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1.0. INTRODUCTION 

P, mini-technical assessment was performed on the following two advanced reactor  con- 
cepts  : 

Homogeneous Molten Sa l t  Sustainer Reactor (HMSSR) 
Graphi te-Moderated Heterogeneous Gas Core 
Reactor ( H G C R )  

The information tha t  was made avai lable  by the praposers f o r  these concepts was very 
sketchy and allowed only a mini-technical assessment t o  be performed. The discussions in 

t h i s  mini-assessment follow closely the discussions given i n  Ref. 1.0-1. 
report. should be considered a supplement t o  Ref. 1.0-1 and a complete understanding of the 
discussions will not be possible without Ref. 1.0-1. 

In f ac t  t h i s  

The HMSSR concept i s  similar  t o  the Denatured Molten S a l t  Reactor (DMSR) assessed in 
Reference 1.0-1 and in the technical assessment of the HMSSR reference and comparison was 
made with the DMSR. 

The H G C R  concept i s  s imi la r  t o  the Mixed Flow Gas Core Reactor (MFGCR)  assessed in 
Reference 1.0-1 and in the technical assessment o f  the HGGR reference and  comparison was 
made with the MFGCR. 

The primary object ive of t h i s  assessment was t o  compare the technical f e a s i b i l i t y  and 
pro l i fe ra t ion  resis tance potent ia l  of these two concepts with t h e i r  corresponding repre- 
sen ta t ives  in Ref. 1.0-1. A technical f e a s i b i l i t y  assessment of concepts in very ear ly  
s tages  o f  development must consider t h e i r  commercial potential and the issues  tha t  comprise 
i t ,  such as reactor  design, research and development needs, economics, environmental, and 
safe ty  issues .  
val id  only f o r  the evaluation within NASAP f o r  which they were intended. 
concepts o r  major modification t o  the present concepts may be expected t o  improve the 
ant ic ipated benefi ts  and decrease the uncer ta in t ies  associated with some of these advanced 
nuclear power concepts in the future .  Additional research and development would be 
expected t o  e i t h e r  disprove or  improve any given design, and design optimization o f  these 
t#o reac tor  concepts might eas i ly  cause changes in t h i s  assessment. 
the d i f f i c u l t  task of evaluating two technologies tha t  a re  in the very e a r l i e s t  s tages  of 
development. The  evaluation of commercial potent ia l  i s  par t icu lar ly  d i f f i c u l t .  

Due to  the nature of t h i s  assessment, the conclusions should be considered 
Indeed, other 

This assessment faced 

Most problems ident i f ied  throughout t h i s  assessment require solut ions through research 
and development. 
viding d e t a i l s  of the major programs spec i f i ca l ly  addressing them. 

These problems and research needs are  generally presented without pro- 
Neither concept has 
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advanced t o  the point where J deta i led  research and development program has been under- 

taken. 

problems. 
problems ident i f ied  in t h i s  assessment a r e  l i k e l y  t o  be supplemented by myriad other  
d i f f i c u l t i e s  as the  program proceeds. This aspect and the large uncertainty in the designs 
imply t h a t  any estimates of RD&D schedule and costs  amount t o  no more than guesses. 
reason f o r  providing RD&D estimates i s  t o  provide a basis  of comparison among the various 
concepts. 
fur ther  discussed i n  Appendix A of Ref. 1.0-1. 

The progress of any research program depends on the a b i l i t y  t o  resolve outstanding 
Since these concepts a re  in  a very preliminary s tage of development, the 

The 

The d i f f i c u l t i e s  and methods used t o  estimate RDRtD cos t s  and schedules a r e  

The uncertainty a f fec t ing  economic estimates of the two concepts i s  a l so  qui te  large.  
The methods and uncertaint ies  f o r  the economic estimates a r e  fur ther  discussed in Appendix 
B of Ref. 1.0-1.  

The evaluation of the  pro l i fe ra t ion  resis tance of each concept i s  an important dspect 
of t h i s  assessment. Unfortunately, n o  hard-and-fast rules  e x i s t  f o r  measuring the pro- 
l i f e r a t i o n  resis tance of any reactor fuel cycle.  Any nuclear reactor  system will  have 
some potent ia l  f o r  pro1 i fe ra t ion  because a l l  reactors  require f i s s i l e  material f o r  
reactor  operation. Most reactor  systems have inherent fea tures  which r e s i s t  misuse of 

the f i s s i l e  mater ia l .  Those features  o r  services  which o f f e r  the l e a s t  res is tance can 
poten t ia l ly  have t h e i r  res is tance increased by a number of pro l i fe ra t ion  resis tance 
techniques which include technical adjustments, physical safeguards,  ins t i tu t iona l  con- 
t r o l s ,  and p o l i t i c a l  arrangements and sanctions.  
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2 . 1  HOMOGENEOUS MOLTEN SALT SUSTAINER REACTOR 

2 .1 .1  Conceptual Plant Design 

2.1.1.1. Summarl 

The HMSSR i s  a thermal neutron spectrum reactor  with a homogeneous core. Iwa 
d i f f e ren t  s a l t s  a r e  c i rculated within the reactor  core ,  a f i s s i l e  fue l - sa l t  within the 
reactor  care and a f e r t i l e  b lanket -sa l t  around the core. 
fuel breeding cycle and fo r  purposes of t h i s  assessment i s  sized t o  provide a net e l e c t r i c  
output of 1000 MWe. 

The reactor  uses a 232Th/233U 

In comparison with the Denatured Molten S a l t  Reactor (DMSR)  the  HMSSR d i f f e r s  in 
design requirements as follows: 

Moderator i s  contained in the homogeneous fuel s a l t  mixture ra ther  
than as fixed graphi te  core sect ions.  

Smaller s i z e  reactor  vessel .  

Lower f i s s i l e  ( f u e l - s a l t )  inventory. 

More compact reactor  design. 

Requires additional processing systems t o  clean u p  and separate 
const i tuents  from b o t h  the fuel s a l t  and the blanket s a l t .  

Requires an internal  vessel t o  separate  core from blanket s a l t .  

2 .1 .1 .2 .  Plant Arrangement 

Plant arrangements were n o t  described f o r  the HMSSR, therefore  an  assessment o f  
the arrangement cannot be provided d i r ec t ly  and cer ta in  assumptions must be made. 
on information provided in Ref. 2 .1 -1 ,  a HMSSR i s  expected t o  be capable of producing a 
net e l e c t r i c  o u t p u t  of 1000 MW using a compact reactor  vessel of spherical  design. The 
HMSSR reactor  vessel i s  ant ic ipated t o  be much smaller in overall dimensions than the 
DMSR vessel. However, the overall s i z e  o f  the HMSSR reactor  building will probably be 
la rger  than an equivalent MYlSR building due t o  the additional systems which must be 
conta-ined. 
unique t o  the homogeneous design: 

Based 

I n  pa r t i cu la r ,  the HMSSR must provide for  the  following systems which a re  

a Thorium blanket s a l t  c i rcu la t ing  system. 
0 Fuel s a l t  so l id  f i ss ion  product removal and  processing systems. 
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@ Thorium blanket gaseous and sol id  f i ss ion  product clean-up, 
processing and renova1 systems. 

$ Thorium blanket fuel drain systein. 
e Thorium blanket heat-up system. 

2.1.1.3.  Reactor De.sj-gn- 

The reactor  design described in Ref. 2 .1-1  i s  t h a t  of a spherical  vessel in which 
a primary fue l - sa l% i s  circula%ed through %he i n t e r i o r  core of the vessel and a blanket 
s a l t  i s  c i rculated around the core. 
T h e  blanket i s  primarily a breeding region s ince i t s  s a l t  contains thorium. 
of neutrons i s  provided by the neutron moderating e f f e c t s  of beryllium as  a s a l t  con- 
s t i t u e n t  in bo th  regions. The reactor  i s  designed f o r  a breeding r a t i o  of one, although 
t h i s  r a t i o  can be varied t o  accommodate a wide var ie ty  of other design object ives ,  such 
as pro l i fe ra t ion  res i s tance ,  integral  fuel processing, breeding gain,  f i s s i l e  or f e r t i l e  
material  inventory, denatured o r  nondenatured f u e l ,  e t c .  Enriched uranium would be 
required f o r  i n i t i a l  operation a f t e r  which the HMSSR would supply i t s  own f i s s i l e  material 
needs by breeding 2 3 3 U .  

The primary s a l t  contains 2 3 3 U  as a f i s s i l e  material .  
Thermalization 

The HMSSR blanket i s  separated from the core s a l t  by a n  internal  reactor  core 
shel l  t o  be fabricated of f iber-reinforced graphite.  
s a l t  froin the blanket s a l t ,  t h i s  internal  vessel ac t s  t o  enhance thermalization of neutrons 
leaked from the core t o  the blanket region. 
HMSSR. The development o f  the  internal  vessel represents a major technological problem 
f o r  t h i s  concept. 
graphi te  shel l  i s  the a b i l i t y  of the material to  withstand the radiat ion t o  which i t  wi l l  
be exposed f o r  a su i tab le  reactor  l i f e .  Hastelloy N a l loy  could be used t o  fabr ica te  the 
internal  shel l  and i s  suggested as an a l te rna te .  However, a penalty i n  the nuclear 
performance i s  imposed when t h i s  a l loy  i s  used. An outer  neutron r e f l e c t o r  region may be 
des i rab le  t o  improve the breeding performance of the blanket region. 

I n  addition to  separating the fuel 

Figure 2 , I - l  presents a schematic of the 

The major question regarding the development of a f iber-reinforced 

As i s  the case with the DMSR concept, a good deal of  t e s t i n g  and invest igat ive 
work remains t o  be performed t o  demonstrate the technical f e a s i b i l i t y  and includes: 

Reactor mater ia ls  of construction under the i r r a d i a t i o n ,  temperature, 
and mol ten s a l t  environment. 
Reactor core hydrodynamics. 
Reactor vessel dimensional s t a b i l i t y .  
Reactor control and safe ty  fea tures ,  including control and safe ty  
rod requirements, ant ic ipated 1 i f e ,  and  instrimentation. 
Containment penetrations,  sea ls  , wiring and insulat ion materials 
when subjected t o  the operating conditions.  
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2.1.1.4.  Pr imary Heat Transp-ort System 

Reference 2 .1 -1  does n o t  d e s c r i b e  t h e  p r imary  hea t  t r a n s p o r t  system f o r  t h e  HMSSR. 

Rased on t h i s  s ta te i i ient  f u e l  s a l t  w i l l  be assumed 
However, i t  does s t a t e  t h a t  t h e  p l a n t  e x t e r n a l  t o  t h e  r e a c t o r  vessel c o u l d  be s i m i l a r  t o  
those o f  t h e  ORNL design f o r  t h e  DMSR. 
t o  e n t e r  t h e  r e a c t o r  co re  a t  a temperature o f  approximat.ely 1O5O0F, and leave  a t  1 3 O O O F .  
The p r i n c i p l e  d i f f e r e n c e  i n  t h e  p r imary  hea t  t r a n s p o r t  systems o f  t h e  two mo l ten  s a l t  
concepts then  becomes t h e  co inposi t ion o f  t h e  f u e l  s a l t  and t h e  requ i remen t  t o  process t h e  
f u e l  s a l t  o f  t h e  HMSSR i n  o r d e r  t o  remove t h e  f i s s i o n  p roduc t  i m p u r i t i e s .  The p rocess ing  

system design and development appears t o  be a ma jo r  o b s t a c l e  t o  t h e  c o n s t r u c t i o n  o f  a 
HMSSR p l a n t .  

The b l a n k e t  s a l t  system i s  un ique t o  t h e  HMSSR w i t h  no e q u i v a l e n t  system i n  the  DMSR. 
The t h o r i u m  s a l t  undergoes some f i s s i o n i n g  i n  t h e  b l a n k e t  r e g i o n  and i s  a source o f  b o t h  
hea t  and f i s s i o n  p roduc ts ,  b o t h  o f  which i i iust be removed f rom t h e  r e a c t o r  vessel .  These 
systems have n o t  been descr ibed.  Design and developmental work w i l l  be r e q u i r e d  t o  p r o v i d e  
s u i t a b l e  iiieans t o  remove b o t h  t h e  hea t  and f i s s i o n  p roduc ts .  

Since t h e  p r i m a r y  hea t  t r a n s p o r t  systems a r e  assumed s i m i l a r ,  t h e  HMSSR o f f e r s  no 
advantages ove r  t h e  DMSR i n  terms o f  reduced design, development, or eng ineer ing  work. 
The requi rements f o r  programs t o  design, develop, and t e s t  hea t  exchangers and pumps a r e  
t h e  same as f o r  t h e  DMSR as i s  t h e  need f o r  c o n t r o l ,  i n s t r u m e n t a t i o n ,  and f l o w  measurement 
dev i ces  which w i l l  be capable o f  w i t h s t a n d i n g  t h e  temperatures,  environment, and c y c l i c  
behav io r  o f  HMSSR. 

2.1.1.5.  Sfcfqndg- Heat Tran~mrJ.. System 

'The secondary h e a t  t r a n s p o r t  system o f  t h e  HMSSR i s  assumed t o  be t h e  same as t h a t  
o f  t h e  DMSR. Therefore,  t h e  requi rements w i l l  be t h e  same. The major  u n c e r t a i n t i e s  o f  
t h e  DMSR system a r e  summarized below: 

B Tlie e f f e c t s  o f  wa te r  i n t r u s i o n  i n t o  t h e  c o o l a n t - s a l t  atid t h e  degree 
of wa te r  i n t r u s i o n  which can be p e r m i t t e d  must be s t u d i e d  t o  determine 
t h e  p recau t ions  and l i n i i t i n p  parameters which must be imposed on 
t h e  s t e m  genera to r  des ign.  

(D The e f f e c t s  o f  a l a r g e  scale-up f o r  t h e  c o o l a n t - s a l t  c i r c u l a t i o n  pumps 
must be considered.  

r The e f f e c t s  o f  t r i t i u m  d i f f u s i o n  from t h e  p r i m a r y  hea t  t r a n s p o r t  
system t o  t h e  secondary hea t  t r a n s p o r t  system must be analyzed, 
and mean5 o f  p r e v e n t i n g  t h e  t r i t i u m  f rom d i f f u s i o n  th rough  t h e  
w a l l s  o f  t h e  secondary hea t  t r a n s p o r t  system components and p i p i n g  
w a l l s  must be developed and demonstrated. 
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2 I 1 .l. 6. Con t a i n ~ e ~ L - S y s  tern 

Recognizing t h a t  the containment design i s  dependent upon the s i z e  and shape of 

In p a r t i c u l a r ,  the HMSSR containment must provide f o r  penetrations of 
the  reac tor  vesse l ,  HMSSR wil l  require  fea tures  not present ly  associated with l i g h t  
water reac tors .  
the secondary heat t ransport  system as well a s  the  blanket s a l t  system piping, controls ,  
wl r i n g ,  and instrumentation. 

As i n  the  case of the DMSR the development o f  systems f o r  iner t ing ,  cleanup, and 
disposal will  be required.  The  design and development of such systems i s  considered 
technical ly  f e a s i b l e  although much time and e f f o r t  wil l  be required t o  optimize these 
sys terns. 

2 .1 .1 .7 .  @isactive Waste Control S y s e  

The need f o r  and the function of the radioact ive waste control systems f o r  the 
HMSSR a r e  outlined in R e f .  2.1-1. Unlike the DMSR, which i s  designed t o  preclude the 
removal of so l id  f i ss ion  products from the f u e l - s a l t ,  the HMSSR is  dependent upon clean- 
u p  of the fuel f o r  sustained operation. A small sidestream of the fuel s d l t  i s  to  be 
continuously processed i n  an in-plant  processing System t o  remove sol id f i ss ion  products 
from the f u e l - s a l t .  
t o  separate  the bred 2 3 3 U  from the s a l t  and d i r e c t  i t  t o  the fuel  s a l t  stream. 
systems wil l  requit-e extensive development and design work. 

In a s imi la r  manner the blanket-sal t  must a l s o  be processed i n  order 
These 

In addition t o  the above s a l t  processing systems, gaseous f i s s i o n  products must 
a l s o  be removed from the s a l t s .  An off-gas system s imi la r  t o  t h a t  of the DMSR will  serve 
equally well i n  t r e a t i n g  the HMSSR off-gas.  
isotopes of concern such as x e n o n ,  krypton and t r i t i u m ,  wil l  be recovered and bot t led 
with the object ive of e s s e n t i a l l y  zero release from the plant .  
the HMSSR w i l l  require additional s tudies  f o r  the off-gas system to  determine: 

As i n  the case o f  the  DMSR, the gaseous 

As noted f o r  the OMSK, 

a The f e a s i b i l i t y  of s tor ing  h i g h  level  radioact ive wastes on-site.  
e The means o f  t ransport ing wastes from their i n i t i a l  locat ion t o  

0 

the  s torage area.  
Storage area requirements for  s i z e ,  shielding,  and special  systems 
(cooliny, iner t ing ,  c i rcu la t ion ,  e t c . ) .  
Removal of wastes from storage f o r  processing and disposal a t  another 
1 oca t i  on. 

a Means of immobilizing wastes t o  accommodate shipment should a plan 
be adopted which c a l l s  f o r  l e s s  than 30 years of storage on-si te .  

0 
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2.1.1.8. Engineered-_Safety F e a t s  

Information on tile engineered safety features  systems i s  not contained in Ref. 
2 . 1 - 1 ;  b u t  a f u e l - s a l t  drain system i s  envisioned t o  be s imi la r  t o  t h a t  of the DMSR. 
This system will  serve to  s top the f i ss ioning  of uranium by removing the fuel from the  

core and putting i t  in a subcr i t ica l  configuration. The drain system wil l  require  a means 
of removing the decay heat from the s a l t .  Again, as in the DMSR, such a system appears 
technical ly  feas ib le .  

In addition t o  the  f u e l - s a l t  drain system, blanket-sal t  drain and cooldown systems 
wil l  be required.  
require  the same degree of engineering design and r e l i a b i l i t y .  

These sys t em should be s imi la r  t o  those f o r  the fuel s a l t  and will  

Gwing t o  the design of the I-IMSSR, a "catch pan" s imilar  t o  the one used i n  the 
DMSR f o r  containing f u e l - s a l t  s p i l l s  and leaks i s  d i f f i c u l t  t o  provide. 
catch pan i s  needed; however, segregating f u e l - s a l t  s p i l l s  from blanket-sal t  s p i l l s  
appears almost impossible as  b o t h  systems a r e  present in the i-eactor c e l l .  A coinnion catch 
pan to  contain s p i l l s  and a processing system capable of separating fuel and blanket s a l t s  
appears t o  be required. 

In the HMSSR the 

I n  designing the f u e l - s a l t  drain system, the blanket-sal t  drain system, and the 
catch-pan f o r  the combined s a l t s ,  the posi t ive shutdown mechanism of the s a l t s  being 
separated froirr the  graphi te  moderator wil l  not e x i s t  as i n  the DMSR. Therefore, special  
design care will  be required t o  assume an adequate s h u t d o w n  margin o f  r e a c t i v i t y  i n  the 
drained condition and spec i f ic  safety features  may be required f o r  this purpose. 

2 .1 .1 .9 .  Auxil iar_)i..Sjstems 

The auxi l ia ry  systems f o r  the HMSSR are  the same as f o r  the DMSR, a n d  t h e  assessment 
i s  the  same. 

2.1.1.10. __ Plant Structures  ___. and Shi .e .1 .U 

The plant s t ruc tures  of a HMSSR must be designed, developed, a n d  t es ted .  As the 
reactor  vessel f o r  t h i s  concept i s  of spherical  design, a completely d i f f e r e n t  means of 
s u p p o r t  will  be required. 
reactor  vessel a s  well as provide f o r  r e s t r a i n t  of the vessel i n  case of a seismic 
event. Since the plant  s t ruc tures  are  unlike those employed in present LWR plants ,  they 
appear t o  be more challenging t o  design and thus should require  s i g n i f i c a n t  time and e f f o r t  
to  develop. 

The support s t ruc ture  must permit the radial  growth of the 

Shielding of the HMSSR appears t o  be a major undertaking. In addition t o  shielding 
the reactor  vessel ,  the primary heat t ransport  system components and the  interconnecting 
piping, i t  wi l l  be necessary t o  shield the components of the s o l i d  f i ss ion  product radio- 
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ac t ive  waste control system, the blanket s a l t  system, and the off-gas processing systems 
as well as the spaces i n  which these components and t h e i r  appurtenances can be t ransported,  
i . e . ,  the h o t  c e l l s  and the waste storage areas .  

2.1.1.11. Steam and  Po!der Conversion Systems 

The steam and power conversion systems for the HMSSR are  ant ic ipated t o  be ident ical  
t o  those planned for  the DMSR, and the assessment i s  the same. 

2 . 1 . 2  Technology Status  and  Research, Jgveloprnent, and Denonstrati_ol! 

2 .1 .2 .1 .  Summarl 

The capabi l i ty  of a HMSSR t o  sus ta in  f i s s ion  has n o t  been demonstrated. The 
technological f e a s i b i l i t y  o f  the concept t h u s  remains t o  be proven. 
Research, Development, and Demonstration ( K O & D )  work associated w i t h  the reactor  vessel ,  
a t  t h i s  point i n  time represents a paper design. 
pr inc ip le  o f  operation o f  the HMSSR have been taken, 
the reactor  concept and the soundness of the core physics remain to  be accomplished. 
Additional ba r r i e r s ,  namely those related t o  the processing o f  b o t h  the fuel and blanket 
s l a t s ,  must be overcome in the process o f  demonstrating the concept 's  a b i l i t y  t o  provide 
an  energy source fo r  the future .  

I n  pa r t i cu la r ,  the 

None of  the s teps  required t o  prove the 
Experimental programs t o  demonstrate 

With the exception of  the RO&D requirements of the OMSR moderator graphi te ,  a l l  
of the other RD&O programs, t e s t s  and  developmental a c t i v i t i e s  of the DMSR are  applicable 
t o  the Homogeneous Mol ten S a l t  Reactor concept. 

The RD&D needs of the HMSSR are  ant ic ipated to  exceed those o f  the DMSR. 
time required t o  place a lead commercial HMSSR plant  in operation i s  roughly estimated 
t o  be approximately 40-45 years ,  a n d  the cost  of the  program leading to  plocing such a 
plant in operation should approximate $7 t o  12  b i l l i on  (1979 $) (Appendix A o f  Ref. 1.0-1 
contains a discussion of estimating methods and unce r t a in t i e s . )  

The 

2.1.3 Pro l i fe ra t ion  Resistarice Features 

While the pro l i fe ra t ion  r e s i s t an t  features  o f  Lhe HMSSR have not been investigated 

However, the addition of fuel and blanket reprocessing 
i n  d e t a i l ,  f o r  the most p a r t  they a re  expected t o  be qui te  s imilar  t o  the DMSR's 
pro l i fe ra t ion  r e s i s t a n t  fea tures .  
systems will subs tan t ia l ly  increase the pro l i fe ra t ion  vulnerabi l i ty  o f  the  HMSSR and may 
require deployment in  secure fuel service centers .  
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2 . 1 . 4  Reactor-Physics Considerati-ons 

A r e a c t o r  phys i cs  model has n o t  been developed t o  v e r i f y  t h e  f e a s i b i l i t y  o f  a HMSSR. 

The 
Some o f  t h e  s p e c i f i c  

Much work remains t o  be done before t h e  HMSSR can be considered an a t t r a c t i v e  concept. 
u n c e r t a i n t i e s  assoc ia ted  w i t h  t h e  HMSSR outnumber those o f  t h e  DMSR. 
i t ems  which must be i n v e s t i g a t e d  a r e :  

e Whether f i s s i o n  can be sus ta ined  u s i n g  moderator  d i s p e r s a l  i n  t h e  
fue l  and b l a n k e t  s a l t s .  T h i s  i s  bas i c  t o  t h e  f e a s i b i l i t y  o f  t h e  
concept. 

e The n e u t r o n i c s  e f f e c t s  of a r e a c t o r  core s h e l l  made o f  H a s t e l l o y  
N versus g r a p h i t e .  

o The need f o r  a neu t ron  r e f l e c t o r  r e g i o n  f o r  t h e  b l a n k e t  

e C r i t i c a l i t y  i n v e s t i g a t i o n s  o f  t h e  f u e l  and b l a n k e t  s a l t  d r a i n i n g  
o p e r a t i o n s .  

O p t i m i z a t i o n  o f  c o r e  and b l a n k e t  parameters. 

E Dete rm ina t ion  o f  c o e f f i c i e n t s  o f  r e a c t i v i t y .  

e Dete rm ina t ion  of r a d i a t i o n  source terms f o r  s h i e l d i n g  des ign 

and f o r  de te rm in ing  e f f e c t s  on r e a c t o r  components (e .  g., co re  she1 1 ) .  

De te rm ina t ion  o f  b reed ing  r a t i o s .  

2 . 1 . 5  F u e l i n g  Alternatives...and Resourcs - -U t i l i za t i on  

The f u e l  c y c l e  f o r  t h e  HMSSR r e q u i r e s  o n - s i t e  p rocess ing  f o r  b o t h  t h e  mo l ten  f u e l -  
s a l t  and t h e  t h o r i u m  b e a r i n g  b l a n k e t - s a l t .  
can c o n v e r t  t h o r i u m  t o  2 3 3 U  i n  t h e  b l a n k e t  r e g i o n  and then, a f t e r  p rocess ing  t h e  b l a n k e t -  
s a l t  e x t r a c t  t h e  2 3 3 U ,  and d i r e c t  t h e  f i s s i l e  m a t e r i a l  i n t o  t h e  f u e l - s a l t  s t ream f o r  use 

i n  s u s t a i n i n g  r e a c t o r  ope ra t i ons .  

Through t h i s  rep rocess ing  scheme, t h e  HMSSR 

Whi le  o t h e r  f u e l s  c o u l d  be used f o r  s t a r t u p ,  s t a r t u p  w i t h  20% e n r i c h e d  uranium i s  
es t ima ted  t o  r e q u i r e  about  600 t o  800 kg o f  235U.  
resource  requ i remen t  f o r  t h i s  s t a r t u p  l o a d  i s  es t ima ted  t o  be between 150 and 200 s h o r t  
tons o f  U308. 
t h i s  concept  i s  p r e d i c t e d  on a n o n - r e f u e l i n g  c y c l e .  Thus, t h e  p l a n t  w i l l  r e q u i r e  a 
f a c t o r  of 30 t o  40 l e s s  uranium over  a 30-year p l a n t  l i f e  compared t o  a LWR once-through 
f u e l  c y c l e .  

Based on 0.2% t a i l s  t h e  uranium 

T h i s  i s  a l s o  t h e  U308 resource  requ i remen t  -For t h e  p l a n t  l i f e t i m e  s i n e  
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2 .1 .6  Mechanical a n ~ - ~ ~ e r r n a l - t l y d r a u l i c  ... .. Considerations 

Mechanical and thermal -hydraulic considerations f o r  the HEISSR, as  compared with, 
the DMSR would d i f f e r  s ign i f i can t ly  in the following respects :  

Thermal hydraulics of the fuel and blanket s a l t s  inside of the 
HMSSR reactor  vessel would be d i f f e ren t  because of 'the lack of 
graphi te  core nienibers I 

There would be two s a l t  c i rcu la t ing  loops ra ther  t h a n  one as in the 
DMSR. 

The requirement t o  mechanically separate  the fuel and blanket 
s a l t s .  

Avoidance of c r i t i c a l i t y  in fuel and blanket s a l t  draining 
arrangements. 

2 .1 .7  Mster ia ls  Selection and Resources 

The mater ia ls  of construction o f  an I i f lSSR appear t o  be ident ical  with those of the 
DMSR with the exception t h a t  the  HMSSR uses beryllium i n  the  fuel and blanket s a l t s  as a 
moderator whereas the DMSR uses graphi te  core members. 
associated with the DMSR moderator a re  no t  applicable to  the HMSSR. However, the HMSSR 
design uses an inner core s h e l l ,  not found in the DMSR. This inner core shel l  i s  t o  be 
fabricated of f iber-reinforced graphi te .  As s ta ted  in Ref. 2.1-1, "Since the f ibe r -  
reinforced graphi te  has a much d i f f e ren t  s t ruc tu re  t h a n  nuclear grade graphi te ,  the a b i l i t y  
t o  develop a f iber-reinforced graphite vessel of su i t ab le  radiat ion resis tance is  open t o  
quest ion."  The suggested a l t e rna te  material  fo r  t h i s  core shel l  i s  Hastelloy N ,  which 
would have sa t i s f ac to ry  radiat ion resis tance b u t  would degrade the reactor  neutronics 
t o  some extent .  

Thus, the uncertaint ies  

Sources of supply must be developed f o r  the  material of the fuel and blanket s a l t s .  
Although 1 i t t l e  beryl1 ium i s  used in present-day reactor  technology, supplies have been 
developed in the past and should be avai lable  fo r  t h i s  appl icat ion.  

2.1.8 

Plant operations a re  assumed t o  be conducted in much the same manner as those of 
the  DMSR. Again, as in the case of the DMSR, work i s  required t o  develop control modes 
to  def ine the in te rac t ions  of the reactor  plant with the generator plant and t o  analyze 
the t r ans i en t  conditions and various other i n t e r r e l a t ions  with the reactor  plant .  
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Star tup of the  p l a n t  will  require  the addition of heat t o  obtain the  molten s a l t  
Technology s t a t e  required t o  c i r c u l a t e  the fuel and blanket s a l t s  through the  reactor .  

f o r  t h i s  i s  r e l a t i v e l y  straightforward. 

All maintenance and inspection operations involving the reactor  vessel will  have t o  
be carr ied out remotely as the reactor  ce l l  o f  an HbISSR plant will  be impossible t o  en ter  

once operations o f  the  reactor  a r e  begun. 

The graphite inner core shel l  has a suggested design l i fe t ime o f  j u s t  3-1/2 years ,  
and, therefore ,  a means of replacing the  inner core shel l  must be developed as  a standard 
maintenance procedure. A possible problem, which i s  unique t o  the HMSSR, i s  a fau l ty  
inner core shel l  whereby i t  would be possible for  the  fuel s a l t  and blanket s a l t  to  become 
mixed. Upon remedying a f a u l t y  inner core s h e l l ,  the  various s a l t s  must be separated from 
one another i n  order t o  regain the proper fuel and blanket s a l t  compositions t o  resume 
reactor  operations.  

2 .1 .9  Licensing and S w -  ..__ _.... 

The issues and potential  areas  of concern f o r  the DMSR concept will  probably forni 
the  core of the  evaluation of an HMSSR. 
DMSR f o r  sa fe ty  a n d  l icensing i s  the  assurance o f  a posi t ive shutdown liiechanism upon 
draining the  s a l t  solut ions.  In the DFISR design t h i s  shutdown mechanisiir i s  the  separation 
o f  t h e  fuel s a l t  from i t s  fixed graphi te  moderator in the  core .  
beryllium moderator i s  a const i tuent  of the  fuel and blanket s a l t s .  
shutdown mechanism must be devised. 
geometry control and/or use o f  f ixed poisons in the  drain tanks appear reasonably possible.  

One s i g n i f i c a n t  difference between the  HMSSR and 

In the HMSSR design the 
rherefore another 

Acceptable ways of providing shutdown margin such as 

2.1.10 Environmental Consi-&rations 

The environmental impacts of an HMSSR should be si inilar t o  those of a DMSR. Addi- 
t i o n a l l y ,  operational and accidental  re leases  and explosive hazards resu l t ing  from the  use 
of f luor ine  in the HMSSR blanket s a l t  system must be addressed. 

2.1.11 Economics 

The capi ta l  cost  estimate f o r  an HklSSR i s  estimated to be s l i g h t l y  higher t h a n  t h a t  
of a DMSR. 
mil 1 ion.  

In  1979 d o l l a r s ,  an HMSSR i s  roughly estimated to  be between $1100 and $1500 



13 

The nonfuel operation and maintenance cost of  a 1000 HWe HMSSR plant wil l  also be 
slightly higher than those o f  a comparably sized DMSR, which is approximately double that 
of a conventional PWR plant. 

The only area in which an HMSSR appears to offer an economic savings is that of 
file1 cost. If, as reported in Ref. 2.1-1, the HMSSR can generate 1000 MWe at a lower 
reactor fuel inventory, then an economic advantage may be generated. However, the 
total generatjng costs o f  an HMSSK may still not be lower than for the DMSR. 

2.1.12 Commercial Feasibility 

Assessment of the commercial feasibility o f  the HMSSR indicates that it should not 
differ much from that for the DMSR. Small differences in the economics, a s  reported. in 
Section 2.1.11, could have minor effects on the commercial feasibility. 
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2 . 2  GRAPHITE-MODERATED HETEROGENEOUS GAS CORE R E A C T O R  

2 .2 .1  Conceptual Plant Design 

2 I 2 .1 .1 .  Summarl- 

The Graphi te-Moderated Heterogeneous Gas Core Reactor ( H G C R )  i s  simi 1 a r  to  the 

Mixed Flow Gas Core Reactor ( M F G C R ) .  
Ref. 2 .1-1 which d i f f e r  from those of the  MFGCR include: 

The basic fea tures  of t h i s  concept as described i n  

e UF,-He fuel gas mixture i n  l i e u  of UF,-CF, gas iiiixture. 

e Medium enrichment versus low enrichment fuel cycle f o r  the MFGCR. 

e Less uranium mass in core than M F G C R .  

e Small separdte regions of moderator drid coolant channels versus 
large separate  regions of fuel d n d  moderator for the MFGCR. 

e Grzphite moderator, w i t h  a l t e r n a t e s  o f  l i g h t  water or heavy water 
versus beryllium f o r  the MFGCR. 

e Improved neutron economy, f ue l  economy, heat t ransfer  c h a r a c t e r i s t i c s ,  
power densi ty ,  and power d is t r ibu t ion  over the MFGCR. 

Some of the advantages of gas core reactors  versus so l id  fuel reactors  include: 

e The gaseous fuel can be used as  the core coolant and operated a t  
comparatively low pressures.  

e Due to  the h i g h  operating temperature of the f u e l ,  the  gaseous core 
reactor  overal l  plant  thermal e f f ic iency  can be higher than f o r  
LWRs as the r e s u l t  of being able  t o  use high-temperature, high- 
pressure steam. 

e Unlike s o l i d  fueled reac tors ,  there  a r e  no s i g n i f i c a n t  probleriis 
associated w i t h  fuel rod swel l ing,  hydriding and fuel melting. 
The gas core reactor  can achieve much higher leve ls  of fuel 
u t i l i z a t i o n  than present day designs,  Almost a11 the f i s s i l e  
material  can be u t i l i z e d  by blending depleted fuel with f resh fuel .  

e Since the  fuel i s  i n  the gaseous form, i t s  fabr ica t ion  i s  eliminated 
and reprocessing and waste disposal s implif ied.  
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e A gas core reactor  with c i rcu la t ing  gaseous fuel makes on-line 
fuel ing possible.  

e The allowable response time required f o r  actuation of the emergency 
core cooling system would be increased by the inherent sa fe ty  o f  an 
expanding gas which cools i t s e l f  as i t  expands. 

Reference 2.2-1 provides a br ie f  descr ipt ion o f  the  t i G C R .  Specif icat ions and 
operating conditions a r e  a l so  presented f o r  comparison w i t h  other reactors .  Reference 
2 .2-1  was prepared t o  suggest t h a t  the  H G C R  merits an in-depth invest igat ion as  an a l t e r -  
nat ive nuclear power system. 

I n i t i a l l y ,  the HGCR research program focused on H20 and D20 moderated systems. Most 
The l a t t e r  of the recent e f f o r t s ,  however, have been on graphite moderated configurations.  

i s  claimed t o  be superior  t o  the H,O-moderated configurations from the standpoint of fuel 
u t i l i z a t i o n ,  overall  theiliial e f f ic iency ,  safety and usage o f  developed technology. The 
research program presented in the proposal has a s  i t s  primary object ive the invest igat ion 
of the graphite-modera ted H G C R .  

2 . 2 . 1 . 2 .  Plant A r r a n g e m G  

The plant  arrangement of the HGCR wil l  be very s imi la r  t o  the MFGCR. Arrangement 
of the reactor  vessel ,  intermediate fuel piping, heat exchangers, and c i rcu la tors  should 
be s imi la r  t o  the DMSR. 

2.2.1.3. Reactor Desig-n 

Construction of the reactor vessel wil l  be simpler f o r  t h i s  concept than t h e  MFGCR. 
This concept consis ts  of an array of graphite moderator c e l l s .  The graphi te  will  be 
contained by niobium tubes and the core barrel wil l  be constructgd of niobium al loy.  
niobiuiii metal would have t o  be clad w i t h  nickel sheet  or  Hastelloy G t o  withstand the 
fuel gas. 
be needed t o  contain the molten s a l t  blanket. 
cross sect ion through the reactor  vessel f o r  the H20 moderator/coolant H T G R  concept. 
Drawings of the graphi te  moderated concept were not prepared f o r  Ref. 2 .2-1.  

The 

This change would e f f e c t  the neutronics of the core. Sui table  mater ia ls  wil l  
F i g .  2 . 2 - 1  shows a s implif ied sketch of a 

2.2.1.4. Primary tiea.t..Transport System 

Similar t o  the MFGCR concept, a research and development program i s  required for  an  
A s u i t a b l e  design i s  a l so  needed f o r  gas  t i g h t  s e a l s  f o r  the  intermediate heat exchanger. 

primary c i r c u l a t o r s .  
equipment in the f a c i l i t y  would be a major undertaking. 

Oevelopiilent of remote maintenance techniques f o r  ma jo r  and minor 



17 

O R N L - D W G  79-14587 

LIGHT WATER MODERATOR r 
.-NIOBIUM TUBES 

30RE PRESSURE 
VESSEL 

INLET 

NOZZLE 
3 F U E L G A S  

. WATER 

.ECTOR 

/REACTOR PRESSURE 
VESSEL \ GASEOUS FUEL 

F i g .  2.2-1.  HGCR Plan View. 
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2.2.1.5. Seconda-ry Hea t  Transp-or t  Sys tern 

As f o r  t h e  MFGCR concept, t h e  equipment r e q u i r e d  f o r  t h e  secondary heat  t r a n s p o r t  
system has been developed and i s  o p e r a t i n g  i n  a 330 MWe WTGR s t a t i o n .  
have t o  be sca led  up f o r  a 1000 M’rle u n i t .  

Th i s  equipment would 

2.2.1.6. Containii ient Systems 

None o f  t h e  b a s i c  d i f f e r e n c e s  between t h e  HGCR and t h e  MFGCR a r e  expected t o  
s i g n i f i c a n t l y  a f f e c t  t h e  conta inment  requi rements.  

2 ,2.1.7 . g d j - o a ~ t  i ve Was t e - c o n  t r o  1 Sy s tern- 

Other  than  c o n s i d e r a t i o n  o f  t h e  t r i t i u m - f o r m i n g  r e a c t i o n  assoc ia ted  w i t h  t h e  
presence o f  he l i u in  i n  t h e  f u e l  gas m i x t u r e ,  radwaste requi rements shou ld  n o t  d i f f e r  g r e a t l y  
f rom those o f  t h e  MFGCR. 

Engineered s a f e t y  f e a t u r e s  systems w i l l  have t o  take  i n t o  account t h e  presence o f  
t r i t i u m  as a r a d i o l o g i c a l  hazard. Other  than  t h i s ,  requi rements f o r  engineered s a f e t y  
f e a t u r e s  systems f o r  t he  HGCR and t h e  MFGCR a re  b a s i c a l l y  t h e  same. 

2 .2 .1 .9 .  Auxi 1 i a r y  Systems 

A u x i l i a r y  system requi rements and des ign  f o r  t h e  HGCR remain t o  be e s t a b l i s h e d .  
Such systems would n o t  be expected t o  d i f f e r  g r e a t l y  f rom those f o r  t h e  MFGCR except  t h a t  
p r o v i s i o n  f o r  t r i t i u m  e x t r a c t i o n  would be r e q u i r e d .  

2.2.1.10. P1 a n t  --St-SuLture and Sh i e 1 d i  flg 

Requirements f o r  p l a n t  s t r u c t u r e s  and s h i e l d i n g ,  which a r e  c u r r e n t l y  n o t  de f i ned ,  
shou ld  be e s s e n t i a l l y  t h e  same as those f o r  t h e  MFGCR. 

2 I 2.1.11 . &ke~m and Power Convers-jon Sys tern 

A modern, conven t iona l  t u r b i n e - g e n e r a t o r  w i t h  h igh -p ressu re ,  h igh- temperature steam 
and r e g e n e r a t i v e  feedwater  h e a t i n g  i s  a p p l i c a b l e  t o  t h e  concept. 
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2 . 2 . 2  Techno 1 ogy Status  and Research , Devel opmen t , and-J~m~n~t~a~ion 

Similar t o  the MFGCR, the H G C R  i s  in a pr imit ive s tage of development. 
i s  e s s e n t i a l l y  a proposal f o r  fu ture  study. 
power p lan t ,  basic research must be performed t o  demonstrate the f e a s i b i l i t y  of the 
concept. The pr incipal  technology d i f f i c u l t y  i s  t o  demonstrate t h a t  the inaterials of 
construction can withstand the fuel gas a t  elevated temperature and  pressure.  
the reac tor  physics w i t h  the  core mater ia ls  and fuel  gas mixtures proposed must be proven 
t o  be sound, by experimental programs. Additional d i f f i c u l t i e s  a r e  re la ted t o  fuel gas 
cleanup, blanket processing, system dynamics and cont ro l ,  safeguards and analysis  and 
s p e c i f i c  component and system d e s i g n .  

The concept 
Before i t  can be developed i n t n  a pract ical  

I n  addi t ion,  

Using the estimated MFGCK program as a guide, the  development of t h i s  concept should 
take a t  l e a s t  52 years  and cost  approximating 10 t o  15 b i l l i o n  d o l l a r s .  
of Ref. 1.0-1 f o r  estimating methods and uncer ta in t ies . )  

(See Appendix A 

2 -2 .3  Pro1 i fe ra t ion  Resistance Features 

While the pro l i fe ra t ion  r e s i s t a n t  fea tures  of the H G C R  have not been investigated 
in d e t a i l ,  they a r e  expected t o  be s imi la r  t o  the MFGCR p ro l i fe ra t ion  r e s i s t a n t  fedtures .  

2.2.4 Reactor-Physics Considerations 

As p a r t  of the research program the following invest igat ions have been proposed: 

_I_-. Basic Reactor Physics Calculations. 

Core s i r i n g  and power densi ty  s tud ies  need t o  be extended. 
need t o  be car r ied  out f o r  the H G C R  “ inverted c e l l s . ”  Energy deposit ion s tudies  in the 
moderator and s t r u c t u r e  due t o  neutron and gamma rays m u s t  be performed. 

Monte Carlo calculat ions 

Fuel Cycle Analysis 

Fuel cycle  s tud ies  in which the UF, gas pressure in the core i s  slowly increased so 
as  to  help compensate f o r  b u r n u p  e f f e c t s  a r e  proposed. 
conversion r a t i o  and fuel u t i l i z a t i o n  and minimize plutonium discharge. 
blanket regions a r e  proposed. 
dimensional diffusion theory t o  include two dimensional calculat ions.  

Studies a r e  proposed t o  optimize 
Studies on the 

Also, i t  i s  proposed t o  extend the computations from one- 



20 

Reactor Dynarnjss 

Calculations f o r  r e a c t i v i t y  coef f ic ien ts  need t o  be broadened t o  include a wide 
range of temperatures, pressures,  and fuel compositions. Dynamics calculat ions must be 
expanded t o  include n o t  only temperature and densi ty  feedback, b u t  a l so  mass f 
back and delayed neutron feedback. Dynamic s tudies  need t o  be extended t o  inc 
only the point reactor  model, b u t  a l so  space-dependent kinet ics  models. 

The niobium metal selected f o r  the core tube and container mater ia ls  w i  

OW feed- 
ude n o t  

1 n o t  w i t h -  
s tand the fuel gas mixture. Other mater ia ls  of construction wil l  have t o  be used, and 
these may a f f e c t  neutronics i n  an adverse way ( e . g . ,  lower neutron ef f ic iency) .  

Since the reactor  physics model i s  s t i l l  in development, t h i s  introduces uncertainty 
in the  predicted reactor  mass flows, f i s s i l e  inventor ies ,  and fuel cycle economics. 

2.2 .5  Fueling Alternativ.es and Resource Ut i l iza t ion  

As f o r  the M F G C R ,  the H G C R  has many basic options.  Some of these options a re  as 
fOl1 OWS : 

B Operation w i t h  highly enriched uraniiiiii. 

c Operation as  a denatured uraniinni burner (provided PuF, can be s tab i l ized  
in the gas phase) with improved fuel u t i l i z a t i o n .  

e Operation as a high-performance converter or  breeder with a physically 
separated f e r t i l e  blanket system. 

a Operation w i t h  both l iqu id  o r  so l id  moderators. 

Gaseous fuel can be added to  the primary loop t o  keep the system functioning with- 
out  necessi ta t ing reactor  shutdown. Similar t o  the M F G C R ,  the  H G C R  has b e t t e r  fuel 
u t i l i z a t i o n  and requires subs tan t ia l ly  l e s s  uranium t o  sus ta in  30 years of operation than 
a standard LWR using a throwaway fuel cycle.  However, the fuel u t i l i z a t i o n  of the H G C R  
r e l a t i v e  t o  the FWGCR suf fe rs  somewhat from the f a c t  t h a t  a higher enrichment of uranium 
i s  required. 
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2.2.6 Mechanical and~e-rma-I-- jdraul  i c Cons i dIer?Lj?~ 

As in the  case of the MFGCR considerable research s t i l l  needs t o  be performed before 
a f ina l  design i s  selected.  
proposed: 

As par t  of the research program the following has been 

0 Extend preliminary s tudies  o f  veloci ty ,  temperature and pressure 
d i s t r i b u t i o n  in a typical u n i t  c e l l  of the core. 

a Invest igate  the thermal problems between the peripheral  u n i t  c e l l  
elements and the core containment walls.  

a Conditions a t  the  entrance and e x i t  region o f  the  core must be 
analyzed. 

a Analysis of both printary and secondary heat exchangers. 

In addi t ion ,  some other  areas  which should be addressed a re  moderator cooling, 
blanket cooling, and the e f f e c t s  of densi ty  gradients  on the power generation within the 
core.  

2 .2 .7  Materials Selection and Resources- 

The  use o f  the intended niobium zirconium material  f o r  the reactor  core coolant 
tubes and containment material  in contact  w i t h  a uranium hexafluoride ( fue l  g a s )  environ- 
ment i s  probably unsat isfactory.  This material in the presence of the gas,  would rapidly 
change to  niobiuirr pentafluoride (NbF,). 
158"F, a boi l ing point of approximately 428*F, and i s  very soluble  i n  water. 

Niobium pentafluoride has a melting point of 

The potent ia l  f o r  decomposition o f  plutonium hexafluoride presents another 
mater ia ls  problem. 
e x i s t s  which wil l  lead t o  the  production of 233Pu. 
the  process o r  consumed by f i ss ion .  
temperatures. 
removal of the plutonium by prec ip i ta t ion  of PuF, on container surfaces.  The v o l a t i l i t y  
of PuF, is  too l ow f o r  any s i g n i f i c a n t  amount of the compound t o  remain in the gas phase 
i n  the  temperature range o f  the  gaseous core reactor .  As elemental f luor ine  gas  i s  a 
produc:t of the PuF, a s u f f i c i e n t l y  la rge  p a r t i a l  pressure of f luorine in the gas o f  the 
reactor  core may prevent the decomposition. 
p a r t i a l  pressures required a t  the operating temperatures of the gaseous core reactor .  
This will  have t o  be developed by t e s t s .  
wi l l  cause ser ious material  problems. The niobium metal used f o r  the vessel and t u b e  
mater ia ls  o f  the core cannot withstand the  f r e e  f luor ine  a t  h i g h  temperatures. 

In the i so t ropic  composition o f  the  UF, gas o f  the core,  some 2 3 8 U  
This plutonium could be removed from 

However, PuF, decomposes i n t o  PuF, + F2  a t  high 
Such decomposition of PuF, within the gaseous core reactor  would r e s u l t  i n  

Data a r e  not ava i lab le  t o  determine the 

The addi t ion of f r e e  f luor ine  t o  the  fuel gas 
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Because of the  above two problems other reactor  mater ia ls  will  have t o  be used. 
To protect  the niobium froin the Fuel gas,  i t  may be possible t o  clad the material with 
thin nickel sheet  o r  Hastelloy G .  
r e s i s t a n t  t o  f luorides  and f luoride gas. 
techniques. 
techniques because i t  would be f r e e  from p i n  holes. 

Hastclloy I; i s  a N i ,  Cr, Mo, Fe al loy t h a t  i s  highly 
The cladding could be done by explosive bonding 

Cladding would be much be t te r  t h a n  e lectroplat ing or  vacuum deposition 

Three manufacturers of niobium al loys were contacted and s ta ted  t h a t  they were 
capable o f  fabricat ion of the core coolant tubes in lengths of 8 t o  10 f e e t .  
would be made e i t h e r  seamless o r  welded. The sheet material f o r  the core barrel  would  
have t o  be made froiii an ingot and then rol led o r  forged t o  s ize .  Sheets approximately 
6" x $0'' x 24" a re  feas ib le .  Joining would be possible by tungsten i n e r t  gas (TIG) or 
electron beam welding with TIG being the more p r a c t i c a l ,  b u t  requiring a great  deal of 
weld end preparation. 

The tubes 

Material problems f o r  t h i s  concept a r e  s imi la r  t o  those discussed f o r  the MFGCR. 

2 .2 .8  Engi~eer ing  and.-OperabiliQ 

Engineering and operabi l i ty  requirements f o r  the HGCR should be bas ica l ly  the same 
as those f o r  the MFGCR except f o r  the consideration of t r i t ium production i n  the helium 
component of the fuel gas mixture and i t s  removal, 

Similar t o  the M F G C R ,  the t o x i c i t y  and explosive nature of the f r e e  f luorine i n  the  
fuel gas will  make t h i s  plant  unat t ract ive t o  operate f r om both the plant opera tor ' s  and 
publ ic ' s  viewpoint. 
any maintenance operation. 
of primary system equipment t o  f a c i l i t a t e  maintenance remotely will  be a major undertaking 
in the f a c i l i t y  design. 

Protect ive outergear as we1 1 as  breathing apparatus are  required f o r  
Developlent and  t es t ing  o f  maintenance methods and design 

2 2 .9  Li cens i ng  and..Safetjl- 

As for the MFGCR concept, the degree of d i f f i c u l t y  encountered in l icensing the 
HGCR will  be dependent upon the ident i f ica t ion  and s a t i s f a c t o r y  completion of a l l  necessary 
research and development programs. These programs must address a l l  uncer taint ies  in 
plant  design, the consequences of postulated accidents ,  and ver i f ica t ion  of plant  
performance under normal and accident conditions.  

Continuous f i ss ion  product removal during gas cleanup operation largely reduces 
the inventory of radioact ive Fission products. 
safe-ty. 

This has a very beneficial  impact on 
However, the consequence o f  small or large breaks in the primary system involves 
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dispersing the e n t i r e  f i s s i l e  inventory throughout the containment. 
system:, and possibly an additional level o f  containment, may be necessary t o  achieve 
re lease  r a t e s  equivalent t o  l i g h t  water reactors  during normal operation and loss  o f  
cool an t  accidents.  

A double containment 

2.2.10 Environmental Considerations 

Similar t o  the MFGCR concept, the HGCR wil l  r e j e c t  l e s s  heat t o  the environment 
than does a s imi la r  s ized LWR. 
Other environmental considerations a r e  the same as i n  the  MFGCR concept, 

Plant e f f ic iency  i s  approximately 45% versus 33% f o r  LWRs. 

2.2.11 Economics 

Similar t o  the MFGCR,  the t o t a l  f a c i l i t y  cos ts  f o r  the HGCR without i n t e r e s t  during 
construction a r e  estimated t o  be between 50-1001 higher than f o r  a commercialized LWK. 
Due t o  remote maintenance and operation of the HGCR, the  operating and maintenance costs  
a r e  estimated t o  be a t  l e a s t  double those o f  the  LWR. 
cos t s  f o r  the  HGCR a r e  suspected t o  be subs tan t ia l ly  lower than f o r  the LWR and s l i g h t l y  
lower than the  MFGCR. The  overal l  a f f e c t  on t o t a l  generating cost  should make the H G C R  
cost  s i m i l i a r  t o  those of the MFGCR. 

The level ized 30-year fuel cycle  

2 .2 .12  Commerci a1 Feasi b i  1 i t y  

Commercial f e a s i b i l i t y  f o r  the HGCR would be basical ly  the same as t h a t  f o r  the 
MFGCR. 
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