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FOREWORD

This is one of a series of reports describing research, development,
and demonstration activities in support of the National Program for
Building Thermal Envelope Systems and Insulating Materials. The national
program involves several federal agencies and many other organizations in
the public and private sectors that are addressing the national objective
of decreasing energy waste in the heating and cooling of buildings.
Results described in this report are part of the national program through
delegation of management responsibilities for the DOE lead role to
Oak Ridge National Laboratory.

Other reports in this series include the following, which are
available from NTIS:

1. DOE/CS-0059, The National Program Plan for Building Thermal
Envelope Systems and Insulatirtg Materials (January 1979);

2. ORNL/SUB-7556/1, Assessment of the Corrosiveness of Cellulosic
Insulating Materials (June 1979).

3. ORNL/SUB-7504/3, Reaessed Light Fixture Test Facility (July 1979).

4. ORNL/SUB-7559/1, Problems Associated with the Use of Urea-
Formaldehyde Foam for Residential Insulation (September 1979).

5. ORNL/SUB-7551/1, Interim Progress Report on an Investigation of
Energy Transport in Porous Insulator Systems (October 1979).

6. ORNL/TM-6494, A Technique for Measuring the Apparent Conductivity
of Flat Insulations (October 1979).

7. ORNL/SUB-79/13660/1, Minnesota Retrofit Insulation In Situ Test
Program Extension and Review (February 1980).

8. ORNL/TM-7266, An Experimental Study of Thermal Resistance Values
(R-Values) of Low-Density Mineral-Fiber Building Insulation Batts
Commercially Available in 1977 (April 1980).

Ted S. Lundy
Program Manager

Building Thermal Envelope Systems
and Insulating Materials

Oak Ridge National Laboratory

E. C. Freeman

Program Manager, Buildings Divison
Office of Building and Community Systems
Department of Energy
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EDITOR'S NOTE

Although ORNL has a policy of reporting its work in SI metric units,

this report uses English units. The justification is that the insulation

industry at present operates completely with English units, and reporting

otherwise would lose meaning to the intended readership. To assist the

reader in obtaining the SI equivalents, these are listed below for the

units occurring in this report.

Property Unit Used SI Equivalent

Dimension in. 25.4 mm

Dimension ft 0.3048 m

Density lb/ft3 16.02 kg/m3

Power Btu/h 0.2929 W

Thermal conductivity Btu in./h ft2 °F 0.1441 W/m K

Thermal resistance h ft2 °F/Btu 0.1762 K m2/W

Temperature °F °C = (5/9)(°F- 32)

Temperature difference °F °C = (5/9)°F
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ANALYSIS OF HEAT TRANSFER IN BUILDING THERMAL INSULATION

H. A. Fine, S. H. Jury, D. W. Yarbrough, and D. L. McElroy

ABSTRACT

The measurement of the apparent thermal properties
(i.e., conductivity, resistivity, and resistance) of insulation
by the guarded hot-plate technique is mathematically simulated
on a computer by assuming that coupled conductive and radiative
heat transfer occurs in an absorbing and emitting single-phase
gray medium. Calculations are performed for insulation
extinction coefficients between 0.001 and 1000 ft--'-, thicknesses
between 0.0208 and 1.0 ft, continuous-phase thermal conduc
tivities between 0.1800 and 0.1980 Btu in./(h ft2 °F), hot-plate
temperatures between 485 and 635°R, and cold-plate temperatures
between 435 and 585°R.

A three-region approximate solution to coupled conductive
and radiative heat transfer in an infinite slab of absorbing and

emitting gray material bounded by black surfaces is also
developed and shown to agree to within ±0.5% of the numerical
results for most cases. The approximate solution to the coupled
problem and the exact solution to the uncoupled problem are used
to establish the effect of test conditions (such as specimen
thickness, plate emissivity, plate temperatures, and continuous-
phase thermal conductivity) on the measured apparent thermal
properties of an insulation specimen.

Examples of the temperature profiles within the insulation
and a table of representative thicknesses for guarded hot-plate
test specimens (i.e., the minimum specimen thickness required
for measurement of an apparent thermal resistivity that is
within 2% of the value at infinite thickness) are also presented.

A means to extrapolate thermal resistance data from thin to
thick specimens is suggested by this analysis. Predictions from
the extrapolation are shown to be consistent with existing
thermal resistance data on low-density mineral fiber building
insulation batts.

1. INTRODUCTION

Heat transfer within insulation may occur by conduction and radiation

in the solid phase and by conduction, convection, and radiation in the gas

phase. These mechanisms interact and combine to produce the total heat

flux through the insulation and the temperature profile within the



insulation. The primary goal of this study is to understand how conduc

tion and radiation interact to yield the thermal properties of insulation

without the influence of convection.

In general, a useful understanding of a complicated heat transfer

problem is sought from analysis of experimental data using theoretical

models of the interacting phenomena. Although several theoretical models

exist,1>2 virtually no experimental data can be found in the literature

for the problem of interest. Several significant events have occurred

since 1976 that have focused attention on the need for additional

theoretical and experimental analyses of heat transfer in insulation.

These events are outlined below. A new theoretical approach that clearly

shows the relationship between two modes of heat transfer within insula

tion and the properties of the insulation and test facility follows.

First, in 1976, the American Society for Testing and Materials (ASTM)

approved a significant change in the ASTM C177 specification for the

standard guarded hot-plate test method.3 Among the changes, ASTM C177-76

provided a new method to estimate the maximum thickness of specimens that

can be used in the guarded hot-plate apparatus; the specification also

noted that the thermal properties of a specimen may change with specimen

thickness. Prior to this change, the maximum thickness was limited to

one-third of the lateral dimension of the central section of the apparatus.

Since the lateral dimensions of most central sections were less than 6 in.,

the majority of tests were conducted at a specimen thickness of less than

2 in. Thus prior to 1976, few studies provided data sets on the specimen

thickness effect, and a linear extrapolation of any available data to

design thickness was employed. The C177-76 specification, however, indi

cated the need for measurements on insulations at their design or full or

actual-use thickness.

Second, since 1976, a number of laboratories have increased the

central section dimension to 12 in., which by the pre-1976 specification

would allow sample thicknesses up to 4 in. but by the new specification

In this analysis convection is estimated as enhanced conduction
(Sect. 2.7).



allow thicknesses of 6 in. or more. These devices should provide direct
experimental data on the effect of thickness, assuming that the increased
thickness does not increase the measurement error.

Although ASTM has endorsed the philosophy of full-thickness testing, a
cautionary statement has been appended to C177-76 and a position statement
prepared.4 Both suggest that identification of measurement accuracy and the
full-thickness effect require calibration standards, which do not exist.

Third, in 1979, the Federal Trade Commission (FTC) issued a final
rule on labeling and advertising of home insulation that includes
prescribed standardized test methods for determining ^-values of home
insulation materials.5 The rule states all tests must be performed at
a specimen thickness greater than that for which the apparent thermal
resistivity of the material does not change by more than 2% with further
increases in thickness. The effective date of this rule was to have been
November 30, 1979, but this has been delayed.

Later in 1979, the Department of Energy (DOE) Residential Conservation
Service (RCS) program issued a final rule,6 which became effective
December 7, 1979, and would recognize the FTC final rule as including
requirements for thermal resistance testing. Since the RCS program is
a major federal effort to encourage energy conservation measures, such as
application of home insulation, the understanding of full-thickness
testing is an important part of the national effort for energy
conservation.

For an infinite planar section of insulation at steady state, the
total heat flux is a constant that is independent of position within the
specimen. Thus, the thermal conductivity, resistivity, and resistance
to heat transfer of an insulating material may be defined by analogy to
pure conductive heat transfer. (See Appendix Al for the definitions given
in ASTM C177-76.) However, while the total heat flux must be constant,
the fraction of energy carried by each mechanism varies, with a nonlinear
temperature profile resulting even when the properties are not a function
of temperature. Because of the presence of radiative heat transfer, the
thermal properties of insulation are apparent thermal properties that are
a function of the physical and optical properties of the insulation and
its bounding surfaces.



Realizing that measured values for the thermal properties of insula
tion may depend on the apparatus as well as the insulation, several
investigators have employed limiting-case solutions to the actual heat
transfer problem to define the effect of measurement conditions on the
measured result.7-9 These attempts have generally been based either

on uncoupled (i.e., noninteracting) conductive, and radiative heat transfer
in an absorbing, emitting, and scattering single-phase gray medium7.8
or on conductive plus radiative heat transfer with only scattering.

Exact solutions to the coupled conductive and radiative heat transfer
problem for absorbing, emitting, and isotropically scattering single-phase
gray materials bounded by nonblack isothermal infinite parallel plates
have been developed by Viskanta1 and by Lii and Ozisik.2 These analyses
show that a linear temperature profile exists only for the pure scattering
case and that as the importance of scattering relative to absorption

decreases the nonlinearity of the temperature profile increases. The

worst limiting case, as indicated by the most nonlinear temperature

profile, occurs for black bounding surfaces and no scattering within the

material.

In the current work, the measurement of the apparent thermal proper

ties (i.e., conductivity, resistivity, and resistance) of insulation by
the guarded hot-plate technique is modeled using a digital computer that
solves the coupled conductive and radiative heat transfer problem for an
absorbing and emitting single-phase gray medium bounded by infinite
parallel black isothermal plates. The results of these calculations for
the worst limiting case and the previously determined results for the best
limiting case are used to bracket the effect of sample thickness on the
apparent thermal properties of insulation and to develop an extrapolation
equation that shows the relationship between the apparent thermal proper
ties and the measurement conditions (e.g., hot- and cold-plate emissivi-

ties and temperatures and specimen thickness).

2. THEORETICAL CONSIDERATIONS

In a properly designed and operated guarded hot plate, the guards
minimize lateral heat exchange with the metered section so that a net flux

occurs only in the direction normal to the hot and cold specimen surfaces.



Under these conditions, the speci.en is equivalent to an infinite slab of
the sa„e thickness. The heat fl„x and temperature profile within the slab
and the specimen are identical. Thus, heat transfer by coupled conduction
and radiation in an absorbing and emitting single-phase gray slab bounded
by rnfinite, black, isothermal, parallel plates approximates the worst
Umiting case for heat transfer within an insulation sa»ple contained in a
guarded hot plate with the hot plate up.

2.1 The Viskanta and Grosh Analysis

The temperature profile and total heat flux for the general coupled
radiation and conduction problem are functions of the emissivities of the
bounding surfaces and four dimensionless parameters that describe the
sample and test conditions:

62 = cold surface absolute temperature _ T2
hot surface absolute temperature ~7[ (reduced temperature) , <D

T° =-£- = sample thickness
l/E Photon mean free path within sample (°ptical thickness) , (2>

K FN _ j? _ conductive heat flux
r 4FT3 radiative heat flux (radiation-conduction number) , <3>

and

,„ _ a _ scattering coeffir.-JPni-

E extinction coefficient (albedo) » (4)

where the parameters are defined in Table 1.

In the case of interest, the emissivities are equal to one and the
extinction coefficient is equal to the absorption coefficient, that is
the pure absorption case for which the scattering coefficient and the '
albedo equal zero. Also, the thermal conductivity was assumed to be that
of the continuous phase (i.e., air).



Table 1. Nomenclature

A, A(E), A(Tm), Constants in appropriate relationship
4(a), A(o)

B, B(ff), B(rm), Constants in appropriate relationship
B(ct), B(o)

fa . Thickness of region i
E Extinction coefficient, E = a + o
E(T) nth-order integral exponential function of T
* Volume fraction of fibers in insulation
"8Qf \ Parameter defined by Eq. (8)
h Heat transfer coefficient

Intensity of light incident on a sample at x =0
Intensity of light emerging from a sample of thickness x

v Thermal conductivity of air
Kair
v Apparent thermal conductivity

Continuous-phase thermal conductivity

Effective thermal conductivity, see Eq. (23)
Radiative conductivity, see Eq. (21)
Total or enhanced thermal conductivity, see Eqs. (56) and (57)

I(o)

I(x)

capp

fceff

k r

ktot
I Sample thickness

Lp

*>R

M

n

Nv

4c

<lv

<Jt

U,i

Q

r

Full or actual-use thickness

Representative thickness for guarded hot-plate apparatus test
specimens

Weighting factor in Eq. (62)

Refractive index T

n(T) Refractive index at
N Number of increments within simulated sample

Radiation-conduction number defined by Eq. (3)

Conductive heat flux

Radiative heat flux

Total heat flux

Total heat flux through region i
Parameter defined by Eq. (29), (30) or (31)
Correlation coefficient



R

T

03

Table 1. (Continued)

Thermal resistance

Ri Thermal resistance of region i
RL Differential thermal resistivity
RL Apparent thermal resistivity, l/ka
T Absolute temperature

^T ' Absolute temperature at f

^Lln^) Absolute temperature for alinear temperature profile, Tr • CO
= T2 + (t/t°)(7'1 - t2) Lln

Tm Modified mean absolute temperature defined in Eq. (55)
Tl Hot-plate absolute temperature
^2 Cold-plate absolute temperature

T\ Absolute temperature at interface between regions Iand II
Tl Absolute temperature at interface between regions II and III
x Position

a Absorption coefficient

3 Dimensionless slope at T= 0, see Eq. (12)
3(t) [6(t)]4

Y Constant equal to 1.42089

°" Convergence limit

e Emissivity

el Emissivity of hot plate

e2 Emissivity of cold plate

6 Dimensionless or reduced temperature, TlT\
9(T) Dimensionless temperature at t

9 (t) ith value of the dimensionless temperature at T
92 Dimensionless temperature at cold plate, T2IT\
0" Scattering coefficient

0" Stefan-Boltzmann constant

T Dimensionless position, Ex

Variable of integration in Eqs. (7), (9), and (10)
T° Optical thickness, EL
Ts Parameter in Eq. (60), position at which T=TLin

Albedo, Eq. (4)



The temperature profile for the pure absorption case with black
boundaries was found by solution of the nonlinear integro-differential
equation developed by Viskanta and Grosh,10'

yllill =n2(x)64(T) -1/2[b(t)£2(t) +3(t0)Vt° -T)

+C n2(T')B1(|T-Tl)64(TO dT'} ,

subject to boundary conditions

6(0) = 82, 6(t°) = 1.0 . <6>

Viskanta and Grosh have shown that the dimensionless temperature 9(t)

equals

6(t) =C(t) +^f nV){-*3(|T-T-|) +S(O
2*W0 I (7)

+̂[ff3(T° -O-£3(tO]jeV) dr' ,

where

C(t) =2T (e(0) [^4(T) +̂ E4(TO) +I (1 "Hi
+B(t°) [d - £•) 2?4<T°> - s4(t° - t) +| ^r]

I)-+ 2N 6(0) +-L.[6(T°) - 9(0)]
V) T°

(8)

Since a closed-form solution for Eq. (7) is not available, a numerical
technique was used to obtain asolution for the temperature profile.10'11

Having determined the temperature profile, Viskanta and Grosh show
that the total heat flux through the sample equals



** =T(T1 -V+25^[ff3(T-) +iVt') -̂ J

+*£[-£V*°> -7+3^] +jf' »V)J*2(t- -tO
i r -i) \ (9)+̂ ^3(T° -TO -̂ (TOJ jAo dT A+5r4

-2otIe3(t") - 2o £ nV)£2(T° -0?V) <fT' ,

where the conductive heat flux is given by the first two terms in Eq. (9)
and the heat flux due to radiation by the last three terms.11 Combination
of the integrals in Eq. (9) yields

qt =f^i-T2) +2d\4[^\^-^\
+riN-VT°> +3^] (10)

rT° )+J n2(T')^[s3(T« - t') - EAt')\t\t') dx'\ .

Equation (7) can be differentiated to show that

dQ/dT =(l/2Nr)h(o)\E3(T) +£-4(t°)/t° -1/3t°]

+3(T0)[-ff4(T»)/T° -ff3(T° -x) +1/3t]
r t /.t° i (11)+C^/oLeCx-) -9(0)] +jf n2(T0k(|T-T^|)

+(i/T-)[ff3(T- -o -*3<o]|eV) rfr'j
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By inspection of Eq. (11) one can show that the dimensionless slope Bmust
satisfy the inequality

7621 ~ Tl\
\T1-T2l

di-^r)

>- X (12)

T = 0

for a solution to be correct. An iterative technique different in detail
but similar in principle to that used by Viskanta and Grosh10'11 was
developed in the current work for determination of the temperature profile
and heat flux.

2.2 The Lii and Ozisik Analyses

An alternate solution technique was developed for the foregoing
problem by Lii and Ozisik.2 This solution is based on anormal mode
expansion of the combined conduction and radiation heat transfer problem
in an absorbing, emitting, and scattering medium. For further details of
this analysis, the reader is referred to the original paper.9

2.3 Some Limiting Case Analysis (Thin, Thick, Rennex)

Sparrow and Cess12 show that for the optically thin limit, the mean
free path of a photon, 1/ff, within an object is large compared to the
thickness of the object, L. Thus

L - FT « 1 (13)To = _ - EL « 1 •

For this case, it was assumed that the radiant heat flux is not affected
by the material and the conductive and radiative mechanisms do not
interact.12 The total heat flux through the object then equals

Mil

qt = ?e + «v '
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where ac is given by Fourier's law, which for aplanar object of thickness
L, constant properties, and unidirectional heat flow at steady state equals

T, — T
qn=k -1 r 2 . (15)
^Q a L

The radiant heat flux between two infinite parallel plates at Tx and T2
and with emissivities El and e2 equals

r -L + -L _ ! (16)
£1 e2

Substitution of Eqs. (15) and (16) into Eq. (14) yields

Tl ~T2 ,~°{T1 - 4)
H = kc -^T-^ +T

t-1 e2
(17)

For black plates £l = e2 = 1, and Eq. (17) becomes

%=K\— +s<< - 4> • (18)

When the limit of zero optical thickness is substituted into Eq. (12)
and L'Hospital's rule is used to evaluate the indeterminant term that
arises, Eq. (10) simplifies to Eq. (18).

Siegel and Howell^ discuss the optically thick limiting case, where
the dimensions of an object are large compared to the mean free path of a
photon in the object,

T° = EL )) 1 ,
1/E ~ uu " x ' (19)
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and the photons that carry radiant energy within the object behave in a
manner similar to photons in the conductive heat transfer process. The
radiant heat flux is approximated by

v dT (20)

dx

where for a gray medium the radiative conductivity kv equals

v , lizfe! . (2D
v 3 a

For combined conduction and radiation heat transfer,

dT (22)
qt = ~keif T" '

dx

where keff, the effective thermal conductivity, equals

&eff = ks + kr '
(23)

Eliminating both keff between Eqs. (22) and (23) and kv between the
result and Eq. (21) and integrating the result yields the approximate
total heat flux at steady state for one-directional heat flow in an

optically thick slab,

h - T2 4nM4"T2) (24)
qt = ko Z + 3o£ '

Combining the total heat flux for the optically thin limiting case
solution, Eq. (18), with the definition of the apparent thermal
conductivity

kapp -<t L'^l ~ ^ U5)
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yields a linear relationship between V ^a t *
p ween *app and L for constant values of the

plate temperatures:

oh1* - y4 ]
k = k + V1 V L
app o T1- T2 • (26)

Substitution of the total heat flux for the optically thick limit,
Eq. (24), into Eq. (25) shows that the asymptotic approach of the
apparent thermal conductivity to an upper limit that is dependent on the
absorption coefficient of the sample occurs at large sample thicknesses
and high absorption coefficients. The asymptotic limit equals

42c(Th - T^)
k = * + jlA i 2/
app a 3a(^1 - V) ' 27)

A review of several methods for treating the effect of thickness on
the apparent thermal properties of insulation was recently prepared by
Rennex.7 The models discussed by Rennex assume that interaction does not
occur between conduction and radiation within the insulation and that the
heat fluxes are additive.

Rennex discusses three solutions to the pure radiative heat transfer
problem. At thermal or radiative equilibrium, the radiant heat flux
between two infinite parallel plates at T, and T2 separated by agray
medium equals

T° » 1:

q„ =
4-4)

ip 1+ IU/V +(1/£2) - 2]« " (28>

An exact solution for Qdeveloped by Heaslet and Warming" shows that for
_Q v v ,

* T° + y ' (29)



where y

problem yields

14

= 1.42089. The exponential-kernel approximation1 » to this

«- ^%% • <30)

while Rennex7 proposes

4/3
Q= T° + 4/3 [l + 0.0657 tanh (2t°)] ^1}

as a replacement for Eq. (29).
Assuming that the radiative and conductive heat fluxes do not

interact and that the total flux equals the sum of the two independent
fluxes, Rennex7 developed the following equations for the effect of
thickness on the apparent thermal conductivity by combining Eq. (29),
(30), or (31) with Eq. (28) and Eqs. (28) and (15) with Eq. (14) to
obtain qt. This value of qt was then inserted into Eq. (25) to yield

-r3
k -fc +2 **A *. (32)
app a 1_ x + £L_ + 0.0657

r 4

and

k -* +, 45\o L, (33)
app c £ _ i + Jl

4a m T
k = •© ~ ' (34)
app 1- i + Q- + 0.0657 tanh (2x°)

i-1 "5

when it is assumed that eL = e2 = eand (74 - T2)KTi - T2) a4rm.
For conduction and radiation with pure scattering (u = 1), interaction

between the two modes of heat transfer does not occur,L2.12 and the con
ductive and radiative heat fluxes through the specimen are added to find
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the total heat flux. For pure scattering, qr is glven by Eq. (28) and
is given by Eq. (29) with T° equal to aL.12 It is therefore clear that
Eq. (32), developed by Rennex,7 is exact for combined conduction and
radiation with pure scattering (co = i).

For T° greater than 2, tanh (2x°) is equal to unity and thus Eqs. (32)
and (34) are identical. As all cases of interest in this analysis have
values of T° greater than 2, only ^ (32) ^ (33) ^ ^ ^ ^^
further. The only difference between Eqs. (32) and (33) is the constant
xn the denominator of Eqs. (29) and (30). The value 1.42089 was found
for the exact solution," while 1.3333 was found by the approximate
technique. 12,15 As this ig fche Qnly differencej ^ ^ ^ ^^
which yields Eq. (32) will be used in subsequent analyses.

Since the thermal resistivity equals the inverse of the thermal
conductivity, inverting Eq. (32) yields an expression for the apparent
thermal resistivity. For the pure scattering case,

where

and

=A(a) +^2l t
_o »

if = -
L k

app

A(o) =

1 +

B(o) =

i +

4,2

3(F " 2) + Yi 16oT3
m

3a

i<! - 2> +y
f(f-2)+Y 16aT3

m_
3a

(35)

(36)

(37)
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2.4 Numerical Value of the Extinction Coefficient

In general, the extinction coefficient is a function of wavelength.
To date, spectral or average extinction coefficients have not been
measured for fibrous insulation for the wavelength range of interest,
3 to 20 urn. Pelanne^ has, however, measured the percent transmittance of
visible light, 0.4 to 0.7 urn, through fiberglass insulation, which can be
converted to extinction coefficients using Beer's law:13

^4= expH?*) • <38)
T(o)

The results of these calculations, which represent an approximation to the
values of interest, indicate that the extinction coefficient for fiberglass
insulation lies in the range of 50 to 150 ft"1. The optical thicknesses
of the majority of insulation test specimens will, therefore, lie in the
region where Eqs. (26) and (27) do not apply. Thus, we turn to the
development of the relationship between the apparent thermal conductivity
and sample thickness for intermediate optical thicknesses. For this
purpose, the three-region approximation is a useful concept.

2.5 Development of a Three-Region Approximation

In principle, the effective thermal conductivity is an intensive
property of amaterial. The radiation conduction approximation, defined
by Eq. (20), however, is not a valid concept near the surfaces of an
object. In this region, photons may pass through the object without
interacting, a situation similar to the optically thin limit. It is,
therefore, appropriate to approximate a planar insulation sample as an
optically thin section of thickness dLx which is immediately adjacent to
the hot surface in the test apparatus (region I), an optically thick
central section (region II), and an optically thin section of thickness
dL2 which is immediately adjacent to the cold surface in the test
apparatus (region III). The total heat fluxes through each region will
then equal
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T, *

q
/l_il _/4 4\t,i - % zl1 +g(yi-q*j '

2'1* - T2*

(39)

4a\T^* - 74*j
e^- d£ - dL2 +3a(L -d^ -<&2) '^t.II ^r._- AT. - /IT. + wr _ jr ^T, (40)

and

:2^,111 "feg 2d£0 2+5(2'2* ~4*) > <41>

where 2^ and T2 are the temperatures at the interfaces between regions I
and II and II and III, respectively.

To simplify the analysis, it will be assumed that the thicknesses of
regions I and III are equal. As some photons will be absorbed as soon as
they enter the sample and others will travel well into the sample, an
average thickness for regions I and III will be defined as the distance
which will absorb one-half the incident radiant energy. According to
Eq. (38), for the pure absorption case this thickness equals

and

dL2 = dL2 = -<£n 0.5)/E = 0.69315/ff .

Combining Eqs. (39) through (42) yields

r* = T — (t - t \ 11 1 U 12)R1 +R2+ R '

*3r2* -h +(T± _Ti) ___3__
*3

(42)

(43)

(44)

T — T
- 1 2

qt # + ff + ff ' (45)
12 3
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where J?i, R2* and *3 are the thermal resistances of the regions. The
values of these resistances are

Rl "(*a/0.69315) +c(^ +T^* +̂ ' (46)

*2-
x° - 2(0.69315)

feCa +I°{T1* +T2*)(T1* +T2*) ' (4?)

and

i?o = (fc a/0.69315) +oYt2* +^(t^ +^j (48)

A relationship between the apparent thermal resistivity and specimen
optical thickness was obtained by combining Eqs. (45) through (48) and
the inverse of Eq. (25) for the pure absorption case. The resulting

relationship is

where

and

fi - TT~ - AM +^ <49>
app

^(a) " ,. . A-_:,o..\/m2. . m2\L^ „ A ' (50)ko+ (4a/3a)(T2* +^)(T1* +r2*) '

B(a) = (yo.69315) +(a/a) (A, +4)(Ti* +Tl)

(y0.69315) +(a/a)^2* +T^(t2* +T^ (51)

2(0.69315)/a

ko +(4a/3a)(^* +̂ *)(v +T2*)
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The foregoing analysis provides simplified equations, such as

Eqs. (35) and (49), for interpretation of the dependence of the apparent

thermal conductivity and resistivity of insulations upon measurement

condition. These equations clearly show the dependency of the apparent

thermal resistivity (or conductivity) on optical thickness and are finite

for infinite x°.

2.6 Effect of Temperature on Apparent Thermal Conductivity

The apparent thermal conductivity is dependent on temperature and

strongly dependent on the term T^ when the continuous-phase thermal
conductivity, extinction coefficient, and plate emissitivity are approxi

mately constant over the temperature range of interest and when the albedo

equals one (pure scattering):

^app A.\Tm) + B(Tm)Tm .•m' •m/J-m
(52)

The values of A(Tm), B(Tm), and Tm are established by the solution to the

uncoupled heat transfer problem [Eq. (32)] with

and

T =
m

A(Tm) = k
a >

4aL

HTm) ~ (2/e) - 1+ (3x°/4) + 0.0657 '

4 4
T — T
1 2

HT, T2>

1/3 ^+̂)(Tl +T2)/4J

(53)

(54)

1/3

(55)

The dependence of the apparent thermal conductivity on temperature

for the pure absorption case (u> = 0), as given by the three-region

approximation, appears to be more complicated than Eq. (52). As a first

approximation, however, it can be assumed that feapp is linearly dependent
3on Tm when the albedo equals zero.
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2.7 Effect of Convection and Solid-Phase Conduction

Ideally we would like to include the effect of solid-phase conduction

and convection in our solution efforts. At present, we can only estimate

these effects. The contribution of solid-phase conduction to the apparent

thermal conductivity of the insulation may be estimated by analyzing the

insulation as an air-fiber composite. This composite will consist of a

continuous phase with low thermal conductivity (i.e., air) and a randomly

distributed phase with high condutivity (i.e., fibers). The thermal

conductivity of the composite is given by the Maxwell-Eucken equation17

and equals

1 + 2F

k^ _ = k . =-£ . (56)
tot air 1 — F v

Convection within the insulation will occur in parallel with

conduction. Analysis of the parallel heat transfer problem yields an

enhanced or total thermal conductivity,

fetot ~kc[1 +F") • (57)

Rearrangement of Eq. (32) yields

hOT

feapp ~kc = (2/e) - 1+ (3/4)t° + 0.0657 L ' (58)

Thus for the pure scattering case, the quantity kapp — ka will be

unaffected by changing the value of the continuous-phase thermal con

ductivity [i.e., substituting ktot from Eq. (56) or (57) for ks]. If

changing kc does not affect kapp — ka (i.e., the apparent kv), then for
any total thermal conductivity,
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app app
+ (fetot-0.18)

(59)

k =k
c tot | c

k = 0.18

3. PROCEDURE

An iterative technique different in detail but similar in principle

to that used by Viskanta and Grosh10.11 was developed in the current work

for determination of the temperature profile and heat flux. In this

solution, the interval (0, L) was divided into N subintervals of equal
length L/N and Eq. (7) was solved for the temperatures at the N —1
interior points.

To begin a numerical calculation, values were selected for the

absorption coefficient, thickness, refractive index, continuous-phase

thermal conductivity, and hot- and cold-face absolute temperatures. The

computer program is given in Appendix A2, and a flow chart of the program

is shown in Fig. 1. The series approximation for the exponential integral
functions18 and the function G( x) [Eq. (8)] were then evaluated, and an
initial estimate for the dimensionless temperature profile was calculated
from the equation

9(x)

1-6.

32 _ [(g -1)(1 -X/Xg) +1](X/T°)
l + (3 - l)(i T/T )(x/x°)

Finally, the iterative solution was begun by calculating the N —1

interior temperatures, ei+1(-r), of Eq. (7) using the trapezoidal rule

(60)



r

L

C
01.02 - L- S 3, 4
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01.59 01.60 OUTPUT RESULTS.
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STOP IF LAST CASE

J

3E I

c J

Fig. 1. Flow Chart for the Computer Program Used to Solve the
Coupled Conductive-Radiative Heat Transfer Problem.
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and the initial estimate for 9(x), 6i(-r), to evaluate terms on the right

side of Eq. (7). A run was successfully terminated when Eq. (12) was

satisfied and

ei+1(x) - eV)
eV)

< 6 (61)

for all interior points. The convergence limit 6 was usually set equal

to 0.0001.

If either or both of the convergence criteria were not met, a

weighted average of the current and previous values for 6(x) was used

to produce a new estimate for the temperatures at the internal points.

The new estimate equaled

i+2( . _ ei+1(T) +M)V) (62)
j {T) ' M+ 1

where M was initially set equal to one. If, however, the calculated error

became large, the computer set M equal to 2M + 1 and Eq. (60) was used to

restart the iterative procedure. The new estimates for 0(x) were used in

Eq. (7), and the iterative process continued until both convergence

criteria were met.

After successful convergence of the temperature profile was obtained,

the trapezoidal rule was employed to calculate the total heat flux through

the specimen and the apparent thermal conductivity using Eqs. (10) and (25).

4. RESULTS

Calculations were performed for guarded hot-plate conditions that

would approximate building-insulation test conditions. In all cases, the

refractive index of the sample was assumed to equal one. The effect of
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the number of subintervals, convergence criterion (6), absorption

coefficient, thickness, continuous-phase thermal conductivity of the

specimen, and hot- and cold-plate temperatures was investigated. Calcula

tions for conditions identical to those studied by Viskanta10'11 and Lii

and Ozisik2 were also run.

When the optical thickness x° of the simulated sample was increased,

the solution diverged in the initial calculations. At first the

divergence problem was controllable for certain cases by increasing M

(i.e., slowing the initial divergence of the solution). Increasing M,

however, also slowed the convergence of the solution and led to long run

times. In many cases, 100 iterations were made without convergence.

Extensive testing of the program indicated that if the number of

subintervals was chosen such that

£-§<0.12. <")

convergence of the program generally occurred with M equal to one. In the

few cases where convergence did not occur, the origin of the problem was

traced to a poor initial estimate for 9(x), which generally resulted from

setting g in Eq. (60) too close to one. In these few cases, the program

would have eventually converged. However, as each iteration takes

approximatelly 11 • (ff/50)2 min on a PD/8e computer, these runs were

stopped and restarted after increasing 3.

The variation of the calculated total heat flux resulting from

changing the size of convergence limit <5 from 0.1 to 0.00001 was studied

for a sample with an absorption coefficient of 100 ft-1, a thickness of

0.25 ft, a continuous-phase thermal conductivity of 0.1800 Btu in./(h ft2 °F),

and hot- and cold-plate temperatures of 560 and 510°R, respectively. For

6 equal to 0.001 and 0.00001, the calculated total heat fluxes were within

0.01% of the value obtained for 6 equal to 0.0001, while for 6 equal to

0.1 and 0.01, the calculated total heat fluxes were within 0.07% of the

value for 6 equal to 0.0001. While the run times for 6 greater than 0.01

were substantially less than those for 6 less than 0.001 (3.5 vs 10.5 h),
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it was concluded that a small value for 6 should be used to obtain the

most accurate value for the total heat flux. Thus, in all ensuing runs,
the convergence limit 6 was set equal to 0.0001.

The relationships between the apparent thermal properties and sample
thickness were investigated for hot- and cold-plate temperatures of

560 and 510°R, respectively. As the absorption coefficients for fibrous

insulation are not known, calculations were performed for absorption

coefficients between 0.001 and 1000 ft"1 at a thickness between 0.25 and

12 in. (0.0208 and 1 ft). The total heat fluxes, apparent thermal

conductivities, and apparent thermal resistances for these calculations

are given in Tables 2 through 4. The total heat fluxes through samples

of thickness 0.042, 0.083, 0.292, and 1.0 ft are also plotted as functions

of the absorption coefficient in Fig. 2. The apparent thermal conductivi

ties are shown in Fig. 3. The apparent thermal resistances and resistivi

ties for a = 50, 100, 150, and 200 ft-1 are shown in Figs. 4 and 5,
respectively.

Examples of the nonlinearity of the temperature profiles obtained in

the present solution technique are shown in Fig. 6. To highlight the
nonlinearity of the profiles, the difference between the calculated

temperature T and the temperature for a linear profile rLin are plotted
versus the fraction of the optical thickness of the sample x/x°. In all

cases, the temperature gradients at the hot and cold surfaces are steeper

than those for uncoupled radiation and conduction. Substantial differences

from the arithmetic-mean test temperature that would be expected at the

midpoint of the specimen for uncoupled heat transfer [(Tx + T2)/2] were
also evident in all the cases studied.

The effect of varying the hot- and cold-plate temperatures on the

apparent thermal conductivity was determined for sample thicknesses of

1 and 3 in. (0.0833 and 0.25 ft) with absorption coefficients of 50, 100,
150, and 200 ft"1. A slight increase in the values of the apparent thermal
conductivity was found when the test temperature difference, Ty —T2, was
increased (see Table 5). Increasing the mean test temperature, with a

constant 50°R temperature difference, however, resulted in a marked

increase in the apparent thermal conductivity (see Table 6).



Table 2. Total Heat Flux Through a Sample with n = 1 and ka = 0.1800 Btu in./(h ft °F)
Contained Between Black Plates at 560 and 510°R

a
Heat Flux, Btu/(h ft2) , for Var:Lous Sample Thicknesses, ft

(ft"1)
0.0208 0.042 0.083 0.1667 0.292 0.5 0.,75 1.0

0.001 88.6081 70.4637 61.6411 57.1019 55.1660 54.0902 53.3226

0.01 88.6010a 70.4502 61.6148 57.0494 55.0742 53.9329 53.0052

0.1 88.5355 70.3186 61.3561 56.5355 54.1733 52.3828 49.8406

1.0 87.9557 69.0594 58.9432 51.8902 46.4435 40.3550 31.1361

10.0 82.5162 59.3525 43.1394 29.1116 19.7842 12.9430 9,.1395 7.0820

25.0 75.6693 49.2417 31.0268 17.9210 11.0037& 6.6915 4,.5509 3.4480

50.0 67.7297 39.9042 22.6427 12.0500 7.0850

5.6536&
4.2055 2,.8267 N5

75.0 62.3065 34.7119 18.8298 9.7325 3.3287 0-N

100.0 58.3839 31.4447 16.6607 8.4994 4.9034

4.4509b125.0 55.4303 29.4128e 15.2161^ 7.7335

150.0 53.1351 27.6071 14.2557^ 7.2157

200.0 49.8217 25.60955 13.0152^
10.6591^

6.5548

500.0 42.3077 21.2300^

1000.0 39.2559e 19.6532s

^Thickness = 0.,020833 ft.

&Thi.ckness = 0.,2917 ft.

^Thickness = 0.,0417 ft.

^Thickness = 0.,0833 ft.

^Thickness = 0.,04167 ft.



Table 3. Apparent Thermal Conductivity of a Sample with n = 1 and
ka = 0.1800 Btu in./(h ft2 °F) Contained Between Black Plates at

560 and 510°R

a

(ft"1)

0.001

0.01

0.1

1.0

10.0

25.0

50.0

75.0

100.0

125.0

150.0

200.0

500.0

1000.0

Thermal Conductivity, Btu in./h (ft2 °F), for Various Sample Thicknesses, ft
0.0208

0.4430

0.4430

0.4427

0.4391

0.4119

0.3777

0.3381

0.3110

0.2915

0.2767

0.2652

0.2487

0.2112

0.1962e

0.042

0.7103

0.7101

0.7088

0.6961

0.5983

0.4964

0.4022

0.3499

0.3170

0.29445

0.2783

0.2563c

0.2125e

0.196/

Calculated from Eq. (27)

^Thickness = 0.2917 ft.

^Thickness = 0.0417 ft.

^Thickness = 0.0833 ft.

^Thickness = 0.020833 ft.

^Thickness = 0.04167 ft.

0.083 0.1667 0.292 0.5 0.75 1.0

1.2279 2.2841 3.8660 6.4908 12.7974
1.2274 2.2820 3.8596 6.4720 12.7213
1.2222 2.2613 3.7965 6.2859 11.9617
1.1742 2.0756 3.2548 4.8426 7.4727 17.0145
0.8593 1.1647 1.3064 1.5532 1.6451 1.6997 1.8634
0.6181 0.7170 0.7704& 0.8030 0.8192 0.8275 0.8534
0.4510 0.4821 0.4965 0.5047 0.5088 0.5167
0.3751 0.3894 0.3958& 0.3994 0.4045
0.3319

0.3042^
0.2850^
0.2602^

0.3400

0.3094

0.2887

0V2622

0.3436

0.3116&
0.3483

0.3147

0.2922

0.2642
0.2131

0.2137

_

0.1968



Table 4. Apparent Thermal Resistance of a Sample with n = 1 and
k = 0.1800 Btu in./(h ft2) Contained Between Black Plates

° at 560 and 510°R

Thermal Resistance, h ft^ °F/Btu, for Various Sample Thi

0.5

cknesses, ft

(ft"1)
0.0208 0.042 0.083 0.1667 0.292 0.75 1.0

0.001 0.564 0.710 0.811 0.876 0.906 0.924 0.938

0.01 0.564 0.710 0.811 0.876 0.908 0.927 0.943

0.1 0.565 0.711 0.815 0.884 0.923 0.955 1.003

1.0 0.568 0.724 0.848 0.963 1.077 1.239 1.606

10.0 0.606 0.842 1.159 1.718 2.527 3.863 5.471 7.060

25.0 0.661 1.015 1.612 2.790 4.544« 7.472 10.987 14.501

50.0 0.738 1.253 2.208 4.149 7.057 11.889 17.688

75.0 0.802 1.440 2.655 5.137 8.844a 15.021

100.0 0.856 1.590 3.001 5.883 10.197

125.0 0.902 1.700^ 3.286c 6.465 11.234a

150.0 0.941 1.811 3.507c 6.929

200.0 1.004 1.952fe 3.842G 7.628

500.0 1.182 2.355& 4.6915

1000.0 1.274^ 2.544«
_

^Thickness = 0.2917 ft.

^Thickness = 0.0417 ft.

^Thickness = 0.0833 ft.

^Thickness = 0.020833 ft.

^Thickness = 0.04167 ft.

00
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ORNL-DWG 80-12068

L = 0.042 ft

10-5 10~4 10"3 10-2 10-1 10° 101 102 103 104 105
a (ft-1)

Fig. 2. Variation of Total Heat Flux with Absorption Coefficient
a (ft l), and Thickness for fc = 0.1800 Btu in./(h ft5 °F) T^ = 560°r'
and T2 = 510°R. C '* l '

Calculations were performed to determine how the apparent thermal
conductivity of samples with an absorption coefficient of 75 ft-1 and

sample thicknesses of 0.0883, 0.1667, and 0.2917 ft (1, 2, and 3.5 in.)
changed as the thermal conductivity of the continuous phase was increased
from 0.1800 to 0.1980 Btu in./(h ft2 °F). As can be seen in Table 7, an
increase in the continuous-phase thermal conductivity resulted in an

increase of similar magnitude in the apparent thermal conductivity.
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Fig. 3. Variation of Apparent Thermal Conductivity with Thickness and Absorption
icient, a (ft"1), for kc = 0.1800 Btu in./(h ft2 °F), ^ = 560°R, and T2 = 510°R.
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ORNL-DWG 80-12071

Fig. 4. Thermal Resistance vs Thickness for Absorption Coefficient'
of 50, 100, 150, and 200 ft"1.
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01 = 0

Rennex

w= 1

32 40 48

Fig. 5. Comparison of the Apparent Thermal Resistivity Obtained
for the Pure Absorption Case (o> = 0), the Pure Scattering Case (w = 1),
and the Rennex (ref. 7) Extrapolation Equation for k„ = 0.1800 Btu in./
(h ft2 °F), Ti = 560°R, T2 = 510°R, and e = 1.
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Fig. 6. Variation of the Calculated Temperature Profile from a
Linear Profile for ka = 0.1800 Btu in./(h ft2 °F); TX = 560°R; T2 = 510°R;
and a = 50, 100, 150, and 200 ft-1 vs Dimensionless Position x/x°.



Table 5. Effect of Test Temperature Difference on the Apparent Thermal Conductivity*1

Thermal Conductivity, Btu ln./(h ft2 °F), at

(°R) (°R) (°R)b o-50 ft"1 o- 100 ft"1 a= 150 ft"1 a= 200 ft"1

0.0833 ft L - 0.25 ft I - 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft

550 520 535.14 0.4509 0.4927 0.3317 0.3426 0.2849 0.2897 0.2601 0.2627

560 510 535.39 0.4510 (0.4933)3 0.3319 0.3428 0.2850 0.2898 0.2602 0.2629 £
570 500 535.76 0.4519 0.4939 0.3323 0.3432 0.2853 0.2900 0.2604 0.2630

580 490 536.26 0.4521 0.4948 0.3327 0.3436 0.2856 0.2903 0.2606 0.2633

585 485 536.55 0.4532 (0.4953)" 0.3330 (0.3439)« 0.2858 0.2905 0.2608 0.2634

590 480 536.88 0.4537 0.4960 0.3333 0.3442 0.2860 0.2907 0.2609 0.2635

600 470 537.62 0.4549 0.4973 0.3339 0.3449 0.2864 0.2912 0.2612 0.2639

aSample properties were n - 1, ka - 0.1800 Btu ln./(h ft2 °F), and e = 1.

hTm defined by Eq. (55).
"Interpolated value.



Table 6. Effect of Mean Test Temperature on the Apparent Thermal Conductivity
for a Test Temperature Difference of 50°Fa

(°R)

Thermal Conductivity, Btu in./(h ft2 »F), at

T2IT1 a = 50 ft-1 a = 100 ft"-1 a = 150 fr-1 a = 200 ft-1

L = 0.0833 ft L = 0. 25 ft L = 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft L = 0.0833 ft L = 0.25 ft

435/485 460.5 0.3308 0.3576 0.2554 0.2621 0.2255 0.2284 0.2096 0.2112

-0-
475/525 500.4 0.3904 0.4252 0.2942 0.3030 0.2560 0.2598 0.2357 0.2378

505/555 530.4 0.4400 0.4819 0.3261 0.3367 0.2808 0.2854 0.2566 0.2592

510/560 535.4 0.4488 0.4919 0.3317 0.3426 0.2851 0.2898 0.2603 0.2629

515/565 540.4 0.4576 0.5020 0.3373 0.3486 0.2894 0.2943 0.2639 0.2666

545/595 570.4 0.5134 0.5661 0.3726 0.3860 0.3164 0.3222 0.2865 0.2897

585/635 610.3 0.5956 0.6607 0.4238 0.4406 0.3553 0.3626 0.3188 0.3227

Sample properties were n = 1 and ka = 0.03160 + 2.768 X l(T^Tm [Btu in./(h ft2 °F)]. Also, e = 1. Calculated using the three
region approximation.
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Table 7. Effect of Continuous-Phase Thermal
Conductivity^ on the Apparent Thermal

Conductivity for a = 75 ft-1

Thermal Conductivity, Btu in./(h ft2 °F)
Length

(ft) k„ V ^app — ka"•c *-app

0.0833 0.1800 0.3751 0.1951

0.1809 0.3761 0.1952

0.1858 0.3810 0.1952

0.1980 0.3934 0.1954

0.1667 0.1800 0.3894 0.2094

0". 1809 0.3903 0.2094

0.1858 0.3952 0.2094

0.1980 0.4075 0.2095

0.2917 0.1800 0.3958 0.2158
0.1809 0.3967 0.2158

0.1858 0.4016 0.2158

0.1980 0.4139 0.2159

aTest conditions were n = 1, T\ = 560°R, T2 =
510°R, and e = 1.

Finally, several calculations were made to duplicate the results

of Viskanta and Grosh10.11 and Lii and Ozisik.2 The conditions for
these calculations assumed an arithmetic-mean test temperature of

535°R, (Ti + T2)/2y and a thermal conductivity of air equal to

0.1800 Btu in./(h ft2 °F). The remainder of the conditions were then
calculated from the values of the dimensionless parameters. The differ

ence between the calculated total heat fluxes and the values given in

the literature varied from less than 0.1% to slightly more than 4.5%
(see Table 8).
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Table 8. Results of Validation Calculations

L

(ft)
<7calc _ ^ref ,

[Btu/(h ft2)] [Btu/(h ftz)]
Error

(%)

Optically Thin Limit a

0.1301 0.0208 88.6646 88.6654 0.001

0.042 70.4637 70.4649 0.002

0.083 61.6411 61.6439 0.005

0.292 55.1660 55.1762 0.019

0.5 54.0902 54.1077 0.032

1.0 53.3226 53.3577 0.066

Optically Thick Limita

25 1.0 3.4480 3.5557 3.03

50 0.75 2.8267 2.8705 1.53

75 0.5 3.3287 3.3705 1.24

125 0.2917 4.4509 4.4949 0.98

200 0.1667 6.5548 6.6030 0.74

500 0.0833 10.6591 10.6877 0.27

1000 0.0417 19.6532 19.6677 0.074

Lii and Ozisik ([ref. 2)

280 0.00357 5,835.7fc 5,833.7 0.034

56 0.0179 2,259.lb 2.262.4 -0.146

28 0.0357 l,821.3fc 1,821.4 -0.0055

Viskanta and Grosh (ref . 10)

100 0.001 571,132° 571,100 0.006

10 0.01 78,842° 78,900 -0.086

1 0.1 29,600° 29,500 0.339

100 0.01 70,402° 71,400 -1.398

10 0.1 21,088° 21,900 -3.708

1 1.0 15,569° 16,300 -4.485

100 0.001 203,168^ 203,800 -0.310

100 0.01 85.784d 89,900 ^.573

100 0.1 16,394^
Viskanta (ref. ID

16,300 0.577

100 0.01 70,402° 70,377 0.050

^'Conditions: 2*1 = 560°R, T2 = 510°R, and kc =
0.015 Btu/(h ft °F) •

^Conditions: 2*1 = 1070°R, T2 >= 0°R., and k0 =
0.015 Btu/(h ft °F)

^Conditions: Ti
0.547 Btu/(h ft °F).

^Conditions: T\
0.054 Btu/(h ft °F).

= 2000°R, T2 = 1000°R, and ke =

= 3000°R, T2 = 1500°R, and kc =
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5. APPLICATIONS

The effects of thickness and other test conditions on the apparent
thermal conductivity, resistivity, and resistance of insulation is widely
recognized, although the magnitude of the effects is not well defined. To
establish the magnitude of the effects, equations that relate the apparent
thermal properties of insulation to the test conditions were developed in
an earlier section. To bracket the magnitude of the effects for tests
performed on building insulations, the results for the numerical solution
and the three-region approximation to the coupled heat transfer problem
are compared with the limiting solutions for which no interaction is

assumed between conduction and radiation. The accuracy of the numerical
solution of the coupled heat transfer problem which is used to model the
measurement of the apparent thermal conductivity in a guarded hot plate
must, however, be discussed first.

5.1 Analysis of Errors

To assess the accuracy of the numerical solution used in this work,
the solution results should be compared to the results of an analytical
solution to the same problem. An analytical solution to the problem of
interest is, however, not available. Thus, the results of the numerical
solution can only be compared with the limiting solutions for the

optically thin and thick cases; the results reported by Viskanta and
Grosh,1,10,11 which were obtained using asimilar numerical technique; and
the results of the Lii and Ozisik2 method.

When the total heat fluxes calculated using the numerical solution
technique for x° < 10"3 are compared with the values calculated from
Eq. (18), the agreement between the results obtained from the numerical
solution and those calculated using Eq. (18) is better than 0.07% in all
cases, as shown in the first six rows of Table 8.

While the optically thick limit is generally considered to be

applicable for optical thicknesses greater than 10, rows 7 through 13 of
Table 8 indicate that the total heat flux obtained from the present
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iterative solution does not approach the limiting value until x° is
greater than 40. At this point, however, the agreement is better than
0.3%. It must be remembered that Eqs. (23) and (24) are approximations
and that exact agreement betweeen the present iterative solution and the
approximate solution will only occur at infinite optical thicknesses. The
fact that the iterative and approximate solutions approach the same value
at x° values as low as 40 is further evidence that the present iterative

solution technique yields correct results.

An alternate solution technique based on a normal-mode expansion of

the combined conductive and radiative heat transfer problem in an

absorbing, emitting, and scattering medium has been developed by Lii and
Ozisik2 (see Sect. 2.2). The total heat flux through an infinite slab
was calculated for several cases, including that of black plates (e = 1)
and no scattering (u = 0), for an optical thickness of one. Results from
Lii and Ozisik and from the present work are shown in Table 8 (rows 14
through 17). As can be seen from the table, the agreement is better than
0.04% for two cases and 0.15% for the third case.

A final check on the accuracy of the present iterative solution

involved repeating some of the cases reported by Viskanta and Grosh.1°
All the Viskanta and Grosh cases were not repeated, as disagreements of
more than 4.5% occurred for some of the first cases treated (see Table 8).
Thus, a careful check of all the data reported by Viskanta and
Groshl,10,ll,19 was undertaken in an attempt to explain these discrepan

cies before redoing additional cases.

When the first three Viskanta and Grosh publications10»U»19 were
compared, it was found that the total heat fluxes for similar cases in all
three agreed. However, it was also seen that the conductive and radiative
heat fluxes did not agree- in many cases. Furthermore, in the cases for
which the largest disagreements occurred between Viskanta and Grosh's
results and the current work, the largest disagreements also occurred for

the conduction and radiation heat fluxes in Viskanta and Grosh's own

publications.

It appears that Viskanta and Grosh's problem arises from the procedure
used to calculate the conduction heat flux. Their original work11
clearly stated that the conductive heat flux equals the first two terms
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of Eq. (9). However, in their first paper, it appears that only the first
term was used. This error was probably carried over into their second

paper,19 which was prepared concurrently with their first paper.
A further comparison of the first three works10'n>19 with a later

paper1 shows that the error may have been corrected. This comparison
showed disagreement of the total heat fluxes for identical cases in

Viskanta and Grosh's own papers but excellent agreement of the last

paper's results with the present work (see the last row of Table 8).

Further comparisons with Viskanta and Grosh's work were not attempted, as
it was not possible to state with complete certainty which of their
results were correct.

Based on the excellent agreement between the total heat fluxes

obtained from the present iterative solution and the values calculated

for the optically thin and thick limits (x° « 1 and x° > 40) and the

agreement with the results reported by Lii and Ozisik2 and Viskanta,1
it was concluded that an error of less than 0.1% should be expected

between the present results and the value of the total heat flux.

5.2 Thickness Effect

The effect of sample thickness on the apparent thermal conductivity
is shown in Fig. 3. The linear behavior for small sample thicknesses and

low absorption coefficients is easily explained by the optically thin
limiting case of Eq. (26). As the optical thickness increases, the

apparent thermal conductivity asymptotically approaches a limiting value,

Eq. (27). The intermediate regime will be discussed in terms of the

apparent thermal resistivity, as the three-region approximation shows a

linear dependence of R^ on l/x°.

Equations (43) through (48) are easily solved using an iterative

technique as indicated in Appendices A3 and A4. The iteration quickly
converges when TY* and T2* axe set equal to Tx and T2, respectively, in

Eqs. (46), (47), and (48). The values of Rlt R2, and R3 are then used to
find rx* [Eq. (43)] and T2* [Eq. (44)]. The process is repeated until the

values of Tx* and T2* used in Eqs. (46), (47), and (48) approximate those
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obtained from Eqs. (43) and (44). [A convergence limit similar to

Eq. (61) may be employed to establish a criterion for successful

convergence.] The total heat flux through the sample is then calculated

using Eq. (45), and the apparent thermal resistivity or conductivity is

calculated.

As it is not possible to have a negative thermal resistance, it is

clear from Eq. (47) that the minimum optical thickness of the sample must

be 1.3863. However, as region II is assumed to be optically thick, it is

likely that this three-region approximation will only be valid for optical

thicknesses considerably greater than 1.3863. Table 9 shows the values of

the apparent thermal conductivities calculated using the three-region

approximation and the percent difference between these values and the

apparent thermal conductivities calculated for corresponding conditions

using Eqs. (10) and (25). As can be seen in this table, the largest error

is less than 2%. For a greater than or equal to 50 ft"1 and T° greater
than 4, the largest error is only -0.55%. The three-region approximation

is an excellent one for the analysis of the coupled conduction and

radiation heat transfer problems of interest.

The apparent thermal resistivities obtained from the numerical

iterative solution are plotted versus the reciprocal of the sample

thickness in Fig. 5. As can be seen from this figure and the results of

the least squares analyses given in Table 10, j?£ varies linearly with
1/t° as suggested by Eq. (49) for x° > 2.

The data used in the analyses in this and following sections were

obtained from the numerical solution for optical thicknesses less than 40

and from the three-region approximation for x° greater than 40. The

numerical solution of Eqs. (7) and (10) was limited to optical thicknesses

less than 40 because of computer limitations.

A comparison of Eq. (50) with the definition of the effective thermal

conductivity suggests that



Table 9. Apparent Thermal Conductivities01 Predicted by the Three-Region Approximation
for a Sample with n = 1 and ka = 0.1800 Btu in./(h ft2 °F) Contained Between

Black Plates at 560 and 510°R

a

Thermal Conductivity, Btu in,./(h ft2 °F), for Various Sample Thicknesses, ft

(ft"1)
0.0208 0.042 0.083 0.1667 0.292 0.5 0.75 1.0

25 0.6064

(-1.89)
0.7096

(-1.03)
0.7649

(-0.72)

0.7994

(-0.44)
0.8166

(-0.31)
0.8255

(-0.24)

50 0.3973

(-1.22)

0.4485

(-0.55)

0.4804

(-0.46)
0.4953

(-0.28)

0.5040

(-0.13)

0.5082

(-0.13)

0.5103

100 0.2900

(-0.51)

0.3168

(-0.059)

0.3316

(-0.077)

0.3398

(-0.067)

0.3434

(-0.059)

0.3455 0.3464 0.3469

150 0.2656

(+0.12)

0.2784

(+0.037)
0.2851fc

(+0.028)
0.2866

(-0.025)

0.2902° 0.2910 0.2914 0.2916

200 0.2492

(+0.19)

0.2565d
(+0.66)

0.2603fc
(+0.023)

0.2622

(0.00)

0.2630° 0.2635 0.2637 0.2638

500 0.2114

(+0.075)

0.2125^
(+0.019)

0.2131&
(-0.010)

0.2134 0.2135° 0.2136 0.2136 0.2136

1000 0.1963e

(+0.013)

0.1966^
(+0.003)

0.1967& 0.1968 0.1968° 0.1968 0.1968 0.1968

aValues in parentheses are percent difference of two solutions.

^Thickness = 0.0833 ft.

°Thickness = 0.2917 ft.

^Thickness = 0.0417 ft.

^Thickness = 0.02083 ft.

•fThickness = 0.04167 ft.
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Table 10. Least Squares Analysis Results

E

(ft"1)
9 1/fceff

[h ft2 °F/(Btu in.)]a A(E)

ai - 0, £ = 1, x° > 2

B(E)

10 0.5366 0.5344 0.5463 0.99995
25 1.1718 1.1713 0.9274 0.99999
50 1.9354 1.9350 1.1589 0.99996
75 2.4724 2.4717 1.2147 0.99997

100 2.8707 2.8715 1.1691 0.99993
125 3.1779 3.1781 1.1348 0.99999
150 3.4220 3.4216 1.0863 0.99999
200 3.7854 3.7848 0.9797 0.99998
500 4.6801 4.6798 0.5679 0.99977

1000 5.0804 5.0803 0.3165 0.99992

a) = 1, e = 1, i:° > 2, L > 0.0833 ft

0.648110 0.5366 0.5403 0.99996
25 0.1718 1.1840 1.1346 0.99946
50 1.9354 1.9424 1.5856 0.99962
75 2.4724 2.4769 1.7554 0.99972

100 2.8707 2.8737 1.7982 0.99979
125 3.1779 3.1800 1.7809 0.99983
150 3.4220 3.4235 1.7349 0.99987
200 3.7854 3.7863 1.6118 0.99990
500 4.6801 4.6802 1.0162 1.0

1000 5.0804 5.0804 0.6071 1.0

Calculated from Eq. (27).

The comparison of the regression analysis intercepts A(<x) and the inverse

of keff calculated from Eq. (23) shows that the intercept of Eq. (49)

equals the inverse of the effective thermal conductivity (see Table 10).
A comparison of Eq. (49) for the coupled conduction and radiation heat

transfer case (oj = 0) and Eq. (35) for the uncoupled conduction and

radiation case (u = 1) is shown in Fig. 5 for black plates (e = 1) and

extinction coefficients of 50, 100, 150, and 200 ft-1. This figure
clearly shows that a linear relationship exists between the apparent
thermal resistivity and l/x° for both the coupled and the uncoupled cases.
Furthermore, Fig. 5 shows that the intercepts for both cases equal the
inverse of the effective thermal conductivity and that the only difference
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between the linear relationships predicted by the two cases results from

different values of the slopes. A comparison of the values of the slopes,

B(a) and B(o), is shown in Fig. 7 and Table 10. The pure absorption case

(03 = 0) has the smaller slope.

Finally, Rennex' correctly concludes that the apparent thermal

resistance has a linear dependence on sample thickness as the sample

thickness approaches infinity. As the apparent thermal resistivity

equals the apparent thermal resistance divided by thickness, extension

of Rennex's analysis also shows that R^ is inversely dependent on x°,

and

where

F? =£=j^- =A+f , (65)
L L K i-i

app

A =

(2/e - 1+ 0.0657)/hoT^
B: k Ik + 1

c s

16aT3
k = —Ks 3o

(66)

(67)

(68)

The slope obtained from Rennex's equation is incorrect for sample

thicknesses of less than 1 ft. As can be seen in Fig. 5, Rennex's equation

yields the correct intercept for infinite thickness, l/L = 0, but has a

slope that is much greater than the correct slope for the pure scattering

case (o) = 1). This difference resulted because Rennex developed the

relationship assuming infinite thickness, which is inappropriate for the

building-insulation case. This has subsequently been changed to yield a

value for B [Eq. (67)] that agrees with B [Eq. (37)].20
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Fig. 7. Comparison of the Slopes for Extinction Coefficients Between
10 and 1000 ft-1 in the Relationship Between the Apparent Thermal Resis
tivity and l/x° for the Pure Absorption Case (o) = 0), the Pure Scattering
Case (o) = 1), and the Rennex (ref. 7) Relationship.

5.3 Temperature Effect

The plate temperatures in a guarded hot-plate apparatus establish the

test temperature difference (T\ — T2) and the modified-mean absolute test

temperature (Tm). The effect of these parameters on the measured results

was examined in the theory section.

To test the validity of the assumptions made in the theory section,

calculations were performed at several mean test temperatures for 1- and

3-in.-thick (0.0833- and 0.25-ft) samples with absorption coefficients of

50, 100, 150, and 200 ft-1 (see Table 6). The resulting apparent thermal

conductivities were then fitted by the method of least squares to a linear

relationship similar to Eq. (52) for each value of a and L. The correla

tion coefficient was determined. Even though continuous-phase thermal

conductivity used in the calculations were allowed to vary with Tm,

linear relationships similar to Eq. (52), but having different intercepts

and slopes, fit each set of data with a correlation coefficient of

0.998 or better.
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Calculations were also performed to establish the effect of the test
temperature difference on kapp (see Table 5). Prior to these calculations,
it was believed that the mean test temperature could be approximated as

T. + r
T = -J: 2 (69)

m 2

However, least squares analyses of these results showed that the slight
but significant variation of feapp shown in Table 5resulted from Tx - T2
changing Tm, Eq. (55), even though the approximate value of Tm, Eq. (69),
was constant. Thus, the test temperature difference does not have a

direct effect on the measured value of feapp, but rather an indirect effect
that results from the dependence of Tm on Tx and T2 as shown in Eq. (55).

5.4 Emissivity Effect

The emissivities of the plates in a guarded hot-plate apparatus
affect the measured value of the apparent thermal conductivity. The
plate emissivity effect is examined in this section.

The plate emissivities were easily incorporated into the analysis of
the uncoupled conduction and radiation heat transfer problem (o> = 1). The
results of this analysis [Eq. (32)] clearly show the relationship between
the apparent thermal conductivity and the emissivity of the plates.

The iterative solution and the three-region approximation assumed

that the bounding surfaces were black (e = 1). Viskanta1 has, however,
reported a set of results that shows the effect of emissivity on the total

heat flux for coupled conduction and radiation. These values may be
inserted into Eq. (25) to show the effect of the emissivity on the

apparent thermal conductivity of a sample with an optical thickness of

one. As can be seen in Table 11, decreasing the plate emissivity decreases

the calculated apparent thermal conductivity. Furthermore, the decrease
is larger for the pure scattering case than for the pure absorption case
or, conversely, the increase in the apparent thermal resistivity is more
for the pure scattering case than for the pure absorption case for
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Table 11. Effect of Albedo and Emissivity on the
Apparent Thermal Conductivity for Nv = 1.0,

t° = 1.0, and 02 = 0.5

2 o.Apparent Thermal Conductivity,a Btu in./(h ft °F)

1.0

= 0fc u = 0.5 o) = 1.0°

0.2316 0.2295 0.2273
0.75 0.2215 0.2185 0.2143
0.5 0.2127 0.2085 0.2025
0.25 0.2055 0.1990 0.1914
0.1 0.1994 0.1937 0.1847

^Calculated from dimensionless heat fluxes given
by Viskanta (ref. 1) assuming Ti = 713.33 °R and ka =
0.1800 Btu in./(h ft2 °F).

frpure absorption.

°Pure scattering.

identical test conditions. As the intercepts in the relationships between

i?f and l/x° equal the inverse of kefi and this value is independent of e,
the larger increase in R% for the pure scattering case must correspond to

a larger increase in the slope, B(a).

5.5 Conduction in the Solid Phase and Convection Effect

In an attempt to include solid-phase conduction and convection in

the present analysis, the continuous-phase thermal conductivity can be
enhanced as shown in the theory section to include contributions due to

these other mechanisms. The enhanced value for the thermal conductivity

is then used in the calculations, in place of the value for air, to

determine what effect these mechanisms have on the apparent thermal

conductivity.

For insulations with densities between 0.37 and 1.56 lb/ft , Eq. (56)

yields total thermal conductivities that are 0.5 to 3.2% larger than the
value for air. Values for ktot equal to 1.005, 1.032, and 1.1 kair (the
case for hL/ka = 0.1) were used in place of kair for several calculations
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(see Table 7). As can be seen from the last column in the table, changing

ks does not affect kapp - ka (i.e., kr). Thus, the assumption of Eq. (58)

is applicable. These calculations show that kr does change with thickness.

5.6 Albedo Effect

Prior sections have examined the effect of thickness, temperature,

emissivity, and continuous-phase thermal conductivity on the apparent

thermal conductivity or resistivity. These analyses were based on the

solutions for the pure absorption case (oj =0) and the pure scattering

case (oj = 1). However, both absorption and scattering occur in insulation,

and the actual case of importance has an albedo somewhere between zero

and one.

Viskanta1 has developed a solution for coupled conduction and .

radiation in an absorbing and scattering medium. Combination of

Viskanta's results and Eq. (25) permits the dependence of the apparent

thermal conductivity on the albedo to be demonstrated for x° and Nv = 1.0,

02 = 0.5, and various values of the plate emissivity. As shown in

Table 11, the apparent thermal conductivity for an intermediate value of

the albedo (oj = 0.5) consistently falls between the values for the albedo

equal to 0 and 1.0. Since this trend occurs for any combination of

thickness, temperature, emissivity, and continuous-phase thermal conduc

tivity which yields the specified values of the dimensionless parameters,

the effects of thickness, temperature, emissivity, and continuous-phase

thermal conductivity (resistivity) which were developed in the previous

sections for co = 0 and 1.0 bracket the effect of these variables on the

apparent thermal conductivity for an albedo between 0 and 1.0.

5.7 Full-Thickness Calculations

Definitions of the thermal properties and a method for establishing

the minimum or representative thickness for which these properties can be

defined for low-density materials are set forth by the ASTM3 in C177-76.

(A portion of this specification is reprinted in Appendix Al.) The ASTM

method for establishing the representative thickness and fl-values are used
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by the FTC.^ These specifications are discussed in this section. It is

also shown how the equations that represent the effect of thickness on the

apparent thermal resistivity for the pure scattering calculation [Eq. (35)]

and for the pure absorption calculation [Eq. (49)] may be used to

establish the value of the representative thickness and the full-thickness

resistance of building insulation.

The ASTM C177-76 specification requires that the thermal resistance

be a linear function of the sample thickness and that the function have a

value of zero at zero thickness. Further, the specification recognizes

that a minimum sample thickness may exist above which the definitions

apply and a procedure for estimating this thickness is set forth (see

Sect. XI.4.6 in Appendix Al).

For a material whose thermal properties are a function of thickness,

the ASTM specification appears to define two thermal resistivities — an

average or mean thermal resistivity and an instantaneous or differential

thermal resistivity. The mean thermal resistivity is defined as the slope

of the resistance versus thickness curve, which is assumed to go through

zero at zero thickness; that is,

a R(L) - ir(O) _ R(L) (70)
HL L - 0 L

The differential thermal resistivity is the incremental change in the

resistance for an incremental increase in thickness,

R(L ) - 2?(L )
R = 1 L_ = M . (71)

L L„ - L, AL

In the limit of L2 approaching L\t the differential thermal resistivity

equals the derivative of the resistance function:

r1^ RL=§- (72)
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Then, according to C177-76, the representative thickness is the minimum

sample thickness for which the differential thermal resistivity is

within 2% of the mean thermal resistivity of the largest sample that is to

be characterized or that can be measured in the test apparatus.

The FTC final rule^ requires that all measurements for the resistance

of building insulation be made at a specimen thickness greater than that

for which the apparent thermal resistivity of the material does not change

by more than 2% with thickness increases to full thickness. The FTC final

rule does not specify whether the mean or the differential thermal

resistivity must be used to establish the representative thickness Lp.

While it is believed that the intent of the FTC rule was to require that

the mean value be used, it will be shown that using the differential

thermal resistivity leads to another criterion for establishing L^.

In the current work, the apparent thermal resistivities were

calculated from the total heat flux through the specimens,

a AT R

HL qt L ' (73)

Thus, these resulting values equal the average or mean thermal resistivi

ties. Rearrangement of Eq. (73) yields

R = RLL , (74)

and combination of Eq. (74) with Eq. (35) or (49) yields

R=A(E)L +^f1 • (75)

The values of A(E) and B(E) have been determined for x° > 2 and are given

in Table 10.

Substituting Eq. (75) into Eq. (71) or (72) shows that the differ

ential thermal resistivity is equal to A(E), a constant, for a material

with a fixed extinction coefficient and for x° > 2. Since A(E) is the
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same for o> = 0 or 1, the differential thermal resistivity has the same

value for a given material whether thermal photons are scattered, absorbed,

or both. Since A(E) equals l/feeff, the differential thermal resistivity

equals

Rr =

L k + (16n2ar3)/3^ (76)
m

for x° > 2 and any albedo.

The ASTM method for determining Lr requires the determination of the

thickness at which the value of the differential thermal resistivity is

within 2% of the value for the mean thermal resistivity of the biggest

sample that is to be characterized or that could be tested. As the

differential value is a constant for a given material for x° > 2 and as

the mean value will be decreasing as L increases, the ASTM method

establishes the minimum thickness for an insulation above which the

definition of the thermal conductivity applies. For products with full-

use thickness less than Lr, testing should be done at conditions

applicable to their use.

The representative thickness, Lr, as defined by ASTM C177-76 is the

value of L for which the mean thermal resistivity [Eq. (35) or (49)] is

1.02 times the differential thermal resistivity, Eq. (76),

A(E) +~^ =1.02A(E) , (77)

or

LR "5° mB) ' W

The representative thickness Lr is given by

600B(a)k

h 5-^ <»>
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for the pure absorption case, and

fcf-12^6- 2) + Y (80)

LR =

for the pure scattering case, where a and a are in ft-1 and Lr is in inches.
Equation (80) is in agreement with Rennex.^ Representative thicknesses

for specimens having extinction coefficients between 10 and 100 ft-1 are

given in Table 12.

The value for B(E) with to = 0 and e = 1 [i.e., B(a)] was the lower

limit for B(E) at a given value of E. The value of B(E) with a) = 1 and

e t 1 [i.e., B(o)] was the upper limit. Since .4(2?) is independent of

03 and e the values of Lr given in Table 12 represent the upper and lower

limits of the representative thickness as set forth by the ASTM specifica

tion. If the extinction coefficient is in the range 50 to 150 ft-1 as

calculated from Pelanne's data,1^ then the representative thickness is in

the range 1.27 in. (2? = 150, u> = 0, e = 1) to 13.3 in. (2? = 50, u> =1,

e = 0.9). If an average E of 100 ft-1 is assumed typical, then Lr

Table 12. Representative Thicknesses for Guarded
Hot-Plate Test Specimens

E
Representative Thickness, in.

(ft"1)
u) = 0, e = 1 o) = 1, e = 1 0) = 1, e = 0.9

10 61.1 76.9 92.9
25 19.0 26.8 32.3
50 7.19 11.0 13.3
75 3.93 6.21 7.50

100 2.44 4.03 4.87
125 1.71 2.84 3.43
150 1.27 2.11 2.55
200 0.78 1.30 1.57
500 0.15 0.24 0.29

1000 0.037 0.057 0.069
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varies from 2.44 in. (oj = 0, £ = 1) to 4.87 in. (o> = 1, e = 0.9). This

large range of Lr values indicates the importance of the characteristics

of the apparatus and the insulation optical properties.

Equations (35) and (49) show that the apparent (mean) thermal

resistivity continues to decrease until L reaches infinity. Thus, an

alternate definition of Lr could be the thickness at which the thermal

resistivity equals 1.02 times the value at infinite thickness. The

criterion based on the mean thermal resistivity is

A(E) +1^- =1.02 Cl(2?) +^^-1 =1.02A(E) . (81)
ELjj L A °° J

As Eqs. (77) and (81) are identical, the ASTM method and this alternate

method based on the mean thermal resistivity are identical. As noted

above, above this Lr the ASTM definition of thermal conductivity applies.

For products with full-use thickness Lp < Lr, this criterion leads to the

following expression for Lr'.

T = 50B(E)/EA(E)
R 1+ [5123(2?)] [£4(2?)^] ' ^l)

A third method for fixing Lr is to use the differential thermal

resistivity. This procedure would require the determination of the

thickness above which the differential thermal resistivity would not

change by more than 2% with further increases in thickness. The analyses

performed earlier in this section and in Sect. 5.2, however, show that the

value of A(E) and, hence the differential thermal resistivity, does not

change for x° > 2. Therefore, this third method would be independent of

o) and e and fix Lr as

LR <|. (83)

Based on this criterion, for E equal to 50, 100 or 150 ft-1, Lr equals

0.48, 0.24, or 0.18 in., respectively.
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If the third method for determining Lr 1s used, the full.thickness
resistance of the material can be determined from two or more measurements
of the thermal resistance of the material at thicknesses greater than LR.
The measurements are then used to empirically establish the linear
relationship between Rand L. Table 13 shows the ratios of the resistance
obtained from either the numerical or three-region solution to the value
calculated from aone-parameter line based upon ameasurement on a1-in.-
thick sample, where

R=RaL(l ±n.)L - (84)

The values from Eq. (84) show errors as large as 17.8% (a =50 ft"1,
«-1. and L=12 in.). They are within 2% of the numerical solution's
/Hralue for Lless than 2in. and 2? less than 150 ft"1 or 3.5 in for
E = 200 ft"1.

Table 14 shows the ratio of the solution resistance to that calculated
from aleast squares line obtained from the values of Rcalculated at
0.042 (1/2 in.), 0.083 (1 in.), and 0.1667 ft (2 in.). Table 14 shows
that the resulting lvalues from the two-parameter fit are within 2% of
the value obtained by the numerical or three-region solutions.

The above observations have been further tested using lvalue data
recently published by Tye et al.21 The data include lvalues for arange
of specimen thicknesses from 1.44 to 7.22 in. The lvalues at specific
insulation densities were calculated from measurements of apparent thermal
conductivity and acorrelation of apparent thermal conductivity and
density. Apparent thermal conductivities were determined to within 3%
from full-thickness guarded hot-plate measurements. An analysis was made
using sets of measured lvalues of fiberglass insulation from three
manufacturers. The lvalue data for agiven manufacturer's product were
divided into groups having density ranges of 0.1 lb/ft3. For example
lvalue data at various thicknesses with densities in the interval from
0.55 to 0.65 lb/ft3 were grouped for the analysis. Finally, each group
of tf-values was adjusted to constant density using an empirical expression
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Table 13. Ratio of Thermal Resistance
from Eq. (75) to the Value

from Eq. (84)

Thickness

(in.)

Ratio for Various E at

50 ft-1 100 ft-1 150 ft-1 200 ft-1

1.0

1.067

03 = 0, E = 1

1.0

1.013
1

2

1.0

1.024

1.0

1.008

3.5 1.099 1.034 1.018 1.011

6

9

12

1.117 1.040 1.021 1.013

1.126 1.043 1.022 1.014

1.130 1.045 1.023 1.014

1.0

1.090

0) = 1, e == 1

1.0

1.020
1

2

1.0

1.036

1.0

1.013

3.5 1.133 1.053 1.029 1.018

6 1.159 1.062 1.034 1.021

9

12

1.172 1.066 1.036 1.023

1.178 1.068 1.037 1.023

Table 14. Ratio of R from Eq. (75) to R
Obtained from a Two-Parameter Line Fit

to Data at 0.5, 1, and 2 in.

Thickness

(in.)

1

2

3.5

6

9

12

1

2

3.5

6

9

12

Ratio for Various E at

50 ft-1 100 ft"1 150 ft"1 200 ft-1

oi = 0, £ = 1

0.99991

1.00001

1.00008

1.00068

1.00068

1.00069

oi = 1, e = 1

1.00163

0.99988

0.99672

0.99523

0.99447

0.99406

1.00085

0.99985

0.99965

0.99995

0.99962

1.00064

1.00021

0.99997

1.00035

1.00042

1.00045

1.00047

1.00485

0.99652

0.98948

0.98448

0.98184

0.98045

1.00075

0.99949

0.99853

0.99788

0.99754

0.99737

1.00007

0.99999

1.00028

1.00035

1.00039

1.00041

1.00041

0.99973

0.99921

0.99887

0.99869

0.99860
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for thermal conductivity versus density that was reported by Tye et al.21

Seven sets of 2?-values at constant density and given manufacturer were

so generated.

The seven sets of data were used to test the applicability of Eq. (75)

for describing the 2?-value data and to compare Eq. (75) with Eq. (84).

For each set of data the constants in the two equations were computed

using the method of least squares and the variances were calculated. As

expected, the variances obtained using Eq (75) were always less than those

obtained using Eq. (84). The differences between the two equations were

not dramatic. The results, however, which are summarized in Table 15,

are fully supportive of Eq. (75).

A more revealing test of the applicability of Eq. (75) was provided

by four sets of data of 2?-values on approximately 1.5 in., 3 in., and

full-thickness specimens. The approach was to calculate a value for 2?

at full thickness using both Eq. (84) with the constant determined from a

thin specimen and Eq. (75) with the slope A2?/At determined from two thin-

specimen 2?-value measurements. The calculated if-values at full thickness

are compared with the experimental values in Table 16. The results in the

table clearly show an improvement resulting from the use of Eq. (75) to

obtain full-thickness 2?-values.

Table 15. Summary of Results Obtained Using Eqs. (75) and (84)
to Describe Experimentally Determined 2?-Values

Manufacturer
Density

(lb/ft5)
Number in

Data Set

Eq. (84)
Slope

Eq. (75)
Eq. (84)
Variance0

Eq. (75)

Slope Intercept
Variance

A 0.5 8 2.699 2.607 0.3904 0.088 0.076

A 0.6 8 2.801 2.616 0.8649 0.689 0.633

A 0.7 8 3.065 2.955 0.5990 0.461 0.432

B 0.4 19 2.616 2.383 1.179 0.635 0.555

C 0.5 10 2.841 2.568 1.035 0.686 0.628

C 0.6 19 2.994 2.968 0.124 0.303 0.300

C 0.7 18 3.141 3.031 0.508 0.131 0.061

a

n

2^p?^(exp) — i?^(calc)J 2/(w — e), where n= number of points in the data set and
i=l

e = 1 for Eq. (84) and 2 for Eq. (75).
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Table 16. Comparisons of Full-Thickness 2?-Values from
Eqs. (75) and (84) with Experimental Results

Method Used to Obtain

Full Thickness 2?-Value

2?-Values for each Data Seta

A B C D

(1204-3) (1205-3) (1206-3) (1206-4)

17.39 18.49

9.8 5.5

16.36 17.59

3.3 0.4

Average

18.4

7.6

17.17

2.8°

Eq. (84) with data at 18.79 18.75
thickness of 1.44 in.^

Deviation from 4.6 10.3

experimental value, %

Eq. (75) with data at 18.48 16.25
thickness of 1.44 and

2.88 in.

Deviation from 2.9 —4.4

experimental value, %

Full-thickness measurement 17.96 17.00

Full-thickness, in. 6.00 6.00

15.84 17.52 17.08

5.10 5.64

aData from ref. 21 are for measurements on quadrasected nominal 6 in.
fiberglass batts coded in the reference with the numbers in parentheses.

^Exact thicknesses are given in ref. 21.

°Average of the absolute deviations.

6. CONCLUSIONS

The most significant accomplishments and conclusions are enumerated

below.

1. A numerical procedure was developed and applied to solve the

coupled conductive and radiative heat transfer problem of an infinite

slab of an absorbing and emitting gray medium bounded by black plates.

This procedure allowed an assessment of the effects of boundary conditions

and media properties on the apparent thermal properties of the media.

2. The accuracy of the total heat flux obtained from the numerical

procedure was established as 0.1% of the calculated value. This accuracy

was determined by comparing the numerical solution results with the heat

fluxes obtained from the optically thin and thick analytical solutions and

with alternate solutions found in the literature.1'2
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3. The numerical solution was used to model measurement of the

apparent thermal conductivity of insulation for specimens with optical

thickness less than 40. Calculations were performed for absorption

coefficients between 0.001 and 1000 ft-1 and specimen thicknesses between

0.0208 and 1.0 ft.

4. A three-region approximation to the coupled heat transfer problem

was developed and shown to yield results within ±0.5% of the apparent

thermal conductivity obtained from the numerical technique for optical

thicknesses greater than 4.

5. The three-region approximate solution to the coupled problem

(o) = 0) and the numerical solution to the uncoupled problem (oj = 1) were

used to show that

1 _ 1 , B(E)
k " FTT+ ~^~ (85)
app eff

The values of B(E) were determined for the limiting cases of pure

absorption (oj = 0) and pure scattering (a) = 1).

6. Data available in the literature1 were used to show that the

plate emissivity had an effect on B(E) and that the value of B(E) for the

pure absorption case with black plates fixed a lower limit for 0(2?),

while the value obtained for the pure scattering case with nonblack

plates fixed the upper limit.

7. The apparent thermal conductivity for the pure absorption

and pure scattering cases were shown to depend on Tm, where Tm =

L(t\ + t\)(Ty + 72)/4]1/3.
8. A small change in the continuous-phase thermal conductivity

resulting from solid-phase conduction or convection produces the same

change in the apparent thermal conductivity.

9. The results of the analysis provide a method to establish how

critical parameters define the range of apparent thermal conductivity of

building insulations, for example, representative sample thicknesses.

10. An analysis of existing data for fiberglass batts supports the

use of Eq. (75) for the correlation of 2?-values with specimen thicknesses

above 1 in. The slope in Eq. (75) can be used to determine full-thickness

2?-values from thin specimen measurements more accurately than Eq. (84).
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7. RECOMMENDATIONS

The three-region approximation and the numerical solution are

valuable tools for the analysis of coupled conductive and radiative heat

transfer in an absorbing and emitting slab bounded by black surfaces. The

usefulness of these solutions can, however, be greatly increased by

extending the analyses to include varying emissivity and albedo. With

these analyses completed, it may be possible to determine the properties

of insulation, such as extinction coefficient and albedo, by making

apparent thermal conductivity determinations at several mean test tempera

tures. Furthermore, once the extinction coefficient and albedo are

determined, the effects of sample thickness and plate emissivity will also

be established. Thus, one set of experiments may lead to a thorough

understanding of the relationship between sample properties and test

conditions for all similar types of insulation.

Further development of theoretical analyses must incorporate accurate

experimental data, which should be obtained on well-characterized

specimens. The aim of this program should be the validation of the

theoretical analyses through accurate measurement of apparent thermal

conductivity as a function of thickness, temperature, emissivity, and

continuous-phase thermal conductivity. Development of techniques for

extinction coefficient and albedo measurments on insulation must also

be part of the experimental program.

Since insulation is often used in shapes that have cylindrical or

spherical symmetry, analyses of heat transfer in cylindrical and spherical

coordinates should be undertaken to develop an understanding of how the

properties of insulation are affected by these geometries and how the

results of measurements on planar samples must be corrected when the

insulation is used in another shape.

Finally, an effort should be made to use Eq. (75) for the deter

mination of full-thickness 2?-values from measurements on relatively thin

specimens. The Eq. (75) extrapolation of measured 2?-values to full-

thickness 2?-values when combined with improvements in determining 2?-value

density dependence should be considered in the development of improved

standards for measurement.
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APPENDIX A

DEFINITIONS AND TECHNIQUE FOR MEASUREMENT OF THERMAL PROPERTIES*

4. TERMINOLOGY

Note 9- As Definition C168 is under revision, the definitions and
symbols given here should be used.

4.1 Definitions

4.1.1 Thermal Resistance. R

The temperature difference required to produce aunit of heat flux
through the specimens under steady-state conditions. For aflat slab,
it is calculated as follows:

A(T -T,) ,
R = 1 2 = 1 _ D

Q T x

4.1.2 Thermal Conductance, r

Under steady-state conditions, the heat flux required to produce a
unit temperature difference; the reciprocal of the thermal resistance of
the specimen. For a flat slab, it is calculated as follows:

r = g = i _ x
A(T± - T2) R ~ D

4.1.3 Thermal Conductivity. A

Under steady-state conditions, the heat flux per unit temperature
gradient in the direction perpendicular to an isothermal surface. For
thin specimens or low-density materials this definition must be applied

This standard may be obtained from ASTM, 1916 Race St p 1 [•'
Pennsylvania 19103. ' Phlladelphia,
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with caution. Thermal conductivity of amaterial can be defined only
where several conditions are met (see 1.6): the thermal resistance of
specimens of amaterial must be sufficiently independent of the area of
the specimen, of where the specimen is selected in the sample, of the
temperature difference across the specimen, and, for aflat slab specimen,
the thermal resistance must be proportional to the thickness. The latter
can be demonstrated by plotting the thermal resistance of anumber of
specimens of the material against specimen thickness. The line through
the point must increase linearly with thickness from zero thermal
resistance at zero thickness. When this condition is met, the thermal
conductivity can be determined as the inverse of the slope of the straight
line and the thermal conductivity can be calculated as follows:

Q x D _ g
X~ A(T. - T0) =R

The above requirement assumes that the heat transfer within the specimen
is independent of thickness and temperature difference. It recognizes the
existence of aminimum thickness and maximum temperature difference for
which thermal conductivity can be defined. For the purposes of this
method, a2% dependence will be considered maximum for each.

4.1.4 Thermal Resistivity, r
Under steady-state conditions, the temperature gradient, in the

direction perpendicular to the isothermal surface, per unit heat flux;
the reciprocal of the thermal conductivity. It can only be defined when
thermal conductivity can be defined. For aflat slab, it is calculated
as follows

Al*! - T2) 1 R
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4.2 Symbols

The symbols used in this method have the following significance
(Note 10):

A= thermal conductivity, Wm-l-K"! or H.n.K-l.B-2
r = thermal resistivity, K-m-W"! or K'm2^-!^"!
r = thermal conductance, Wm"2iK"l

R = thermal resistance, K'n^'W"!

Q= time rate of heat flow, W

q=heat flux, that is, time rate, of heat flow per unit area, Wm'2
A-area measured on a selected isothermal surface, m2
D-thickness of specimen measured along apath normal to isothermal

surfaces, m

2"! = temperature of warm surface of specimens, K or °C
T2 = temperature of cold surface of specimens, Kor °C

Note 10 - Various units may be found for the thermal properties in
the literature. The International System of Units is used exclusively
in this test method and conversion factors to inch-pound and kilogram-
calorie systems can be found in Tables 2a and 2b for thermal resistance
and thermal conductivity.

XI.4 Determining the Thermal Conductivity and Resistivity of aMaterial

Xl.4.1 General -Athermal property of amaterial can be determined
by asingle measurement only if the sample is typical of the material, and
the specimen(s) are typical of the sample. The procedure for selecting
the sample should normally be specified in the material specification
or directly by the parties concerned. The selection of the specimen from
the sample can be partly specified in the material specification and
Partly in the test method. The specification in the test method must be
gxven priority and disregarded only after careful technical consideration.
Anumber of these requirements have been given above. The thermal
resistance of amaterial is known to depend on the relative magnitudes of
the heat transfer process involved. Thermal conduction, radiation, and
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convection are the primary mechanisms. Of these, only conduction is
linearly dependent on AT. These processes are well researchad bu,^ they
can cosine, or couple, to produce nonlinear effects that are difficult to
analyze, and even more difficult to measure. _

XI 4.2 Dependence of Specimen Thickness -Of the process involved,
only conduction produces aheat flow that is directly proportiona! to the
thickness of aspecimen. The others result in amore complex relationship.
The thinner and less dense the material, the more likely that the resis
tance depends on processes other than conduction. The result is a
condition that does not satisfy the retirements of the definitions for
thermal conductivity and thermal resistivity, both defining intrinsic
properties, since the apparent respective values show adependence on
specimen thickness. For such materials, it may be desirable to determine
the thermal resistance at conditions applicable to their use. There is
helieved to b. alower limiting thickness for all materials below which
such adependence occurs. Below this thickness, the specimen may have
nnioue thermal transmission properties, but not the material. It remains,
therefore, to establish this minimum thickness by measurements.

XI.4.3 Dependent on Temperature Difference -The magnitude of all
the thermal transfer processes depends on the temperature difference
across the specimen. The dependence is more complex than direct propor
tionality for all processes except conduction. For many materials the
complex dependence occurs at temperature differences that are typical of
use. in such acase, it is wise to use avalue for the test that is
typical of use, and to determine an approximate relationship for arange
of temperature differences. The dependence can be linear for awide range
in temperature differences.

XI 44 Method of Determining Dependence on Temperature Difference -
If the temperature-difference dependence of the thermal properties is not
known for amaterial, aminimum of three measurements is necessary. These
are made with widely differing temperature differences. Asecond-order
dependence can be revealed by these measurements. When asimple linear
relationship is known to occur, only two measurements, that is, one extra,
need be made. This establishes the linear dependence for that particular
sample.
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.4.5 Determination of Minimum Thickness for Which Thermal
roperties of the Serial «., Se ^ lned _If ^ ^^ ^
or which the ther^l conductivity and resistivity can be defined m

known, it is neppuwrw *•„ <-• ^'-±nea is not
necessary to estimate this thickness ThOT-Q •

procedure for Aa + • • >-nicKness. There is no establishedprocedure for determining this thickness (Note XI) Th«
j vwLtj ai;. ihe somewhat cruris

Note XI -u improved methods for determining the thickness in
question are developed or proposed, ASTH Subcommittee C16.30 would
Prelate receiving information about them. Contact the chairman of

the subcommittee through ASTM Headquarters.
XI.4.6 Procedure:

Xl.4.6.1 Select auniform sample of material of thickness equal to
the greatest thickness to be characterized or to th. •
tUckness for the test apparatus. This thLkness ^i""
box, ir^rpamcuiar test -te ™* -—~
ranseXi„4;h'2k ^ f" "'" "' SPeClme"S '"" °" ~"- "— ^ouldrange in thickness from the smallest thickness Ukely to be used in
Pactice, termed „. to D5 in approximate^ equal increments.

xTrr3ar:thea designated si to s5 ™* -——•Xl.4.6.3 Measure the thickness and thermal resistances of SI, S3,
and S5.

Xl.4.6.4 Calculate <U-R.)/(D!H>1). (R5-a3,/(D5-D3), and R5/D5.
These are termed 4R/4D values.

XI 4.6.5 If these three values differ by less than 2%, then the
material can be charactered by athermal conductivity and'resistivity.

XL4.6.6 If the three values differ by more than 27 th.
m. ... , J ^'-e i-nan £/0 then measure

OMR2 R1)/(D2-D1), (b-k,/^^, (M.E3)/(M.D3)i (R5.RW(D5_M) ^
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Note X3 -It is important to differentiate between added thermal
resistance in measurements caused by the placement of the thermocouples
resistance distance caused by poor specimen
below the surfaces of the plates, added
surfaces, and added thermal resistance caused b, the coupling o the
conduction and radiation modes of heat transfer in the specim. m
three can affect the measurements in the same way, and often the
may h,additive^ ^ ^ au ^ 4rmd ^^^ agrM „ith the
vaiuef R5/D5 to within n may be characterised by thermal conductivity
and thermal resistivity. Allowance must be made in interpretation of the
uHor experimental error. Aplot of the AR/AD.s and R5/D5 versus

a,d in reducing the uncertainty. Least squares curve
i-v«ipkness may aid m reaucj.u& un

ting of Rversus Dmay also help. Alarger number of specimens may be
s lere greater definition is required. Thickness dependence may be a
function of mean temperature and temperature difference across the
specimens. For the purposes of this method, this single ch,,
performed at typical operating temperature and temperature ifferences,
shall be adequate to indicate the degree of thickness dependence.
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APPENDIX B

PDP/8e FOCAL PROGRAM LISTING, TYPICAL OUTPUT AND
NOMENCLATURE LIST FOR THE NUMERICAL SOLUTION

C-FOCAL. J 4. CODASIII 33534V

01.01 C RADI ATION/ CONDUCTION IN SLAB. FILE 3. SHJ 1 AUG 79
01. 02 L S 3, 4; G 14.01
01. 60 F I=»0,N; D 2
01. 70 F J-0,N; D 9

01.75 S PmUF JmUHtS A* A+< FSTR<9 500+J)*FSTR<9 500*J- 1) )*AL*L/< 2*N)
01.80 S ft»CA*(TH-TC)/L+2*SI*TCt4*<FST.R<3500+N)-l/3)/<AL*L)
01.85 S Q»Q+2*SI*THt4*(-FSTR<3500+N)/<AL*D- 1/2+1/< 3*AL*L> >♦ SI*TH14
01.86 S Q-Q+2*SI*A

Vv'-ll I !!'*! "A=",'*'A'" «H"*Q>" K EFF=», X8.06,Q*L/<TH-TC>, !!l
01.96 G 15. 21

02.05 S TL»TC/TH+<I/N>*< 1-TC/TH)
02.07 S T2»FSTR(9000>I)

02.09 S DF=T2-TL;S T3=T2*TH;S T4=T3-TC-<TH-TO*I/N
02.11 T X3, I,X8.06, T2,DF, X10. 03, T3, T4, !

09.01 C EVALUATION OF Q-

09.02 S NK-N-j; S D1-FSTW3000+NK)-FSTR<3000+J)
09.05 S EG»<RIt2/(L*AL))*Dl*(FST.R<9000+J)*TH)t4
09.06 S DU»FSTR(9 500+J,EG>; R

15.01 C-MULTIFLE INRUT

15.06 A "NO. OF CALCS. TO ENTER- »,NO, i; T "ENTER AL, K,L, T-C TH, HI, », !
.=* « I ll'l'H0; A AL<II),CA(II),L<II),TCCII),TH<II),RI(II), !
15. 19 S II» 1

15. 21 I <NO-II) 15.99, 15.26
15.26 S AL*ALCII>;S CA-CAUI>;S L*L<II>;S TOTCUI);* TH-THUI)
15.27 S N=FIlR<AL*L/<5*. 12) +.5>;S N* 5*N
15.28 I CN-50J15. 3; I (N-49 5) 15. 31; S N» 49 5J G 15.31
15. 30 S N=50

15.31 S RI»RI(II);S II-IH-HS SI». 1714E-8
\l'll ! ROCA*AL/<4*SI*THt3>;S DU-FSTRC9 000, TC/TH>; 3- Dl>-FSTB<9 000+N, 1)
15.33 S IV-10000;S DU-FSTR<IV*1,AL>;S DU«FSTR< I V+2, CA>; S DO- FSTO< IW 3,L>
15.34 S Dl>FSTR(IV>4,TO;S DU-FSTR< IV5, TH>; * Dl> FSTR< IV* 6, BI ) WV'0'1*'
15- *)b S Dt*FSTR<IV+7,N>; S DU» FSTR< I V>9, SI )} S DU" FSTR< I V* 11, BO
15.40 T !!, "CASE NO . =", X3, XI- 1, lit J "AL= ", X12. 04, AL, I
15.42 T "CA» ", X10. 06, CA, " L»",L, " RO ", Rp, |
15.45 T " TO ", X6, TC, " TH» ", TH, " RI» ", RI, " N= ",N
15. 46 L S 3,9; G 11. 02
15. 50 L P 3

15.60 T "TIME,HR-", X6. 02, FTIM<0)/3600, !,'L S 3, A* G 1.11
15.99 0

*
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C-FOCAL. J 4. CODASJII 33534V)

01.01 C RADI ATI ON/CONDUCTION IN SLAB. FILE 4. SHJ 16 JULY) 79
01. 02 D 1. 36; L S 4,9; G 1.51 r„B,I,Ii„
0'. 11 S IV 10000; S AL»FSTJUIV+1>;S CA-FSTR<IV+2);S-L-FST.R<IV+3)
01.12 S Ti>FSTR<IV+4>; S TH-FSTRf I V+5); S RI»FSTR< I V+6)
01. 13 S N«FSTR<I,V+7); S. SI-FSTR* I V+9); S ROFSTRt I V* 11)
01.32 S V1-AL*L;D 12; S.DU»CTC/TH)t 4
01.33 S BB» l+< 1-DU)*< 1/3- E4)/< 10*2* RC*< 1-TC/TH))
01.34 S XS»l-.5*FSQT(TC/TH)/<< 1+FS«T<VI) )*C 1+10*RO)
01.36 F I»0,N;D 3. i;S DU»FSTR<4500+I,CTC+<D+1)*I*<TH-TC)/<N+D*I))/TH)
01.40 T, "XS-", X7. 03, XS, " BETA- ", BE, ! MF I-0,N;S VI-AL*I*L/N;D 2
01.45 F I-0,N;D Ai S DU»FSTR<4000+I, G)
01.9« L P 4
01.99 L S 4,9; G 1* 1 1

02.01 C EVALUATION Of E INTEGRALS
02.05 S E3»0;S E4-0,*I <2. 33998+V1) 2. 15, 2. 15; I <10-Vl)'2. 07; D 12
02.07 S Dt#« *"STR< 3500+1, E4)
02.15 S Dl* FSTJK 3000+1, E3>; R

03.10 S D»(BE- 1)*C 1-I/CN*XS));R

04.01 C CALCULATION OF G< I)
04.05 S G-< 1/<2*RC))*CTC/TH)»4
04.07 S G-G*(-FSTR<3500+I) +I*FSTRC3500+N)/N+C l-I/N)/3>
04.10 S Gl-<< 1-I/N)*FSTR<3500+N)-FSTR<3500+N-I)+I/(3*N))/<2*EO
04*20 S G-G+G1 +CTC/TH+<I/N)*: 1-TC/TH)); R

12.01 C EVALUATION OF E3 INTEGRAL
12.05 I (UI) 12. 50, 12. 45, 12. 1
12.10 1 <VJ-1) 12. 15, 12. 15, 12. 30 « «»— .„«
12.15 S El»A0-FLOG<\U) +Al*VJ+A2*Vlt2+A3*Vlt3+A4*Vlt4+A5*»U5JGOTO 12.35
12.30 S El»< Vlt4+Bl*Vt«3*B2*Vl*2+B3*Vl+B4)
12.31 S El-El/C<WlT*4+Cl*Wlt-3+C2*Wlt«2+C3*Wl+C4)*CW4*FDCPCWW))
12.35 S E2»FEXP<-U1)-V.1*E1
lr. 40 s e3»<fexp<-w.i)-vu*e2)/2;d 13; r.
IS. 45 S E3-. 5; S E4- 1/ 3,* R
12.50 S VJ—Wi;S EI-. 57721566+FLO G< VI); S 31-l; S-KK-0;& KA-1
12-60 S KK-KK+ i; s ka«ka*kk; s si* SI* VI
12.65 S EI-EI+S1/<KK*KA)
12.70 I < lE-6-FABS<Sl/(KK*KA*EI))) 12.6
12.30 S E3»<< l+Vj)*FEX>R(V!)-VH 2*EI)/2; R

13.01 C EVALUATION OF E4 INTEGRALS
13.10 S E4-<FEXP<-Vtl)-V.l*E3)/3; R

14.01 C ENTER PARAMETER VALUES
14.05 S A0--.57721566; S A1-.99999 19 3; S A2--. 2499 1055; S A>. 05519968
14.10 S A4--.009 76004; S A5-. 00107857; S B1-8. 57332874; S B2-18. 0590169 7
!*. 15 S B3-8. 63476089; S B4-. 26777373; S Cl-9. 57332235
14.20 S C2-25. 6329 5615,* S C3» 21. 09965308; S C4-3.9 5849693;L P 4
14. 21 L S 4, 3; G 15.01

*
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C- FOCAL. J 4. CO DASH I 33534V

01.01 C RADI ATI ON/ CONDUCTION IN SLAB. FILE 9. SHJ 1 AUG 79

01.02 T "Z-",X,Z," TIME,HR*»", X6. 02, FTIM<0)'/3600, i;R
0i.ii s iv-10000; s.AL»FSTm<iv+n;s. ca»fstrjciv+2);s> l«f&tr<iv+3)
01.12 S TC-FSTJKIV+4); S TH-FSTRU V+5); S RJ«FSTR< I V+6)
01.13 S N-FSTJKIV+7); S SI-FSTRjC I V+9); S RC-F&TRK IV* 11)
01.14 S JJ-10*N/< AL*L);L P9

01.51 F I-l,N-i;D 7; S T2-FSTR<4000+I) + A/<2*RC); S DU-FSTR<9 000+I, T2)
01.52 SZ«0;S DU-FSTR<9001)-(TC/1H+< 1-TC/TH)/N); F I»0,N;D 10
01.53 i (2-Z)i.97;D 1.02; I ( DU+IE-4) 1. 54; I it- IE- 4) 1. 59, 1. 55, 1. 55
01.54 T "BETA«rt, X7. 03,N*C TH*FSTR<9001)-TC)/t TH-TO, !
01.55 F I-0,N; D 1.58
• 1.57 GOTO 1.51

01.58 S T.1-<FSTR<9000+I)+M*FSTR< 4500+1 ))/<M+l); 3 DU-FST.RC 4500+1, Tl)
01.59 T* X, "A"", A, M !, " I F2 F2-FL TCALC TCALC-TLIN
01.60 T. I I
01.70 L S 9, 3;G 1.6

01.97 SM-1+2*M;T !, "LARGE ERROR-", X,Z, " REftEAT USING M-", X4,M, ! !
01*98 L S9.4IG 1. 02

•7.01 C EVALUATION OF T2< I) INTEGRAL
07. 05 S IN-0; S A-0; F J-0,N; D 8

07.99 R

08.01 C ADJUNCT TO GROUP 7

08.02 S DU-0JI (JJ-J)8.05;S DU-FSTRC 3000+J)
08.05 S D1-0;S K-FABS(I-J);i <JJ-K)8.07;S D1»F$TR< 3000+K)
•8.07 S D2-0; S NK-N-j; I <JJ-NK)8. 09; S D2-FSW 3000+NK)
08. 09 S Dl—Dl+DWS D2-D2-DU

08.1* S EF-RI*2*(Dl+D2*I/N)*FSTR<4500+J)*4;i <-IN)8. 2i D 91 &
08.20 S A-A+(U+EF)*AL*L/(2*N)

08. 30 D 9. i; S. IN* i; R

09.01 C ADJUNCT HO GROUP 8
09. 05 S IN-IN* 1

09. 10 S u-ef; R

10.01 C LARGEST ERROR DETECTOR

10.04 I (I- 1) 10.99; S ER-FABS< 1-FSTRC9 000+1 )/FSTI|< 4500+1))
10. 10 I <ER-Z) 10.99; S Z-ER
10.99 R

11.01 C SET START VALUE OF M
11.02 SM-i;T " M-", X6,M, !;L P9

11. 03 L S 9, 3; G 15.5

*

L G 10

*

*W

C-FOCAL. J 4. CO DASH I 33534V

01.01 C FSTR USE BY FILES 3,44.9. SHJ FILE 10. SHJ 1 AUG 19 79

*



«L. G 3

fG

iJO. OF CflLCS. TO SJTEF*:3
ENTER AL,K,L. TC. TM. M ,

I 56 i B. 015 : 6. 0333 : 5ie : 561
t iee ) e. 015 j e.e?33 isie : 5<
1150 : 0. 015 : 0. 09 3 3 : 5ie :5(

50. 0006

6.015000 L= 0.033300
510 T;l- 56e HI»

9 73 1. 00 3

0. 4022567999 E-602 TI.it,,l fi..
0. 7*10206599 L-003 TI 1E,itR.»
0. 2267622622E- 0e3 TI.lo,(c.=
0. 8 216779 679 E- 004 TI 1 L* !!"..=

- 0. 3725233110E-0S1

4315

8.926269

9.9 28 170

9.930024

9.931340

933623
9 35 378

"•9 37 109

9.9383 !3

9.9 5 359 I

1.9 55 13 7

-.9 56 7 73

!. 9 67 3 7 7-

769 5 0-

7 2 5 2 5-

97729 2-

973904-

930533-

). 003055
i. 063170

9. 0e323d

9.00 3269

j. ee326t

>. 003235

i. 603130

:. 003101

I. 60 30 09

'. 062399

I. 602774

062637

6024^9

.002336

534.9^5

535- 79 t

536.6S4

5 37. 5 69

70

160.0000

0.015000 L>

516 TH- 56

f> 5. 43

0.99 1 SET* 1.

I- 0. 206 204201 IE- 602 Tl;1£,HR.»
i- 0. 4764655605E-003 TI rt E, rl R.-
t- 0. 1S33019322E-003 TML.M9.-
3- 0. 5674979 134E-004 TI .1 L, rt S. »
Af- 0. 529 454 1 155E-001

F2

J.9 I 07 1 4-

9. 9 12319

S. 9 1 38 3 3

i. 9 I 5 39 7

9-9 168 68

9.9 18 363

i 19707

I 2 1 03 7

9.9 22446

9.9237-S3

92S1 15

926436

927735

9. 9 29 0 3 I

9.9 36319

9. 9 3166 6

9338 75

!-9 34 145

9.935410

939 13 1

I. 9 4643 1

41677

429 20

44 160

45393

46633

1.947365

I. 9 49 09 4

956321

951546

1.9 52 7 68

953933

9.955205

956421

957634

95R345

960653

J.9 61260

f. 962464

963667

9 643 67

J.966066

967263

9.9 68 458

969652

'. e00006

I. 600329

I. 0066 13

>• 000/1 56

:. 600095

. eeetw

:. eeeei-i

'.666 166

'. 60P254

i.600343

i.66643 I

i.6605 13

60603

532 ]JB

532 366

533 556

534 233

534 9 15

535 59 t

536 275

'" 0. I261275378L- 062
t* 0. 3467062483 L- 0B3

:- 6. 110776290IL- 603
*.* 0. 4306399 0 19 E- 664

Ap- 0. 5327102760£-001

e. 9 10714- 0.000066 5 10. 000-

e. 9 1 |7|6 0.000152 5 10. 561

a. 9 12711 0. 00029 6 51 1. 1 18

e 9 1366 7 0. 000421 51 I- 6 64

0 914645 0. 000529 5 12. 201

0 9 15588 0. 060622 5 1 2. 7 29

0 9 16517 0.000701 513-256

0 917436 0. 000769 513. 764

0.9 19 345 *. 0069 23 514. 273

0.9 19 247 0. 0006 79 5 14.773

0.920141 0. 06 09 24 515. 279

0.9 21036 0. 0009 62 515. 777

0.9 219 14 0. 6009 9 6 516. 272

B. 9 22 79 4 0.001025 516- 765

0.923670 6.001051 517.255

0. 9 24543 0.001074 517.744

0.9 25413 0. 001093 513.231

0.9 2628 0 0. 001 1 10 513.717

0.9 27 146 0. 001 125 519.202

0.9 28 009 0. 001 138 519. 685

0.9 2S8 70 0. 001 149 5 20. 167

0.9 29 729 0. 00 I I 53 520* 646

0.9 3058 7 0. 001 165 521. 129

0.9 31444 0. 001 172 £21. 609

0.9 32299 e. 061 177 522. 083

0.9 33153 6. 001 IS 1 522-566

0.9 34006 0. 001 18 3 523- *44

0. 9 349 56 0. 001 18 5 5 2 3.521

0.9 35709 0.061 135 523-997

0.9 36558 ft. 001 13 4 524.473

0.937407 6. 06 1 18 2 524.9 48

0.9 38 254 0. eei 130 525.422

0.939 101 0.061 176 525.396

0.9 399 46 0.601171 526.370

0.9 4079 1 0. 06 1 1 65 526.843

0.941635 0- 00 1 1 59 52 7. 3 16

0.942478 0.00115 1 S27. 737

0.943326 0.001143 5 23- 2S9

0.944161 0. 601133 5 28.7 30

0.9 45 06 1 0. 00 1 123 529.206

0.9 458 46 0. 0ei 1 12 529. 670

0.9 4667H 0. 60 1 166 5 30. 140

0.9 475 16 0. 00 168 7 5 30. 609

0.948 352 0.061073 531.077

0.9 49 13 8 0. 6016 59 531.545

0 950023 6. «ei044 532-013

0 950657 0.961627 5 3 2. 43 6

0 951696 6.00 10 16 532.947

0 .952523 6. 606992 533-413

0 .953354 e. 06 09 7 3 533- 373

0 .954135 6. 0009 54 534. 344

0 .955015 6. e009 33 534. 303

6 .9 558 44 0. 0009 12 535. £73

6 .956672 0. 60089 6 535- 736

6 .957500 0. 0008 67 536.206

0 .958 326 0. 6 063 43 5 36. 66 3

0 .9 59 152 6. 6008 19 537.125

6 .959977 0. 60079 3 5 37. 53 7

6 1.9 668 6 1 0.000767 5 33- e48

e .961624 0. 060746 5 39 . 5 I 0

0 .962447 0. 0 007 12 533-970

0 .963268 0. 00068 3 5 39.4 30

0 .964639 0.660654 S39. 39 0

e . 9 649 09 0.600623 546. 349

t .965723 0. 00059 2 540. 3e3

i .966547 0. 00056 1 541.266

t .967365 0. 0005 24 541.724

i .9 63 13 1 0. 00049 4 542. 132

t .963998 0.0P646? 5 4 2. 6 39

t .9693 13 0.000425 543. 09 5

0. 660396 543. 55 1

.971441 1. eB6353 5«4.607

.972255 e.000316 544.4 63

.973667 0. 000273 544.7 13

.9 733 79 0. 060239 545.372

.9 7469 6 6.060200 545.326

.975Se0 0.000160 546. 23 0

.976316 0.000i2e 546.734

.977 | 19 0. 0000 73 547. 137

.9 779 23 0.000037 547. 64b

.9 78 7 3 6- 0.000065 5 4J. e9 2-

.9 79 54 4- 0. 0006 43 548.545-

.93635 1- 0. 06009 1 5 4.3.99 7-

. 9 3 I I 58 - C 000134 54).449-

8.93 19 65- 6. 000173 5 49.9 0 1-

• 93277> 6.006221 556. 353-

.93 353 0- 6.060264 5 5 6. 165-

.93 438 7- 0.000307 55 1. 257-

.935195- 6. 066349 551. 709-

.936064- 0. e0B39 1 552. It2-

8. 93 63 13- 0. 000432 5 5 2- 6 1 5-

8.937625- 0.60647 1 5 5 3. li7U-

.133433- B. 600507 553- 525-

Z. 939 254- 0.000541 553.932-

i).99e074- 0.060572 55 4. 442-

8.19e393- 0. 000593 55 4. 9 id 3-

8. 9 9 17 29- 0. 0006 13 555.364-

8.992566- 0.000b31 555.337-

8.99 3413- 6.006635 556. 31 1-

8.994271- 6.000627 556. 79 2-

8.99 5 1 45- 0.000663 557. 2\) 1-

B.996039- «.0eB566 55 7. 73 2-

E.9969 51- 0. 66649 1 5 53. 29 6-

e. 99 79 1 1- 6. 0F0383 5 58 . "! 30-

0.99'19 13- 6.000236 559. 39 1-

.66e0?0 e. eeerez 56K.eea

7 4 49 56 00 L* flK9 Q, It. 14259 7599

0. 000

0. 03 5

e- 166

0. 236

0. 296

0 346

0 393

0 431

0

0 492

0 517

0 539

0 556

0 574

0 589

0 601

0 612

0 622

0 6 30

0 637

0 644

0 646

0 653

e 656

0 659

0 661

0 663

0 663

0 664

0 663

0 662

0 661

0 658

0 656

0 653

0 649

0 645

6. 601

0.59 3

0. 58 4

0. 575

0. 566

0.556

0. 545

0. 534

6. 523

0. 51 1

0. 49tl

0. 48 5

0. 399

0. 333

e. 366
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Focal Program Nomenclature for Program in Appendix B

Symbol

A

AL

L

N

Q

CA

TH

TC

SI

KEFF

T2

TI

TL, DF, T3, T4

NK, J, IV, I, KK, KA, JJ, M
IN, K

Dl, EG, DU, D2, EF

RI

NO

RC

Wl

BE

XS

D

G, Gl

El, E2E3, E4

AQ, Al, A2, A3, A4, A5, Bl, B2,
B3, B4, CI, C2, C3, C4

EI

Z

U

Definition

Trapezoidal area

a

Batt thickness

Number of increments

Heat flow rate

k

TH

xc

a = 0.1714 E-8

keff

New reduced temperature distribution

Old reduced temperature distribution

Output convenience variables

Indices

Convenience Variables

Refractive index

Number of cases

Defined in line 15.32 File 3

Defined in 01.32 File 4

b

Defined in 01.34 File 4

Defined in 03.10 File 4

Defined in Group 4 File 4

Ei(x), E2(x), E^ix), E^(x) integrals

Parameters set in Group 14 of File 4

EY(-x)

Error defined in Group 10 File 9

Old value of EF
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APPENDIX C

PDP/8e FOCAL PROGRAM LISTING, TYPICAL OUTPUT, AND NOMENCLATURE
LIST FOR THREE-REGION APPROXIMATION

O FOCAL. J 4. CODASIII 335 34W

01.01 C THREE REGION RAD/COND. FILE 85 SHJ 20 MARCH 80
01.02 C INPUT IS IN BTU, HR, FT, DEG. R UNITS.

01.03 C OUTPUT IS IN BTU, IN, HR, FT, DEG. R UNITS
0 1. 05 A "PR, EP,N 0 ? " PR, EP,N 0; T M S N» 0; T "AL, XL, CA, TH, TC EH, EC ? "
01. 06 S N-N+ 1

01. 10 A AL(N),XL(N), CACN),THCN),TCCN), EH(N), EC(N),* t !

01.11 I (N-N0) 1. 06; S N-0
01.12 S N-N+ l; S AL-ALCN),* S »L=tfLCN); S CA=CA<N);S TH=TH(N);S TOTCCN)
01.13 S EH-EH(N);S EC-ECCN)

01. 15 S 1=0; S SI-. 1714E-8; S Tl( d = th; S T2C D-TC
01.20 S R1-l/CCA*AL/Pfi+SI*EH*(THt.2+TH l)t 2)*CTH+T1C 1)7)
01. 25 S R2»CXL*AL-2*PR)/CCA*AL+C4/3)*3I*CTIC 1) t 2+T2< 1) t2)*C TIC 1) +T2C 1) ) )
01.30 S R3-1/C CA*AL/RR+SI*EC*CT2C l)t 2+TC»2)*<T2C D + TO)
01. 35 S I-I+ 1

01.40 S TI-TH+C TC-TH)*Rl/< R1+R2+R3)

01.45 S T2-TC+<TH-TC)*ft3/CR>l+R2+R3)
01.50 I C-FABSCCT1-T1C 1))/TK 1)) + EP) 1.6, 1.6
01.55 I CFABSCCT2-T2C 1))/T2C 1))-EP) 1.7
01.60 S TlCl)-Ti;S T2C1)-T2,*I CI-100) 1.2

01.65 GOTO 2.05

01.70 S Q»C TH-TO/C R1+R2+R3)
01.75 S CP-12*Q*XL/C TH-TO
01.90 T "CA-", S.1 1.04, CA, " AL-", AL, " *L= ", XL, " EH= ", EH, !
0 1. 9 1 T "EC- ", EC, " TH- ", TH, " TC- ", TC, " P>R» ", Pfi» J
01.92 T "EP» ", EP, !

01.9 5 T "Q»", XI 1. 06, Q* " CR-", CB» »

01.96 T "T1-", TI," T2=", T2, !

02. 01 I CN-N0) 1. 12; G

02.05 D 1.9; D 1.9 l; D 1.92; T "**** DID NOT CONVERGE ****", f

02. 10 I CN-N0) 1. 12; Q
*



74

L G 815

* G

PR, EP, MB ?: 0. 69 3 1 5 : 1 E- 4 : 3

AL,XL, CA, TH, TC, Eii1, EC ? : 50 : 0. 0833 : 0. 015 :560 : 510 : 1 : 1

: 100 : 0.08 33 : 0.015 : 560 :510 :1 :1
: 150 : 0.03 33 : 0.0 15 : 560 :510 :1 :1

CA= 0.0150 AL = 50. 0000 XL = 0. 08 33 EH= 1. 0000

EC= 1. 0000 TH = 560. 0000 TC= 510.0000 PR= 0. 69 32
EP= 0. 0001

0= 22. 447040 CP= 0. 448 761

Tl = 550.042566 T2= 521.103533

CA= 0.0150 AL = 1 00. 0000 XL- 0.08 33 EH= 1. 0000

EC= 1. 0000 TH= 560.0000 TC= 510.0000 PR= 0. 69 32

EP= 0. 0001

0= 16. 59 1717 CP= 0.331702

T4= 555. 050597 T2= 515. 3729 18

CA= 0.0150 AL = 150.0000 XL = 0. 08 33 EH= 1. 0000

EC= 1. 0000 TH = 560.0000 TC= 5 10. 0000 Pft= 0. 69 32
EP= 0. 0001

Q= 14. 259955 CP= 0. 28 508 5

Tl =

*

556. 788 139 T2= 513. 423984

Nomenclature for Program in Appendix C

Symbol Identification

CP Apparent thermal conductivity

EC Constants set equal to 1

EH Constants set equal to 1

EP Convergence criteria, 1 x 10-^

NO Number of data sets < 100

PR Dimensionless boundary region thickness, 0.69315

Rl Thermal resistance of region I

R2 Thermal resistance of region II

R3 Thermal resistance of region III

TI Absolute temperature at interface I/II

T2 Absolute temperature at interface II/III
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APPENDIX I)

FOUTkAinI PROGRAM FOR THIlKiXlliGIOfJ APPROXIMATION

The following program outputs values for the temperature at the
interior points which divide the total insulation thickness into three
regions. The temperature calculations include an output for the tem
perature profile in the middle region.

Identification of Variab1es

XK — thermal conductivity of air

XL — specimen thickness

TC - temperature of cold boundary

TG - temperature of hot boundary

TI - temperature between regions 2 and 3

T2 - temperature between regions I and 2

Q - heat flux

CP - effective thermal conductivity of specimen
AL — alpha, defined in nomenclature

RI — refractive index

FR - parameter defining thickness of regions 1 and 3
EP — convergence criterion

SI — Stefan-Boltzmann constant

EH — emissivity of cold plate

EC — emissivity of hot plate

X — distance into specimen
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Program Listing

^•^;:r^;-:7om7s".'oT«,cL.c,f..o.!..&.c.!7,!..c.
C030C

667 0/

0C500

£?!!!! S"T»°?i/«f..!2f..«!»«0..!.6f..f«.<»35-'
CC800 RI-1.C
009 00 FP.--693 15
C10C0 FP=.00001
CI 100 SI=- 1714E-S
01200 FH-1.
01300 FC=1
01400

01500

OC400 DATA XL/. C333, . ? 5, 5* C C/~-°° DATA TC/435.0.-475.0, 505.C, 510-C> 515-0, 545.C, 535.0/

D0 100 I- 1,7
D0 100 J= 1, 2

01600 *=I
C1605 TH-TG(I)
01610 T1A-TCCK)
01620 T2A-TH
C1630 NC=0
C1700 17 NC-NC+1
C1800

02 100

IF C NCGT- 100) 00 T0 99R1=1./CXKCI)*AL/FR+SI*EH*CW**2+T1A**2)*CTH+T1A))
C2200 R2=CXLCJ)*AL-2*FR)/CXKCI)*AL+C 1•3333)* SI *CT1A**2
sss r3:r/:sitsi^/??:si*Fc*cT^8*Tcc.,«8,*cT2A+TccK,)>
C2500 tib=TH+CTCCK)-TH)*P.1/CP1 +R?+R3)

T2B=TC(K)+CTH-TC(K))*R3/CP1+R2+R3)
02600
C270C TST1 =ABS(<T1B-T1A)/T1A)

T<;T2=ABS(( T2E-T2A) /T2A)
IF CTSTl.LT.FP.ANr.TST?.LT.FD G0 T0 9!028 00

029 00
C291C T1A-T1B
029 2 0 T2A=T?B
C3000 G0 T0 17
C 10 0 9C THI'J"^ = T1E
03200 T2CI,J,K)=T2B
03 300 G0T0 96
03400 99 TYPF 10CC# I, J..K
03500 1C00 F0PrtAT<2X,' N0 r0NV.",3I3)

037oS 96 eCI,J,K) =CTH-TCCK))/CPl +PP+P3)
C3300 cpCI,J,K)=12.*CCI,J,K)*XLCJ)/CTH-TCC*t))
C3900 ICO C0NTINUF

?3910 150 FIpLTfL'inrJX^3X.'K.,3X.'LFMGTH.;3X,'T r0LR.,3X,
03g!l r T* «,3X, • T* -,3X,*T H0T',«,« C ^5X,'X FFF )
*
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P4CCC.-8 100
C4000
04100 D0 20° I='^
04200 M 200 J-,,P

OS ?G° C0S^?I?'",6'F7'^"-^F3.,)
047C0 I^fJ 10C?'(XK(I)/I=hi)
04300 £" ;^2,CXLCJ),j=,,7,
04900 1002 VZLt^^"*'*--1' 6>Ocinp fKRHATC?X, 7F9. 3)

D0 «C 1 = 1,7
D0 400 J=l,?

043 00

049 00
05100

052CC

PAGF 2

05300

05400 T, ., „rt,
TC 1) = T2( I,j,;o
K=I

0*600 3 5 U=2' »'0^7So X(1)=FR/AL

06200 NO I.
06300 30 r-r „, , ,

06500

06600 NC-N0+1
06700 Tr ,Mn „
06300 rl-r/'GT'l00) G3 T0 21?06900 ^ AlTP***+R*TP-C)/C^*Tp**3+F)
07000 ^.ipA"CrF,-LT.FP, G0 T0 21

07200 21 tCd'tp
°;300 39 5 C0NTINI-F
07 4 n n

07 S™ ,««, JYPF 10°3' I^J.K
P7^,n ^RMPTCPX, 313)^~10 TYPF iff
C752C 160. F^TCIX, V^: t;al,.tf TF,Ip>)
07700 ™ 393 L=1'1]

rZ900 39f? C0NTINI'F08 000 400 r0MTINTTF
°30.0 R,c ^ Q
03020 1005 F0WATfPv , _ ^T
08025 Z f ' ' T TIT N0T r0.V.,FKGF^I3)
08100

*

30 T0 400
FNP



INDEX

1

1

2

c

3

3

4

4

c

5

6

6

7

7

1

2

1

2

1

2

1

2

1

2

r

2

1

2

0-

o.

o.

o.

c

o.

c

0-

o.

o.

0

0

0

0

K LFNG

0132C7 C

013207

014173

C 14 173

014834

C1483 4

015C0C

0 15000

,015115

.015115

.CI 579 5

.01579 5

.016670

.0 1667 0

0

c

c

c

c-

c

o.

0-

c

0

0

0

0

Sample Output for oc = 200

0333

2 5CC

03 3 3

2500

03 3 3

2 5 00

0333

, 25C0

.0333

.2500

. C333

.2500

. 0333

2500

' C0LT

43 5. 00

43 5-

47 5«

475-

50 5«

5.0 5..

510-

510-

515>

5 1 5'.

545

545

58 5

53 5

00

00

CO

CO

CO

00

00

, 00

.CO

.00

. CO

.00

.00

T*

437-39

435-30

477-44

475-32

507-43
505.33

5 12-43
510-34

517-49
515-34

547-53
545-3 5

58 7-53
53 5- 37

T*

43 2

43 4

524
C CO

7 1

23

63

22

65

5.5 4 • 2 1
557.64

5 59.21

562-64

5 64- 2 1

592-61
594.20

632-57
634- 13

1 1 1
X VALUE T Fi^P

.003466 437.394

.01 U03 442-078

. 013''39 446-729

.026376 451-345

.034013 455-927

.041650 460-476

.049287 464.99 1

.056924 469.472

.064561 473-9 19

.072 197 473.333

.079834 432-7 14

1 2 1
X VALUF TFMP

.003466 4 3 5.804

.027773 440-321

.052079 445.799

.076386 45C-733

. 10069 3 455-639

. 1250CC 460-500

.149307 465-324

. 173614 47 0-108

. 197Q21 474-355

.222.227 479.563

.246534 484.233

H0T

435-0 0

435.CO

525. 00
525- 00

5 5 5 • 0 C

555-OC
560-OC
56C-C0

565-OC
565-CC
59 5-CC

59 5- CO

63.5- CO
635- OC

C. '

10-4351

3-5203
1 1-79 07

3 .9635

12-3375
3 19 4

013 1

33 09

2C01

4429

,3309

4-323 1
15-9437

5-3736

4-

13-

4«

13-

4.

14.

. FFF

0-2C9 6

C2! 12
0-2357

0-2373

,2566

,2592

,2603

.2629

.2639

0.

c

c

0-

c'<
2666

23 65

239 7

,3137

. 3227



1-2.

3.

4-5.

6.

7.

8-167.

168.

169.

170.

171.

172.

173.

174-183.

184.

185-187.

188.

189.
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248. R w Anderson, Energy Consultant, 7090 Tecomsen Lane

Chanhassen, MN 55317 Bien t,ane,

249. BABCOCK & WILCOX COMPamv ah-
Street, Allrance!T 44601"^ *"*"* ^^ 1562 *—

H. W. Wahle

250. CEAINC., 61 Taylor-Reed Place, Staraford, CT 06096
F. A. Govan

251. CERTAIN-TEED PRODS. CORP p n rCORP., P.O. Box 860, Valley Forge, PA 19482
J. F. Kimpflen

252. CERTAINTY CORP., U00 UnIon Meeting M., Blue Be!!, PA m22
D. J. McCaa

253. DOW CHEMICAL COMPANY, Granville Research Center P0 Box 51S
Granville, OH 43023 ' r.u. Box 515,

D. Greason
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254. FEDERAL TRADE COMMISSION, 414 11th Street, Star Building,
Washington, DC 20580

K. C. Howerton

255. FIBER MATERIALS, Biddeford Industrial Park, Biddeford, ME 04005
R. P. Tye

256. GENERAL SERVICES ADMINISTRATION, 18 and FStreets, NW,
Washington, DC 20405

C. L. Carter

257. GEOSCIENCE LTD., 410 S. Cedros Ave., Solana Beach, CA 92075
H. F. Poppendick

258. Charles Gilbo, 201 E. Ross Street, Lancaster, PA 17602
259. W. R. GRACE 6, CO., 62 Wittemore Ave., Cambridge, MA 02140

j. W. Howanski

260. HAUSER LABORATORIES, 5680 Central Ave., P.O. Box G, Boulder,
CO 80302

R. L. Hauser

261 INSTITUTO DI FISICA TECHNICA, FACOLTA INGEGNERIA-UNIV PADOVA,
Via F Marzolo N9, Padova 35100 Italy

F. DePonte

262. JOHNS-MANVILLE RESEARCH AND DEVELOPMENT CENTER, P.O. Box 5108,
Denver, CO 80217

C. M. Pelanne

263. LAWRENCE BERKELEY LABORATORY, ^""J °f Callfornla»
Bldg. 90, Rm. 3058, Berkley, CA 94720

W. L. Carroll

264. LOUISIANA PACIFIC CORP., PABCO INSULATION DIV., 1110 16 RD.,
Fruita, CO 81521

F. B. Hutto, Jr.

265. C. F. Lucks, 1858 W. Lane Ave., Columbus, OH 43221
266. MINERAL INSULATION MANUFACTURERS ASSOCIATION, 382 Springfield Ave.,

Summit, NJ 07901

S. Cady
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267- N^i^™,™^r^rc» F~°- -••
H. D. Angelton

268-272. NATIONAL BUREAU OF STANDARDS, DEPARTMENT OF COMMERCE GaitH „
Washington, DC 20234 wriutKCt, Gaithersburg,

R. Dils

F. J. Powell
B. Peavy
B. G. Rennex
M.C.I. Siu

"^ "tut"™" Zs?cm£Zl2?LDER' CYR0GE»ICS "«s™.' UK BASIC STANDARDS, Boulder, CO 80303
J. G. Hust

274-275. NATIONAL RESEARCH COUNCIL OF CANADA, Montreal Road art
Ontario K1A 0R6, Canada Montreal Road, Ottawa

M. Bomberg
C. J. Shirtliffe

276. OWENS-CORNING FIBERGLASS CORP t u • ,
Granville, OH 43023 ' Technical Center, Box 415,

M. Hollingsworth, Jr.

277. PITTSBURG CORNMG CORP., 800 Presque Isla Drlve> ^.^
R. W. Gerrish

278. ROCKWOOL INDUSTRIES, INC. P O Rov Si7n n, ^., f.u. Box 5170, Denver, CO 80217
S. L. Matthews

279. ROCKWOOL INDUSTRIES, INC., Leeds, al 35094
E. F. Cusick, Jr.

Catherine Langlais

281. STATE UNIVERSITY OF NEW YORK-STONY BRnnif * •
Stony Brook, NY 11794 ' En^lneerinS Department,

A. L. Berlad

282. W. C. Turner, 713 Forest Circle, South Charles, WV 25303
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283. JIM WALTER RESEARCH CORP., 10301 9th Street, North,
St. Peterburg, FL 33702

G. Miller

284-289. DOE CONSERVATION AND SOLAR ENERGY The Forestal Bldg.,
1000 Independence Ave., Washington, DC 20585

M. Savitz, Deputy Assistant Secretary

Office of Buildings and Community Systems
E. C. Freeman, Program Manager, Architectural and
Engineering Branch

E. L. Bales

John Cable
J. P. Millhone

Office of Industrial Programs

M. McNeil

290. DOE OAK RIDGE OPERATIONS OFFICE, P.O. Box E, Oak Ridge, TN 37830
Office of Assistant Manager for Energy Research and
Development Office

291_562. DOE, TECHNICAL IKFMMATK* °^». «»<* » t^^™8 SERVICES>
P.O. Box 62, Oak Ridge, TN 37830
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