D 2
@l.45 F 1=@,N3D 4 S DU=FSTR( 4000+, G

Pl.98 L P 4

9199 L S 4,95G 1l.11

92. 081 C EVALUATION OF E INTEGRALS

$2.95 S E3=93S E4=031 (2.33998+VW1)2.15,2.1551 (1@~ VW1)2.07: D 12
92, 87 S DUx FSTR( 35890+1, E4)

92. 15 S DUr FSTRC( 3009+1,EJ)3 R

93.10 S DeC¢BE-1)*(1-1/(N*xXS))} R

$4. #1 C CALCULATION OF G(I)

$4. 05 S G=C 1/ (2¢RCII*CTC/THI* 4

04.07 S @@(-FSTR;:!SOD*I)*I*FSTR(3500+N)/N0-(l-l/N)/3)

94. 19 S Gl-((l-l/N)tFSTRﬂSSOG’N)-FSTR{3500+N-1)+I/(3#N))/(2#EC)
Pae 20 S GuG+*GI+(TC/TH+(I/N)*< 1-TC/ TH) )3 R:

12,81 C EVALUATION OF E3 INTEGRAL

12. 85 1 C(W1) 1258, 124 45, 124 1

120 l’ I (UJ- l) 120 150 120 15: 120 30

12 15 S El=A@-FLOG(RD) +Alx W]+ A% VW]Y 2+ A WIL I+ A4+ Wit 4+ AS* wit53 GOTO 12.35
1230 S Els( Wit 4+Bl*WIR3I+B2xW|iR2+ B3x W]+ B4)

1231 S EIsEI/((Wlnat ClaW]t:3+C2e WiR2¢ CI+ Wi+ CA * (Wi FEXP( WL ))
1235 S E2=FEXP(-W1)-WI*E]

1S 40 S E3=(FEXP(-W])-WI*E2)/2;D 1B R

12. 45 S E3=.5}S E4= 1/ 3 R

12.58 S Wim- W13 S El=.57721566+FLOG(WI); 5 2= 15 KK=03 S KAm |

12- 60 S KK=KK+ 13 S KA<KA*KK3 5 Sl=S5i*VWl

1265 S EI=El+S]1/(KK*KA)

1270 1 ¢ 1E- 6-FABS(S)1/ (KK*KA*E1))) 12. 6

1238 S E3=(C 1+ W *FEXP(WD)- W] 2xEI)/ 2 R

13.81 C EVALUVATION OF E4 INTEGRALS

13. 10 S E4=s( FEXP(-UD~-WI*ED/ B R

14. 81 C INTER PARAMETER VALUES

14085 S AB=-.577215663 S Al1=.99999193; 5 A2m-,2499 1055} S A3=. 095519968
l4e 10 S Alm-. 00976004 S AS=.00107857; S Bl=8. 573328743 S B2= 8. 05981697
lae 1S S BmB. 634760895 S Ba=. 267773733 5 C1=9.57332235

14020 S C2=25.63295615: S C3=21.09965308; S C4=3.9584969 3L P 4

14.21 L S 4, 336G 15.01
*



C-FOCAL.

gl. 01
#l. 82
gl. 11
Pl. 12
#1.13
Ble 14
g1.51
#l.52
#1.53
#l. 54
21. 55

ME"unMnnnnun-ao
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J4. CODASIII 33534W

RADI ATION/ CONDUCTION IN SLAB. FILE 9. SHJ 1 AUG 79

2=y %2, " TIME,HRi= ", 26+ 02, FTIM( @)/ 3600, 13 R

I 10000 S.AL=FSTR(IW 1)3 S CA=FSTR(IW 2)3 5 L=FSFR(I W+ J)
TC=FSTR(IV+4)3 S TH=FSTRC(IV+5)3 S RI=FSTRCIV+6)

Ns FSTR(IV+7)3S SIsFSTR(IW9)3S RCsFSTR(IWV+ (1)

JJ= 1BxN/CAL*L)IL P 9

I=1,N~ 13D 73S T2=FSTR(400B+1)+A/(2«RC)3 S DU=FFPR(9 00O+, T2)
Zs@:S DU=FSTR(90P1)-C(TC/ TH+( 1-TC/TH)/N)3 F 1=@,N3D 19
C2=Z) 1e9TD 160231 (DUt IE-4) 15431 (2= 1E-4) 1059, 1 55, 1+ 55
“BETA= ", 27« 83 N*( TH* FSTR(9081)~-TC) /¢ TH~ TC), !

I=@,N3D 1.58

#1.57 GOTO .51

01.58 S TI=s(FSTR(9PPO+1)+MxFSTRC4SPO+I))/(M+1)3 8 DU=FSTRC 4508+1, T'1)
BleSO T- R "Am' 111" 1 F2 F2-FL TCALC TCALC- TLIN
81.60 T. 11

#$le70 L S 9,33G 1.6

0197 S M= ]+2¢«M3 T 1, “"LARGE ERROR=", %, 25 " REREAT USING M=", 4, M, !
Pl1.98 L S 9,4 G 1. 02

#7. 81 C EVALUVATION OF T2(1) INTEGRAL

$7.85 S IN=93S Am03F J=@O,N3D 8

#7.99 R

98.8] C ADJWICT 70 GROUP 7

98.02 S D@31l (JJ-J)B053 S DUsFSTR( 3000+ J)

98.05 S DI=93 S KeFABSC(I-J)31 (JJ-K)B8.873S Di=sFSITR(3008+K)
$8.07 S D293 S NKsN-J31 (JJ-NK)8.993 S D2= FSTR( 30008+NK)
#8.9 S Di=-Dl+DUs S D2=D2- DU

8. 10 S EF=RI®2x(D1+D2%1/N)*FSTR(4500¢+J)r 431 (-IN)B.25D 93 R
88. 20 S AmA+( U+ EF) x AL%L/ ( 2%N)

PB. 30 D 9.13S_IN= I3 R

.21 C ADJINCT T0 GROUP 8

29.85 S IN=IN+|

29. 10 S U=EF; R

10. 81 C LARGEST ERROR DETECTOR

1. 841 (1-1)10.993S ER=FABSC 1-FSTR(9000+1)/ FSTRC 4500+1))
10. 18 I CER-2) 10.993 § ZnER

18.99 R

11« 81 C SET START VALUE OF M

11«82 S M=i3T ™ M='",2%26,M, 13L P9

1183 L S 9,3 G 15.5

x

L G 18

®x

*x W

C-FOCAL+J 4. CODASIII 33534V

P#1.01 C FSTR USE BY FILES 3, 4&9. SHJ FILE 1@ SHJ | AUG 1979

3



781. o2
LG 3
G
HO.
ENTER AL, KsLs TC, T, RIL
£50 :8. 815 :2.93310 :51¢

$188 :8. 815 1@.2%533 151¢

£150 :8. 015 ¢

OF CALCSe TO BTERe:

2

$560 1

1562

1
+ 0333 tS1E 1568 )

CASE NO.= 1
as= 50. 2202
Com €.015080 L= ©.03130¢ Ke= 8. 62291%
TC S1e Ti= 562 AI= [RE) 5¢ A=
TIME HR= 4 4B
X5 9973 BETMm L3
I= 8. 4@22567997E- €2  TI.ikiFex 4. 65
Ix B.74102P6597E- 821  TIAL i{Fes ards
I @ 2267622622E-0€1  TI.AE. i 5.2
Tr @B2l67706TOE-RB4  TLAEs.iFW 5. 3%
A= 8. 3725233110E- 231
1 F2 Fe- L TCALL  TUaLL-TLid
® 8.910714 0.0ceC0e S1¢evee- b cue
1 2913233 e.geeryy S11. 44l ¢ 4ul
2 8.915717 2.28143) Slz.du) CIEY2)
3 8913814 ©0.221743 Slaegss 1,843
4 8.920202 9. 282344 515.33 £ 313
S 8.922297 0. 282654 Sl6. 436 leato
6 8924315 0.0€2837 517. 617 617
7 8.926260 8. 00355 S13+7114 1711
8 @.928:17e e.ee3l7e 519. 775 1.775
9 @.930024 £.02323 Sze.814 1.814
18 B.931340 4,203267 5214530 1.s3e
11 €.933623 B.e23266 led ey
12 0.735378 8. 803235 1+ 31e
13 937109 e.ee3l30 10751
14 £.938313  ¢.eedlea 10730
1S 8.940509 ©0.2030e9 e 635
16 0.942135 0.222499 1eess
[7 8.941846 9.2€2774 1.554
18 0.945494 €. 002637 Leat?
19 8.947132 @.PR243D 12394
20 8.943759 @.022338 te 365
21 8.95£377 @.@8Zicl NNt
22 2.751731 0. €e1953 1e113
23 8.95159) @.eelias 1.2
24 8.955137 @.gel6le 6205
25 #.956779 2. eeiazl 2. 79¢
26 £.753364 B.eol22] v 636
27 0.959745 B.eclele €509
28 €.761522 0.000327 Geanz
29 £.963096 2.28CH2 6 ¥ 354
36 8.964667 E£.2¢0IR2 £. 214
31 2.966233 ) ecelée ool
32 e.9¢73€7- 0. 0ceesy Lo ed
31 8.967377- 0. gvR2eS G 19
a7 7e958 o.evesT? ke 2oy
35 B.972525- 2. @eeus? “e 33¢
36 0974166~ . 0054 S5 49 ). €esel
37 BAT569 4 Gakuligz bane Iss- etde
B 2.977292- e.eslzT 5470 23 117
¥ €.973984 €.¢01453 Sad. 156 Gsia
4@ €.938533F 0.06lCle 5469 €93+ =2y
4l 8732195 C.ee1744 550, aza- g 7e
42 @.933BE6- 0. D134 558 ) U5~ 1ew3s
43 AI35534 B.eC19 16 551037 170
44 PISTI49- 0. 201937 552.9 15 leess
4S5 B.IBIULTI- B @R 18T 553.937- 1- 063
46 2.97 1074 €. 221743 555 pEl- Ko 3ty
47 @.79327)- 0.22157) 556. 1 .33k
48 8975194 €.221235 5574 302 ¢au2l
@ 8.9974de- 0. eR¢Td4 S 530 teall
SE  1.020000 B. 22000 56¢. 092 Evbe
AR 0. 15164TT@AIES QUL S €. ZEBTIDACAZeeBEL  LEis

[CREITTY

70

CASE NO.= 2

Am 100, 2020
Com ©. 015000 L= ©.833300 RO» 1245823
TC= 518 TH= 568 A= 1 8= 7€ A=
RIETATE 5. 43
X5 8991  BETam 10047
22 0. 206204281 1E-882 TIAEL dRs 5.89
Zx 0. 4764655605E-80) TIME dRe= 6.33
Ix 8. 15339193 22E~ €03  TIALHRew 6077
I% 0.56747 79 134E-004  TIAL.HR. 721
Ae- . 529 4541155E- 881
1 F2 Fo-FL TCALC  TCALC-TLIN
® 8.912714 e.e2000¢ S1E. 008~ [ T7)
I 2912317 9. e08129 518,599 ®. 184
2 0.713433 0. @08613 S11.77% e. 246
3 8.71SH7  e.00835¢ Slez.62e Yo adp
4 0.916863 ©.9L1052 513« 44t 62539
5 ©.919383 p.eg1211 S14. 250 2,674
6 0.919787 8. 081340 S15.836 8. 758
T .921837 0. e01444 515.89 B.8¢9
8  B.922446 ©.€01528 516.57¢ Ged5€
9 0.923743 Q. 281594 517. 321 2.893
0.725115 @.081646 S14. €65 8.9z2
0.926430 M. @B1635 513401 €.944
8.927735 2.081715 S13.532 w968
0.929031 @-221735 5:8. 257 0.972
0.930319 B.@B1747 528,977 379
@.731622 €.081753 521,696 v.98z
0.732A75  @.@81753 Sc2e 4t 0.95%
B.934145 @.eB1747 523 42 8.9 78
B.2354i@  @.e81737 523.330 ©.273
8.93667L A g€1722 524. 536 keP64
2.037923 8. ¢E17€3 55. 24t ©:954
293151 e.001e31 525.941 €741
©.94€431 @-ee1655 526. 641 e.3z7
@.941677 @.0016z¢ 527.239 [ T]
8.94202¢ 2.081574 523. €35 €892
2744168 0.2¢155% 523.73€ 8373
0.94539%  2.eeisie 527+ 423 e.351
€. 746633 €. 2€143F 53¢ L4 £e32)
2.947365 @.0€1430 5308. 324 e.d04
049094 0. 8R139¢ 531. 473 €779
2.952321 @.001342 s32. 148 €.75]
€.951546 @.2€1291 532.366 €. 723
€.952768 @.021237 533. 558 8. 693
8.953989 @.201182 534,233 8. 662
2.955205 ©.861124 5349 15 2. 629
2.756421 .00 1864 535.57¢ €. 596
B.957634 ©.0€1081 536. 275 2.561
B.75A545 2. 209936 536.253 8.5z4
8.962053 2. 2083 TE 537. ¢3¢ % ad?
B.961268 2.0083¢1 533. 32¢ 0. sud
€.962464 2.¢00730 S35.95¢ €. 40
B.763667 (. PP2CST €368
€.764367 g.0LESIZ Sag. 32t 0.32¢
43 8.966066 @.082ESES 542937 €.233
44 8.767263 2. e0842C 541.667 8. 239
45 8.763458 0. 0@ES4L 5424337 €. 194
46 @.70652 2. CBEL64 543. ¢85 8. 143
47 ©.97P343 €.ge813¢ 563. 670 0. 1ei
4 £.972034 €. 00009% Sa4. 339 2.e53
4 ©.773223 . ee0Ced 545. 885 2. a5
SE 8.974ulE €. 0P0RT4 565. €71~ € Basg
51 8.975599- @.20016¢ L4t. 336 °.293
52 8.978737- 0. PRR254 547. POB- 8. 14z
53 8.077774 @.0B8343 547. 665 e 192
54 8.279161- @. R84} Sas. 338 @.zal
95 2.73034&0- 8.02205(3 Sule9r€- e.298
56 B.731548 @.¢0€6€] A €.338
57 8.9327)2- . 2¢Bo4L 5584 330~ £.384
S8 2.933920- ¢.028765 551 Cup 2. 428
59 @.735118- 2. 20¥8 L5010 073 € a0
42 0.93613- 0.C¢ROLL She 35e- Y. 507
&1 2.737557- M peerel 9530 ¢u sy
62 2.934T % e.eClve) 833700~ €.5Lh
63 €.97EC34- ¢.RE103s Liaeali- vesd |
ba  @.3710¢2- @-£C1Qab Sube 1) Lo 935
€5 €.99057 e.eelees LU5. 355 X574
66 2.9729 1B~ ©. 20076 €. 54
67 £.97531% G.URESb: Leadls
63 B.706T6e~ 0. ¢VRLYT Sh4e 135 B 33t
€7 B.2933¢1- €. 804D €52k ain €eta7
7€ 1. @CBEEF Q. pe2REL Stee KK 6. elK

A= 07830 1T30Ee v 0e0

12 e 16623658 auke 202

A& kb=

6. 8276c2

CASE NQ.= 3

150, e00e
2. 015002
518 THe
7.33
BETAs

L=
s6e

2.795

2, 1261275378 - 002
€. 3467062483 L 0]
2. 110776290 1E- 803
€. 4361998 17E- 24

fm- 8. 5327182760E-2€1

8.9 12714
8.211716
912711
912687
8.9 14645
915588
2.9 16517
8.917436
8.9 13345
8919247
s920lal
921838
8921914
2.922794
. 923678
8924543
925412
. 926288
8927146
2.928809
8923870
21 892729
8938587
8931444
8.932299
892353
8.922006
27 8934858
% 8.935789
29 8936558

[LLITTY
8. 0BBIS2
8. 000296

3 8.9217a07
31 €.938254

32 8939101

3 8.9M94e

34 B.9a879 1

35 B-741635

36 B.9az4T

37 e.942220

B B.94al6l

»  e.945001

4@ 8945840

41 8946678

a2

43

aq

as

a6

4?7

48 8.952523

a4 8.951354

58 8.754135

51 8.955815

52 @.955844

53 @.956672

Sa  8.957500

95 8.958 326

56 8959152

57 8.99977

58 8968801

59 €.961624

68 8.7626a?

61 2.963268

62 $.764€37

63 0.964909

64 8.765728

65 £.966547

66 €,967365

67 8.963131

6 £.968998

67 8964313

7% €.970629

70 8971441

72 @.972255

73 e.973867

T4 0.773379

75 @.27a&9¢

76 8.9755€0

77 8.27631@

7% @977119

79 @.777923

ae 2.97673¢

31 8979544

92 8.988351-

43 0.7A1158- ©.000134
94 @9%1765- 0.000173
%S 8.992773 £.002221
36 8.933588- €.0L0264
97 @.9843\ 7~ 8. 8LB307
37 8.93519% £.0¢Bl4)
19 8.036B04 P.QEBI91
72 8736313 B.000432
21 8.937625 0. 2206471
72 #.735433- 8. €e05e7

95 @.97¢393- 2.2B859%
96 8.791729- 0.0026!3
97 8.92E56¢ 0.008631
08  8.793413% £.0820035
99 @.794271- . 888627
188 2.995145 B. 080623
181 2.976819- ©. BLES6E
182 276153+ €. 2e8 1
183 €.997911- E.000383
194 8.79%9 13 £. 200236
195 1. 020000 0. BCCeLL

Ar 2. 71442560 0uLY DEY

©. 293308
nx

.23

Tl riFer
TSk Hies
TIlewdRe 10. 24
TLlisdRex

RGe
()

TCALL

518. 80@-

568,997
94, ak9-
549.901-
552, 353
S5¢. 185
$51. 257~
5514 79~
5524 162
552. 615~
553.¢7¢
553+ 525-
©53.03 2
554 4uze
5544993
555. 365~
5556837
556,310~
556. 77 2-
5574 21 1-
957. 73 2=
553+ 296~
558.338-
55939 1-
56¢ 208

Gx €. 1425975978 ke B0E

1.868735

N

195

AT

X BrEx

v. €237
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Focal Program Nomenclature for Program in Appendix B

Symbol

AL

N

CcA

TH

TC

SI

KEFF

T2

Tl

TL, DF, T3, T4

NK, J, IV, I, KK, KA, JJ, M
IN, K

D1, EG, DU, D2, EF
RI

NO

RC

Wl

BE

XS

D

G, Gl

El, E2E3, E4

AQ, Al, A2, A3, A4, A5, Bl, B2,
B3, B4, Cl, C2, C3, C4

EI
Z
U

Definition

Trapezoidal area

a

Batt thickness
Number of increments
Heat flow rate

k

;4

T

e
o= 0.1714 E-8

Keff

New reduced temperature distribution
0ld reduced temperature distribution
Qutput convenience variables

Indices

Convenience Variables

Refractive index

Number of cases

Defined in line 15.32 File 3

Defined in 01.32 File 4

b

Defined in 01.34 File 4

Defined in 03.10 File 4

Defined in Group 4 File 4

Ey(z), Eo(x), E3(x), E4(x) integrals

Parameters set in Group 14 of File 4

Eq (—x)
Error defined in Group 10 File 9

0ld value of EF
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APPENDIX C

PDP/8e FOCAL PROGRAM LISTING, TYPICAL OUTPUT, AND NOMENCLATURE
LIST FOR THREE-REGION APPROXIMATION

C-FOCAL.J4. CODASIII 33534V

£1. 21 C THREE REGION RAD/COND. FILE 85 3HJ 28 MARCH 8@

Pl. 2 C INPUT 1S IN BTU» HR» FTv DEGe R WNITS.

@183 C OUTPUT IS IN BTU, IN, HR FT, DEG.R WNITS

P1.85 A "PR,EP,N@® ?" PR,EP,N#T 135 N=s@ T *“AL, XL, CA» TH» TC, EH, EC 2"
Ple P6 S N=N+1

Ple 10 A AL(N)»XLC(N)> CACN),» TH(N), TCCN), EHC(N), ECCN); T !

@1« 11 1 (N-N@)1.06;5 N30

1. 12 S N=N+15S AL=AL(N); S XL=XL(N); S CA=CA(N); S Tid=TH(N)3 § TC=TC(N)
@le 13 S EH=EH(N)3 S EC=EC(N)

Ple 15 S I=0;S SI=¢ 1 TI14E-85S TIC1)=TH; & T2( 1)=TC

@128 S RI=1/(CA*AL/ PR+ SU*EH* (THt 2+ TIC Dt 2)*(TH+ TIC 1D )

91. 25 S R2=(XL*AL-2¢PRI/(CA*AL+( 4/ D= J12(TIC Nt 2+ T2 D L2 (TIC D+ T2( DD
1. 30 S R3=1/(CA*AL/ PRe SI®EC*(T2C 1212+ TCY 2)»(T2¢ D+ TC))

P1. 35 S I=1+1

Ple 40 S T1=TH+( TC- TH)*R1/ (Rl+ R2+ RJ)

P1. 45 S T2=TC+( TH- TC)*R3/ (Rl+R2+ R3)

0150 1 (~FABSCC(TI-TICDI/TICIII+EP) 1.6, 1.6
01.55 1 (FABS((T2-T2(1))/T2C1)I)-EP) 1.7

Ple 60 S TICDH=TI3S T2( DH=T21 (I-188) 1.2
01. 65 GOTO 2. 05

0le 76 S @=(TH-TL)/ (Rl+ R2+RJ)

@1. 75 S CP= 12« XL/ (TH-TO

P1e98 T “CA='>%11.04, CA " AL="s AL," XL='"»XL," ="' EH, !
Ple9t T "EC=*,EC," TH=',TH," TC='",TC," BPR='",PR !

P1.92 T "EP=", EP, !

£1.95 T "@='"»%11. 26, Q" CP=',Ch !

01.96 T "TI=", T1," T2=",T2,!

P2. 21 1 (N-N@)1. 12 @

0285 D 1693D 16913D 1.92 T "#xxx DID NOF CONVEBGE *x%xx"', !
92. 18 1 (N-N@) 1. 125 Q

E ]



L G 85

* G

PR, EP, N @

?:0.69315
AlL>XL, CA, TH, TCs Ei{, EC ?: 50

: 100 :2.0833 :Q.015
:15@ :8.0833 : @015 :
Cca= P. 0150 AL=
EC= 1. 2000 TH=
EP= 2. 2001
&= 22 447040 CP=
Tl= 550. 242566 To=
Ca R. 2152 AL=
EC= le 20002 Ti{=
EP= . 2001
0= 164591717 CP=
Ti= 555. 850597 To=
Ces . 2158 A.=
EC= l. 2000 TH=
EP= Q. 0001
Q= l4. 259955 CR=
Tl= 556, 788139 To=
x*
Symbol

Cp

EC

EH

EP

NO

PR

R1

R2

R3

Tl

T2

s 1E~-4

74

HIC

: 512 1
51K 31
5. 2200
S60. 2000

e 448761
521+ 123533
100. 2000
S60. 2000

2. 331702
515. 372918
150. 0000
S6D. 2BO0

P. 285085
S13. 423984

1
1

2 0. PB833 : 0015

XL=
TC=

XL=
TC=

XL=
TC=

Nomenclature for Program

:1568 1510 31

P. P8 33
S10.0000

. 2.0833
S10. 2006

. 2833
S10. 2000

in Appendix C

Identification

Apparent thermal conductivity

Constants set equal to 1

Constants set equal to 1

Convergence criteria, 1 X 1074

Number of data sets < 100

PR=

j« 2000
2. 69 32

le 0600
Be 6932

le 0200
Pe 69 32

Dimensionless boundary region thickness, 0.69315

Thermal resistance of region I

Thermal resistance of region II

Thermal resistance of region III

Absolute temperature at interface I/II

Absolute temperature at interface II/III
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APPENDLIX D

FORTRAN PROGRAT FOR THREC=REGLON APPROXTATLON

The following prograa outputs values for the temperature at the
interior points which divide the total insulation thickness into threo

regions. The temperature calculations include an output for the ten-

perature profile in the niddle region,

Identification of Variables

XK — thermal conductivity of air

XL — specimen thickness

TC — temperature of cold boundary

TG — temperature of hot boundary

Tl — temperature between regions 2 and 3

T2 — temperature betwecn regions 1 and 2

Q — heat flux

CP — effective thermal conductivity of specimen
AL — alpha, defined in nomenclature

RI — refractive index

FR — parameter defining thickness of regions 1 and 3
EP — convergence criterion

SI — Stefan-Boltzmann constant

EH — emissivity of cold plate

EC — emissivity of hot plate

X — distance into specimen



F1CC:3911

cc100
cezcec
coace
667C/
cc4a00
00500
cCcé600
00700
cecs o0
o0os 0C
Cc10C0
c11e0
c1200
C1300
01400
01500
01600
C160°%
C1610
C1620
C163C
C1700
C1800
gz21c0
c2200
230C
0240C
c2500
02600
ce76cC
02800
2900
ceote
0292C
€3000
03100
03200
02300
03400
Cc3500
c2600C
€3700
C£38C0
Cc39CO0
C390¢
Cc391C
C3911
*

17

9c

99

1C00

36

1co
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Program Listing

DIAFNSIAN it 7)5 K700 TCCT)STICT 72725 TECTS TS 7, TRCTO,
l@(7:7:7):(?(7;7;7):&&?C):T(?C)
CATA XK/-C]3?07--Ol&l78;-01ﬂ834:oClE:-OlfllE:-OlE795a-Cl

DATA XL/+C333,+25 £*%C.C/

DATA TC/A35-0/475-01505-C;FIO-O:FIF-OJFQS-OJFSS-O/
AL=2COC.

DATA TG/485-:525-:555-:560-:565-:595-:635-/
RI=1.C

FR=.6931°%

Fp=.0000!

SI=.1714E-3

FH=1.

FC=1.

D@ 10C I=1,7

D2 100 J=1.2

K=1

Ti=TC(I)

T1A=TC(K)

Top=TH

NC=0

NC=NC+

IF ¢ NC.GT.100) GB T8 99
Rl=l./(XK(I)*AL/FR*’SI*EF[*(T.{**?*’TIA**S)*(TH*'TIA))
R2=(XL(J)*AL-2*FR)/(XK(I)*AL+(1-3333)*51*(T1A**2
1+ T2L*xx2)*x (T1A+T2A))
R3=l-/(XK(I)*AL/FP+SI*FC*(T2A**?+TC(A)**2)*(T2A+TC(K)))
T1B=TH+(TC(K)'TH)*PI/(PI+R?+R3)
T2E=TC(K)+(TH-TC(K))*PS/(PI+R2+R3)
TSTI=ABS((TIBE-TI1A) /TIR)

TSTE=ABS((TPE-T2A) / TPR)

IF (TSTl-LT-EP-PNE-TST?-LT-EP) G2 T2 9°

TIA=TIE

T2A=T2E

Gg T2 17

Tl(IIdJA‘)=TlE

T2(1,Jd-KI=T2B

58 T@ 96

TYPE 10CCs1,J5K

FORMAT(2X, * N@ CBNV.',313)

Q(I;d;K)=(TH-TC(K))/(PI+P?+R3)
CP(I;J:K)=l?-*Q(I;J;K)*XL(J)/(TH'TC(&))

CeNTINUE

TYPE 180

FBRAAT(GX:‘IUFEX‘;?K:‘K‘:RX:‘LENGTH‘:BX;'T cegLn®, 3Xs
Tk Y, 3%, Tx L30T AT ', 4%, ' € 58X, *X FFFY)




P4CCC:8100

czo00
04100
C4200
Cz300
C4301
C440¢C
C4s0cC
04600
04700
0480cC
C4900
0s100
Cs2cce

PAGF 2

Cs300
CS5400
0s500
Cs600
Cs700
08800
05900
06C00
06100
c62ce
06300
06400
céesoc
06600
06700
o6sce
06900
C7000
C7T100
07200
C7300
C7400
c7s00
C7510
Creoc
ctrece
c7700
C7800
C7900
063000
S X el No]
o3 02¢
Beos
G100
*

Iccl
2co

10c?

30

n

1ees

leo>

1C04
393
400
21F
1005

1

1
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D2 20c 1=1,7
Lo 200 u=1,p
K=1

TYPE 1001, 1, Js i, XKC 1), xL (), TCC

K)o T2C1,J, %)

JTI(I:J:K): TGC(K), C(I:J:K): CP(I:J:I{)
FOARMAT( 1%, 212, F9, €sFT7. 0, 4F3.2,2Fg. 4)

CONTINUF

TYPF lOC?:(XK(I):I=]:a)
TYPE lCC2:(XL(J):J=I:7)
TYPF lOC?:(TF(K):K=l:6)
FQRMAT(?X:7F9.3)

D@ acc 1=1,7

D2 4acc u=1,0

£=1
TCD=T2(I,4d,)

DB 39=5 L=2,]
XC1)=FR/pL
DX=(XL(J)-?*X(1))/]0.0
X(L)=X(l)+(L-l)*FX
TP=T(L-1)

A=C4%xS1) /(3xaL)
B=XK(I)

NC=1.

C=(O(I:J:K))*((L'l)*EX)+XK(I)*T?(I:J:K)+A*T?(

I:J:K)**l]

NC=NC+|
IF (NC.GT.100) G2 T@ 21¢

CF=(A*TP**4+B*TP-C)/(4*A*TP**3+P)

IF ¢ AFS(CF).LT.Fp) G2 T2 2]
TP=TP-CF

Ge Te ac

T(L)=Tp

CeNTINUF

TYPEF 10C3. I,Jd,K
FerMAT(2X, 313)

TYFF leC

FoRMATCIK, v VALTIF TEIP*)
g 393 L=1, 1]

TYPF ICO4s XCLY, TCL)
FZRMAT(?X:F%-é:FlC-3)
CZNTINT'F

CONTINTF

TYPF 100%,L

F2RMAT(OX, v T r'lr yNgv CAONVERGEY, I3)

B¢ TP 4c0
END
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Sample Output for a = 200

K LENGTH T COLT T* T* T HET e K FFF
p.0132C7 C.0333 435.00 43739 432.71 435.0C 10.4351 C.2C26
0.013207 0.25CC 435.00 435.3C 434.23 435.CC 3.8003 (.2117
0.014178 C.C333 475.0C 477-44 €02. 69 ccs,0C 11.79C7 c.23%7
0.C14173 €.2800 47S.0C 475.8¢C cop.02 E2%.0C 27.9635 0.2373
c.C14%34 (0.0333 €0s.CO S07-43 ceo, s  S58E5.CC 12.8375  (.25€6
0.C14334 C.250C cce.CO0 SCS.33 g84.21 cee,QC 4.3194 C.2592
c.015CCC C€-0333 £10.00 £S12.43 cc7.64 S60.0C 13.C131 C.26C3
p.0150CC 0.25CC £10.00 S1C-34 553.21 ceQ.00 443309 C-2629
0.015115 0.C333 £1€.00 51749 cg0. €4 565.0C 13.2CC1 c.2639
g.015115 C.25CC cye.CC S1%5.34 c64.21 cgc.CC a.4429 (-2€66
0.C18795 C.C323 cqs.QC  S47.E3 €92+ 61 £9cs,0C 143309 C.236€F
0.015879¢& C.250C £45.00 S45-.35 £94.20 S9E5.CC 4.3231 0c.2337
0.016670 0.0333 £35.00 S87.%3 632.57 635.CC 15.9437 c.3137
0.016670 042500 c35.0C £35.87 €34.18 635.0C 5-3786 c.3227

1 ! 1
¥ VALUE TEAP
. 003466 437.394
.011103 442.073
.018739 446729
-026376 451.34%
.034013 455.927
041650 460. 476
. 049287 464.99]
.056924 469.472
.064561 473.919
. 072197 47%.333
.079834 482.714
12
¥ VALUF TEMP
. 003466 435.8C4
.0P7773 4a0.321
.0=52079 44%.795
. 076386 4sC-738
. 100693 455. 639
.1250CC 460+ 50C
. 149307 465+ 324
. 173614 47C. 1C8
.197921 474.835%
.222227 479« 563
« 246534 48 4.233
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