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ABSTRACT

The DOT IV! code solves the Boltzmann transport equation in two
dimensions using the method of discrete ordinates. Special techniques
have been incorporated in this code to mitigate the effects of flux
extrapolation error in space meshes of practical size. This report pre-
sents the flux extrapolation models as they appear in DOT IV. A sample
problem is also presented to illustrate the effects of the various models
on the resultant flux. Convergence of the various models to a single
result as the mesh is refined is also examined. A detailed comparison
with the widely used TWOTRAN II2 code is reported. The features which
cause DOT and TWOTRAN to differ in the converged results are completely

observed and explained.
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I. INTRODUCTION

The solution to the Boltzmann transport equation in two dimensions
can be readily obtained using the method of discrete ordinates.® The dia-
mond difference technique, which is usually employed to solve the differ-
ence form of the discrete ordinates equation, produces spurious oscilla-
tions in regions where the flux gradients are steep and the spatial and
directional meshes are coarse. This oscillation often results in the cal-
culation of negative angular fluxes. Various alternate flux extrapolation
techniques have been developed to enhance the solution stability and to
remove the negative angular fluxes. Each of these techniques is, in effect,
an assumption relating mean flux within an interval to the boundary valves,

i.e., a flux-shape model.

The use of alternate flux extrapolation models leads to concerns about
the convergence of the various models to a single solution., That is, when
the spatial and directional meshes are refined, do all the models produce

the same solution?

This report presents the flux extrapolation models as they appear in
the DOT IV discrete ordinates transport code., A discussion, with a sample
case, of the convergence of the models to a single solution is also pre-
sented. Comparisons with the widely used TWOTRAN II code are also reported.
The features that make DOT and TWOTRAN differ in the converged results are
discussed. A discussion of the relative merits of the use of zero-

weight directions in angular quadrature set is presented.



II. THE DIFFERENCE FORM OF THE DISCRETE ORDINATES EQUATION

The finite difference representation of the discrete ordinates

equations can be written as Eq. (1):2

Wl il (Rive, Nive,3.m — Pime,iMiec,jum)
+ . . . . —_
wminml(B1 ,J+d,N1 ,J+d,m BT ’J—'dsN1 ’j_d’m)

+ (A'i""C ,j - AT—C,J>(O{m+1§Ni ,j9m+1/2 N am_liN.i ajam_Li)

+ oWV

P i,jN = WV

i,5,m - MnVi,5

iajsm s (l)

where we define

V. . - [fdv='1_f{dl\d8 ,

EEN I (2)

i - direction surface area
v ” ﬂ‘/dA""c ’ (3)

j = direction surface area
By jrc © -{dBjﬂ: ; (4)

quadrature weight

u = ffaa (5)
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c = %59 (u); d =%Sg(n), and

mts  Oms *wm“m (6)

The recursion for the a's is initialized by setting the first o in
each n level equal to zero. For sets of (u,n) which are symmetric in y,
this insures that the sum of the a's in each N level is zero. Thus, if
Eq. (1) is summed over all directions, the terms in ¢ will sum to zero,
and there is no net particle loss or gain due to angular redistribution

in an area of uniform flux, a property of the analytic equation.

The direction set implied by the pairs of (u,n) is organized into
contiguous subsets (n levels) having a common n. The terms containing
0 couple adjacent directions in each n level, thus accounting for the
effects of curved geometry. This is called "angular flow." Since sums
over the direction set are used to approximate intergrals over solid
angle, the collection of U, n, and W are often referred to as a

"quadrature set."

Following Reference 2, obvious subscripts, such as those describing

the spatial dependence of ¢,, are omitted. Fractional subscripts refer

t

to values associated with the boundary between adjacent intervals; e.g.,

N, . is the boundary value between intervals i and i+1.
ivs, j,m
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III. FLUX EXTRAPOLATION MODEL USED IN DOT IV

In order to solve Eq. (1), a flux extrapolation model relating the
incoming, outgoing, and cell average fluxes must be assumed. 1In DOT IV,
the analyst can choose among a number of models. The following flux
extrapolation models are available in DOT IV and will be described in this
section.

linear (diamond difference)
step

zero fix-up

weighted

theta-weighted

Linear can be used as the primary model, with either zero or theta-
weighted used as an alternative when the linear model results in a nega-

tive flux. All models except the zero fix-up model can be used alone.

Equation (1) has been recast in the following form for implementation

in the cer:
1 (RiacMive = Aimclizg) * InlB(Njpy = Ny g)
+ 0 [(sm ~ ) N&LE = (8 * up) NM] + VorN = VS . 1)
Equation (7) is obtained by applying the following relationship to Eq. (1):

1.
B = W; (um+% +'am—%> : (8)
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The recursion relationship for the Bm can be obtained from Eq. (6) and

(8):
B = ety T s
wm+] B+l = O‘m+3/2+ Ot (9)
O+l = Om2s Miim
Omt3s- Om#s = WM+l (10)
Therefore
WoaBner = ln — (et * Yinbn) (11)

A. Zero-Weight Directions

DOT IV, requires an initial "zero-weight" direction at the beginning
of each n level. TWOTRAN uses a "step formulation®™ in angle for the first
direction in each n level, together with a nonzero weight. The zero-weight
directions are located such that, physically, the angular flow into,

but not out of, the initial M interval must be zero. This implies that

oy =0 (12a)
a3, = Wiy (12b)
Bl = 1 . (12(:)

As the width of the angular interval approaches zero, and thus the weight
approaches zero, it can be seen that the angular interval boundary flux,

Nm+%, approaches the average interval flux, N; i.e.,

N3/2 = N1 . (13)
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Equations (12) and (13) define the conditions used in the derivation of
the zero-weight direction equations, If the initial weight is not zero,
these same conditions are then arbitrarily assumed; the so-called "step-
initialization.™ The use of zero-weight directions means that, in general,
more fluxes must be calculated. The relative merits of zero-weight direc-

tions are discussed in Section VI of this report.

The aforementioned extrapolation models will now be derived from
Eqs. (7), (8), and (11). 1In each case, the assumptions concerning the
variation of the flux across the interval will be presented, as well as
the results. Obvious intermediate steps are not shown. The zero-weight

direction equations are also presented.

In each of the models presented, it is assumed that N N

i-e? " j=d’

and Nm— are known fluxes either from a boundary condition or the

b

calculation in an adjoining interval.

1. he Linear Model

The linear model (diamond difference model) is an arithmetic mean

model.

Assume Ni+c = 2N —-Ni_c (14a)
Nisg = 2N = N5 g (1kp)
Ny, = 2N = Ny (1ke)
By (At Ao (1ba)
BA = Ajp —-A_i_Li (1ke)
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2ulAgse + 88 (6) = 21ulR + o (e

_ VS + 2[u|AN_i_c + 2|n|BNj_d + AABN

_ m—5 (15)
Vo + 2[ulA + 2 [n]B + AAB

Zero-Weight Direction

_ VS + 2|u|KNi_C + ZI”IBNj—d
VoT t 2|u|A + 2|n[B (16)

Eqs. (14) can result in negative values for N,

i+e!? Nj+d’ and

Nm+% due to over-extrapolation in a region with steep flux gradients.

In a region where the source is negative due to truncation in the Legendre
expansion of the cross sections, negative fluxes may also be calculated.
The latter can cause the cell average flux to be negative, also, and in
these cases no attempt to "fix-up" the negative fluxes is attempted. 1In
the former case, one of the negative flux fix-up models can be invoked to
provide a result closer to the true positive flux. These fix-up models
include zero fix-up and weighted difference, both of which guarantee non-

negative fluxes if a positive source is present,

2. he Ste odel

The step fix-up model assumes that the extrapolated fluxes are equal

to the cell average flux.

Assume _
Nipe = N (17a)
Njeq = N (17b)
Nm+1/2 =N

(17c)



: 1
VS + [ulA. N, _+ [n|BN. . + = AA(B+u)N
N = i—< i< jd 7 m-1s

1 (18)
Vor + |ulA;_. + [n[B + m0A(B+u)

Zero-Weight Direction

Us + Jula (19)

j-cNie ¥ IniBN; 4
Vop + [ulAi_c + [n[B

This model, when invoked assumes a step representation of the flux in all
three dimensions. The step model results in very slow attenuation of a
source with intervals of practical size, and tends to always overestimate

fluxes, In older versions of DOT, it was used as a negative fix-up.

3. The Zero Fix-up

Unlike the step model, the zero fix-up model cannot be used as a
stand-alone model, This fix-up model is also more selective in the way it
removes the negative fluxes. That is, the linear model is assumed in the
dimensions that give positive fluxes, and only the negative fluxes are set
to zero. This leads to seven sets of fix-up equations, rather than a

single set as for step.

If any flux is negative, it is set to zero, and the cell average flux
is recalculated assuming that that particular flux is zero. If the new
cell average flux is negative, the fix-up attempt is terminated. This

usually implies a negative source or boundary flux. If the cell average
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flux is non-negative, the remaining two fluxes are extrapolated using the
linear models. If either of these fluxes is negative, the cell average
flux is recalculated assuming two fluxes are zero. If the cell average
flux is positive, the remaining flux is extrapolated. If it is negative,
then all three boundary fluxes are set to zero, and the cell averaged

flux recomputed (assuming the total cross section is not zero).

A set of seven equations results from the zero fix-up strategy:

(1) Assume

Niye = 0.0 ' (20a)

Nj+d = ZN - Nj_d (20b)

Nt = 2N - Ny, (20¢)

. VS + [ulA,_ Ns o+ 2ln|BNj_d * RSN, 1)
Vog + 2[n[B + BA(E—)

Zero=-Weight Direction

5t ulAj_cNy¢ * zlnlBNifd (22)
VoT + 2|n|B — AAu
(2) Assume
N1+C = 2N - Ni—c (23a)
Nj+d = 0.0 (23b)
g = AN = Mo (23¢)
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VS + 2|u|AN + |n|BN + DABN, 5
Vor + 21ulﬂ'+ AAB

Zero-Weight Directions

Vs + 2|u|AN;_ + |n|BNJ._d
VOT+2|u[K

(3) Assume N. = N - Ni_

VS + 2lu| AN + 2|n|BN v AA(B+u)N

ms

N-= + 2Iu|K‘+ ZInIB ¥ AAu

Zero-Weight Direction

VS + 2[ulAN;_ + 2[n BN, 4
Vog + 2|ulR + 2[n[B

N =

(4) Assume
0.0

=
t

0.0

=
tl

N - N

=
1]

_ 5 ulAs N

lnIBNj_d +ARBN

VcT + AM(g—u)

(ak)

(25)

(26a)

(26p)

(26¢c)

(27)

(28)

(29a)

(291p)

(29¢)

(30)
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Zero~-Weight Direction

VS + [u|A; N + ,nIBNj

N i— 'i—< —d | (31)
VOT — AAu
(5) Assume - (32a)
Niye = 0.0
Nipg = 2N = Mg (32b)
Mg, = 0.0 (32¢)

1
. VS + |ulA, N, + 2|n|BNj_d + 2AA(3+U)NWF%

= i_{VoT ¥ 2[n|B (33)
Zero=Weight Directions
Same as Eq. (22)
(6) Assume Ni+c = 2N - Ni—c (34a)
Nipg = 0.0 (34b)
Nm+1/2 = 0.0 (34c)

- 1
Vs 2)ulAN;  + [n|BN; 4 + ABHIN

i (35)
Vor + 2|u|A + AAy
Zero-Weight Direction
Same as Eq. (25)
(7) Assume N.i+c = 0.0 (368)
Niyq = 0.0 (36b)
N = 0.0 (36¢c)



Zero-Weight Direction

Same as Eq. (31)

4, The Weighted Model

VS + |u|A

12

1
_Nig + InIBN; 4 + AN,

VoT

(37)

The weighted-difference model provides a smooth transition between

the linear model in the case of small mesh spacing and the step model in

the large.

This smooth transition promotes rapid convergence of the

iteration process and guarantees a non-negative emergent flux value if

the source term is positive.

new parameters to interpolate

Assume

so that

i+c

J+d

The weighted-difference model uses three

N - N,

= —17C
Nive = Nic

- N-Nj-d
"i+d = Nj-d

_ N Ny
mtz - m-d;

between the linear and step models.

(38a)

(38b)

(38¢c)

(39a)

(39Db)

(39¢)
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Then def'ining

(172 =1) Agye Ai-c]

v = Inl [7b =1 By, 4 Bj_d]

Z=%A [(1/c - 1)(8 —n) + (B + uﬂ

yields

L US i aN+

Vo + X + Y + 2

T

(k0a)

(Lov)

(40c)

(b1)

The values of a, b, and ¢ are determined by first solving for the out-

going boundary fluxes and then, by examination, choosing these coefficients

to ensure positivity of the boundary flux. Non-negativity of the flux can

be assured by bounding a, b, and c¢ between 1/2 (linear) and 1 (step) .and

using Eqs. (42) between these limits.

Sve_ + [ BN, . + LAA(B + ] WA, N,
L g P LINIBNy 4+ upA(B + ) N e+ [ulA_ N, 2y
2[5 Vor + n|B + 10A( - W] Ny
svo, +[ 1ulA;_Ny_c + 5A(B + ) Ny Jo + [nlon ,
1-b= s Ti-ci-c m-3 J°n J-d (12b)
2 [ abor + TulAy,e + 5AG6 - ) [Ny
o svey e [l Ny Inle g Jo, ¢ (e 4 Ny
(42c)

2 [%VOT + A, * InlB] Ny
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The parameters Gs and Gn in Eq. (42) are arbitrary and can be
related to previous formulations. In the 1968 version of TWOTRAN (x,y)%

the formulation is equivalent to:

This method never generates non~positive results, but will produce inac-
curate results for large intervals with a source or for long, narrow

intervals.

In 1969 a Lathrop paper-5 had es = en = 1, but in-house testing has
shown this method to lead to many degenerate results near zero, which
thwart convergence. In the 1973 version of DQT IIIG, a compromise;

8_ =1, 6_ = 0 was used, This worked well in source-dominated regions,
but gave inaccurate results for source-free intervals of long, narrow
shape. The present version of DOT IV differs from its predecessor in
that the m-flow terms (i.e., terms involving Nm—%) are grouped with the

source term with a multiplier of Gs.

} . t ‘l‘l .

N = Vop X ¥V (43)

The weighting coefficients a and b are defined by Eqs. (44), There
is no ¢ weighting coefficient for the zero-weight direction. The coeffi-

cients a and b are derived in a similar manner as for Eqs. (42).

_ Ve, + InIBNj_den + lulAi—cNi-c (Lka)

[VoT + 2[n|B - AL ] N o

1 -a
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1-b= 2Vos * lulAi--cNi-cen ¥ |n|BNj-

[VOT +20ulA,, . - AAu] Mg

d (4hp)

5. The Theta-Weighted Model

The theta-weighted model”? is essentially a specific case of the
weighted difference model. An arbitrary multiplier is used to avoid
degeneracy yet to use the accurate linear model when the source or flow

from adjacent boundaries actually controls N;

Values of 6 ranging from 0.5 to 0.9 have been tested with satisfactory
results, Apparently any value near 1, but not near enough to produce
numerical degeneracy, is acceptable. At present a value of 0.9 is used
in DOT IV, This gives results which are often very similar to those of
the linear model with zero fix-up and often converges faster, and is

therefore less expensive.
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IV. SOLUTION TO THE DOT-TWOTRAN DISCREPANCY

The DOT and TWOTRAN series of discrete ordinates codes were developed
by different teams of researchers, each with their own ideas concerning
approximations that would be incorporated in their code. The DOT codes
were developed primarily for use in the area of deep penetration shielding
analysis, which is characterized by problems with fixed sources, highly
anisotropic fluxes, and large flux attenuations. The TWOTRAN codes have
found their largest use in reactor core problems, i.e., eigenvalue prob-
lems, which are usually characterized by more isotropic fluxes, Owing to
this difference in objectives, two very different philosophies were

adopted.

The recent TWOTRAN codes offer only the linear-zero difference model
(other versions had other models), while the DOT code provides the user
with a number of difference models to choose among, depending on the prob-
lem at hand. TWOTRAN's treatment of the initial direction is also differ-
ent from that used in DOT. TWOTRAN uses the step-initiation model in
angle in the first direction of each N level, while the DOT codes tradi-
tionally use the zero-weight approach. Due to these differences, DOT and

TWOTRAN gave different results to many problems,8

and the explanation in
a given case could only be incomplete. In an attempt to find any dis-
crepancies between DOT and TWOTRAN, TWOTRAN's zero fix-up and step-
initiation features were incorporated into a temporary version of DOT.

A number of X-Y geometry problems were run in both codes without the use

of flux rebalance. X-Y geometry was chosen first because the angular

flow terms are not present in this geometry, and thus the zero-weight
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directions have no effect. The rebalance acceleration was omitted since
DOT and TWOTRAN rebalance in a different manner. In all cases DOT and

TWOTRAN agreed exactly,

The second set of test problems was run in R-Z geometry. When DOT
and TWOTRAN were run using the linear "diamond difference" model they
once again agreed exactly with each other. However, when a negative flux
was calculated and it became necessary to invoke the zero fix-up model
the codes were in gross disagreement. After extensive investigation

it was found that there was a basic flaw in TWOTRAN.

In the initial direction, TWOTRAN uses the step model in angular
space, which guarantees a positive flux in the angular dimension, but not
necessarily in the spatial dimensions. When one of the extrapolated
spatial fluxes is negative, the fix-up equations are invoked. TWOTRAN
does not have a special set of fix-up equations for the initial directions,
where the step model in angle is employed. The effects of this approxima-
tion are discussed later in this report. The fix-up equations are derived
assuming a linear variation of the flux for the direction that is not being
fixed up. For the initial direction, this is inconsistent with the step
model that was used originally and leads to a term coupling the mean flux
to a previous flux that does not exist [see Eg. (19) or (22)]. The value
that was used by TWOTRAN was the value that was left in the computer's
memory by previous calculations. This is obviously in error. The equa-
tions do not indicate what should be used. A correction was made to TWO-
TRAN to set the undefined flux to zero if the fix-up equations were

invoked, corresponding to the DOT treatment. This brought DOT and TWOTRAN
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back into agreement, TWOTRAN was run to convergence with and without

the correction, to assess the effects of the error (reported later).

A different formulation of the zero fix-up model is being made avail-
able in DOT IV. Zero-weight directions are used rather than the step
model in the first angle in each n level. The corresponding equations
were listed previously. Running this DOT option allowed isolation of
the effects of zero-weight directions. The problem chosen was the
20 X 50 R-Z sodium-steel problem described later in this report. The
results are presented in Table 1. The correction to TWOTRAN decreased the
emergent flux along the bottom of the mesh by a factor of 3.56 at the
center line and 1.65 at the edge. The larger error at the center line is
due to the more frequent use of the fix-up model in this region of the
problem, The use of zero-weight directions increased the emergent flux at
the center line by a factor of 1.10 and decreased it by a factor of 1.13
at the edge. However, the leakage from the right and bottom boundaries

of the problem agree within 1 percent.

The fluxes closer to the source behave in a manner consistent with
the flux model being employed. That is: linear-zero gives the smallest
flux values, as would be expected by the nature of the fix-up model;
weighted gives the largest flux values, as expected, since we know it is
approximately the same as the step model for coarsely meshed problems;
and theta-weighted flux values lie between these models. However, this is
not true of the fluxes further away from the source, indicating that
knowledge of the behavior of the flux model locally does not necessarily

imply knowledge of the behavior of the flux model over the entire problem.
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Table 1. TWOTRAN Versus DOT Flux Comparison for the
First Group of the R-Z Sodium-Steel Problem

{SOURCE}
SODIUM

¢ o} 300

1

STEEL
4 1*—60-*3_1%?
LR
Code Flux at A Flux at B Flux at C Flux at D
TWOTRAN II 3.07152-18 3.25054-19 3.16834-7 1.00751-7

TWOTRAN II (corrected)* 8.63367-19 1.97081-19  2.25276-7 1.13672-7
DOT IV (linear-zero) 9.53677-19  1.73965-19  2.00958-7 9.09857-8
DOT IV (weighted) 8.68320-19 1.41253-19 5.01178-7 1.99149-7
DOT IV (6-weighted) 6.42672-19  1.20006-19  2.63975-7 1.12762-7

*DOT IV gives identical results for this case when the step-initiation
model is used together with the corrected zero fix-up equations.
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Therefore, it is impossible to a priori determine a "conservative" flux

model,

The linear-zero model tended to yield higher bottom leakage than
either the weighted or theta-weighted models, This could be a result of
the selectiveness of the zero fix-up; that is, only the fluxes that need
to be fixed-up are fixed, while the linear model is used in the remaining
dimensions. In principle, weighted tends to yield a higher flux than
linear 2zero, since it uses the linear model for small intervals, making
a smooth transition to non-negative values for large intervals. Examin-
ing the flux at the midplane of the problem, we see that weighted has
caused more neutrons to migrate to the side of the problem and to leak.
The higher leakage flux ultimately lead to lower flux at the problem

boundary.

It should be noted that the corrected linear-zero model described
herein is not truly consistent when used without zero-weight direction.
In fact, a careful derivation of the zero fix-up equations to be used
for the step-initialization directions shows that they are identical to
the zero-weight equations. This is not equivalent to setting N = 0, as
was done in this study. 1In a later section, it will be seen that this
inconsistency, not the type of initialization, is responsible for much of
the remaining difference between the linear-zero and corrected step-

initialization results noted in this section.
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- V. EXTRAPOLATION MODEL EVALUATION

The convergence of the various flux extrapolation models to a unique
solution with refinement of the spatial mesh has always been a matter of
concern to users of transport codes, It has been tacitly assumed that
if the mesh is refined until the maximum interval is less than two mean
free paths, [Q%EJ, in any direction, negative fluxes will not be

generated if the source and incoming boundary fluxes are positive,

In order to assess the validity of this assumption, three small sample
problems that have characteristics similar to those encountered in shielding
analysis and one cell eigenvalue problem were solved on a number of spatial
grids, Each successive mesh was halved until all intervals in the problems
were less than two mean free paths. Isotropic scattering was assumed in
all cases and an Sg fully symmetric quadrature was used. The linear-
zero model with zero-weight directions, the linear zero model with step-
initialization, the theta~weighted model and the weighted model were all
used in this study. The mesh spacing was extrapolated to zero using a

three parameter fit of the following form:
® C3
L = Cl + C2(O'AX) O“'S)

The results for the first group leakage opposite the source versus mesh
size and a description of each of the shielding problems are shown in

Figs. 1 through 3.

In all cases, the weighted model yielded extrapolated leakage fluxes

that were higher than those calculated with the other models., This is
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in agreement with general experience. The remaining models give approxi-
mately the same result, although the theta-weighted model sometimes con-
verges faster than either of the linear-zero models. Since shielding
problems are often performed using mesh spacings corresponding to abscissas
of 5-T7 on these plots the error introduced by finite mesh spacing can be
larger than the difference between models, Other mesh-spacing considera-
tions such as the "factor-of-two-flux-variation-between-intervals" rule

are now suspected of producing poor results.

As the mesh was refined, all models except the weighted model became
more difficult to converge. Calculations with meshes below the two mean
free path limit, where all models should be solving the linear (diamond
difference) equations with no negative flux fix-up, could not be made to
converge. The material densities were reduced until almost void condi-
tions existed and this phenomenon persisted. Further understanding of
this phenomenon can be gained by examining the linear equation for the

cell averaged flux:

VS o+ 2fulAN,_ + 2n|BN; 4 + oABN
Vor + 2[u[A + 2 [n|B + aAB (15)

The source term in Eq. (15) is usually small for the first groups in
typical shielding problems because the majority of the source in these
groups is the self-scatter source, and also, V is small as the mesh is

refined. The Ni—c term in the first groups is small especially near

the right boundary for problems with top or bottom boundary sources. The

N term is usually small in these groups because of the forward

m-3
peaked scattering. These conditions lead to Eq. (#46).
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__ In[BNj_4
N'= T0TR + n|B + LAAR (46)

Since A and B are usually of comparable magnitude,‘ﬁ for some directions

will be less than %N,

j=d? resulting in a negative value of N.+

j+d’

This effect is not seen in the 1-D geometries. It results in the use of
negative fix-up procedures in typical 2-D shielding calculations no matter
how fine the mesh becomes. In such cases, the converged result depends

upon the extrapolation model, and convergence of the iterative process

becomes more difficult.

The emergent scalar flux from the bottom of the sodium-steel problem
is presented in Fig. 4. The spatial oscillations in the flux resulting
from the use of the models based on the linear formulation are evident,
The weighted model however calculates a flux shape that is smooth and more
representative of the physical situation, but results in a higher total
leakage from the bottom of the system. The theta-weighted model calcu-
lates results that are somewhat smoother than the linear formulations
with fix-up, but gives a lower leakage. However, inspection of Figs. 1
through 3 indicates that the theta-weighted model gave results that were

closer to the extrapolated zero mesh spacing results,

The cell eigenvalue problem is shown in Fig. 5. This problem is
characterized by long narrow intervals, which tend to cause difficulty
with the weighted-difference model. The scatteriﬁg was assumed to be
linearly anisotropic, and an S; fully symmetric quadrature set was used

for these calculations, The results are shown in Table 2.
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Table 2. The Calculted k-eff for the Cell
Eigenvalue Problem Various Flux Models

Model k-eff
Linear-zero 0.9926
Linear-zero (TWOTRAN) 0.9927

-weighted 0.9897
Weighted 0.9519
Monte Carlo 0.986 + 0.015

Point fission source convergence of <0.025
for DOT cases.

As was seen previously, the weighted model gave the higher leakage,

which resulted in a lower ke eigenvalue. The other models gave essen-

ff
tially the same results, and are in agreement with the MORSE Monte Carlo

calculation.

As to which model is preferable, the study has shown that the
weighted model converges to a higher leakage, which is in agreement with
general experience. It is preferred for shielding calculations where
the maximum leakage is sought, but is unsuitable for eigenvalue problems
for the same reason. The remaining models give approximately the same
results. The theta-weighted model sometimes converges faster than the
linear-zero models, and may be preferred where convergence difficulty is
expected. The linear-zero model is inexpensive, and is applicable to most
eigenvalue problems which are not expected to present flux convergence

difficulty.
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VI. ZERO-WEIGHT DIRECTION EVALUATION

As stated earlier in this report, one of the basic differences between
DOT and TWOTRAN is that DOT traditionally requires zero-weight directions
in its angular quadrature set, while TWOTRAN uses step-initialization,
TWOTRAN also uses a zero fix-up model that is based on the linear extrapo-
lation model, and implies an undefined flux, as discussed previously.
When the zero fix-up equations are derived approximately, the resultant

equations are identical to the equations for the zero-weight directions.

In order to assess the effectiveness of zero-weight directions, a
simple two zone, 21 energy group, R-Z problems were constructed. An iso-
tropic boundary source was applied at the top boundary. Nonreturn bound-
ary conditions were applied at the right and bottom of the problem. An
Sg direction quadrature set from the TWOTRAN code, with zero-weight direc-
tions added, was used in all problems. The problem was 60.0 cm in radius
and 420.0 cm in height. The top boundary source is incident on 300.0 cm
of sodium followed by 120.0 cm of steel. In this case there were 20
equally spaced mesh intervals in the radial direction, 20 equally spaced
mesh intervals axially in the sodium, and 30 equally spaced mesh intervals
in the steel. The scattering was assumed to be linearly anisotropic.

The following calculations were performed:

1. Standard DOT IV linear-zero model with zero-weight directions

2. Standard TWOTRAN linear-zero with the corrected initial angle
fix-up based on the linear extrapolation model

3. DOT IV linear-zero with the step-initialization consistently
derived
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4, Standard TWOTRAN linear-zero model without the initial angle
correction. The results of these calculations are presented
in Figs. 6 and 7. Only the group one fluxes are presented,
Figure 6 presents the scalar flux along the top mesh row in the
sodium. The zero-weight direction calculation and the step in angle with
the consistent fix-up equations are in excellent agreement. The standard
TWOTRAN models, both with and without the correction, give results that

indicate a depression in the flux along the center of the cylinder; obvi-

ously not physically correct.

Figure T presents the scalar fluxes in the last interval in the
steel. The uncorrected TWOTRAN yields results that are in greatest dis-
agreement with the other calculations, All four models give poor results,

marred by spatial oscillation.

In summary, both the zero-weight direction model and the step
initial~direction model with a consistent fix-up model give results that
are physically acceptable near the source. None of the fix-up models

give particularly good results at the bottom of the cylinder.

These results seem to indicate that the step initiation model with
a consistent fix-up is computationally more cost efficient, since fewer
directions need be calculated using this method, and the results are no
worse. However, examination of the quadrature sets supplied with the TWO-
TRAN code reveals that the initial (and final, due to symmetry) direc-
tions have large n values (near 1) compared to a set of equivalent order
that would be used in DOT. It appears that these directions may behave
like zero-weight directions which also have n values near unity. This

raises the question of the adequacy of a given quadrature set,
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An R-Z model of a SNAP reactor was chosen to evaluate the effect of
zero-weight directions on eigenvalue calculations. This system is char-
acterized by relatively high radial leakage. Four three group, S,Pj3
problems were run., The linear-zero model, with and without zero-weight
directions, was used with the standard DOT and TWOTRAN quadratures. The
results of these calculations are shown below. Again, the difference in

keff results from the inclusion of zero-weight directions was

insignificant.
DOT TWOTRAN
Quadrature Quadrature
With zero-weight directions 0.923213 0.924330

Without zero-weight directions 0.923685 0.924770
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VII. CONCLUSIONS

The DOT IV discrete ordinates transport code allows the user to choose
among various fluxvextrapolation models to mitigate the effects of over-
extrapolation error in shielding problems. The assumptions for each of
these models and the resultant equations have been present in this report

to enhance the user's understanding of the code.

A detailed comparison between DOT and TWOTRAN uncovered a model defi-
ciency in the TWOTRAN code. With this deficiency in modeling treated
identically in both codes, it was shown that DOT and TWOTRAN produced
identical results for all the problems studied. Thus, the decade-old

discrepancy was resolved.

The study has shown that for the problems studied, the flux models

do not converge to a single solution as the spatial mesh is refined. It

was also discovered that, regardless of the degree to which the mesh is

refined, the negative flux fix-up models will always be needed during a

calculation. This sometimes thwarts the convergence of fine-mesh prob-

lems, The error in the converged results due to finite mesh spacing may
be greater than the difference between flux extrapolation models. This

is particularly true in the range of mesh sizes commonly used in

shielding analysis.

The inclusion of zero-weight boundary directions in the quadrature
set was shown to have no significant effect on the converged results for

the problems studied.
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Since no exact solutions are available for judging the accuracy of
the various models it may be appropriate to seek a model which most con-
sistently avoids erratic behavior as the mesh spacing is increased. In
this and other studies, the theta—@eighted model appears to be the best
choice to achieve this end., It converges in fewer iterations than the
linear-zero model. The use of contemporary coding techniques makes the
execution speed of the theta-weighted model approximately the same as
that of the linear-zero model. The differences in the zero-mesh results
are probably insignificant compared to the mesh size effects. Thus,
theta-weighted is the appropriate choice in the absence of indications to

the contrary.

Weighted was seen to give smoother flux shapes, and gives higher (and
thus conservative) leakage currents for some problems. This study has
shown that weighted leakage is not higher for all problems. However, it

sometimes converges better than all other models.

The use of linear-zero should probably be restricted to eigenvalue
calculations which are to be compared to other linear-zero results. The
older linear-step model (not included in this study) should not be used

at all.

A}
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