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ABSTRACT 

Perturbation theory for  cllanges i n  l inear  anc bi l inear  functionals 

of the forward and adjoint fluxes i n  a c r i t i c a l  reactor has been imple- 

mented us ing  two-dimensional d i scre te  ordinates transport  theory. The 

computer program DOT IV was modified t o  calculate  the generalized func- 

t ions r and r*. Demonstration calculations were performed for  changes i n  

a reaction-rate r a t i o  and a reac t iv i ty  worth caused by system perturba- 

t ions.  The perturbation theory predictions agreed w i t h  d i r ec t  calcula- 

t ions t o  w i t h i n  a b o u t  2%. 

higher x eigenvalues and eigenfunctions using techniques s imilar  t o  those 

developed fo r  generalized functions. 

been performed t o  obtain these eigenfunctions. 

A method has been developed for calculating 

Demonstration calculations have 

x i  
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CHAPTER I 

INTRODUCTION 

In  reacto hys i nd shielding analysis t h  re  are  many applications 

i n  which the change i n  a performance parameter caused by a perturbation 

(change) i n  the calculational model i s  determined. An extensive method- 

ology known as perturbation theory has been developed fo r  this class  of 

problems. 

la t ions i s  a t t r ibuted t o  E .  P .  Wigner.’ 

The f i rs t  application of perturbation theory i n  reactor calcu- 

Chapters I11 through VI of  this work review several time-independent 

The perturbation equations are  derived 

The difference flux method resu l t s  i n  

perturbation theory formulations, 

using the difference flux method. 

straightforward derivations i n  which the same steps are  followed for  each 

case considered. 

tions tha t  a re  made and t o  determine the physical significance of the 

terms i n  the perturbation equations using the difference f l u x  method. 

I t  i s  also re la t ive ly  easy t o  identify the approxima- 

The f i r s t  case considered is  the class  of problems i n  which a source 

i s  present and the performance parameters of i n t e re s t  depend upon the 

result ing f l u x .  f examples of t h i s  c lass  of problems are shielding problems 

and c r i t i c a l i t y  surveil lance applications.  

used t o  predict the changes i n  the performance parameters result ing from 

perturbations such as a modification t o  a shield or the a d d i t i o n  of  a 

fuel bundle to  a reactor core. 

Perturbation equations can be 

The second case considered i s  a c lass  of problems related to  a c r i t i -  

cal reactor in which no inhomogeneous source is  present. 

eigenvalue problem i n  which the value of A i s  unity for  c r i t i c a l  systems, 

T h i s  i s  the A 
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l ess  than unity fo r  supercr i t ical  systems, and greater than unity for  

subcri t ical  systems. Perturbation equations can be used t o  predict  the 

change i n  A resul t ing from modifications to  the system. 

The t h i r d  case considered is the c lass  of problems i n  which the 

performance parameter is a r a t i o  of  reaction ra tes  based on the f lux i n  a 

c r i t i c a l  reactor.  Examples of these " l inear  ra t ios"  a re  breeding r a t i o  

or  the r a t i o  of experimentally determined reaction ra tes .  Perturbation 

theory can be used t o  predict  the change i n  l inear  ra t ios  resul t ing from 

perturbations t o  the system. 

The fourth case considered i s  the class  of problems i n  which the per- 

formance parameter i s  a r a t i o  of functionals of the forward and a d j o i n t  

f l u x  i n  a c r i t i c a l  reactor.  The most common example of these "bi l inear  

ra t ios"  i s  the worth of a sample t o  the reac t iv i ty  of a reactor.  Worth i s  

ordinar i ly  calculated u s i n g  the perturbation theory for  changes i n  the 

eigenvalue A .  The change i'n the worth of a sample caused by a perturba- 

t ion can be predicted using perturbation theory. 

The perturbation theory fo r  l inear  or  b i l inear  ra t ios  i n  a c r i t i c a l  

system is  often called "generalized perturbation theory. 'I 

eigenvalue perturbation theory i s  sometimes called "ordinary perturbation - 

theory. I' 

''general ized functions'' which have rather  special properties and present 

d i f f i c u l t i e s  for  numerical solutions which a re  not present i n  the eigen- 

value o r  shielding cases. 

Similarly,  

General ized perturbation theory requires the calculation of  

A chapter describing A eigenfunction expansions i s  included. Eigen- 

function expansions are  useful in understanding generalized functions 

and i n  understanding the convergence of numerical methods. 
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2 Previous work by a number o f  people including Usachev, Gandini , 3  

and Stacey4 have devel oped general ized perturbation theory methods using 

diffusion theory. 

perturbation theory to one-dimensional applications using the discrete 

ordinates transport theory computer code ANISN.6 The purpose of the work 

described here is to develop numerical methods for generalized perturba- 

tion theory using the two-dimensional discrete ordinates transport pro- 

gram DOT-IV. 

and also higher eigenfunctions. 

reaction-rate ratio and a worth problem. 

Work at Oak Ridge, lead by O b l ~ w , ~  applied generalized 

Methods are developed for calculating generalized functions 

Demonstration problems are solved for a 
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CHAPTER I 1  

NEUTRCN TRANSPORT THEORY BACKGROUND, 

I n  this chapter, a few topics from neutron transport  theory are  

reviewed. 

introduce relationships t o  be used i n  the chapters t o  follow. 

The purpose of this review is t o  es tabl ish notation and t o  

Consider the following time-independent form of the Boltzmann trans- 

port equation: 

A derivation of E q .  (2 .1)  can be found i n  a number of textbooks including 

those by Bell and Glasstone* and Henry.g The symbols used i n  E q .  ( 2 . 1 )  

have t h e i r  usual def ini t ions which may be found i n  Refs, 8 and 9. In 

E q .  ( 2 . 1 ) ,  the neutron f lux,  @(F,E,Q), is  a function o f  continuous vari-  

ables i n  space, energy, and direction. 

i n  l a t e r  chapters, numerical solutions fo r  the neutron f l u x  will be ob- 

tained u s i n g  the computer program DOT IV.7 DOT IV obtains the solution 

t o  a m u l t i g r o u p  form of the transport  equation using the method of d i s -  

Crete ord ina tes .7’8y10 The method of d i scre te  ordinates i s  a numerical 

technique which obtains an i t e r a t i v e  solution for a s e t  of coupled d i f -  

ference equations. 

the continuous equation as  the space, energy, and space meshes a re  

refined. 

equation i n  which the s i z e  of the matrix i s  often very large. 

In the applications t o  be presented 

This approximate solution approaches the sol ution t o  

The d iscre te  ordinates equations may be regarded as a matrix 

Actually 
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the equations can be written i n  matrix form only i f  cer ta in  supplementary 

equations such as the l inear  model o r  the s tep  model are  used." 

The following operator notation will be used to represent the trans- 

p o r t  equation: 

H@ = S (2 .2)  

( 2 . 3 )  or  A@ - B$ = S. 

In  Eq. ( 2 . 3 ) ,  the B operator represents the f iss ion process, and the A 

operator represents the other terms i n  the transport equation. The abstract  

notation used i n  Eqs. ( 2 . 2 )  and ( 2 . 3 )  allows these equations t o  represent 

the continuous energy form of  E q .  ( 2 . 1 ) ,  the d iscre te  ordinates equations, 

o r  any other f l u x  solution method such as diffusion theory or  the PI method. 

The perturbation equations presented i n  l a t e r  chapters may be applied for  

each of these d i f fe ren t  interpretat ions of Eqs. ( 2 . 2 )  and  ( 2 . 3 ) .  

tha t  $ is  a function of space, energy, and direction i s  implied b u t  n o t  

shown i n  the operator notation used here. 

notation shortens the derivations of the perturbation equations i n  l a t e r  

The fac t  

The deceptively simple operator 

chapters. 

t h i s  notation. 

Some of the perturbation equations are f a i r l y  long even using 

The concept of an adjoint operator* will be used extensively i n  l a t e r  

chapters. 

and these dif.ferent meanings of the word " a d j o i n t "  sometimes cause confu- 

s ion . )  

(The a d j o i n t  operator is not the same as the adjoint mat r ix ,  

The defining relationship for the adjoint operator i s :  

<$*H$> = <@H*$*> + boundary terms , ( 2 . 4 )  

where H* i s  the operator adjoint t o  H and the braces <> represent integra- 

tion over space, energy, and angle phase space. 

always represent a t ransport  equation operator, although i n  general H can 

For th i s  work, H will 
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be any l inear  operator. 

limited t o  solutions of transport  equations, since th i s  i s  suf f ic ien t  for  

the applications t o  be considered. 

general conditions. In Eq. (2.4) @ i s  the solution t o  equations s imilar  

t o  E q .  (2 .2 ) ,  while @* is the solution t o  equations similar t o  

The functions @ and @* i n  Eq. (2.4) have been 

Equation (2.4) i s  also valid under more 

H*@* = S* . (2.5) 

Equation (2.5) i s  the ad.joint transport  equation* and can be derived 

d i rec t ly  from physical principles based upon importance or from the defini-  

t ion of the adjoint operator i n  E q .  (2 .4) .  The expanded form of  the opera- 

t o r  H* may be found i n  Ref. 8. 

When’Eq. ( 2 . 2 )  represents a form of the transport  equation in which @ 

is  a continuous function i n  space ( e i the r  continuous energy or m u l t i g r o u p ) ,  

the E*v@ term resu l t s  i n  a surface integral in E q .  ( 2 . 4 )  which vanishes 

when boundary conditions are  applied. 

t ions,  E q .  (2.4) i s  exact only when the supplementary equations mentioned 

e a r l i e r  result i n  a l inear  operator.” 

For the discrete  ordinates equa- 

Equation (2.3) i s  a form of the transport  equation which contains 

Another time-independent a source S which i s  independent of the f l u x .  

form of the transport  equation is  the eigenvalue equation 

A@ - XB@ = 0 , 

1 where X = 

i s  k n o w n  as the X or k eigenvalue equation. 

represents a c r i t i c a l  reactor,  and the eigenfunction @ represents the flux 

in the c r i t i c a l  reactor.  

and  k is  the effect ive multiplication factor.  Equation (2 .6 )  

When k equals 1 ,  Eq. ( 2 . 6 )  

If  k i s  greater than 1 ,  the reactor i s  
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supercr i t ica l ,  while i f  k i s  l ess  t h a n  1 ,  the reactor i s  subcr i t ica l .  

The equation adjoint t o  E q .  (2 .6)  i s  

A*@* - AB*@* = 0 , (2.7) 

where <@*A@> = <@A*@*> (2.8) 

and <@*B@> = <@B*@*> . (2.9) 

Equation (2 .6 )  will be referred t o  as the "forward" X eigenvalue equation, 

and @ will be referred t o  as the forward eigenfunction; while E q .  ( 2 .7 )  

will be referred t o  as the adjoint A eigenvalue equation, and @* will be 

referred t o  as the adjoint eigenfunction. 

expansions will be discussed in Chapter VI I .  

The topic of eigenfunction 
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CHAPTER I 1 1  

PERTURBATION THEORY FOR SOURCE PROBLEMS 

The purpose o f  t h i s  chapter  i s  t o  d e r i v e  p e r t u r b a t i o n  equat ions f o r  

inhomogeneous source problems. 

s h i e l d i n g  and s u b c r i t i c a l i t y  s u r v e i l l a n c e  a p p l i c a t i o n s .  

Two examples o f  t h i s  c lass  o f  problems are  

Using t h e  opera tor  n o t a t i o n  in t roduced i n  Chapter 11, t h e  t r a n s p o r t  

equat ion i s  

H $ = S  . (3.1)  

Consider a des ign parameter R which can be de f i ned  by an equat ion  o f  t he  

form 

R = <S*$> . (3.2) 

One example o f  a phys ica l  s i t u a t i o n  t h a t  can be represented by Eq. (3.2) i s  

a neut ron  de tec to r .  

and S* would be the  de tec to r  response func t i on .  

Eqs. (3.1) and (3.2) w i l l  be r e f e r r e d  t o  as t h e  re fe rence s t a t e .  

I n  t h i s  case, R would represent  t h e  d e t e c t o r  reading, 

The system descr ibed by 

Now cons ider  an a l t e r e d  phys i ca l  system descr ibed by 

H*+’ = S 

and R’ = <S*$’> . 

This  system w i l l  be r e f e r r e d  t o  as the  per tu rbed s t a t e .  The prime symbol 

w i l l  be used throughout t h i s  work t o  i n d i c a t e  a per tu rbed s t a t e .  The con- 

vent ion  t o  be used t o  r e l a t e  the  re fe rence and per tu rbed s t a t e s  i s  i l l u s -  

t r a t e d  by t h e  f o l l o w i n g  example 

H ’ = H + 6 H  , ( 3 . 6 )  

and R’ = R + 6R . (3.7) 
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T h i s  convention will be maintained throughout this work. 6@ i n  E q .  (3.5) 

i s  known as the difference f lux.”  6H i s  referred t o  as the perturbation 

operator. 6R i s  the change i n  the design parameter of i n t e re s t  and i s  

given by 

6R = R’ - R = <S*6@> . (3.8) 

I n  t h i s  equation, S* i s  an importance function w h i c h  re la tes  changes i n  

the flux t o  changes i n  R. 

One method of calculating 6R i s  t o  obtain $ and @’ by solving 

Eqs. (3.1) and (3 .3) ,  calculate  R and R’ using Eqs. (3.2) and (3 .4) ,  and 

subtract  t o  obtain 6R. 

d i rec t  calculation method. 

T h i s  method for  obtaining 6R will be called the 

In order t o  develop a perturbation equation for  6R, Eq. (3.3) i s  re- 

written as  

H@ + H6@ + 6H@’ = S . (3.9) 

This resu l t  i s  eas i ly  verified using Eqs. (3.5) and (3.6) and noting tha t  

H and 6H are  l inear  operators. Subtracting Eq. (3.1) from Eq. (3 .9)  yields 

H6@ = - 6H@’ . (3.10) 

Equation (3.10) is a transport  equation for  64. 

Equation (3.8) can be rewritten as 

by making the def ini t ion 

H*$* = S* . 

(3.11) 

(3.12) 
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Using the def ini t ion of the adjoint  operator, E q .  (3.11) becomes 

6R = <@*H6@> . (3.13) 

The boundary conditions for  E q .  (3.12) are  chosen t o  insure tha t  E q .  (3.13) 

contains no boundary term contribution. S u b s t i t u t i n g  E q .  (3.10) into 

E q .  (3.13) yields the following exact r e su l t  
0 

6R = - <@*&Ha'> . (3.14) 

Interchanging the def ini t ion of the reference and perturbed s t a t e s  yields  

another exact r e su l t  

6R = - <@*'6H$> . (3.15) 

Equation (3.15) i s  the basis of the adjoint  difference method.'* 

Equation (3.14) can be writ ten as 

6R = - <@*6H@> - <@*8H6@> . (3.16) 

Neglecting the second term (which is second order) yields the l inear  ( o r  

f i r s t  order) perturbation equation 

6R"- - <$*6H@> . (3.17) 

Equation (3.17) has been used fo r  a wide variety of applications.  

t ha t  only @ and @* need be obtained and a large number of d i f fe ren t  per- 

Note 

turbations 6H can be evaluated u s i n g  E q .  (3.17). 

re la t ive ly  simple numerical integration and is much eas ie r  than solving 

the transport  equation for  each perturbed s t a t e  as i s  required fo r  the 

d i rec t  calculation method described above. 

In practice,  this i s  a 

. 
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The second term in E q .  (3.16) i s  a correction term for  l inear  pertur- 

bation theory and can be ut i l ized t o  obtain a higher order estimate as 

follows. Using the def ini t ion o f  the adjoint operator,  E q .  (3.16) becomes 

Note t h a t  the second term in E q .  (3.18) i s  s imilar  in form t o  E q .  (3 .8) .  

Following the same procedure outlined above, a second order resu l t  can be 

obtained which i s  

6R = - <$*6H$> + <r*6H$> 

where H*r* = 6H*$* . 
(3.19) 

(3.20) 

Equation (3.19) does n o t  have the general usefulness as  does E q .  (3.17). 

T h e  source in Eq. (3.20) depends upon the nature of the perturbation being 

considered, although the magnitude of the perturbation can be varied by a -  

scale  factor .  

t ive  which presents some d i f f i cu l ty  for  discrete  ordinates methods. 

source i n  Eq. (3.12) i s  non-negative for  many applications.  

Also the source in E q .  (3.20) can be b o t h  posit ive and nega- 

The 

Another second order equation i s  

(3.21) 

(3.22) 

Equations (3.19) through (3.22) a re  n o t  considered of central importance 

b u t  are mentioned because they are  s imilar  in form to  the generalized per- 

t u r b a t i o n  equations t o  be derived i n  Chapter VI. 

The a d j o i n t  function $*(F,E,h) defined by E q .  (3.12) i s  an importance 

function which gives the expected contribution of a neutron a t  phase space 

point (TyE,G) t o  the response R.*  This r e su l t  can be demonstrated using 
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Eq. (3.17) and a perturbation which is purely absorbing. For t h i s  case 

6R - < *tic,$> . ( 3 . 2 3 )  

The 6Ca$ term is  a neutron remova 

to  r e l a t e  the loss of neutrons to changes in R .  

f o r  the f ac t  t h a t  the neutrons are being removed. 

r a t e  t ha t  is weighted w i t h  @* i n  order 

The minus sign accounts 

> 
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CHAPTER I V  

. PERTURBATION THEORY FOR THE EIGENVALUE PROBLEM 

The purpose of t h i s  chapter i s  t o  derive perturbation equations for  

the change i n  the A eigenvalue due to  a system perturbation. 

equations developed i n  t h i s  chapter will be useful i n  the development of 

the generalized perturbation theory equations i n  Chapters V and VI. 

Some of the 

The equations describing the reference and perturbed s t a t e s  for the 

e i  genval ue probl em are  

A$ - AB$ = 0 , (4.1 1 
A’$’ - A’B‘$’ = 0 ( 4 . 2 )  

A*$* - AB*$* = 0 , (4.3) 

and A*’$*’ - A’B*’@*’ = 0 (4 .4)  

where the operator form o f  the forward and adjoint eigenvalue equations 

described in Chapter I 1  has been used. Equation (4 .2)  can be written as  

A$ + A 6 4  + &A$’ - AB$ - ABS@ - (X’B’ - AB)$’ = 0 (4.5) 

where the convention established in Chapter I11 fo r  re la t ing the reference 

and perturbed s t a t e s  has been used such t h a t  

@’=$+W ¶ 

A ’ = A + 6 A  y 

A ’ = A + 6 A  , 

and B’ = B + 6B . 

Subtracting E q .  (4 .1)  from E q .  (4.5) yields  

( A  - AB)&@ zz - ( 6 A  -- A’B’ + AB)@’ . 

(4.6) 

(4 .7)  

(4.8) 

(4 .9)  

(4.10) 
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Equation ( 4 . 4 )  can be rewritten t o  o b t a i n  a result s i m i l a r  i n  form t o  

Eq. ( 4 . 5 ) .  

the fo l lowing  a d j o i n t  equa t ion  w h i c h  i s  s i m i l a r  i n  form t o  Eq. (4 .10 ) :  

Equation ( 4 . 3 )  can be s u b t r a c t e d  from this result t o  o b t a i n  

(A* - AB*)&$* = - (&A* - X“B*’ + AB*)$*” . (4.11) 

Mul t ip ly ing  Eq. (4 .10)  by @* and i n t e g r a t i n g  y i e l d s  

The l e f t -hand  s i d e  o f  Eq. (4 .12)  can  be eva lua ted  u s i n g  the d e f i n i t i o n  

o f  the a d j o i n t  o p e r a t o r  and E q .  ( 4 .3 )  a s  fo l lows  

Using Eq. (4 .13)  and the fo l lowing  i d e n t i t y  

(4 .13 )  

X’B’ - AB = X6B + 6XB’ , (4 .14)  

Eq. (4 .12)  can be so lved  f o r  6X t o  o b t a i n  

(4 .15 )  

Another e x a c t  result f o r  6 1  can be ob ta ined  e i ther  by m u l t i p l y i n g  

Eq. (4 .11)  by $ and i n t e g r a t i n g  o r  by in t e rchang ing  the reference and 

per turbed  s ta tes  i n  Eq. (4 .12 ) .  This result i s  

(4 .16)  

The l i n e a r  (or f i rs t  o r d e r  i n  the p e r t u r b a t i o n )  e s t i m a t e  f o r  6X is  

ob ta ined  by c o n s i d e r i n g  a very small p e r t u r b a t i o n .  

i s  approximated by the reference s ta te  t o  o b t a i n  

The pe r tu rbed  s t a t e  C 
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(4.17) 

where 6ho i s  the l i n e a r  e s t i m a t e  f o r  SA. 

f o r  a wide v a r i e t y  o f  a p p l i c a t i o n s ,  

o f  a l a r g e  number o f  d i f f e r e n t  p e r t u r b a t i o n s  can be e s t ima ted  simply by 

performing the i n d i c a t e d  i n t e g r a t i o n s .  

Equation (4.17) has been used 

Once $ and $* a r e  ob ta ined ,  the e f f e c t  

Second o r d e r  e s t i m a t e s  f o r  6A can a l s o  be ob ta ined .  S u b s t i t u t i n g  

E q .  ( 4 .6 )  i n t o  Eq. (4 .15)  and n e g l e c t i n g  h ighe r  o r d e r  terms t o  o b t a i n  a 

result t h a t  i s  l i n e a r  i n  6$ y i e l d s  
\ 

Using the d e f i n i t i o n  o f  the a d j o i n t  o p e r a t o r ,  Eq. (4 .18)  becomes 

where 

(4 .19)  

(4 .20)  

S t a r t i n g  w i t h  Eq. (4 .16 )  and n e g l e c t i n g  h ighe r  o r d e r  terms t o  o b t a i n  a 

result t h a t  i s  l i n e a r  i n  S$*, y i e l d s  ano the r  second o r d e r  e s t i m a t e  

where 

(4.21) 

(4.22) 

Discussion o f  Eqs. (4 .19)  through (4 .22)  i s  d e f e r r e d  u n t i l  Chapter VI where 

very similar equa t ions  a r e  developed. 

The phys ica l  i n t e r p r e t a t i o n  o f  $* can be demonstrated using 

p e r t u r b a t i o n  e q u a t i o n s .  Reca l l i ng  t h a t  A = the fo l lowing  result is 
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obtained for small perturbations 

(4.23) 6b-v 6k . 

Using Eq. (4.17) and considering a small perturbation t h a t  i s  purely 

absorbing results in 

(4.24)  

. 

$* i s  an importance function which relates the loss o f  neutrons 61, $ a t  

any p o i n t  i n  phase space t o  the resulting change i n  k,  

indicates t h a t  a loss of neutrons decreases k as would be expected. 

The minus sign 

\ 

. 
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CHAPTER V 

GENERALIZED PERTURBATION THEORY FOR LINEAR RATIOS 

The purpose o f  t h i s  chapter  i s  t o  d e r i v e  p e r t u r b a t i o n  equat ions f o r  

t he  system descr ibed by 

A$ - AB$ = 0 

Equation (5.1) represents a c r i t i c a l  o r  near c r i t i c a l  r e a c t o r  and R i s  a 

l i n e a r  f l u x  r a t i o  ( i .e. ,  t he  r a t i o  o f  f u n c t i o n a l s  t h a t  con ta in  o n l y  $ ) .  

Examples o f  performance parameters t h a t  can be represented by Eq, (5.2) 

a r e  breeding r a t i o  and the  r a t i o  o f  exper imen ta l l y  determined r e a c t i o n  

r a t e s .  

Using t h e  n o t a t i o n  in t roduced i n  previous chapters,  t he  perturbed 

s t a t e  i s  descr ibed by 

(5.3) 

(5.4) 

Using t h e  convent ion f o r  r e l a t i n g  the reference and per turbed s t a t e s  

in t roduced i n  Chapter 111, 

6R = R’ - R (5.5) 
o r  

6R R’ 
-Fr=iT--’ * 

(5 

S u b s t i t u t i n g  Eqs. (5 .2)  and (5.4) i n t o  Eq. (5.6) and rearranging resu 

i n  

t s  
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o r  

By neglecting any terms t h a t  are higher t h a n  f i r s t  order in the perturba- 

tion ( i . e . y  <6C16@>), Eq.  (5.8) becomes 

The f i r s t  order form of Eq. (5 .9)  t h a t  i s  linear in 6 @ y  6C1, and 6 C 2  i s  

(5.10) 

The f i r s t  two terms on the right-hand side of Eq. (5.10) are called the 

direct effect since they result from changes in C 1  and C 2 ,  while the las t  

two are called the indirect effect since they result from changes in the 

flux. 

The indirect effect in E q .  (5.10) can be written as 

I = <S*6@> y (5.11) 

where 

( 5 . 1 2 )  

S* i s  an importance function t h a t  relates changes in the flux t o  changes 

in R.  

. 
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I n  o rde r  t o  o b t a i n  an equat ion f o r  t he  i n d i r e c t  e f f e c t  I which does 

n o t  c o n t a i n  S$, i t  i s  u s e f u l  t o  i n t roduce  t h e  f u n c t i o n  E* de f ined  by 

(A* - XB*)rG? = S* , (5.13) 

The boundary c o n d i t i o n s  f o r  Eq. (5.13) are t h e  same a s  f o r  t he  homogeneous 

equat ion 

(A* AB*)$* = 0 . (5.14) 

Equation (5.13) and o t h e r  s i m i l a r  equat ions w i l l  be r e f e r r e d  t o  as 

"general ized" equat ions.  

t h a t  w i l l  be discussed i n  Chapter V I I I ,  

General i z e d  equat ions have spec ia l  p r o p e r t i e s  

Given any p a r t i c u l a r  s o l u t i o n ,  I'* t o  Eq. (5.13), a more general 
P 

s o l u t i o n  i s  

rG* = r; + c+* , (5.15) 

where C i s  an a r b i t r a r y  constant.  

s t i t u t i n g  Eq, (5.15) i n t o  Eq. (5.13) and us ing  Eq. (5.14). The general 

Th is  r e s u l t  i s  e a s i l y  v e r i f i e d  by  sub- 

s o l u t i o n  i s  r e w r i t t e n  as 

rG* = r* + c$* , (5.16) 

where 

<r*B$> = 0 . (5.17) 

A method fo r  o b t a i n i n g  I"* given any p a r t i c u l a r  s o l u t i o n  r *  w i l l  be pre- 
P 

sented i n  Chapter V I I .  

Using Eqs. (5.13) and (5.15), Eq.  (5.11) can be w r i t t e n  as 

I = <&$(A*  - AE*)( r*+C$*):' , (5.18) 
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Noting Eq. ( 5 . 1 4 ) ,  Eq. (5.19) reduces  t o  

I = <6$(A*-AB*)r*> . (5.19) 

The o p e r a t o r  (A*-AB*) a c t s  a s  a f i l t e r  t o  remove @*. 
t i o n  o f  the a d j o i n t  o p e r a t o r  t o  Eq. (5 ,19 )  results i n  

Applying the d e f i n i -  

I = <r*(A-AB)G$> . (5 .20)  

64 can be e l i m i n a t e d  u s i n g  Eq. (4.10) which  is repea ted :  

(A--AB)6$ = - (6A-A’B’+AB)$’ . (5 .21)  

S u b s t i t u t i n g  Eq. (5 .21 )  i n t o  Eq. (5 .23) .  y i e l d s  

I = - <T*(BA-A’B’+AB)$’> . 

Using the i d e n t i t y  

A’B’ - AB = A6B + 6 A B  + 6X6B 

Equation (5 .22)  becomes 

(5.22) 

(5.23) 

Considering on ly  small  p e r t u r b a t i o n s  (i .e . ,  n e g l e c t i n g  6X6B and r e p l a c i n g  

@’ w i t h  4 )  and u s i n g  Eq. (5 .17 )  t o  eliminate the 6X<I’*B$> term, the fol- 

lowing result i s  ob ta ined :  

(5 .25)  

Equation (5 .25)  i s  a p e r t u r b a t i o n  equa t ion  for 6R t h a t  i s  l inear i n  the 

p e r t u r b a t i o n  operators 6 C 1 ,  6C2, 6A, and 6B. 

Eq. (5.10) but  no t  i n  Eq. (5 .25 ) .  

Note t h a t  64 appea r s  i n  

Once 4 and r* are ob ta ined ,  Eq. (5.25) 
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can be used t o  economically estimate the e f f ec t  of many d i f fe ren t  pertur- 

bations by evaluating the indicated integrations,  

A more accurate r e su l t  for  R’ can be obtained by retaining second 

order terms and neglecting higher order terms, 

written as 

Equation (5.4) can be 

Equation (5.26) can be expanded i n  a se r ies  to  obtain 

R’ = 5- [1 ta( 1-++~2+3+-. > I  , 
<e2 @> 

where 

and 

Equation (5.27) 

which converges 

(5.26) 

(5.27) 

(5.28) 

(5.29) 

i s  eas i ly  ver i f ied using simple algebra and the ser ies  

In E q .  (5 .27)  the f i r s t  term i s  a d i r ec t  e f f ec t  tha t  does not account 

fo r  changes in the f lux ,  and a i s  a correction term tha t  i s  f i r s t  order 

i n  64.  Thusly, an equation which retains  second order terms i n  6@ i s  

Equation (5.28) can be written as 

(5.30) 

- (5.31) 
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Note tha t  Eq. (5.32) i s  very similar t o  Eq. (5.12). Using the same devel- 

opment presented following Eq. (5.12),  an equation w h i c h  is very s imilar  

t o  E q ,  (5.22) is obtained: 

c y , = -  <r i *  (6A-X’B’+XB)@’> , (5.33) 

where (A*-XB*)I ‘ l*  = S i *  

and <I ‘ l *B@> = 0 . 
Using 4’ = @ + 64 and E q .  (5.35) , E q .  (5.33) becomes 

(5.34) 

(5.35) 

(5.36) 

Recalling tha t  cy, and 6 are each f i rs t  order terms, the following result 

is  obtained by retaining terms tha t  a re  second order i n  the perturbation 

and neglecting higher order terms: 

where (5.38) 

and 6X,is a f i r s t  order estimate for 6X. 

Returning t o  E q .  (5.30),  a second order estimate for  R’ i s  
’ 

(A*-XB*)T2* = S2* 

and <r2*B@> = 0 . 
(5.40) 

(5.41) 

1 
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For brevity,  several steps were omitted in the development of Eqs. (5.36) 

through (5.40). These equations were included t o  demonstrate a procedure 

for obtaining a second order resu l t .  Equation (5.39) reduces t o  E q .  (5.25) 

fo r  small perturbations. 

The physical interpretat ion of.r* can be obtained by considering a 

purely absorbing perturbation in Eq. (5.25) : 

-- " - - <r*tiCaQ> . (5.42) R 

r* is  a n  importance function which relates  the loss  of neutrons 6CaQ a t  any 

p o i n t  i n  phase space t o  changes in 6R. 
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CHAPTER V I  

GENERALIZED PERTURBATION THEORY FOR B I L I N E A R  RATIOS 

The purpose o f  t h i s  chapter  i s  t o  develop p e r t u r b a t i o n  equat ions f o r  

the  system descr ibed ’by 

A$ - AB$ = 0 , (6.1) 

A*$* - AB*$* = 0 , (6.2) 

(6 .3)  

R i s  a b i l i n e a r  r a t i o  ( i . e . ,  the  r a t i o  o f  b i l i n e a r  f u n c t i o n a l s  o f  @ and $*). 

Examples o f  performance parameters t h a t  can be represented by Eq. (6.3) 

are r e a c t i v i t y  worth,  Doppler c o e f f i c i e n t ,  prompt-neutron 1 i f e t i m e ,  e f f e c -  

t i v e  delayed-neutron f r a c t i o n ,  and the  r a t i o  o f  r e a c t i v i t y  worths .4 

Using t h e  n o t a t i o n  in t roduced i n  Previous chapters,  t he  per turbed 

s t a t e  i s  descr ibed by 

The r e l a t i v e  change i n  R i s  g iven  by 

S u b s t i t u t i n g  Eqs. (6.3) and (6.6) i n t o  Eq. (6.7) and us ing  the  convent ion 

f o r  r e l a t i n g  the  re fe rence and per tu rbed s t a t e s  in t roduced i n  Chapter I11 

r e s u l t s  i n  



- 1  

The l inearized form of Eq .  (6.8) can be written as  

where 

and 

. .  

. (6.8) 

(6 .9)  

(6.10) 

(6.11) 

(6.12) 

Equations (6.9) through (6.12) were obtained by neglecting second order 

terms such as @*6H16$,  6$*H16$, or  6@*6H1@. 

e f f e c t ,  I is  the ind i rec t  e f f ec t  result ing from changes i n  @, and I 

i s  the indirect  e f f ec t  resul t ing from changes i n  $*- Equations (6.11) 

and (6.12) can be rewritten as  

In Eq. (6 .9) ,  D is  the d i rec t  

6$* 6@ 

I = <S*6$> (6.13) 
64  

I = a@*> y (6.14) 
6 $* 

and 

where 

and 

(6.15) 

(6.16) 

The adjoint  operator relationship was used t o  obtain Eq, (6.15).  Notice 

t h a t  Eqs. (4.20) and (4 .22) ’  which were obtained i n  Chapter IV as second 
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order correction terms f o r  6 A ,  are  of  the same general form as  Eqs. (6.15) 

and (6.16). 

Equation (6.13) i s  very s imilar  t o  Eq. (5.11) t h a t  was developed i n  

Chapter V f o r  l i nea r  r a t io s .  

development i n  Chapter V [see Eq. (5.25)] i s  

Therefore, a result f o r  I based on the 
64) 

where 

and 

x - <r*(GA-ABB)@> , (6.17) I64 

(A*-XB*)r* = S* (6.18) 

<r*B@> = 0 . (6.19) 

I n  order t o  obtain an equation for the ind i rec t  e f fec t  I t h a t  does 
6@* 

not contain @*, i t  is useful t o  introduce the "generalized" function rG 
de f i ned by 

(A-AB)rG = S . (6.20) 

The boundary conditions f o r  Eq.  (6.20) a re  the same as  the boundary condi- 

t ions f o r  the corresponding homogeneous equation, E q .  (6.1 ) . 
i s  a "generalized" equation. Generalized equations are  discussed i n  Chap- 

t e r  VIII. A solution t o  Eq. (6.20) is 

Equation (6.20) 

r G = r + c +  , (6.21 j 

where <@*Br> = 0 (6.22) 

and C i s  an a rb i t ra ry  constant. 

t ionship which will be discussed i n  Chapter VII. Substi tuting Eq. (6.20) 

and (6.21) into E q .  (6.14) yields  

Equation (6 .22)  i s  an orthogonality re la-  
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= a@* (A-AB) ( r+c@) > . I6@* 

Using Eq. (6.1),  Eq. (6 .23)  reduces t o  

(6.24) 

Applying the d e f i n i t i o n  o f  an a d j o i n t  o p e r a t i o n  t o  Eq. (6 .24)  results i n  

= <r(A*-AB*)6@*> . (6.25) &@* 
I 

The 6@* i n  E q t  (6.25) can be removed using Eq.  (4 .11)  w h i c h  is  repeated 

here 

(A*-hB*)6@* = .- ( ~A*--x ’B* ’+AB*) @*’ . (6.26) 

S u b s t i t u t i n g  Eq. (6 .26 )  i n t o  Eq.  (6 .25)  y i e l d s  

The a d j o i n t  o p e r a t o r  r e l a t i o n s h i p  is  used t o  o b t a i n  

(6.27) 

(6.28) 

Using the i d e n t i t y  

X’B’ - A B  = X6B + 6AB + 6A6B , (6 .29)  

Eq. (6 .28)  becomes 

Consider ing only small p e r t u r b a t i o n s  ( i  . e . ,  n e g l e c t i n g  the 6X6B term and 

r e p l a c i n g  @*’ w i t h  @*) and using Eq.  (6 .22 )  t o  eliminate the 6X<@*BI’> 

term, the fo l lowing  result  i s  obta ined:  
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M - <$*( 6A-ABB) l"> . (6.31) I&$* 

Returning to  Eq. (6 .9) ,  the following result i s  obtained 

(6.32) 

Equation. (6.32) is  l i nea r  i n  the perturbation operators 6H1, 6H2, 6A, and 

6B.  

represented by 6A and 6 B  can be economically estimated using E q .  (6.32). 

I f  $, $*, r ,  and r* are  obtained, a large number of perturbations 

i 
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CHAPTER VI I 

EIGENFUNCTION EXPANSIONS FOR G E N E R A L I Z E D  FUNCTIONS 

The purpose of  t h i s  chapter i s  t o  investigate the nature of the 

generalized functions r and r* using the concept'of eigenfunction expan- 

sions.  I t  will be shown tha t  r and r* contain no fundamental mode 

component. 

In previous chapters, the forward and adjoint forms of the homoge- 

neous transport  were introduced. These were 

A$ - AB$ = 0 (7.1 1 

and A*$* - AB*$* = 0 . ( 7 . 2 )  

$ represents the neutron f l u x  i n  a reactor and must be posit ive a t  every 

point i n  phase space. S imi la r ly ,  $* represents the re la t ive  importance 

to  c r i t i c a l i t y  of neutrons i n  a reactor and a l so  must be posit ive a t  every 

p o i n t  i n  phase space. Therefore, i t  follows t h a t  

since B i s  a fission operator. 

The generalized function r is  defined by 

(A - XB)r = S 

and <$*Br> = 0 . 

A general solution for  E q .  ( 7 .4 )  i s  

r G = r + c $  , (7 .6)  
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where C i s  an a rb i t ra ry  constant. Equation (7 .6 )  represents a family of 

solutions,  and any one of these solutions can be used i n  perturbation 

equations. However, the par t icular  solution defined by E q .  (7.5) simpli- 

f i e s  the perturbation equations and i s  be t te r  suited fo r  numerical analy- 

s i s .  

1 owing formula 

Given any solution r G y  i t  i s  possible to  o b t a i n  I' using the fo l -  

(7 .7 )  

This r e su l t  i s  eas i ly  ver i f ied by applying the operator B t o  E q .  ( 7 . 7 ) ,  

multiplying by @*, and integrating. Thus Eq. ( 7 . 7 )  provides a method for 

obtaining a solution which s a t i s f i e s  Eq. (7 .5) .  

A t  t h i s  point, i t  i s  useful t o  introduce eigenfunction expansions. 

The eigenfunctions @ and @* represent the a l l  posit ive or  fundamental mode 

solutions for  Eqs. ( 7 . 1 )  and ( 7 . 2 ) .  

sions i s  based upon the assumption t h a t  there i s  more than one and possibly 

even an i n f i n i t e  number of A's fo r  which solutions t o  Eqs. ( 7 . 1 )  and ( 7 . 2 )  

ex i s t  and also t h a t  Eqs. ( 7 . 1 )  and ( 7 . 2 )  have the same eigenvalues. 

Eqs. ( 7 . 1 )  and ( 7 . 2 )  a r e  written as 

The concept of eigenfunction expan- 

Thus 

- AnB@,, = 0 

and A*@; - A ~ B * @ ;  = 0 , 

(7.8) 

(7 .9 )  

where the A's are arranged in numerical order such tha t  AO<Xl<h2<A3"*  and 

A. denotes the fundamental eigenvalue. 

re la t ionship,  E q .  (7.8) i s  multiplied by @*m, and E q .  ( 7 .9 )  i s  multiplied 

by +,,. 

In  order t o  obtain an orthogonality 

Both equations a re  then integrated over phase space t o  obtain 
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<$*A$ > = X,C$;B$~> (7.10) 

and <$ A*$*> = X <@ B*$*> . (7.11) 

m n  

n m  m n  m 

Apply ing t h e  d e f i n i t h o n  o f  a d j o i n t  operators ,  Eq.  (7.11) becomes 

<@;A$,,> = Xm<$iB$,,> 9 (7.12) 

and s u b t r a c t i n g  Eq.  (7.12) from Eq.  (7.10) r e s u l t s  i n  

Thus, t h e  o r t h o g o n a l i t y  r e l a t i o n s h i p  cus tomar i l y  assumed f o r  t h e  eigen- 

func t ions  $m and $i i s  

<$I;B$~> = 0 f o r  m # n (7.14) 

and <$;BOm> # 0 f o r  a l l  m. (7.15) 

A more thorough d iscuss ion  o f  t h i s  o r t h o g o n a l i t y  r e l a t i o n s h i p  i s  g iven by 

Henry. 

It w i l l  now be shown t h a t  I? cannot i n  general be expanded i n  the  

funct ions To show t h i s ,  t h e  f o l l o w i n g  expansion i s  assumed: 

(7.16) 

The summation over  m excludes t h e  fundamental mode $ (denoted by $0) i n  

o rder  t o  s a t i s f y  Eq. (7 .5 ) .  S u b s t i t u t i n g  Eq. (7.16) i n t o  Eq. (7.4) r e s u l t s  

i n  

Ca A+ - x C a  B@ = s . 
r n m m  m m m  (7.17) 

Using Eq.  (7.8),  Eq.  (7.17) becomes 
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ca A B@ - h c a  B@ = S . m m m  m m m  m (7.18) 

I t  i s  eas i ly  shown t h a t  Eq. (7.18) cannot be sa t i s f i ed  in every case. 

For example, a t  points in phase space where no f i ss ion  occurs (such as in 

ref lectors  or  control r o d s ) ,  the left-hand s ide of Eq. (7.18) i s  zero 

while there  i s  no requirement t h a t  S be zero a t  these points. 

i f  a s ingle  f iss ion spectrum X ( E )  i s  assumed for  a l l  f iss ion neutrons 

(DOT IV requires t h i s  assumption), then the energy dependence of the l e f t -  

hand s ide of Eq. (7 .18)  i s  limited t o  t h a t  o f  X ( E )  a lso.  

limited t o  t h i s  energy dependence, E q .  (7 .18)  cannot be sa t i s f i ed .  

the assumption of completeness represented by E q .  (7 .16)  i s  not j u s t i f i ed .  

In order t o  obtain a function which can be expanded i n  the eigenfunc- 

In addition, 
- 

Since S i s  not 

T h u s  

t i o n s  @m and avoid the objections noted above, the function r i s  s p l i t  

in to  two functions a s  follows 

r = $ + J l f  Y 

where A$ = S. 

Substi tuting E q .  (7 .19)  into E q .  (7 .4)  yields 

A$ - AB$ + Aqf - AB$, = S . 

Using  E q .  ( 7 . 2 0 ) ,  E q .  ( 7 .21 )  simplifies t o  

The following eigenfunction expansion i s  now assumed for  q f :  

(7 .19)  

(7 .20)  

(7 .21)  

(7 .22)  

(7.23) 

Substi tuting E q .  (7.23) i n t o  E q .  ( 7 . 2 2 )  resu l t s  in 
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c a  A$ - X c a  m m  B$ m = AB$ . m m m  

Using Eq. (7.8),  Eq. (7.24) becomes 

C m a, ( A ~ - x )  BO, = AB$ . 

(7.24) 

(7.25) 

Since t h e  operator  B appears i n  a l l  terms i n  Eq. (7.25), t he  ob jec t ions  

r a i s e d  above no longer  e x i s t .  

Eq. (7.25) i s  m u l t i p l i e d  by $: and i n t e g r a t e d  over  phase space t o  ob ta in  

I n  o rder  t o  so l ve  f o r  t he  c o e f f i c i e n t s  am, 

(7.26) 

Using the  o r t h o g o n a l i t y  r e l a t i o n s h i p  g iven by Eqs. (7.14) and (7.15), 

Eq. (7.26) i s  so lved f o r  an t o  o b t a i n  

(7.27) 

F i n a l l y  s u b s t i t u t i n g  Eq. (7.27) i n t o  Eq. (7.23) and t h e  r e s u l t i n g  equat ion 

i n t o  Eq. (7.19), t he  fo l l ow ing  expansion f o r  r i s  obtained: 

(7.28) 

I n  order  f o r  an e igenfunc t ion  expansion t o  be r igorous ,  a complete- 

ness requirement o f  some type must be met. 

f u n c t i o n  I' cannot always be expanded i n  the  func t i ons  amy and thus t h a t  

t h e  func t ions  $m a re  n o t  complete i n  space, energy, and d i r e c t i o n .  How- 

ever,  a poss ib le  completeness r e l a t i o n s h i p  i s  t h a t  BI' can be expanded i n  

the  func t i ons  BQlm even though I' cannot. be expanded i n  the  func t i ons  gm. 

I n  o rde r  t o  o b t a i n  t h e  expansion f o r  Br, BI/J i s  expanded i n  the  func t i ons  

B$m t o  o b t a i n  

I t  was shown e a r l i e r  t h a t  t he  

(7.29) 
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Apply ing t h e  opera tor  B t o  Eq. (7.28) and us ing  Eq. (7.29) y i e l d s  t h e  

des i red  expansion: 

(7.30) 

I n  o rder  f o r  Eq. (7.5) t o  be s a t i s f i e d ,  t he  summation i n  Eq. (7.30) must 

n o t  i n c l u d e  t h e  fundamental mode. Th is  means t h a t  B r  con ta ins  no funda- 

mental mode component 

For t h e  spec ia l  case o f  t he  s i n g l e  f i s s i o n  spectrum X(E),  t h e  o r tho -  

g o n a l i t y  r e l a t i o n s h i p  f o r  e igen func t i on  expansions can be formulated i n  

terms o f  f unc t i ons  o f  space on ly .  

by 

I n  t h i s  case, t h e  opera tor  B i s  g iven  

BGn = x&-fiZf(FyE’) @n (r,E’,E’) dE’dn’ . (7.31) 

M u l t i p l y i n g  Eq. (7.31) by @; and i n t e g r a t i n g  over  phase space y i e l d s :  

Thus t h e  o r t h o g o n a l i t y  r e l a t i o n s h i p  g iven by Eqs. (7.14) and (7.15) may 

be w r i t t e n  as 

< f i f n >  = 0 f o r  mfn (7.33) 

and < f * f  > f 0 f o r  a l l  m , (7.34) m m  

where fn = F@,, ‘JJ”Ef (F,E’) @n (r,E’,E’) dE’d;2’ (7.35) 

f* = G@; =SJ X(E) @* (r,E ,E) dEdE . (7.36) m   IT m and 
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Here fn i s  a f i s s i o n  neutron produc t ion  d e n s i t y  and f;Z i s  i t s  a d j o i n t  

counterpar t .  

Eqs. (7.33) and (7.34) i n d i c a t e  volume i n t e g r a t i o n s .  

Both fn and f i  are  func t i ons  o f  space on ly .  The braces i n  

Many o f  t he  equat ions developed i n  t h i s  chapter  can be formulated 

us ing  t h e  n o t a t i o n  de f ined by Eqs. (7.35) and (7.36). 

requirement upon the  f u n c t i o n  r given by Eq. (7 .5)  can be w r i t t e n  as 

For example, t he  

<f*Fr> = 0 . (7.37) 

S i m i l a r l y ,  Eq. (7.7) can be w r i t t e n  as 

(7.38) 

Equat ion (7.38) removes the  fundamental mode component f from any f u n c t i o n  

FrG t o  o b t a i n  t h e  f u n c t i o n  F r  which obeys Eq. (7.37).  

w i l l  be used i n  t h e  numerical  computation o f  genera l ized func t ions .  

Equation (7.38) 

The e igenfunc t ion  expansions discussed up t o  t h i s  p o i n t  have been f o r  

t h e  f u n c t i o n  r .  S i m i l a r l y ,  t he  f u n c t i o n  r* def ined by 

(A*-xB*) r* = S* 

and <r*B@> = 0 

can be expanded us ing  a d j o i n t  e igenfunc t ions .  Th is  r e s u l t  i s  

where A*q* = S*. 

Not ice  t h a t  Eq. (7.41) i s  very  s i m i l a r  t o  Eq. (7.28). 

(7.39) 

(7.40) 

(7.41) 

(7.42) 



36 

CHAPTER VI11 

DISCUSSION OF GENERALIZED PERTURBATION THEORY 

The purpose of t h i s  chapter i s  t o  explore some o f  the properties o f  

the generalized perturbation theory equations developed i n  Chapters V and 

VI. 

and the physical requirement t h a t  c r i t i c a l i t y  must be maintained. 

Par t icular  a t tent ion i s  given t o  the generalized sources S and S* 

The generalized equations developed i n  Chapter V and VI involve the 

functions r and r* defined by 

(A-AB) r = s , 

<$*Br> = 0 , 

(A*-AB*) r* = S* , 

and <I'*B$> = 0 . 

More general solutions t o  Eqs. (8.1) and (8.3) a r e  

rG = r + c$ (8.5) 

where-C i s  a n  a rb i t ra ry  constant. 

matr ix ,  i t s  determinant i s  zero which means Eq. (8.1) has no unique solu- 

t i o n .  The a rb i t ra ry  constant C i n  E q .  (8 .5)  a lso indicates t h a t  there i s  

no unique solution b u t  rather a family of solutions.  

and (8.2) have a unique solution while Eq. (8 .1)  alone does n o t ,  

When the operator (A-AB) represents a 

Equations (8.1)  
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There a re  r e s t r i c t i o n s  upon S and S* which a r e  necessary i n  o rder  

The r e s t r i c t i o n  upon S i s  f o r  Eqs. (8.1) and (8.3) t o  have so lu t i ons .  

found by m u l t i p l y i n g  Eq. (8.1) by @* and i n t e g r a t i n g  t o  o b t a i n  

The d e f i n i t i o n  of an a d j o i n t  opera tor  i s  used t o  o b t a i n  

<I'(A*-AB*)@*> = <@*S> . (8.8) 

Since t h e  d e f i n i n g  equat ion f o r  @* i s  

(A*-AB*)@* = o (8.9) 

Eq. (8.8) becomes 

<@*S> = 0 . (8.10) 

Thus S must s a t i s f y  Eq. (8.10) i n  o rde r  f o r  Eq. (8.1) t o  have a so lu t i on .  

By m u l t i p l y i n g  Eq. (8.3) by @ and f o l l o w i n g  a procedure s i m i l a r  t o  t h a t  

used i n  Eqs. (8.7) through (8.10), t h e  requirement which S* must s a t i s f y  

f o r  Eq. (8.3) t o  have a s o l u t i o n  i s  found t o  be 

<@S*> = 0 . (3.11) 

A l l  o f  t h e  genera l i zed  sources S and S* which appear i n  Chapters V 

and V I  meet t h e  requirements g iven by Eqs. (8.10) and (8.11). 

s t r a t e  t h i s ,  Eq. (5.12) i s  repeated here 

To demon- 

(8.12) 
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I t  i s  eas i ly  seen tha t  S* i n  Eq. (8.12) s a t i s f i e s  the requirement given 

by E q .  (8.11). 

Physically E q .  (8.1) represents a source i n  a c r i t i c a l  system. 

Therefore, i f  S i s  a posit ive source, no time-independent solution i s  pos- 

s ib l e .  

some points i n  phase space and negative a t  others i n  order t o  s a t i s f y  

E q .  (8.10).  

E q .  (8.10) requires t ha t  the importance weighted posit ive source exactly 

counteract the importance weighted negative source. 

"permits" a time-independent solution t o  ex i s t .  Ordinarily, superposition 

would allow one t o  separately solve the transport  equation with the posi- 

t i ve  and negative sources and then add these par t ia l  solutions to  obtain 

the desired r e su l t .  

neither the posit ive nor the negative source s a t i s f i e s  Eq. (8.10).  

However, since @* i s  a posit ive function, S must be posit ive a t  

Since @* is  the importance of neutrons t o  c r i t i c a l i t y ,  

This cancellation 

T h i s  cannot be done w i t h  E q .  (8.11, however, since 

Generalized perturbation theory can be used t o  predict the change i n  

a performance parameter R caused by the introduction of a perturbation in 

a c r i t i c a l  reactor.  Recall t h a t  the generalized perturbation theory 

equations developed in Chapters V and VI allowed the perturbation t o  change 

the system eigenvalue. This formulation i s  valid i n  a mathematical sense, 

b u t  i t  can lead t o  incorrect physical interpretat ions.  For example, 

these equations would predict t h a t  the  breeding r a t i o  of a reactor could 

be made as large as desired by removing f i s s i l e  material and a d d i n g  f e r -  

t i l e  material .  

t i ca l  use since the reactor would be subcr i t ica l .  

t u r b a t i o n s  t h a t  do not a f f ec t  the eigenvalue a re  physically s ign i f icant .  

This r e su l t  i s  correct  mathematically b u t  of l i t t l e  prac- 

Therefore, only per- 

. 
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One way t o  maintain c r i t i c a l i t y  is  t o  introduce a c r i t i c a l i t y  reset  

mechanism. 

t h a t  can be introduced along with any other perturbation represented by 

6 A  and 6 B  in order t o  maintain c r i t i c a l i t y .  

Consider the reset perturbation represented by 6AR and 6BR 

An example of a reset  mecha- 

nism i s  the change i n  the amount of f i s s i l e  material in the.fue1. 

t u t i n g  b o t h  of these perturbations i n t o  the equation for  the f i r s t  order 

estimate fo r  6A (see Chapter IV) resu l t s  in 

Substi- 

(8.13) 

where C is a factor  which adjusts the magnitude of the reset  perturbation 

such tha t  6 1  i s  zero. Sett ing the numerator of Eq. (8.13) t o  zero and 

solving fo r  C y ie lds  

(8.14) 

The change in a l inear  r a t io  resul t ing from the introduction of a pertur- 

bation along with the corresponding c r i t i c a l i t y  rese t  perturbation i s  

cz <r*[ (BA-MB)  + C (6AR-A6B,) I+> . (8.15) 
R 

Only indirect  e f fec ts  a re  considered in E q .  (8.15). Substi tuting 

E q .  (8 .14)  in to  E q .  (8.15) resu l t s  i n  

where 

- 6R = <r*+cR+*) ( ~ A - A ~ B ) + >  
R (8.16) 

(8.17) 
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Notice that CR does not depend upon the perturbation represented by 6A 

and 6B but only on the resit perturbation represented by 6AR and 6BR. 

Thus, once the reset mechanisn is chosen, Eq. (8.16) can be used to calcu- 

late the effect o f  a large number of perturbations. 

fundamental mode component to the generalized function r* corresponds to 
a criticality reset correction for generalized perturbation theory. 

Note that adding a 

. 
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CHAPTER I X  

AN ANALYTIC EXAMPLE USING GENERALIZED PERTURBATION THEORY 

The purpose o f  t h i s  chapter i s  t o  demonstrate t h e  use o f  genera l ized 

Many p e r t u r b a t i o n  theo ry  equat ions by s o l v i n g  a s imple a n a l y t i c  example. 

o f  t h e  p r o p e r t i e s  discussedl i n  Chapters V through VI11 can be i l l u s t r a t e d  

i n  t h i s  manner. 

The system chosen f o r  cons ide ra t i on  i s  a two-group i n f i n i t e  homoge- 

neous medium. For t h i s  case, t h e  t r a n s p o r t  operators  a re  2 by 2 matr ices.  

The parameters f o r  t he  f i r s t  group a re  a r b i t r a r i l y  assigned as Cc = 3, 

C f  = 1, C1+2 = 1, V = 4, and X = (0.75, 0.25), where t h e  symbols have t h e i r  

usual d e f i n i t i o n s .  S i m i l a r l y ,  the parameters f o r  t h e  second group are 

assigned as Cc = 1, Cf  = 1, C2-fl = 0, J = 2, and x = (0.5, 0.5). Not i ce  

t h a t  separate f i s s i o n  spect ra were assigned f o r  t h e  two groups. 

son f o r  choosing separate f i s s i o n  spect ra f o r  t h i s  example i s  t h a t  t he  

r e s u l t i n g  system has two nonzero e igenfunct ions.  A lso n o t i c e  t h a t  f o r  

each group the  abso rp t i on  (Cc + C f )  equals the  neutron p roduc t i on  (vCf); 

The rea-  

the re fo re ,  t h e  system i s  c r i t i c a l .  

The system j u s t  de f i ned  i s  descr ibed by t h e  f o l l o w i n g  m a t r i x  equat ion 

where 

and 

(A - AB)$ = 0 , 1 

A = [-: ;] , 

B = [ i  :] . 

. 
The n o t a t i o n  used i n  previous chapters has been r e t a  

s tanding t h a t  A and B a r e  matr ices and $ i s  a v e c t o r  

(9.2) 

(9.3) 

ned w i t h  t h e  under- 

The c h a r a c t e r i s t i c  
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equat ion f o r  t h i s  problem i s  

(5-3X) -A 

( - 1 4 )  (2-1) 
= o  . (9.4) 

The fundamental mode s o l u t i o n  i s  X = 1 and @ = (1, 2 ) .  Mote t h a t  t he  

no rma l i za t i on  o f  t h e  vec tor  @ has been a r b i t r a r i l y  chosen. 

e x i s t s  another mode g iven by X 1  = 5 and Q1 = (1  -2). 

There a l s o  

The a d j o i n t  c r i t i c a l i t y  equat ion i s  

(A*-xB*)@* = 0 (9.5) 

where A* = AT (9.6) 

(9.7) T and B * = B  . 
The "TI' supersc r ip t  i n d i c a t e s  a m a t r i x  transpose. The fundamental mode 

s o l u t i o n  f o r  Eq. (9.5) i s  X = 1 and $I* = (1, 1 ) .  

by X 1  = 5 and @l* = (3 ,  4) .  

a d j o i n t  equat ions are  t h e  same. 

g iven by 

The second mode i s  g iven  

Note t h a t  t he  eigenvalues o f  t h e  forward and 

Also,  t h e  o r t h o g o n a l i t y  r e l a t i o n s h i p s  

are  e a s i l y  v e r i f i e d  since B@l = (1, -1) and B@ = (5,3).  The n o t a t i o n  used 

i n  prev ious chapters has been r e t a i n e d  i n  Eq. (9.8) and i s  i n t e r p r e t e d  as 

The p e r t u r b a t i o n  equat ion f o r  6X which was developed i n  Chapter I V  

i s  i l l u s t r a t e d  by cons ider ing  t h e  p e r t u r b a t i o n  g iven by 

. 

. 
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(9.11) 

T h i s  perturbation represents a change i n  the capture cross section for  the 

f i r s t  group. The f i r s t  order estimate fo r  the change i n  x which resu l t s  

from the perturbation is  

The charac te r i s t ic  equation fo r  the perturbed system can be solved t o  ob- 

t a in  the following exact r e su l t  for  the change i n  X result ing from the 

perturbation a: 

(9.13) 

A comparison o f  numerical resu l t s  obtained u s i n g  Eqs: (9.12) and (9.13) 

a re  shown i n  Table IX-1. The l inear  estimate 6Ao agrees very well w i t h  

the exact r e su l t  6X f o r  the small perturbation c1 = 0.01. .However, the 

l inear  estimate i s  about 10% h i g h  f o r  the la rger  perturbation c1 = 1. 

Table IX-1. Exact and Linear Results f o r  6X 

~ ~~~ 

1 .o 0.11 39991 0.1250000 0.1 257288 
-1 .o -0.1374586 -0.1250000 

0.10 0.01 23835 0.01 25000 0.01 25007 
-0.10 -0.0126179 -0.01 25000 

0.01 0.001 2488 0.001 2500 0.001 2500 
4 . 0 1  0.001 251 2 -0.001 2503 
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The l inear  estimate B X o  may be interpreted as (%)(6c1) , where the 

derivative i s  evaluated a t  a = 0 (the reference s t a t e ) .  Therefore, using 
dh  the central difference equation for  , the following central  difference 

estimate for  

In Table IX- 

d i f f e r s  from 

6Ao i s  obtained 

- 
"CD - 

d i f f e r s  ' 6 h C D  
6Xo by roughly 

from 6Ao by less  than 1% for  c1 = 1 where 6X 

0%. T h u s ,  the comparison of 6XCD and 6x0 

i s  a good method of tes t ing  whether a value fo r  6X obtained by perturba- 

t ion theory i s  consistent with & A C D  obtained using d i rec t  calculations of 

perturbed s t a t e s .  T h e  central difference formula i s  exact fo r  quadratic 

functions and i s  t h u s  a higher order approximation than l inear  perturba- 

t ion theory which corresponds t o  a forward difference approximation. This 

method of comparison will be used in l a t e r  chapters t o  verify the accuracy 

of l inear  predictions. 

Generalized perturbation theory can be used t o  estimate the change 

i n  l inear  ra t ios  given by 

(9.15) 

For this example, the following special case of Eq. (9.15) i s  chosen: 

(9.16) 

where C 1  = (1  ,O) and C 2  = ( 0 , l ) .  

r a t i o  is  given by 

The generalized source for a l inear  

(9.17) 
. 
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Using @ = (1,2), i t  i s  found t h a t  <I1@> = 1, <I2@> = 2, and S* = (1, 4 . 5 ) .  

The vec tor  S* obeys the  source requirement 

<$Is*> = 0. 

The genera l ized a d j o i n t  r* i s  de f ined by t h e  equat ions 

(A*-XB*)r* = S* 

and <I'*B@> = 0 . 

The equat ions can be w r i t t e n  as 

(9.18) 

(9.19) 

2 r l*  - 2  r2* = 1 , 

- r l*  + r2* = -0.5 , 

and 5 r l*  + 3 r2* = 0 . 

Note t h a t  Eq. (9.21) i s  a m u l t i p l e  o f  Eq. (9.20) 

(9.20) 

(9.21) 

(9.22) 

So lv ing  f o r  r l*  and r2* 
r e s u l t s  i n  i* = (&,-&). 

A second way o f  o b t a i n i n g  r* i s  an e igen func t i on  expansion g iven f o r  

t h e  two group case by 

(9.23) r* = ,p + <@*B+1> 
AI-X <@1*B@I> 

where A*$* = S* . (9.24) 

3 So lv ing  Eq. (9.24) r e s u l t s  i n  $* = (m , - k> . The c o e f f i c i e n t  f o r  @I: 

can be evaluated by us ing  

2 X = 1, X 1  = 5, <+*B$1> = and <@l*B@l> = 8. 

Equation (9.23) then becomes 
I r* = q,* + 8o @ l *  
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Using 

r e s u l t  obta ined above. 

= (3 ,  +), i t  i s  found t h a t  I‘* = (&,--$) which i s  t h e  same 

A t h i r d  way t o  o b t a i n  r* i s  t o  use t h e  Neumann s e r i e s  

where A q o *  = S* 

and A*$; = f o r  n=l  t o  m . 

(9.25) 

(9.26) 

(9.27) 

It was p r e v i o u s l y  determined t h a t  +: = (z 3 , - 1) . The source i n  

Eq. (9.27) f o r  n=l  i s  AB*Qo* Not ing  t h a t  t h i s  source i s  

t h e  o r i g i n a l  S* d i v i d e d  by 5 ,  Eq. (9.25) becomes 

(9.28) 

Thus t h e  same r e s u l t ,  r* = (6,- &) , i s  ob ta ined us ing  each o f  t h e  

th ree  methods. 

bR The f i r s t  o rder  est imate f o r  t he  R r e s u l t i n g  f rom t h e  p e r t u r b a t i o n  

g iven by Eq. (9.11) is 

. 

(9.29) 

The t r a n s p o r t  equat ion f o r  t h e  second group [ f rom Eq. (9 .1) ]  i s  

- $ 1  + 2 $ 2  - A $ l  - A42 = 0 . (9.30) 

Since the  p e r t u r b a t i o n  g iven by Eq. (9.11) occurs o n l y  i n  t h e  f i r s t  group, 

t h e  per turbed equat ion f o r  t h e  second group i s  

- 4; + 2 4; - A’@< - 1’4; - - 0 .  (9.31) .I 
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So lv ing  f o r  R’ r e s u l t s  i n  

Using R = 7 ,  1 an exac t  r e s u l t  f o r  6R i s  

(9.32) 

(9.33) 

where 6X i s  g iven by Eq. (9.13).  

A comparison o f  numerical r e s u l t s  obta ined us ing  Eqs. (9.29) and 

The l i n e a r  est imate agrees very  we l l  f o r  

However, t he  l i n e a r  est imate i s  i n  

(9.33) a re  shown i n  Table I X - 2 .  

t h e  small p e r t u r b a t i o n  a = 0.01. 

e r r o r  by about 15% f o r  a = 1. 

d i f f e r s  from the  l i n e a r  r e s u l t  by about 2% f o r  a = 1. 

The c e n t r a l  d i f f e r e n c e  approximat ion 

Table IX-2. Exact and L inear  Resul ts  f o r  6R/R  

a 6R 
R 
- 

1 .o -0.161 7774 -0.1875000 -0.191 591 1 

-1 .o 0.221 4049 0.1875000 
0.10 -0.01 8461 0 -0.01 87500 4 . 0 1  87540 

4 . 1 0  0.01 90470 0.01 87500 
0.01 -0.001 8721 4 . 0 0 1  8750 4 . 0 0 1  8750 

-0.01 0.001 8779 0.001 8750 

The problem de f ined  by Eqs. (9.1),  (9 .2) ,  and (9.3)  can be mod i f i ed  

by us ing  t h e  same f i s s i o n  spectrum f o r  both groups. I f  the  f i s s i o n  spec- 

t rum i s  x = (0.5,  0.5),  then, Eq. (9.3) becomes 

B=[: :] . (9.33) 
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For t h i s  problem, there i s  only one eigenvalue ( A  = l ) ,  and the 

eigenfunctions are  Cp = ( 1 ,  3 )  and Cp* = (1 ,  1 ) .  

discussed fur ther  except t o  note t h a t  the Neumann ser ies  for r* termi- 

This problem will not  be 

nates a f t e r  the f i r s t  term such t h a t  

r* = $* . (9.35) 



t 
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CHAPTER X 

COMPUTATIONAL PROCEDURES FOR GENERALIZED FUNCTIONS 

The purpose of this  chapter is t o  describe the procedure tha t  has 

been implemented f o r  calculating the generalized functions r and I"*. 

modifications tha t  were made i n  the computer program DOT IV7 i n  order t o  

The 

perform these calculations a re  described. 

One equation normally solved by DOT IV may be written as 

where S is  a non-negative source. The equations describing the generalized 

function r a re  

(10.2) 

(10.3) 

(10.4) 

Equation (10.1) i s  solved i n  DOT IV u s i n g  an outer i t e ra t ion  procedure 

which may be written as  

(10.5) 

where the superscript  re fe rs  t o  the outer i t e ra t ion  number. A similar 

outer i t e ra t ion  procedure fo r  E q .  (10.2) is  

A? = ABr"' + S . (10.6) 

c 

Equation (10.6) is mathematically equiyalent t o  the Neumann series solution 

f o r  r used by Usachevy2 Gandini,3 and Stacey4 provided the i n i t i a l  guess 

' fo r  r i s  zero a t  a l l  points i n  phase space. 
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Comparing Eq. (10.5) and (10.6) reveals that the two equations are 

of the same form except for the presence of the X in Eq. (10.6). 

fore an option was added to DOT I V  which accounts for the x in Eq. (10.6) 
by multiplying the fission spectrum X by A. 

must be supplied to DOT I V  as an input parameter. 

There- 

The numerical value for X 

Another consideration in the numerical calculation of r is to insure 
that the requirement given by Eq. (10.3) is satisfied. 

requires that Br contain no fundamental mode component. In order to 

investigate this requirement, Eq. (10.6) is multiplied by $* and inte- 

grated to obtain 

Equation (10.3) 

Using Eq. (10.4) and the result 

Eq. (10.7) becomes 

(10.8) 

(10.9) 

Therefore, in principle, if the initial guess for r obeys Eq. (10.3), then 
rn obeys Eq. (10.3) for all n. 

for r always obeys Eq. (10.3). 
Notice that the Neumann series solution 

In computer calculations there are a number of factors which tend 

to introduce some fundamental mode component into Brn even if the initial 

guess contains no fundamental mode. 

exactly satisfy Eq. (10.4). Also, the discrete ordinates difference 

equations do not necessarily obey the adjoint operator relationships 

For example, the source S will not 
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assumed i n  E q .  (10.8). In addition, DOT IV solves E q .  (10.6) f o r  any 

outer i t e ra t ion  n by performing inner i t e r a t ions ,  and i t  i s  often con- 

venient t o  allow the outer and inner i te ra t ions  to  converge together rather 

than t o  converge the inners very t i gh t ly  f o r  each outer.  

sons, a "sweeping" procedure was added t o  a special purpose version of 

the subroutine FISCON i n  DOT IV i n  order t o  remove any fundamental mode 

from the f iss ion source AB?-' i n  E q .  (10.6). 

For these rea- 

A similar  sweeping proce- 

dure is  presently used i n  the version of ANISN6 which calculates general- 

ized functions.13 

neutron production density notation defined i n  Chapter VI1 i s  introduced 

i n  Eqs. (10.6) and (10.3) t o  obtain 

In order t o  describe this  sweeping procedure, the 

and <f*Fr> = 0 . 
(10.10) 

(10.11) 

The equation developed i n  Chapter VI1 fo r  obtaining a f iss ion neutron 

production density which obeys E q .  (10.11) is  
I 

(10.12) 

In the present application, the f i ss ion  source i n  Eq. (10.10) is calcu- 

lated u s i n g  the generalized flux from the previous i te ra t ion  

E q .  (10.12) is used t o  remove any fundamental mode from this  source. 

T h u s  the f iss ion source i n  E q .  (10.10) is forced t o  obey Eq. (10.11) fo r  

each outer. As the outer i t e ra t ions  converge, the amount of fundamental 

mode removed by the sweeping procedure should become smal 1. 

f and f* which a re  obtained from eigenvalue calculations a re  part  of the 

i n p u t  required f o r  the generalized function calculation. 

Then 

The functions 
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I t  can be seen from Eqs. (10.3) and (10.4) tha t  the functions l? and 

and S a re  posit ive i n  some parts of phase space and negative i n  others.  

Since the difference equations ordinar i ly  solved by d iscre te  ordinates 

codes such as DOT IV a re  based on the assumption of posit ive fluxes and 

non-negative sources, ” the presence of posit ive and negative sources 

presents a considerable problem. T h i s  i s  not t rue  for  d i f f u s i o n  theory 

calculations since the difference equations for  d i f f u s i o n  theory a re  not 

based upon a posit ive f l u x  assumption. 

calculate  generalized fluxes us ing  the one-dimensional d i scre te  ordinates 

computer program ANISN is  t o  use the l inear  modello supplementary d i f f e r -  

ence equations which do not depend upon the sign of the fluxes.  However, 

several d i f f i c u l t i e s  have been encountered w i t h  t h i s  approach. The l inear  

equations require a very f ine  space mesh which makes i t  d i f f i c u l t  t o  

choose an adequate space mesh. 

convergence was adversely affected.  

ated for  two-dimensional calculations where an economical space mesh and 

rapid convergence o f  the inner i t e r a t ions  a re  essent ia l .  Therefore, the 

method implemented i n  DOT IV is  to  par t i t ion  the source i n  E q .  (10.10) 

into a posit ive source and a negative source and perform the f l u x  calcu- 

la t ion fo r  one outer i t e ra t ion  u s i n g  these sources separately.  

changing the s i g n  of the negative source, this par t i t ioning resu l t s  i n  

a l l  posit ive flux calculations.  Thus the highly developed inner i t e r a -  

t ion acceleration methods u t i l i zed  i n  DOT IV may be used. 

coarse space meshes a re  acceptable. 

negative calculations a re  used t o  calculate  the f i ss ion  source for the 

next outer i t e r a t ion .  

The method chosen by Oblow5 t o  

Also, the acceleration of inner i t e ra t ion  

These l imitat ions cannot be to le r -  

By 

Also re la t ive ly  

The fluxes from the posit ive and 

The par t i t ioning of sources is  merely a mechanism 

. 

. 

. 
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fo r  avoiding the negative f l u x  problem. The f iss ion source calculated 

by each outer i t e r a t ion  s t i l l  obeys E q .  (10.11) and thus avoids the prob- 

lem which would occur i f  the  fission sources were not combined and then 

parti t ioned for  each outer i t e ra t ion .  

source would approach plus in f in i ty  and the negative f iss ion source would 

approach minus in f in i ty  and significance problems would render any com- 

puter calculation worthless. 

In this case the posit ive f iss ion 

I n  order t o  implement the source parti t ioning method of solution, 

DOT IV was modified t o  accept a f l u x  guess I? and the source S i n  p a r t i -  

tioned form. The f i ss ion  source calculation was modified t o  calculate 

the f iss ion neutron source resul t ing from the parti t ioned flux guess and 

t o  remove any fundamental mode component as described e a r l i e r .  The fis-  

sion source i s  then parti t ioned i n t o  posit ive and negative parts and an 

outer i t e r a t  

tioned form. 

cedure. The 

next outer 

outer u n t i  1 

implemented 

t ions are  a 

on performed t o  obtain the next i t e ra t ion  fluxes i n  p a r t i -  

Several modifications were required t o  implement this pro- 

fluxes i n  parti t ioned form provide the f l u x  guess for the 

erat ion.  The procedure outlined above is  repeated for  each 

sa t i s fac tory  convergence i s  obtained. 

has been described f o r  the forward function r ,  the modifica- 

so applicable to  the adjoint  function r*. The sweeping pro- 

Although the procedure 

cedure removes @* fundamental mode i n  the adjoint  case. 

The use of parti t ioned fluxes presents a minor roundoff problem when 

The p a r t i -  the fluxes are  combined for  use i n  perturbation calculations.  

tioning also requires two flux calculations for each group. 

use of standard flux calculation techniques and re la t ive ly  coarse space 

meshes are  s ign i f icant  a'dvantages which much more than counterbalance 

these d i f f i c u l t i e s .  

However, the 
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CHAPTER XI 

NUMERICAL EVALUATION OF PERTURBATION EQUATIONS 

In Chapter IV a f i rs t  o r d e r  p e r t u r b a t i o n  theo ry  equa t ion  f o r  changes 

i n  6A was de r ived .  T h i s  result is 

(11 .1)  

In Chapters V and VI, gene ra l i zed  p e r t u r b a t i o n  theo ry  equa t ions  were ob- 

t a i n e d  f o r  i n d i r e c t  e f f e c t s  r e s u l t i n g  from changes i n  the forward and 

a d j o i n t  f l u x .  These results a r e  

@ (6A-A6B)r> . (11 .3)  
I64* = - < * and 

The numerator o f  Eq. (11 . l )  and Eqs. (11.2) and (11 .3)  a l l  i nvo lve  the 

same p e r t u r b a t i o n  o p e r a t o r s  bu t  d i f f e r e n t  forward and a d j o i n t  functions. 

Also,  the denominator o f  Eq. (11 .1)  i s  s i m i l a r  t o  the second term i n  the 

numerator o f  Eq. (1 1.1 ) . Therefore  the d i s c u s s i o n  of numerical eva l  ua- 

t i o n  o f  p e r t u r b a t i o n  theo ry  equa t ions  i n  this c h a p t e r  can be l i m i t e d  t o  

the numerator o f  Eq. (11.1) w i thou t  l o s s  o f  g e n e r a l i t y .  

The f i s s i o n  term i n  E q .  (11 .1)  r e q u i r e s  the e v a l u a t i o n  of the f o l -  

lowing i n t e g r a l  

I s  = <@*6B@> . 

W r i t i n g  Eq. (11 .4)  i n  more d e t a i l  y i e l d s  

IS  = j / - [ x (  E ) ~ ~ ~ ( ~ , E ~ ) ] @ ( ~ , E ~ ) @ * (  r ,E)dE'dEdV . 

(11.4) 

(11 .5)  
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The terms i n  Eq. (11.5) have t h e i r  usual d e f i n i t i o n s  except t h a t  t he  Los 

Alamos convent ion o f  us ing  t h e  lower case "a'' t o  represent  macroscopic 

cross sect ions and r e s e r v i n g  t h e  upper case "C"  t o  i n d i c a t e  summation has 

been adopted. 

r e s u l t s  f rom a DOT I V  c a l c u l a t i o n .  The i n t e g r a l s  over energy become sum- 

mations over  groups, and the  i n t e g r a l  over space becomes a summation over 

t h e  space mesh t o  o b t a i n  

Equation (11.5) can be evaluated numer i ca l l y  us ing  t h e  

where 

g and g' = group ind i ces ,  

z = a zone index, and 

i = a space mesh index. 

The summations over  t h e  space meshes w i t h i n  a zone can be computed and 

saved, w h i l e  t h e  o t h e r  summations must be performed a f t e r  t he  p e r t u r b a t i o n  

i s  determined. 

Another i n t e g r a l  which must be evaluated i n  o rde r  t o  o b t a i n  6x0 using 

Eq. (11.1) i s  

IA = <$*6A$> . (11.7) 

When A represents a t r a n s p o r t  t heo ry  operator ,  t h e  p e r t u r b a t i o n  operator  

6A cons is t s  o f  a t o t a l  c ross -sec t i on  term and a s c a t t e r i n g  term such t h a t  

(11.8) 
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and 

I = /////60s ( r; E * , P - t E  ,E) @ ( r, E ’ , E’ ) @* ( r , E ,E) dn’d E ‘d E dEd V . ( 1 1 .9  ) 

For isotropic  sca t te r ing ,  Eq. (11.9) reduces t o  an equation very 

simi 1 a r  t o  Eq. (1 1 .5) .  

tional problems which may be adequately discussed by dropping the energy 

and space dependence t o  obtain 

However, ani sotropic scat ter ing presents addi - 

J S = //~a(E*Si’)@*(Si)@(E’)d~dl’ . (11 . lo )  

I n  E q .  (11.10) i t  has been assumed tha t  the scat ter ing cross section 

depends only on the angle of sca t te r ing  and not on the direction of t rave l .  

In DOT IV, anisotropic scat ter ing i s  represented by the following 

Legendre ser ies  

(11 . l l )  

where the ser ies  i s  truncated a t  L .  Typical values of L a r e  1 and 3 .  

The two-dimensional d i scre te  ordinates r e su l t  fo r  a scat ter ing source i s lo  

where 

(11.12) 

(11.13) 

(11.14) 

Pam i s  an associated Legendre Polynomial, q i s  a polar direction cosine, 

$ i s  an azimuthal angle, and 6 i s  the Kronecker de l ta  function. Yam , 

is  a spherical harmonic which can be used t o  expand functions o f  angle 
o,m 
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Equation (11.12) is derived using the which are'even functions of Q. 

addition theorem for Legendre polynomials. 

Eqs. (11.12), (11.13), and (11.14) is given by Mynatt et a1.l' 

The spherical harmonics YRm obey the orthogonality relationship 

A detailed discussion of 

(11.15) 

This orthogonality relationship can be used to obtain the following 

s p her i ca 1 ha rmo n i c ex pans i on : 

A similar expansion for the adjoint flux.is 
W R  

@*(m = c C(2R+1)@* R,m Y"(S1) R , 
R=o m=o 

where 

(11.16) 

(11.17) 

(11.18) 

Equation (11.17) is very similar to Eq. (11.16) except for a   IT term 

which arises because @(E) has units of neutrons/cm2/sec/steradian while 
$* is a dimensionless quantity. 

neutrons from an isotropic source. 

Thus @ * o , o  is the average importance o f  

Using Eqs. (11.12) and (11.17), Eq. (11.10) becomes 

Using the orthogonality relationship given by Eq. (11.15), Eq. (11.19) ' 

reduces to 
L R 

(11 2 0 )  
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In o r d e r  t o  e v a l u a t e  Eq. (11.14) numer ica l ly ,  DOT IV uses an a n g u l a r  

quadra tu re  such t h a t ' '  

(11 2 1 )  

where the d index i n d i c a t e s  the discrete ang les  i n  the a n g u l a r  quadra tu re .  

A s i m i l a r  equat ion  a p p l i e s  f o r  the a d j o i n t  f l u x  excep t  t h a t  DOT IV s o l v e s  

f o r  @*(<). In terms o f  the p o l a r  d i r e c t i o n  c o s i n e  n and azimuthal a n g l e  

$, @*(q) is $*(--n,Wr). Using the r e l a t i o n s h i p s  

and 

i t  fo l lows  t h a t  

R+m m P!(-n) = (-1) P , h )  (11 2 2 )  

(11 2 3 )  

Y; (SL) = ( - 1 p  Y (4) . (11 2 4 )  

There fo re  the f l u x  moments $* 

(-1) be fo re  they  a r e  used i n  E q .  (11.20).  

c a l c u l a t e d  by DOT IV a r e  m u l t i p l i e d  by 
,m 

R 

R e t u r n i n g  t o  E q .  ( 1 1 . 9 ) ,  the equa t ion  eva lua ted  numer ica l ly  f o r  the 

s c a t t e r i n g  term is  

where the n o t a t i o n  e s t a b l i s h e d  f o r  the fission term has been used. The 

summations over  i and m may be precomputed and saved while the g ,  g', z ,  

and R summations must be performed a f t e r  the p e r t u r b a t i o n  is determined. 

The computer program VIP" has been developed t o  perform the i and m summa- 

t i o n s ,  reverse the a d j o i n t  energy groups ,  and i n c l u d e  the (-1)' term d i s -  

cussed e a r l i e r .  "VIP" i s  an acronym w h i c h  s t a n d s  f o r  - Volume - I n t e g r a t e d  

. 
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- Product. 

depend upon the geometry being considered except through the zone 

dependence. 

Once the i summation i s  performed,the remaining sums do not 

The f ina l  integral  which must be evaluated for  the perturbation equa- 

t ions i s  the to ta l  cross-section term given by E q .  (11.8) which includes 

an angular integration of the form 

JT =/$(E)$*(E)dE . (11.26) 

I n  the one-dimension program SWANLAKE16 t h i s  integration is performed using 

angular fluxes such t h a t  

For two-dimensional applications,  the number of angular fluxes i s  often 

large,  and they are  not routinely saved. 

Eq. (11.26)  i s  to  use the moment expansions given by Eqs. (11.16)  and (11.17) 

t o  obtain 

An a l te rna te  way to  evaluate 

Using the orthogonality relationship of E q .  (11.15), Eq. (11.28)  reduces t o  
W R  

(11 29) 

I f  the ser ies  i n  E q .  (11.29) can be truncated a t  a re la t ive ly  low value o f  

1, then the moments which are  required for  the scat ter ing term can be used 

to  obtain the to ta l  cross-section term w i t h o u t  saving angular fluxes. 

Returning to  Eq. (11.8),  the equation evaluated in VIP for  the to ta l  cross- 

section term i s  
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R R 

The summations over  R, i, and m a r e  computed and saved by V I P .  

Three d i f f e r e n t  computer codes a r e  a v a i l a b l e  t o  read t h e  tape w r i t t e n  

by V I P  and per form the  sums over  g,g’, z, and R which must be performed 

a f t e r  t h e  p e r t u r b a t i o n  i s  determined i n  Eqs. (11.6),  (11.25), and (11.30). 

These a re  SWANLAKE, l6 JULIET,17 and TPERT. ’* SWANLAKE was o r i g i n a l l y  

w r i t t e n  f o r  s h i e l d i n g  s e n s i t i v i t y  ana lys i s  and c a l c u l a t e s  o n l y  t h e  numera- 

t o r  o f  E q .  (11.1). JULIET i s  a ve rs ion  o f  SWANLAKE which uses a d i f f e r -  

e n t  c ross-sec t ion  f i l e  and a l s o  c a l c u l a t e s  genera l i zed  sources f o r  one- 

dimensional cases. 

t he  numerator and denominator o f  Eq.  ( 1  1.1 ) . 
TPERT i s  a p e r t u r b a t i o n  code which c a l c u l a t e s  bo th  
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CHAPTER XI1 

THE DEMONSTRATION PROBLEM 

In order to obtain reactor physics information, the Applied Physics 

Division at Argonne National Laboratory has recently performed a number of 

critical assembly experiments. Measurements performed in these assemblies 

are compared with calculations in order to determine the adequacy of the 

nuclear data and calculational methods used for reactor design. 

bide Benchmarklg is the first of several planned critical assemblies 

designed to study the physics properties of advanced LMFBR fuels. 

first assembly has a relatively simple, uniform composition which facili- 

tates the testing of nuclear data and design analysis methods. 

perturbation theory is a useful tool for interpreting comparisons between 

calculations and measurements in critical assemblies since the sensitivity 

of the measurement to changes in nuclear data may be determined. The Car- 

bide Benchmark is a good assembly for testing two-dimensional generalized 

perturbation theory calculations and will be used for all the demonstration 

calculations in this work. 

The Car- 

This 

Generalized 

The Carbide Benchmark experiment was performed at the ZPR-9 facility 

This facility contains a movable half-core 

Each half core consists of a matrix of drawers 

at Argonne, Illinois in 1977. 

and a stationary half-core. 

which are loaded with platelets containing plutonium, uranium, sodium, and 

other reactor materials. A detailed geometrical description o f  the Carbide 

Benchmark is found in Ref. 19. The Carbide Benchmark was constructed as 

nearly cylindrical as possible using the square matrix of drawers. 

R-Z mode119 for the Carbide Benchmark is shown in Fig. XII-1. 

The 

This model 
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represents one-half of the assembly, and the bottom boundary i s  reflected 
1 

t o  account for  the presence of the other half .  

36 i n . ,  the axial blanket i s  12  in.  thick,  and the axial re f lec tor  i s  

The  to ta l  core height i s  

6 in. thick. The c r i t i c a l  mass'9 is  534.1 k 5.4 kg of plutonium. The R-Z, 

diffusion theory calculations. of the Carbide Benchmark performed a t  Argonne 
I 

used 29 groups. However, for  methods development and ver i f icat ion work, 

i t  i s  more economical t o  use fewer groups.  T h u s ,  a four-group cross sec- 

t ion set  was selected for  this work. 

composition dependent , four-group , Po-transport-corrected 1 i brary developed 

by General Electric.*O 

Core Code Evaluation Work Group20 fo r  the purpose of investigating methods 

and codes relevant t o  the design of a commercial s i ze  LMFBR. While th i s  

l ibrary i s  not fu l ly  applicable t o  the Carbide Benchmark and four groups 

a re  probably not adequate fo r  reactor physics calculations t o  be compared 

w i t h  experiments, th is  l ib rary  shou ld  be adequate fo r  calculational methods 

ver i f icat ion.  The use of an exis t ing l ibrary saves the considerable e f f o r t  

This cross-section l ibrary i s  a 

This l ibrary was prepared for  use by the Large 

required t o  obtain a cross-section l ibrary.  

l ib rary  are  given i n  Table XII-1. 

this  l ib rary  i s  found i n  Ref. 20. 

The energy boundaries for  t h i s  

Much additional information concerning 

Table XII-1. Energy Boundaries for  the 
Four-Group Library 

Energy Boundary Energy i n  eV 

1.649 E t 7  
8.208 Et5 
4.087 E+4 
2.035 Et3 
1 .OOO E 4  
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A detailed description of the composition of the Carbide Benchmark 

i s  found in Ref. 19. 

not found i n  the four-group cross section s e t  and s l igh t  differences be- 

tween the compositions of  the axial and radial blankets and re f lec tors .  

For the four-group calculat ions,  the t race elements were n o t  used and the 

axial blanket and re f lec tor  compositions were used for  b o t h  the axial and 

radial blankets and re f lec tors .  

The four-group l ib rary  contains separate core 

weighted cross sections for  some elements and these were used i n  the corre- 

sponding zones for  the Carbide Benchmark whenever possible. 

T h i s  description includes a number of 'trace elements 

These compos t ions are  shown i n  Table XII-2. 

blanket, and re f lec tor  

Three V E N T U R E 2  diffusion theory calculations were performed for  the 

Carbide Benchmark using the four-group cross section s e t  and the calcula- 

t i o n  model described i n  this chapter. 

study the e f f ec t  of mesh s ize  upon the calculated value of the k eigen- 

value. These r e su l t s  are  shown i n  Table XII-3. 

a re la t ive ly  coarse space mesh. 

obtained u s i n g  this mesh d i f f e r s  by less  t h a n  0.1% from the r e su l t  obtained 

for  the 1 .5  cm mesh. The 3-cm mesh was chosen for  the DOT IV calculations 

to  follow since this i s  a typical mesh for d iscre te  ordinates calculat ions.  

In the radial d i rec t ion ,  20 equally spaced intervals  are  used i n  the core,  

10 i n  the blanket, and 5 i n  the re f lec tor .  In the axial direct ion,  15 in- 

tervals  are  used i n  the core, 10 i n  the blanket, and 5 i n  the re f lec tor .  

A ser ies  of DOT IV calculations were performed u s i n g  this space mesh to  

study the e f f ec t  of varying the angular quadrature. 

shown i n  Table XII-4 and indicate t h a t  SQ i s  adequate fo r  calculating k .  

However, S6 was chosen fo r  the perturbation theory calculations to  be 

The mesh spacing was varied to  

The 3-cm-mesh spacing i s  

However, the calculated value of k 

These r e su l t s  a re  
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Table XI I -2 .  Compositions f o r  t he  Ca lcu la t i ona l  Model 
0 

Number Dens i t i es  i n  atoms/barn-cm 
E l  emen t Core B1 anket Ref 1 e c t o r  

Fe 
N i  
C r  
Mo 
C 
Na 
U-235 
U-238 
PU-239 
PU-240 
PU-241 
PU-242 

1.02432 E-2 8.4404 E-3 5.52268 E-2 
1.3522 E-3 1.0892 E-3 6.9675 E-3 
2.9309 E-3 2.4080 E-3 1.57707 E-2 
3.500 E-4 9.7 E-6 9.7 E-6 
1.08325 E-2 1.26111 E-2 2.456 E-4 
9.0842 E-3 9.3053 E-3 
2.14 E-5 2.59 E-5 
9.8203 E-3 1.20815 E-2 
1.3320 E-3 
1.766 E-4 
1.76 E-5 
2.7 E-6 

Table X I I -3 .  D i f f u s i o n  Ca lcu la t i ons  f o r  k 

Mesh I n t e r v a l s  Mesh 
(R x z >  k Spacing 

35 x 30 0.98175 -3 cm 
53 x 46 0.98139 -2 cm 
70 x 60 0.981 27 -1.5 c m  

Table X I I -4 .  DOT I V  Ca lcu la t i ons  f o r  k 

C a l c u l a t i o n  k 

d i f f u s i o n  0,981 58 
S Z  ‘0,98875 
s 4  0.98566 
s 6  0.98536 
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described i n  the next few chapters since generalized flux calculations 

migh t  require higher angular resolution. The zone map, cross section 

s e t ,  space mesh, and angular quadrature described i n  this chapter a re  

used for  a l l  the perturbation theory calculations t o  follow. 
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CHAPTER XI11 

. DEMONSTRATION PERTURBATION CALCULATIONS FOR 
CHANGES IN THE EIGENVALUE 

In th i s  chapter, the perturbation equat ion ' for  changes i n  X derived 

i n  Chapter IV i s  evaluated using the numerical techniques described i n  

Chapter XI i n  order to  demonstrate the usefulness of the numerical tech- 

niques. 

t ion is 

The f i r s t  order r e su l t  for  the reac t iv i ty  worth of a perturba- 

(13.1) 

The central (peak) values of Cp and @* for  each g roup  i n  the Carbide Bench- 

mark demonstration problem are  shown i n  Table XIII-1, and plots of (9 and 

@* are  shown in Figs. XIII-1 th rough  XIII-4. The spat ia l  shape of the 

Table XIII-1. Fluxes a t  the Center of the Core 

6.73E-5 6.82E-5 
2.40E-4 5.40E-5 
7.89E-5 4.31E-5 
8.54E-6 4.67E-5 

forward and adjoint  fluxes a re  s imilar  for  the f i r s t  three groups. For 

the fourth group, the adjoint  f lux i s  smooth while the forward flux has 

local peaks i n  the blanket and the ref lector .  The largest  forward flux 

occurs i n  the second group. 

than the flux i n  group 2 (a  factor  of 28 lower i n  the center ) .  

adjoint  f lux peaks i n  the f i r s t  group and i s  f a i r l y  constant w i t h  energy. 

The forward flux i n  group 4 i s  much lower 

The 
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Two perturbations were selected fo r  the demonstration calculations.  

These were changing the carbon and 2 3 9 P u  number densities i n  the core. A 

number of DOT IV calculations were performed i n  order t o  evaluate the 

worth of these perturbations d i rec t ly .  

Table XIII-2. 

These resu l t s  a re  summarized i n  

Table XIII-2. DOT-IV Eigenvalue Calculations 

Core Number Calculation 
Density Perturbation Mode k 

+lo% fo r  C Forward 0.98322 
+lo% for  C Ad j o i  n t  0.98324 
-10% for  C Forward 0.98751 
-10% for  C Adjoint 0.98754 
+IO% fo r  2 3 9 P u  Forward 1.03466 
-10% fo r  2 3 9 P u  Forward 0.93317 
no perturbation Forward 0.98536 

These calculations were performed u s i n g  s ingle  precision ari thmetic on an 

IBM computer which uses only 24 binary bits  t o  represent the mantissa of 

f loat ing point numbers as a binary fract ion.  The f i r s t  four s ign i f icant  

figures i n  the values of k g i v e n  in Table XIII-2 a re  probably not affected 

by loss of significance while the f i f t h  s ign i f icant  f igure i s  questionable. 

In Chapter IX, two methods for  comparing f i r s t  order perturbation 

theory results w i t h  d i r ec t  calculations were described. The f i r s t  method 

i s  t o  compare the f i r s t  order estimate of the e f f ec t  of the perturbation. 

The resu l t s  obtained i n  Chapter IX indicate tha t  this method i s  accurate 

fo r  small perturbations b u t  not for  larger  perturbations. The worths of 

the C and Pu number density perturbations were calculated us ing  the per- 

turbation equation g i v e n  by Eq. (13.1) and a l so  u s i n g  the d i r ec t  calcula- 

t ion method given by 
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W = X - A ' = - - -  1 1  , 

k k'  . 

T h i s  comparison i s  shown i n  Table XIII-3. ' 

Table XIII-3. Comparison of Worths from Direct 
Calculations and Linear Perturbation Theory 

(13.2) 

~ ~ ~~~ 

Core Number D i  rec t Linear Percent 
Density Perturbation Calculation Perturbation Theory Difference 

+ 10% for  C 4.00221 -0.0021 5 -2.7% 
- 10% for  C 0.00221 O.CO215 -2.7% 
+ 10% for  2 3 9 P u  0.04836 0.05235 8.3% 
- 10% fo r  2 3 9 P u  -0.05676 -4.05235 -7.8% 

The agreement between the d i r ec t  calculation and the perturbation theory 

r e su l t  fo r  the carbon perturbation must be considered good since the d i f -  

ference occurs i n  the f i f t h  decimal place which is not known very well. 

The agreement for  the plutonium number density perturbation is  not as  good 

because the perturbation is  outside the l inear  range. 

introduced i n  Chapter IX fo r  comparing d i r ec t  calculations w i t h  f i r s t  

order perturbation theory i s  t o  apply a central difference approximation 

t o  the d i r ec t  calculations t o  obtain an estimate of the l inear  perturba- 

t ion theory result. In Chapter IX, i t  was found tha t  good agreement was 

obtained us ing  the central  difference method fo r  re la t ive ly  large pertur- 

bations because o f  the cancellation of second order terms. A comparison 

o f  l inear  perturbation theory and the central  difference method is  shown 

i n  Table XIII-4. 

central  difference d i r ec t  method t o  w i t h i n  0.5% which i s  very good 

agreement. 

The second method 

The 2 3 9 P u  perturbation theory prediction agrees w i t h  the 
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Table XIII-4. Comparison of Worths from Linear Perturbation 
Theory and Central Difference Direct Cal cul ations 

Core Number Central Linear Percent 
Density Perturbation Difference Method Perturbation Theory Difference 

10% fo r  C 4.00221 -0.0021 5 -2.7% 

10% fo r  2 3 9 P u  0.05256 0.05235 -0.4% 

A bet te r  understanding of the perturbation theory results can be 

obtained by examining the individual terms i n  the perturbation equation. 

T h i s  i s  done i n  Table XIII-5. 

Table XIII-5. Contributions t o  the Perturbation 
Results f o r  Worth 

~ 

C Perturbation 2 3 9 P u  Perturbation 

Total Cross- 
Section Term -0.32071 

Scattering Term 0.31856 

-0.10269 

0.07700 

Fission Term 0 0.07804 

Sum of Above -0.00215 0.05235 
~~ ~ 

The to ta l  cross section term and the sca t te r ing  term f o r  the carbon number 

density perturbation a re  roughly equal b u t  opposite i n  s i g n .  

great  deal of cancellation occurs i n  the perturbation theory calculation. 

Calculations w i t h  large amounts of cancellation a re  d i f f i c u l t  for pertur- 

bation theory methods. 

perturbation which has considerable cancellation, the numerical proce- 

dures used i n  this chapter a r e  probably adequate f o r  most perturbation 

T h u s ,  a 

Since good r e su l t s  were obtained f o r  the carbon 
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cancellations. 

i s  therefore bet ter  suited for  perturbation methods. 

The plutonium perturbation has much less cancellation and 

The total  cross section term i n  the perturbation equation was evalu- 

ated us ing  the truncated Legendre series described in Chapter XI. 

f i r s t  order perturbation theory resu l t s  for the perturbations considered 

i n  th is  chapter a re  shown i n  Table XIII-6 as a function of the order of 

the Legendre expansion fo r  the to ta l  cross section term. 

The 

Table XIII-6. Variation of the Perturbation 
Prediction W i t h  Legendre Order 

Legendre Order 
for the Total Cross- Worth of the Worth of the 

Section Term C Perturbation 2 3 9 P u  Perturbation 

-0.00438 0.051 66 
-0.00216 0.05234 
4 .0021 8 0.05234 
4 .0021 5 0.05235 

I t  appears t ha t  an expansion order of one ( 1 )  or greater i s  suff ic ient  

fo r  these perturbations. 

The methods used in t h i s  chapter are apparently adequate t o  perform 

The differences between perturba- eigenvalue perturbation calculations.  

t ion theory resu l t s  and d i rec t  calculations occurred i n  the fourth or f i f t h  

s ignif icant  figure. These same methods will be applied t o  generalized per- 

turbation theory calculations i n  Chapters XIV and X V .  

. 
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CHAPTER XIV 

DEMONSTRAT ION GENERAL IZED PERTURBAT ION CALCULATIONS FOR L I NEAR RAT 10s 

The l inear  r a t i o  chosen fo r  the demonstration calculations described 

i n  this chapter i s  the 2 3 e U  absorption t o  2 3 9 P u  fission reaction r a t e  r a t i o  

i n  the center of the Carbide Benchmark. T h i s  r a t i o  was measured for the 

Carbide Benchmark, and Argonne's calculation disagreed w i t h  the measurement 

by more than 5%. 

of current i n t e re s t  i n  reactor physics. 

formed here a re  not sui table  for  comparison w i t h  experimental measurements 

b u t  are  useful t o  ver i fy  methods which could be applied t o  more detailed 

physi cs  cal cul a t  i ons , 

T h u s  central reaction r a t e  measurements of this type a re  

The four-group calculations per- 

The generalized source fo r  this problem i s  given by 

(14-1) 

where 11 i s  the 2 3 8 U  absorption cross section and Cz i s  the 2 3 9 P u  fission 

cross section. C1 and C Z  are  zero outside t h e  small region i n  the center 

of the reactor where the measurement was made. 

sented by a point source i n  space. 

r a t e  r a t i o  i s  shown i n  Table XIV-1. 

T h i s  source i s  well repre- 

The four-group source fo r  the reaction- 

Table XIV-1. The Generalized Source fo r  the 
Reaction-Rate Ratio 

Group General ized Source 

4.5056 E+4 

1.5992 Et5 
2.3061 E+5 

-6.5157 Et4 
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Point sources in two-dimensional discrete ordinates transport calculations 

are best calculated using an analytic first-collision source which prevents 

ray effects.” 

mented by calculating the uncollided flux in the center o f  each space mesh 

In practice, the first-collision source method is imple- 

and using this value for the average flux in the mesh.” For generalized 

flux calculations, this approximation is not satisfactory since it does not 

preserve neutrons, and neutron conservation is necessary in order for the 

first collision source to obey the requirement 

<s*p = 0 Y (1 4-2) 

which must be obeyed by all generalized sources. The first-collision 

source program GRTUNCL2* (pronounced Great Uncle) was modified in order to 

calculate the uncollided flux using the following equation: 

. 
(14-3) 

which obtains the average uncollided flux for each mesh in a rigorous 

manner. The integral in Eq. (14-3) is calculated in spherical coordinates 

for each R-Z space mesh using a numerical integration. 

GRTUNCL was further modified t o  prepare a partitioned generalized 

The modified version of DOT IV described in source for use in DOT IV. 

Chapter X was used to calculate I?* for the reaction-rate ratio. 

sion of the convergence of generalized flux calculations is deferred until 

Chapter XVII. Plots of r* for each group are shown in Figs. XIV-1 through 
XIV-4. 

large in mesh intervals near the point source, the scaling of the vertical 

axis required to plot I?* tends to emphasize only the flux near the source 

Discus- 

Two plots are shown for each group. Since the average flux is 
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which i s  dominated by the uncollided. 

scale sui table  fo r  viewing fluxes f a r the r  away from the source i s  also 

shown. 

For example, r* fo r  the f i r s t  group displays a positive-negative-positive 

s i g n  pat tern,  while I?* f o r  group 2 has a negative-positive s i g n  pattern.  

r* f o r  groups 3 and 4 are  a l l  positive. T h i s  s i g n  pattern may be in te r -  

preted by recal l ing tha t  r* i s  an importance function f o r  neutrons removed 

or added a t  any point and t h a t  S* is  an importance function f o r  changes i n  

flux. 

2 ,  i t  i s  not surprising tha t  r* i s  posit ive f o r  groups 3 and 4. 

trons introduced i n  group 2 ,  the flux i n  group 2 i s  increased (which lowers 

the response R )  while the fluxes i n  the other groups are  a lso increased 

(which increases R ) .  

l i ke ly  fo r  neutrons introduced near the center of the reac tor ) ,  I'* for  

group 2 i s  negative; i f  the f l u x  change i n  the other groups dominate, 

then r* will be posit ive.  

preted i n  a similar manner. 

Therefore, a second plot u s i n g  a 

These p l o t s  a re  included t o  indicate the general features  of r*. 

Since S* i s  posit ive for  groups 1 ,  3 ,  and 4 and negative for  group 

For neu- 

I f  the group 2 f lux e f f ec t  dominates (which i s  more 

The s i g n  of the f l u x  i n  group 1 can be in t e r -  

VIP  and JULIET were used t o  calculate  the e f f ec t  of the number density 

perturbations fo r  carbon and 2 3 9 P u .  

used i s  

The generalized perturbation equation 

(1 4-4) 6R - x-<r* (6A  - A6B)$> . R 

In order t o  check the perturbation theory r e su l t s ,  the d i r ec t  calculation 

method was a l s o  used t o  o b t a i n  values fo r  6R/R. The calculated values of 

R fo r  several d i f f e ren t  perturbed s t a t e s  are  shown i n  Table XIV-2. 

. 
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Table XIV-2. Direct Calculations o f  the Reaction-Rate Ratio 

Core Number 
Density Perturbation R (238U a b s o r p t i ~ n / ~ ~ ~ P u  f i ss ion)  

+lo% f o r  C 0.18128 
-10% fo r  C 0.1 7843 
+Io% fo r  2 3 9 P u  0.17908 
-10% for  2 3 9 ~ u  0.18072 
no perturbation 0.17987 

The l inear  perturbation theory predictions for  6 R / R  a re  compared w i t h  

d i r ec t  calculations i n  Table XIV-3. 

Table XIV-3. Changes in Reaction-Rate Ratios Calculated 
Using Perturbation Theory and Direct Calculations 

~~~~~~~ ~~ 

Core Number Direct Linear Percent 
Density Perturbation Calculation Perturbation Theory Difference 

+lo% for  C 0.00784 0.00794 1.3% 
-10% fo r  C -0.00801 -0.007 94 -0.9% 
+IO% fo r  2 3 9 ~ u  -0.00439 -0.00462 5.2% 
-10% f o r  2 3 9 ~ u  0.00473 0.00462 -2.3% 

The central  difference method described i n  Chapter IX i s  a better 

test  of the accuracy of l inear  perturbation theory results for  perturba- 

t ions outside the l inear  range. T h i s  comparison i s  shown i n  Table XIV-4. 

Table XIV-4. Changes i n  Reaction-Rate Ratios Calculated Using 
Perturbation Theory and Central Difference Direct Calculations 

Core Number Central Difference Linear Percent 
Densi t y  Pertu rba t i on D i  rec t Cal cu 1 a t  i on Perturba t i on Theory Di f f erence 

10% f o r  C 0.00792 
10% fo r  2 3 9 P u  -0.00456 

0.00794 0.3% 
-0.00462 1.3% 
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The agreement between the central difference direct calculations and the 

generalized perturbation theory results are quite good. This indicates 

that the procedures described in Chapter X for calculating generalized 

functions are satisfactory for the class of problems considered here. 

The results for generalized perturbation theory are comparable and perhaps 

slightly better than the eigenvalue perturbation theory results described 

in Chapter XIII .  
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CHAPTER xv 
85 

P 

DEMONSTRATION GENERALIZED PERTURBATION CALCULATIONS FOR BILINEAR RATIOS 

The bi l inear  r a t i o  chosen fo r  the demonstration calculations described 

i n  t h i s  chapter i s  the worth of a small sample o f  2 3 9 P u  i n  the center of 

the carbide benchmark. Central reac t iv i ty  worths a re  o f  considerable 

interest i n  reactor physics. 

There are  two indirect  e f fec ts  associated w i t h  b i l inear  ra t ios ;  one 

fo r  changes i n  the forward f lux,  and one fo r  changes i n  the adjoint flux. 

The generalized sources fo r  the central worth problem are given by 

AA - XAB 9 
= -* <;:*> 

and 
a* - XAB* $* v W *  

s* = .+(-m&js <ff*> ’ 

(15.1) 

(15.2) 

where AA and AB re fe r  t o  the 2 3 9 P u  sample. 

densi t ies  f and f* provide a convenient way t o  calculate  the second term i n  

each of Eqs. (15.1) and (15.2). The  f i r s t  term i n  each of these source 

equations is located i n  a small volume and can be represented by a point 

source. 

The f i ss ion  neutron production 

The second term in each of these equations i s  a volume d i s t r i b u t e d  

source which appears a t  a l l  points where f i ss ion  occurs. 

p o i n t  sources fo r  the worth problem are shown i n  Table XV-1. 

The  four-group 

Table X V - 1 .  The Point Generalized Sources fo r  Central 2 3 9 P u  Worth 

Group Forward Adjoint 

1 3.1883 E+4 5.2566 E+3 
2 1.9657 Et3 4.2565 E+3 
3 -4.5172 E+3 4.9663 E+3 
4 -1.8212 E+3 1.2073 Et4 
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The computer program GRTUNCL was used t o  calculate  a f i r s t - co l l i s ion  

source fo r  DOT IV fo r  each of these sources. The volume dis t r ibuted source 

given by the second term i n  each of the source equations was added t o  the 

f i r s t - co l l i s ion  source. 

using DOT IV. Plots of r and r* are  shown i n  Figs. XV-1 through XV-4. 

r has a positive-negative spat ia l  s ign  pattern fo r  groups 1 and 2 and a 

The generalized functions r and r* were calculated 

negitive-positive-negative s i g n  pattern f o r  groups 3 and 4.  r* has a 

positive-negative s ign  pattern for  each of the groups. Large values near 

the point source a re  not shown i n  these figures i n  order t o  show more de ta i l  

i n  the flux shapes, 

The indirect  e f f ec t  due t o  changes i n  the forward flux i s  given by 

(1 5-3) 

VIP and TPERT were used t o  evaluate this equation fo r  a perturbation con- 

sisting of a 10% change i n  the carbon number density. The indirect  e f f ec t  

.due t o  changes i n  the adjoint  flux i s  given by 

(1 5-4) 

Equation (15-4) was evaluated t o  obtain I&$*. 

Another way t o  obtain changes i n  worth i s  t o  calculate  the worth of 

the 2 3 9 P u  sample u s i n g  various combinations of perturbed and unperturbed 

fluxes. The equation fo r  central  plutonium worth is  

(1 5-5) 

This i s  the same equation evaluated i n  Chapter XI11 except now the integra- 

t i o n  i n  the numerator i s  limited t o  the central interval i n  the DOT IV 
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space mesh.' The worth of a 10% increase i n  the 2 3 9 P u  number density i n  

the central interval evaluated us ing  Eq. (15-5) and various combinations 

of perturbed and unperturbed fluxes are  shown in Table X V - 2 .  

Table X V - 2 .  Central Worths f o r  2 3 9 P u  

Perturbed State  
Fluxes for  the 

Worth Cal cu 1 a t i  on +lo% c -10% c 
$,$* 3.1169 E-5 3.1169 E-5 

4 ,$p* 3.1285 E-5 3.1049 E-5 

$p,$* 3.1354 E-5 3.0992 E-5 
$p Y $p* 3.1471 E-5 3.0873 E-5 

The calculation of worth u s i n g  the unperturbed forward and perturbed 

adjoint ($y$p*) corresponds t o  I&$*. while the worth calculated u s i n g  $p 

and $* corresponds t o  164. The worth calculated u s i n g  $p and @p* corre- 

sponds t o  the sum of 164 and 164". 

A comparison of values of 6W/W calculated u s i n g  the values in 

Table X V - 2  and generalized perturbation theory results i s  shown in 

Table XV-3. 

The difference between the central difference d i rec t  calculation and 

the generalized perturbation theory calculation f o r  changes i n  central 

2 3 9 P u  worth i s  about  2%. 

r e su l t s  indicate tha t  the numerical methods described i n  Chapter X f o r  

calculating r and r* can be used fo r  engineering calculations. 

T h i s  i s  considered excellent agreement. These 
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Table XV-3. A Comparison of Calculated Values fo r  Changes i n  Worth 

Calculation I&* 184 8W/W 

Direct calculation for -10% C 

Direct calculation f o r  +lo% C 
perturba t i on 0.00373 0.00595 0.00969 
Central difference r e su l t  
u s i n g  the d i r ec t  calculations 0.00378 0.00581 0.00959 
Generalized Perturbation Theory 
r e su l t  f o r  the +lo% C perturba- 
t i o n  0.00386 0.00591 0.00976 
Percent difference between the 
central  difference and perturba- 
t i o n  r e su l t s  2.1% 1.7% 1.8% 

perturbation -0.00383 -0.00567 -0.00948 
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CHAPTER X V I  

CALCULATION OF HIGHER EIGENFUNCTIONS 

After DOT IV was modified to  calculate  generalized functions, i t  was 

noted t h a t  higher eigenfunctions ( i  , e . ,  eigenfunctions other than the 

fundamental) are s imilar  to  generalized functions and tha t  the same com- 

puter program could be used to  calculate  both. The f ac t  tha t  higher 

eigenfunctions are  posit ive a t  some points and negative a t  others was n o t  

a problem because of the parti t ioning of posit ive and negative sources 

described i n  Chapter X. 

I n  order to  e x p l a i n  how higher eigenfunctions may be calculated,  the 

method commonly used to  calculate the fundamental mode eigenvalue and 

eigenfunction is f i rs t  described. 

DOT IV can be written as 

The outer i t e ra t ion  procedure used i n  

(16.1) 

where kn-’ i s  the fundamental mode k eigenvalue and fn-’ i s  the funda- 

mental mode f iss ion neutron production. 

outer i t e ra t ion  number. 

The superscripts re fer  to  the  

The source given by the right-hand side of 

Eq. (16.1) i s  normalized such tha t  

(16.2) 
, ,  

The outer i t e r a t ion  represented by Eq. (16.1) i s  performed t o  o b t a i n  @n 

which i s  used t o  calculate  f n  u s i n g  the def ini t ion given in Chapter VII. 

The next estimate of the eigenvalue i s  calculated using 

kn  = < X f n >  (16.3) 
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This outer iteration procedure converges as the higher modes die away 

while the normalization of the source prevents the fundamental mode from 

either dying away or growing very large. However, if no fundamental mode 

is present in the flux guess, the normalization will preserve the largest 

k eigenfunction present while the other eigenfunctions will die away. It 

was found that the version of DOT IV used to calculate generalized func- 

tions could also calculate the eigenfunction kl since the fundamental mode 

removal (sweeping) discussed in Chapter X removed the fundamental mode. 

The only restriction was that the multiplier applied to the initial flux 

guess to obtain the normalization given by Eq. (16.2) be positive, since 

a negative multiplier would make the positive fluxes negative and the 

negative fluxes positive and thus transform the all-positive problem into 

an all-negative problem. This minor difficulty is easily overcome. Addi- 

tional modes may also be swept from the initial fission guess using the 

sweeping equations 

and 
<g**f > 

f *  . g* = 9*4 - <fn*fn> n 

(16.4) 

(16.5) 

Here g’ and g*’ are forward and adjoint fission guesses containing the 

nth mode, and g and g* contain no nth mode. These sweeping equations are 

similar to the sweeping equations discussed in Chapter VI1 for the funda- 

mental mode. 

DOT IV was modified in an ad hoc manner to sweep several modes after 

each outer iteration. The first few modes for the Carbide Benchmark were 
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then calculated. Diffusion theory was used f o r  these calculations as an 

economy measure. The functions f n  and fn* must be calculated f o r  each 

mode before proceeding t o  the next i n  order t o  have the functions required 

t o  perform the sweeping. The eigenvalues fo r  the fundamental mode and 

four higher modes a re  given i n  Table XVI-1. For each eigenvalue, the two 

numerical va 

although not 

convergence) 

Table XVI-1. The First Few 
k E i  genval ues 

n k n  

0 0.98 
1 0.56 
2 0.52 
3 0.36 
4 0.31 

ues from the forward and adjoint  calculations agreed well 

exactly (probably because of roundoff and l e s s  than perfect 

Plots of the functions f n  and fn* a re  shown i n  Figs .  XVI-1 

through XVI-5. 

l a r  b u t  not ident ical .  

(because the macroscopic f i ss ion  cross section is  discontinuous), while 

fn* i s  continuous. However f n  and fn*  have the same s i g n  as a function 

Comparing these plots  indicates t ha t  f n  and fn* are  simi- 

f n  i s  discontinuous between the core and blanket 

of position. T h i s  implies tha t  

<fnfn*> f 0 * (16.6) 

The pair  of eigenfunctions corresponding t o  k l  = 0.56 and k Z  = 0.52 

a re  s imilar  i n  t ha t  each has one posit ive stripe and one negative 

stripe separated by a roughly constant radius l i n e  f o r  k i  and a roughly 
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constant  h e i g h t  l i n e  f o r  k2. 

changed (from 1 t o  -1) f o r  p l o t t i n g  purposes. 

responding t o  k 3  = 0.36 and k 4  = 0.31 have a more compl icated p o s i t i v e -  

nega t i ve -pos i t i ve  s p a t i a l  s ign  pa t te rn .  f4 and f4* have v e r t i c a l  

s t r i p e s  as do fl and fl*. 

Note t h a t  t h e  no rma l i za t i on  o f  k2 was 

The e igenfunc t ions  cor -  

The c a l c u l a t i o n  o f  h igher  e igenfunc t ions  i s  an i n t e r e s t i n g  c o r o l -  

l a r y  t o  t h e  c a l c u l a t i o n  o f  genera l i zed  func t i ons .  

a re  o f t e n  discussed i n  nuc lear  engineer ing a p p l i c a t i o n s  even though 

l i t t l e  i s  known about them. 

Higher e igenfunc t ions  
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CHAPTER X V I I  

OUTER ITERATION CONVERGENCE FOR GENERALIZED FUNCTIONS 

The r a t e  o f  convergence o f  t h e  o u t e r  i t e r a t i o n  procedure used t o  

c a l c u l a t e  genera l i zed  func t i ons  can be p red ic ted  i f  the  second e igenfunc-  

t i o n  X 1  i s  known. Th is  can be i l l u s t r a t e d  us ing  t h e  Neumann s e r i e s  f o r  r 

(17-1) 

where A $ , = S  (1  7-2) 

Using t h e  e igen func t i on  expansions discussed i n  Chapter V I I ,  i t  can be 

shown t h a t  

(1 7-4) 

The summation over  e igenfunc t ions  excludes t h e  fundamental mode. The 

e igen func t i on  expansion f o r  r can be w r i t t e n  as 

Using Eqs. (17-1 ) and (17-4) , the  c o e f f i c i e n t s  a,,, a re  found t o  be 

(17-5) ' 

( 1  7-6) 

The convergence o f  t h e  Neumann s e r i e s  i s  determined by t h e  r a t e  o f  conver- 

gence o f  t h e  s e r i e s  i n  Eq. (17-6).  

t h e  e igen func t i on  $ , w i l l  dominate and each successive term i n  t h e  Neumann 

s e r i e s  w i l l  decrease by t h e  f a c t o r  A / X 1 .  

A f t e r  many terms i n  t h e  Neumann ser ies ,  
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The p a r t i a l  sum for N terms of the se r i e s  i n  Eq. (17-6) i s  

The truncation e r ro r  R N  i s  given by 

. Am 

The r a t e  of convergence for  each am may be characterized by 

(1 7-7) 

(1  7-8) 

(1 7-9) 

T h u s  the truncation e r ro r  for  any a, decreases by the factor  A/Am for  each 

outer i t e ra t ion  o r  each term i n  the Neumann'series. 

Acceleration of outer i t e ra t ions  can be accomplished i n  a number of 

A par t icular ly  simple method is  t o  use a constant overrelaxation ways. 

factor .  

i s  

The overrelaxation method fo r  accelerating a f iss ion density f n  

(1 7-10) 

where the superscripts indicate the outer i t e r a t ion  number and a is  the 

acceleration constant. 

The r a t e  of convergence for  each a, when acceleration i s  used i s  

characterized by 

Equation (17-11) indicates t ha t  ( Y ~ ) ~ ~ ~  can be decreased by u s i n g  a non- 

zero a. In  f a c t ,  i f  only one mode is  present, the exact resu l t s  can be 
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obta ined a f t e r  one accelerated i t e r a t i o n  prov ided t h e  proper a i s  chosen. 

For some values o f  a ,  (y,),,, may be negat ive.  

t h a t  t h e  a c c e l e r a t i o n  has caused t h e  accelerated va lue t o  overshoot t h e  

converged value. 

i s  t o  minimize the  magnitude o f  (y,),,, over a l l  m. 

y f o r  a system and y, i s  t he  smal lest ,  a should be chosen such t h a t  

A negat ive va lue i n d i c a t e s  

When many modes a r e  present,  a c r i t e r i o n  f o r  choosing a 

I f  yL i s  t h e  l a r g e s t  

(17-12) ' 

I n  t h i s  case, t he  l a r g e s t  mode undershoots by t h e  same f r a c t i o n a l  amount 

as t h e  sma l les t  mode overshoots. Using Eq. (17-11), Eq. (17-12) becomes 

The "optimum" va lue f o r  a i s  

YL + us 
a = 2 - (yL + y,) * 

If ys i s  much sma l le r  than yL,  then t h e  optimum value f o r  a i s  

YL a =  
2 - Y L  - 

(17-13) 

(1  7-14) 

( 1  7-1 5) 

The f i r s t  few e igen func t i ons  f o r  t h e  Carbide Benchmark sample problem 

were determined i n  Chapter X V I .  For t h i s  problem 

and 

0 0 5 7  NN 0.40 . 
2 - 0.57 a =  

(1  7-1 6 )  

(1 7-1 7) 
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These resu l t s  indicate tha t  errors  for  the sample problem should decrease 

8 

by a factor  of 0.57 per outer fo r  an unaccelerated calculation and by a 

factor  of 0.4 per outer for  an accelerated calculation. 

outer i t e ra t ions  should reduce the e r ror  by factors of 0.0035 and 0.0001, 

respectively, for the unaccelerated and accelerated cases. Table XVII-1 

shows the convergence of the calculation for  r (see Chapter X V )  as a 

function of the outer i t e ra t ion .  

in phase space corresponding t o  the f i r s t  group and the space mesh a t  

radial interval number 20 and axial interval number 15 (the upper r i g h t -  

hand interval i n  the core as shown in F i g .  XII-1 on page 62).  

culation for  r was performed using a flux guess obtained using diffusion 

theory. 

eight outers,  while the convergence of the unaccelerated case i s  slower. 

Only four outers were performed fo r  the unaccelerated case as an economy 

measure. 

Therefore, ten 

The values of r shown are  for  a p o i n t  

The cal-  

The accelerated case ( u s i n g  c1 = 0.4) converges a f t e r  about 

The convergence of the accelerated case i s  quite acceptable. 

Table XVII-1. Convergence of r with Outer I terat ion Number 

Outer I terat ion Value of r a t  a pointa 
Number Accelerated Unaccelerated 

1 
2 
3 
4 
5 
6 
7 
8 
9 

10 

-0.626 
-0.634 
-0.643 
-0.650 
-0.651 
-0.652 
-0.653 
-0.654 
-0.654 
-0.654 

-0.625 
-0.629 
-0.631 
-0.634 

b 
b 
b 
b 
b 
b 

‘The point i s  fo r  group 1 and a t  the top and outside 

bNot cal cul ated. 

of the core. 
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CHAPTER XV I I I 

SUMMARY AND CONCLUSIONS 

Perturbation theory equations have been derived for four cases : 

(1 ) source problems, 

(2) eigenvalue problems, 

( 3 )  linear ratios in critical systems, and 

(4) bilinear ratios in critical systems. 

The difference flux formulation was used for each case. A possible 

advantage of the difference flux method when compared' with variational 

methods is that the terms neglected are easily identified. The versa- 

tility of the difference flux method was demonstrated by deriving a per- 

turbation equation for linear ratios in which second orher terms were 

retained. It was shown that the generalized functions r and r* contain 
no fundamental mode component. 

tal mode component to r or r* corresponds to a criticality reset. 
It was also shown that adding a fundamen- 

, .  

The computer program DOT IV was modified t o  calculate generalized 

The generalized sources were partitioned into positive and functions. 

negative parts in order to avoid the problem discrete ordinates computer 

programs have with negative fluxes. 

remove fundamental mode from the generalized functions. 

A sweeping procedure was used to 

Overrelaxation 

o f  the fission source was used to accelerate the outer iteration 

procedure. 

The Carbide Benchmark critical experiment was chosen as the model to 

be used for demonstration problems. 

developed was demonstrated by calculating the changes in the eigenvalue, 

The accuracy of the numerical methods 
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a c e n t r a l  r e a c t i o n - r a t e  r a t i o ,  and a c e n t r a l  worth.  The p e r t u r b a t i o n  

theo ry  r e s u l t s  were v e r i f i e d  by comparing w i t h  d i r e c t  c a l c u l a t i o n s .  

c a l c u l a t e d  changes ob ta ined us ing  these two methods agreed t o  w i t h i n  

about 2% which i s  very  good f o r  t h i s  type  o f  c a l c u l a t i o n .  

The 

Several h ighe r  X e igenfunc t ions  and eigenvalues were ca l cu la ted  us ing  

many o f  t h e  same techniques developed t o  c a l c u l a t e  genera l i zed  func t ions .  

Th is  sub jec t  was o n l y  b r i e f l y  explored. 

r e s u l t  i n  the  development o f  p r a c t i c a l  a p p l i c a t i o n s  i n v o l v i n g  eigenfunc- 

Fur ther  work cou ld  poss ib l y  

t i o n  expansions. 

The general i zed  p e r t u r b a t i o n  theory  c a l c u l a t i o n a l  methods can be used 

i n  nuc lear  ana lys i s  a p p l i c a t i o n s  which r e q u i r e  a two-dimensional geometry 

and t r a n s p o r t  theory .  Recent LMFBR core designs a re  h i g h l y  heterogeneous 

w i t h  i n t e r n a l  b lankets  p laced i n s i d e  t h e  core i n  o rder  t o  increase the  

breeding r a t i o ,  

compl icated con f igu ra t i ons  o f  t h i s  type. 

The methods developed i n  t h i s  work cou ld  be app l i ed  t o  
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