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NOMENCLATURE

A area of volume V, coefficient matrix for Poisson equation

C specific heat, eddy viscosity

D dilatation

f fractional volume for surface cells

g body force due to gravity

h local depth of fluid

k, K thermal conductivity

Jl mixing length

n unit vector normal to volume of integration

0 "order of" or "magnitude of"

p fluid pressure

Pr Prandtl number for turbulence model

q effective thermal diffusivity including turbulent conductivity

R collection of terms used in MAC

r vector location of marker particle

T fluid temperature, time scale used to average turbulent
fluctuations

t time

TUR Reynolds' stress representing turbulence effects

u horizontal component of velocity vector

V cell or domain volume

v vertical component of velocity vector

x horizontal independent variable

y vertical independent variable
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Greek Letters

a stability interpolation factor

B local inclination of surface from horizontal, relaxation
factor used in iteration solution of Poisson equation

6 difference in, increment of

£ convergence parameter for Poisson solution

C typical convected fluid property

9 explicit estimate for pressure head (MAC, SMAC), or
pressure (ORSMAC)

A. stream function

y fluid viscosity

V kinematic viscosity (y/p)

p fluid density

ty implicit correction for pressure head (MAC,SMAC), or
pressure (ORSMAC)

a normal stress at surface

x shear stress at surface

fi vorticity

Subscripts

act actual

c convective, center of surface cell

eff effective

e eddy (exchange) coefficient for turbulence model

i index counting cells horizontally

j index counting cells vertically

m,n directions locally tangent and normal to surface

p provisional

R,L,T,B right, left, top, and bottom
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Subscripts (Contd.)

R reservoir, boundary condition at right of mesh

s surface

v viscous

x x-direction or horizontal

y y-direction or vertical

matrix quantity

o base values

Superscripts

* instantaneous, time-dependent value

' turbulent fluctuating value

time-averaged value

->• vector quantity

n time level, parameter indicating orientation of surface

intermediate time level, between n and n+1

intermediate estimates for pressure correction if)

k iteration counter for Poisson solution

• time derivative
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ABSTRACT

As the world demand for electricity is met by large coal- or nuclear-

fueled central generating stations, the effluent streams from these

plants will have an increasingly important impact on the local environ

ment. The Nuclear Regulatory Commission has a responsibility to assess

the impact of proposed and operating nuclear power plants.

To support this NRC mission, a numerical algorithm and associated

computer program have been developed to predict the temperatures occurring

in the immediate vicinity (the near field) of a hot water discharge from

a power plant. The algorithm is a natural extension of the classic

Marker-and-Cell (MAC) technique developed by F. H. Harlow at the Los Alamos

Scientific Laboratory. ORSMAC (Oak Ridge Simplified Marker And Cell),

adds the logic for simple turbulence modeling, energy conservation and

buoyancy effects to the MAC model. Modern numerical techniques have

been used wherever practical.

In this report, the MAC and SMAC (Simplified MAC) algorithms are

reviewed, and the ORSMAC algorithm is described. The finite difference

analogs are given and discussed. Solutions for several sample problems

are presented which illustrate the features of the ORSMAC algorithm.

A complete FORTRAN listing is included with input and sample output.

Recommendations for further testing are included.
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I. INTRODUCTION

The waste heat from conventional (coal or oil fired) or nuclear

electrical generating plants must be discharged into the local environ

ment. A single 1000 megawatt (electric) nuclear plant will raise the

temperature of a 3.78x10 liter/second (.6x10 gal/min) coolant flow

about H°C (20°F) [20]. Davis [19] notes that, by 1990, a coolant flow

rate equal to the combined flow of the Mississippi, Columbia, and

Saint Lawrence rivers will be required to remove the heat rejected by

thermal power plants worldwide (with a 10°C temperature rise).

Local increases in water temperature are known to cause changes in

growth rates of various aquatic plant and animal life. Temperature

increases of the magnitude described above are well-mixed averages; local

temperatures near hot water discharges will be even hotter. In this

report, a calculation technique is described to estimate the water tempera

ture in the vicinity of certain types of hot water discharge. This informa

tion is often needed to assess the biological impact of local hot water

pockets.

Environmental regulations usually limit the maximum surface tempera

ture increase due to hot water release. Surface temperatures depend on

ambient conditions (air and water temperatures, water and wind flow rates,

etc.) and on power plant conditions (cooling water flow rate and tempera

ture rise). Performance of a hot water discharge port (diffuser) can in

principle be predicted using a physical (scale) model or by using various

analytic techniques. Hopefully, deficiencies in diffuser performance

can be identified and corrected before construction begins.
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The power plant operator must avoid recapture of the hot water plume

from his thermal discharge. Analysis of possible interaction between

intake and discharge flows is again desirable to avoid a loss in thermo

dynamic efficiency through an increase in the inlet temperature of the

cooling water.

The analytic description of the motion of a thermal plume is an

exceedingly difficult problem. In coastal regions, the motion of the

receiving water may be influenced by wind, tide, ocean currents (Gulf

Stream, for example), local discharge of freshwater rivers and, finally,

the thermal discharge itself. In river systems, flows may be controlled

or influenced by dams and local or upstream rainfall. In both cases, the

additional possibility of interaction with the discharge from other power

plants must be considered.

Mathematically, the most general form of this problem is time-

dependent with a scale of several tidal cycles. Spatially, the problem

is three-dimensional with a scale that varies from the size of the dis

charge to some measure of the tidal oscillation. This complex problem

assumes that some suitable model has been defined for the turbulence in

the fluid. It is difficult, however, to separate "turbulent fluctuations"

(to be averaged and modeled) from the transient flow (to be described

as a part of the solution).

Clearly, general closed-form analytic solutions will not be available.

Fully numerical attacks present formidable data-handling problems in

describing shoreline and bottom contours (the Unified Transport project

at the Oak Ridge National Laboratory has developed a system for preparing

the necessary data and using it to analyze chemical and/or radioactive
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transport as well as thermal transport [4], [22], [23]). Rather long

computing times (often measured in tens of hours) may be required for

solution of a particular problem. Finally, a solution may consist of

hundreds of thousands of numbers which must be assimilated by the environ

mentalist, or regulator, or designer, or power plant operator (graphical

display packages have been prepared as a part of the United Transport

project [24]).

The analysis of thermal discharge can also be separated into near-

field problems (length scales of meters, time scales of minutes) and

far-field problems (length scales of kilometers, time scales of tidal

periods or days). Hopefully the cost of (for example) computer time would

be much less to solve two single-scale problems than to solve one multiple-

scale problem. The difficulty encountered in separating the analysis is

in successfully coupling the boundaries between the near-field and far-

field. This is known as the zone-matching problem.

A recent, comprehensive survey of available analysis techniques has

been prepared by Davis and Shirazi [19].* Davis and Shirazi divide the

available methods into plume or jet models (with separate sections for

surface and submerged discharge) and "numerical" models, which usually

employ finite difference techniques to solve nearly complete versions of

the Navier-Stokes equations. The plume/jet models appear to be limited

to near-field analysis. Davis and Shirazi summarize other reviews which

conclude that numerical models do not predict as well as expected.

* The authors greatly appreciate Professor Davis willingness to
provide an advance copy of the paper, presented at the International Heat
Transfer Conference; August, 1978.



18

Davis and Shirazi identify several numerical models. From the

report titles, most of these models were developed for the far-field or

total-field problems. At least one (Waldrop and Farmer [26]) has been

used for near-field problems as well. Akin and Eraslan [21] have demon

strated a singular perturbation synthesis of near- and far-field solutions.

For near-field problems, numerical methods allow more flexibility of

initial and boundary conditions than the jet or plume models. At the

same time, the computational problems may be less severe than those of

the far-field problem. Generally only a single length (or time) scale is

important in the near field. In many cases, location of some of the

mathematical boundaries may be selected for economy or convenience rather

than imposed by the physical problem. As mentioned above, coupling with

a far-field solution (zone matching) may be a difficult problem for some

flows. It is also possible that the small time scale of near-field

problems will allow useful results with the far field assumed constant.

It is likely that many of the techniques of computational fluid

mechanics could be used to solve near-field problems. Roache [5] has

reviewed the literature through 1971. For free-surface problems, a few

of the techniques are summarized here.

The Waldrop-Farmer technique mentioned above is explicit and very

flexible. The algorithm depends on the ability to extract the liquid

pressure (from surface to bottom) from the vertical component of the

momentum equation. That equation must therefore be simplified by discard

ing terms. This appears to introduce no problems in practice, but the

limitations are not well understood. The algorithm is apparently not

widely known in the scientific community. Since the algorithm requires

minimal computer resources (both time and storage) for a given problem,
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its usage is likely to spread. The Waldrop-Farmer method has been used

to study the transport of silt in flowing water and the interaction of

salt- and freshwater as well as thermal discharges [[24], [13]).

The classic Marker-and-Cell (MAC) algorithm was introduced by Harlow

and co-workers at Los Alamos [6] in 1966. The Simplified MAC (SMAC)

version followed a few years later [3]. These algorithms allowed the

numerical solution of complex free surface and two-fluid problems. Also,

the marker particle system allows convenient visualization of the motion

of the fluid including the free surface.

The SOLA codes have been developed recently by Hirt at Los Alamos

([15], [16]). Marker particles are used only to locate the free surface,

resulting in a more limited set of feasible problems and a much more

straightforward computer program. The SOLA codes also benefit from recent

advances in numerical stability theory [14] and a physically motivated

iteration algorithm. As published, the SMAC and SOLA algorithms do not

include transport equations for the internal energy or pollutants.

In July, 1974, A. H. Eraslan identified the need for a near-field

analysis tool to the Nuclear Regulatory Commission. The Energy Division

at the Oak Ridge National Laboratory agreed to manage the development of

the needed computer program as a part of the Unified Transport project.

In this document, we report the modification and expansion of a

version of the SMAC algorithm to allow the NRC to do certain near-field

analyses. Extensive changes have been made in two categories:

1. Algorithm modernization, including storage reorganization,

stable differencing, restructure in functional subroutines,

convert to double precision, install printer-plots for solution
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display, speed-up of Poisson equation solution. These and other

improvements are discussed in Chapter IV.

2. Inclusion of more physical generality, including provision for

turbulence, transport equation for internal energy, Boussinesq

approximation for variable density, more accurate treatment of

the free surface, boundary condition generality including inflow

and outflow at bottom of fluid and specified depth option

downstream.

Finally, a certain warning must be issued. ORSMAC is designed around

several physical simplifications and assumptions. Use of this code to

"solve" for flows which violate the assumptions will likely lead to gross

(or subtle) misunderstanding of those flows. The major assumptions are

introduced at appropriate points throughout the following report. The

proper choice of boundary condition options, for example, must be made for

each physical situation. The selection of initial conditions for steady-

state problems can influence the cost of the solution. These (and other)

modeling options should be made by a competent hydrodynamicist for each

problem. ORSMAC was prepared as an analytic tool which gives that hydro

dynamicist a much wider selection of options over MAC/SMAC.

In the following chapters, the theory underlying the new Oak Ridge

Simplified Marker and Cell (ORSMAC) technique is developed from classical

MAC/SMAC theory, the more general algorithm and finite difference equations

are given, and the results of several sample calculations are summarized.

Information needed to use or modify the ORSMAC code is also presented.
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II. PHYSICAL LAWS AND MODEL EQUATIONS

The appropriate physical laws describing the flow of a liquid having

a free surface are the Navier-Stokes equations. The equations are ex

pressions of Newton's second law; derivations are presented in most fluid

mechanics texts (for example see Schlichting [1] or Goldstein [2]). The

version of these laws treated in the basic SMAC algorithm (Harlow [3])

is specialized for laminar, constant-viscosity flows in which changes in

fluid motion due to temperature variations are neglected. In this chapter,

appropriate turbulence simulation terms are developed for the Navier-

Stokes equations and the energy equation. The effect of neglecting density

variations other than that due to thermal expansion is identified.

Navier-Stokes Equations for Laminar Flow

In Cartesian coordinates, the variable-density, constant-viscosity

form for the Navier-Stokes equation is [11]

^ +V-(pv v)*+ Vp =pg -yVxVxv+| V(V-v) (2.1)

The mass continuity equation is

|f +V•(pv) =0 . (2.2)

In this, p is the fluid density, p is the pressure, y is the (constant)

viscosity, g is the gravity vector and v is the velocity vector.

The immediate objective is to manipulate eqs. (2.1-.2) and the energy

conservation equation, giving a structure that clearly shows where the

Boussinesq approximation is applied.

The dyadic product v v is explained in Bird, Stewart, Lightfoot [29]
and in Malvern [30].
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The first terms on the left of (2.1) are expanded and combined with

(2.2)

9^ +v|2- + pV • (v v) + (v v) •Vp
dt dt

= p|| +pv .(v v) +v(|f +v•Vp)

p- + pV • (v v) - v(pV •v)
dt

Then the governing equations become

3v +V•(v v) +~ Vp =-W xVxv+J+v(V •v) +^ V(V •v)
3t v P

(2.1a)

and

n -* 13P v.v_lDp (2.2a)
v *v=" p9F " p V^ PDt

Similarly, the conservative form for the energy conservation equation

is, with the simplifications introduced in [4] (see [11]),

3(pC T) + n ^
^— + V • (pC vT) = + V • (kVT) • <-2.3;

at v

The fluid specific heat is Cy, the temperature is T, k is the thermal

conductivity. The major assumptions are the neglect of kinetic energy

relative to thermal energy, the specific heats at constant pressure and

constant volume (C ,Cy) are equal, and the dissipation of energy is

negligible.
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Expanding the left-hand side of (2.3) and using (2.2) gives

dT 3d -> -*•
pC t1 + C T ^ + pC V* (Tv) + C Tv • Vp

v dt v 8t v v

PC {-!£ +V -(Tv)} +CT{|£ +V•(pv) - pV •v}
v dt v dt

Then the energy conservation law becomes

p{|^ +V• (Tv)} =-^- V•(kVT) + pTV •v . (2.3a)
dt C

With the exception of the last term on the right of each equation,

eqs. (2.1a, .2a, .3a) are of the form used in SMAC, ORSMAC and generally in

the reported numerical studies of the buoyancy of heated water ([12],[13],

for example).

The terms on the far right of (2.1, .2, .3a) do not appear in the

normal incompressible formulation of the conservation laws. In particular,

the problems for which the SMAC algorithm was designed involved the motion

of constant-density fluid. Thus, from (2.2a),

AM = o* = V • v . (2.4)
p Dt

*

The substantial derivative is

Dx dx -*•
— = -— + v • Vx , where x is the fluid property of interest.
Dt 3t
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This assumption (2.4) is generally used ([12],[13]) even when density

changes (due to temperature changes) occur in the fluid under study.

In this case, the term

in eq. (2.1a) and the coefficient p of the left-hand terms in (2.3a) are

evaluated at the local temperature of the fluid. The model equations

become

P- + V • (v v) +- Vp = g- V Vx Vx v , (2.1b)
3t p

V • v = 0 (2.2b)

and

p{|^ +V -(Tv)} =±- V•(kVT) . (2.3b)
d t \j

V

The equations (2.1b, .2b and .3b) are the starting point for the develop

ment of the ORSMAC model equations.

Cartesian Form of the Mass and Momentum Equations

In Cartesian coordinates, (2.1b) and (2.2b) become

2
3u , 3u , 3uv . 1 3p . ,, 3 ,3u 3v, ,„ _,.
ir +^r +^r+p^ =gx +v^(37-^) (2-5)

2
3v 3uv 3v , 1 3p ,3 ,9u 3v ,„ ,.
3t 3x 3y p 3y y 3x dy 3x

The mass conservation relation is

|H +|X=o . (2.7)
3x 3y
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The symbols u and v represent time-dependent components of the velocity

in the x and y direction, respectively, g and g are components of the

body force in the x and y direction, and t represents the time. If the

fluid density p is taken as constant, these are the equations used in

SMAC [3].

Dominant Frequencies in the Fluid Motion

In the normal turbulent fluctuation averaging process, the continuous

time variation of a flow quantity (u, v, or the temperature, T) at a

point is expressed as a sum of two components. Thus, as an example,

u*(t) = u(t) + u'(t) , (2.8)

where u* is the instantaneous value calculated using eq. (2.5), u is the

component we desire to calculate, and u' is the fluctuating component in

the laboratory-scale turbulence normally measured, correlated and presented

in the literature. The objective here is to substitute expressions like

eq. (2.8) into (2.5) - (2.7) and average the resulting expressions

(symbolically) over a sufficient length of time to remove the turbulent

fluctuations, leaving only their time-averaged contribution in the equations.

The resulting equations will then be used to describe the average long-time

motions of the fluid.

The rules governing the averaging process are those presented in

Schlichting (ref. [1]). For fluctuations of O(u'), a period of T is

assumed.

i. An averaged quantity is defined by the time integral, for

example,

t+T

1 fu*(t) = -±- I u*(t')dt' . (2.9)
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ii. The average of a fluctuation over its period vanishes:

.t+T
u'(t) = — u'(t')dt' = 0 . (2.10)

Tl j.

iii. The order of time and space operations may be changed. For

example,

' 3 u ,t 3 r1 [ j*.-i o u
u dt] =

_1_
T, a 2dt - Tl [¥7

3x 3x 1 3x2

With this brief review, eq. (2.8) and equivalent statements for

v*(t) and p* are substituted into (2.5) - (2.7) and the resulting ex

pressions are averaged over period T . The resulting expressions are

3u . 3 , 2 ,2.3, ——Tx
-rr + "^-(u + u' ) + t-(uv + u'v')
dt dx dy

+I|£= g +xJ- [|H-£] (2.11)
p dx x dy dy dx

3v . d , , ——rx ,3 / 2 ,2.
-r— + -r— (UV + u'v') + ^— (V + v' )
3t 3x 3y

+ — ^ = g - V^—[-r -5—J (2.12)
p 3y y dx 3y dx

|^ +|^=0 . (2.13)
3x 3y

As desired, the high-frequency nature of the turbulent fluctuations

2 2
has been concentrated in the terms u , v' and u v , which are the

Reynolds stresses.
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Model for Fluctuation Averages

The Reynolds stresses are modeled by an intuitive similarity between

laminar molecular diffusion and the turbulent "diffusion" of "chunks" of

fluid. According to Schlichting [1], Reynolds first identified the

averages of the products of fluctuations as apparent stresses in the

fluid and Boussinesq modeled them in the same form as the viscous stresses.

The traditional "mixing length" arguments for modeling the eddy viscosity

are due to Prandtl. The Reynolds stresses are expressed as functions of

the flow variables u and v and the eddy viscosity V (Schlichting [1],

Chapter 18)

u'2 =- 2v |H (2.14)
e dx

,3u . 3vvu'v' = - V (-p- + -^) (2.15)
e 3y 3x

v'2 =- 2V p . (2.16)
e 3y

Using these model equations, the variation in physical content from one

flow situation to another must be included in the spatial (x,y) and

possibly time (t) variations of the eddy viscosity.

Finally, combining the models for the Reynolds stresses (2.14) -

(2.16) with the time-averaged equations (2.11 - .13) gives the following

equations for the fluid pressure and two components of velocity:
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JuJu_3uv+13e + 2i_(v 3u}
3t 3x 3y p 3x gx 3xV e 3x;

+|- {(V + V)|H+ (V - v)|̂ } (2.17)
3y e 3y e 3x

2
3v , 3uv , 3v , _1 _3_£ , oA_c\) Qv.\
3t 3x 3y p 3y gy 3y^ e 3y;

+|- {(v -v)|^+ (v +v)|^} (2.18)
3x e 3y e dx

|^ +|^=0 . (2.19)
3x 3y

Energy Conservation

The energy conservation law has been derived and several physical

simplifications have been introduced (ref. [4], eqs. (2), (5), (6),

(8)-(10)). Thus eq. (2.3a) expresses the instantaneous conservation

of energy.

Following the development of eqs. (2.17 - .18), the instantaneous

value for the temperature at a point (T*) is separated into two components,

namely the high-frequency fluctuation (T') and a mean-flow component (T),

so that

X* = T' + T . (2.20)
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Substituting (2.20) into (2.3b) and averaging over the high-frequency

fluctuations gives eq. (2.21) for the time-dependent development of

the temperature:

|^ +V• (Tv + T'v') =~- V• (kVT) . (2.21)
dt pcv

In this expression, the Cartesian components of the velocity fluctuation

are expressed in vector form, v'.

By analog with the velocity-fluctuation models (eqs. (2.14 - .16)),

the temperature-velocity fluctuation average is written as

pC T'v' = - K VT . (2.22)
v e

Combining these expressions with eq. (2.21) gives

|^ + V • (Tv) =-i- V • (k + K )VT . (2.23)
3t pC e

v

Following Eraslan [4], Reynolds' analogy is assumed to hold. That is,

a "turbulent Prandtl number" is defined and is assumed to be constant.

pv c
Pr = e v . (2.24)

•*- K

Thus

V

K = pC (--^-) . (2.24a)e v PrT

With the use of Reynolds' analogy, specification of models for the eddy

viscosity V and the turbulent Prandtl number Pr„, closes the mathematical
e 1

model for energy transport as well as momentum transport.
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Because of the free surface motion expected in ORSMAC calculations,

a useful change in the form of the energy equation (2.23) will be developed

(the energy equation is not treated by MAC/SMAC). Eq. (2.2) is integrated

over an arbitrary volume of fluid; the integral involving the divergence

of the mass flux is converted to a surface integral using Green's theorem.

3t
P dV = - p v • n dA

V

Since the density p is constant, it can be removed from the integrals,

giving

_3_
3t

dV v • n dA (2.25)

In this, A is the surface area of the volume V. The unit normal n is

outward from the surface of the volume. Next, the temperature T of the

fluid is integrated over the same volume; the average temperature T is

extracted using the mean value theorem.

1
3t J

TdV = — {T
3t

V

dV}
3t

dV +(f)

Combining this with (2.25) gives

_3_
3t

TdV -<£) dV - T v • n dA

dV

(2.26)
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Finally, eq. (2.23) is integrated over the volume V, and the divergence-

type volume integrals are converted to surface integrals. The resulting

energy equation is

3T 1 I r - -*• k + Ke , -f =i UT-T)v+-^VT}.ndA . (2.27)

The convective term (left-hand member of the surface integral) in

eq. (2.27) is similar to the special finite difference form used by

Eraslan (ref. [4], p. 21) in the FLIDE technique to account for mass

conservation errors in the flow field. With V chosen as the volume

of fluid in a computational cell, eq. (2.27) is the basis for finite

difference temperature calculations throughout the liquid flow field.
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III. THE MAC AND SMAC ALGORITHMS FOR

TRANSIENT FREE-SURFACE FLOWS

The Marker and Cell (MAC) algorithm [6] is a classic technique for

calculating the transient flow of an incompressible fluid with or without

a free surface. The Simplified Marker and Cell (SMAC) algorithm [3] was

developed from MAC to handle the same problems. In general, the SMAC

algorithm involves less computational overhead and vastly greater flexi

bility in imposing boundary conditions for interesting flows. In this

chapter, the MAC algorithm is briefly reviewed, the SMAC algorithm is

described, and crucial differences in the philosophy of the algorithms

are identified.

To use the MAC or SMAC techniques, a uniformly spaced rectangular mesh

is imagined to overlay a two-dimensional* region in which a numerical

description of a fluid motion is desired (Figure 1). The fluid may be

confined to the mesh or allowed to flow in and out by proper choice of the

various boundary conditions. The motion of the fluid is presumed to be

described by the solution of eqs. (2.17 - .19). Massless tags, or marker

particles, are implanted in the mesh and moved as the fluid moves to allow

visualization of the solution as it develops and location of a free surface

if one exists. Thus the Markers move with the fluid through the Cells.

A flow field (e.g., values for the dependent variables) at some

arbitrary time is assumed, the spatial derivatives are evaluated by finite

differences, and the derivatives of dependent variables with respect to

time are calculated from the spatial derivatives. These temporal

A

Although three-dimensional calculations are quite possible, the

present application is limited to two dimensions.
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derivatives are then replaced by differences for a short increment of time

and the dependent variables are evaluated at the new time. This process

is repeated until the time derivatives are sufficiently near zero, that is,

until the flow field at the current time is sufficiently near steady state.

Some physical flows do not possess a steady state (vortex shedding and

turbulent flows are classic examples). In such cases, the MAC and SMAC

methods can sometimes* be used to describe the development of the transient

flow field.

Review of the Marker and Cell Technique

The Navier-Stokes equations can be written in vector form as

-y

3v •*•-*• 1 2-*- -*• •*•-57 +V- (v v) = -j- Vp + VV v + g + TUR , (3.1)
dt p

where "TUR" represents the Reynolds Stress terms obtained by the time-

averaging procedure in Chapter II. The form of the viscous stress used in

MAC is slightly different than that used in eq. (2.1). Actually the form

of the viscous and turbulent terms is not crucial for this discussion.

The mass conservation equation is

V • v = D ~ 0 , (3.2)

where D is the "dilatation." In eq. (3.1 - .2), the viscosity V and

the fluid density p have been held constant.

*

As a practical matter, calculation of the spatial and temporal
structure of turbulent flows is beyond the capability of present-day
computers.
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If the solution (v,p) is known at a particular time (call it level n),

the objective is to advance that solution to a later time (level n+1) with

(3.1 - .2) still satisfied. Using the MAC algorithm, that is accomplished

as follows.

First the divergence operation is performed on eq. (3.1), giving

„ 3v 3 -* 3D
V * 3? = IE (V ' v) = 3t

=-- V2p + V • [TUR + g- V • (v v)] + V •v(V2v)

Interchanging the order of the linear operators,

2->- 2 ->• 2
V • V V v = V V (V • v) = V V D

Thus,

3D 12 2 -*•-*• -*•-*•4r = - - V p + V V D+V • [TUR + g - V • (v v)] . (3.3)
3t p

The temporal derivative is approximated with a finite difference,

^„ ^n+1 n
3D D - D ri ,\
Jl*—Tt • (3-4)

Then, if

Dn+1 = 0

the solution for TUR, v and g at level n can be used to give an expression

for the pressure field at n+1 which will be consistent with

Dn+1 = 0 .
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Defining

Rn =+ V • [TUR + g- V • (v v)]n + V V2Dn , (3.5)

(3.3) is a Poisson equation for the pressure,

1 n2 n+1 n , D /o c\- V p = R + i— . (3-6)
p 6t

The boundary conditions on this equation are derived from the conditions

imposed on the velocities. Details are given in [6]. The term

V V2D (3.7)

is retained to compensate for numerical noise generated by the approximate

iterative solution of (3.6). Harlow points out [6] that substantial gains

in computational efficiency result from solving (3.6) coarsely if the

term (3.7) is retained.

Thus, MAC is a two-step algorithm. First, eq. (3.6) is solved

iteratively for the pressure at n+1. Second, that pressure solution is

used in (3.1) to advance the velocity field v to n+1. The boundary condi

tions are updated, fluid marker particles (used for locating the surface

of the fluid) are moved, and output and bookkeeping are performed. The

process is repeated as required for a particular time period of interest.

In MAC, the computational complexities result from the necessity of

applying diverse boundary conditions both for the Poisson equation (3.6)

and the Navier-Stokes equations (3.1). The SMAC algorithm allows these

conditions to be used only once each time step, yielding greatly simplified

boundary conditions for the Poisson equation.
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Review of the Simplified Marker and Cell Technique

The purpose of the SMAC technique is to obtain solutions for eq. (3.1)

subject to condition (3.2). In SMAC, the pressure is divided into two

terms, an estimate (6) to be applied at time level n and a correction

(if)/6t) applied at time n+1 to satisfy eq. (3.2). Thus

n+1, „n , ,n+l/rp /p = 6 + if) /6t . (3.8)

The velocity obtained due to application of the explicit term 6 and

->-

explicit viscous, body force and convection effects is called v. Thus

v = v1 +6t[g - V0 - V • (v v) - W x V x v + TUR]n . (3.9)

The desired result is (using 3.8)

v^+1 = v* + 6t[g" - V6 - V• (v v) - W x Vx v + TUR]n - Vif)n+1 (3.10)

Subtracting (3.9) from (3.10) gives

-m+1 ~ _ -•> „. n+1 . „ ...
v - v = 6v = -ViJj . (3.11)

Performing the divergence operation on this gives

„ +n+l „ ~ n2in+1 nn+1V • v = V • v - V if) =D

Identifying V • v as D and setting

Dn+1 = 0

the desired Poisson equation is

V24jn+1 = d . (3.12)
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Note, from (3.9) and (3.12), that

D = V«v = V'vn+6txV'{g-V«(vv)-vVxVxv + TUR}n -fit x V e" .

Using (3.5), we get

D = V •? = d" + 6t x Rn - 6t x V29n

Combining with (3.12),

Jl. ,n+l , Qn. D nnV(if) +9)=-?7+R

This is equivalent to eq. (3.6) if

9 = 0

Thus, from this viewpoint, SMAC emerges as a generalization of the MAC

technique. In fact, for

0 = 0,

SMAC and MAC are formally equivalent.

The boundary conditions for the Poisson equation are determined by

the specification of velocity boundary conditions. If the velocity

across a boundary has been specified (including zero), the specified value

is imposed in (3.9). Clearly, that boundary value should not be changed.

Setting

|*,o
3n

gives 6v - 0, no change in the boundary velocity. If an outflow (or inflow)

is specified to be "continuitive,"

ifj = 0
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on that boundary allows 6v to adjust as needed on the boundary. At a free

surface, desired stress conditions are imposed in (3.9) and

if) = 0

is the condition used for the Poisson equation. If a pressure is to be

specified on a boundary (as in a fixed-depth reservoir, for example), the

proper value is imposed by setting 9 on the boundary and specifying if) = 0.

To summarize, in SMAC an explicit estimate for the pressure is applied

with the viscous, turbulent, gravity and convective effects to give an

estimate for the advanced-time velocity using (3.9). Eq. (3.9) is adjusted

at boundaries to apply the proper conditions. The estimate for the pres

sure is corrected to give the correct (D ~ 0) velocities at time n+1

by solving the simple Poisson equation (3.12). The boundary conditions on

the Poisson equation are very simple (relative to those for (3.6)), allowing

time savings in program preparation and in problem solution.

Free-Surface Boundary Conditions

The free-surface boundary conditions are used to set cell-edge

velocities just outside the fluid and to set the fluid pressure at the

free surface. Use of these quantities in the tilde velocity calculations

assures that the desired forces are applied to the fluid near the free

surface. In this section, the proper analytic condition is reviewed, and

the approximation used in SMAC is explained.

Figure 2 is a sketch of a small element of the fluid surface. A

shear stress due to atmospheric motion above the liquid or some other

effect is balanced by a tangential stress in the liquid .just under the

surface.* A normal stress (the atmospheric pressure) is balanced by

In this analysis, the surface tension of the liquid is neglected.
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Figure 2

Normal and Tangential

Forces at the Free Surface
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a normal stress at the fluid surface. For the normal stress,*

3u

0 = 2V^ . (3.13)
s dn

For the tangential stress,*

3u 3u

x = v (-i* +—5) . (3.14)
w 3m dn

The subscripts m and n indicate the directions tangent and normal to the

free surface [7]. In terms of the local surface inclination $ and the

Cartesian velocity components u and v, these expressions become

(see [7], p. 407)

0s =2v {(|^)sin2B +(|y)cos2B- (|^ +g)sine cos8} (3.15)

and

r/3v . 3ux , 20 . 2os .3u 3v. . Q „-, (3.16)
T = V {(-r- + -r-) (cos 3 - sin 8) - 2 (-r —)smB cos8} ^,1D;
w

,9x . 9y,V— M ^^ M, s. v3x 3y,

In SMAC, eqs. (3.15 - .16) are used with 8 selected by estimating the local

surface orientation and with x =0. The values
w

ft - nTT8 -~y

are used with

n = 0, 1, 2, 3

Curvature of the surface is assumed small relative to the cell

dimensions and is neglected.
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The choice of the parameter n depends on the orientation of the free

surface. If the surface is "mostly horizontal," n = 0 or 2. If the

surface is "most vertical," n = 1 or 3.

Thus, the tangential stress condition is

fi +|^=0 (3.17)
3y 3x

and is applied to define velocities on cell edges just above the liquid

surface. The approximation for the surface pressure used in SMAC is

coarse. The pressure at the surface is set using the normal stress condi

tion on the surface

)(x) = 2v |^ or 2v |^ . (3.18)
s 3x 3y

The pressure for a surface cell is actually applied at the edge of the cell

nearest its empty (contains no marker particles) neighbor. Some ambiguity

results when more than one neighbor is empty (see [3]). Also, the pressure

correction if) (eq. (3.8)) is set to zero at the center of the cell surface.

In this chapter, the MAC and SMAC algorithms have been reviewed. The

clear advantage of the SMAC algorithm in applying boundary conditions and

in programming ease is highlighted.
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IV. ORSMAC, THE OAK RIDGE MARKER AND CELL ALGORITHM

The basis of the ORSMAC code is the ZUNI (SMAC) computer code written

by A. A. Amsden at the Los Alamos Scientific Laboratory. That FORTRAN

program had been converted from the LASL CDC* version to a form usable on

the IBM/360-195** computing system in Oak Ridge by North American Aviation.

The North American translation was available through the COSMIC***

organization. Since ORSMAC was to be run on an IBM computer by the Nuclear

Regulatory Commission, the deck was obtained from COSMIC as a starting

point for this development.

The original program has been greatly changed; extra physical complex

ity has been added as required for hot-water discharge problems. Other

sections have been added in the interest of efficiency. These changes

are listed here as a compact record.

Extensions to ZUNI

1. Convert to double precision throughout.

2. Break the program into functional subroutines to allow the optimizing

compiler maximum flexibility. This yielded a 30% reduction in computer

time for a typical problem.

3. Set up all two-dimensional arrays through argument lists to allow

efficient redimensioning when problem sizes are changed.

*

Control Data Corporation.

International Business Machines.

***
Operated by the University of Georgia.
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4. Install timing logic to allow measurement of the effect of changes

and to allow more accurate estimation of run times for particular

problems.

5. Generate the Poisson equation for the pressure corrections as a matrix

with boundary conditions built in. This allows a relaxation solution

without testing for boundaries and has yielded a 25% reduction in

computer time for a typical problem.

6. Particle movements from full cells to empty cells in a single time

step (violations of the stability rule that the surface can move only

one cell per time step) are counted, printed and cause an automatic

recalculation of the maximum stable time step allowed. (Also, see

item 15 below.)

7. Two-dimensional arrays are used for multiple purposes in various por

tions of a time cycle to reduce computer storage requirements.

8. A printer-plot routine has been written which produces stream function

contours (to show flow direction) and isotherms (to show distribution

of hot water) at arbitrary times. Extensive modification of an exist

ing printer-plot subroutine was required, including axis labels and

identifiers for the free surface.

9. Boundary conditions for the bottom of the mesh were modified to allow

fluid to flow out of the mesh (an "intake" for a power plant) and to

be discharged into the mesh at a specified velocity, temperature,

and direction. In particular, specification of the discharge direction

allows the simulation of "angled-flow" diffusers.
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10. The simulation of the flow in a (relatively) small part of a large

receiving body requires that the boundary of the simulation region be

marked by a constant depth (and thus a constant pressure distribution).

The logic changes to do this have been made.

11. An automatic procedure for adjusting the time step to maintain numeri

cal stability has been implemented.

12. Since SMAC was invented, Hirt [14] has identified a source of instabil

ity in those difference equations. Stable difference equations for the

convective terms have been worked out for ORSMAC based on the SOLA

codes [15,16].

13. Coding based on a time- and space-varying eddy viscosity concept has

been installed as a turbulence model. Calculation of the eddy viscosity

is isolated in a single subroutine for efficient modification.

14. The energy transport equation has been formulated, coded, and verified.

Specific modifications were made to handle free surface conditions

correctly.

15. An alternate treatment for the liquid free surface based on the SOLA-

SURF algorithm [15] has been implemented and tested.

16. An alternating-direction, relaxation-by-lines algorithm is used to

solve the generalized Poisson equation for each time step. A small

reduction in computer time was realized, but this scheme converged

more reliably than the relaxation scheme used in SMAC.

Although a great many changes have been made to the ZUNI code, it will

be obvious from the following description that many parts of the code have

not required modification. In such cases, the reader is referred to the

relevant sections of [3]. Since the ZUNI code was written to fulfill a
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particular contractual obligation, all possible features of the SMAC

algorithm were not included. Such obvious extensions required for ORSMAC

are also listed above.

Description of the ORSMAC Algorithm

In this section the ORSMAC algorithm is described in a notation similar

to that used for MAC and SMAC in Chapter III. Thus the starting point is

eqs. (3.1 - .2).

The first steps in each time cycle are to calculate the surface height

in each cell, adjust the free surface and boundary conditions, and calculate

the turbulence stresses at the corner of each cell.

The temperature in the fluid is advanced through one time increment

using a completely explicit formula. The fluid densities for the follow

ing steps are based on the fluid temperature at the advanced time (T ).

For ORSMAC, a fluid pressure at time level n+1 is defined by

Pn+1 =9n +^+1/6t '. (4.1)

In contrast to eq. (3.8), this expression does not contain the density

p. The obvious analogs to (3.8 - .9) are

v = vn + 6t[g - - V9 -V-(v v) - vV x V x v + TUR]n (4.2)

and

|n+l =^ + 6t[| _A V9-V«(v v) -vV x Vxv+ TUR]n- - Vif)n+1 . (4.3)

As in Chapter III, v is calculated using the v, 9, and TUR values known

at time level n. Subtracting (4.2) from (4.3) gives

-*n+l * 1 n.n+l ,. .N
v = v Vif) . (4.4)

p
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Applying the divergence operator gives

V • v = V • v - V • (— Vif) ), which, with the incompressibility

condition (3.2), gives

V'(^ Vif.n+1) =D . (4.5)

This is the generalized Poisson equation solved in ORSMAC. After

if) is known, the velocity solution is advanced to n+1 using (4.4). The

boundary conditions on the Poisson equation are those for SMAC,

Chapter III, except that the free surface boundary condition, if; = 0, is

applied at the free surface rather than the cell center. The surface loca

tion is assigned the height of the highest particle in each column of cells

or the value of h from eq. (4.9) below. The surface normal stress is set

as in SMAC, but the hydrostatic pressure estimate 9 is set to zero at the

free surface rather than at the cell edge, as recommended by Nichols and

Hirt [9].

The final step of ORSMAC is to move the marker particles (massless

"tags" which move with the fluid and locate the fluid surface). A

Lagrangian description is used,

Dr -•
— = v ,
Dt

so that

n+1 n n+1 ~ (a &\
x = x + u ot V+-d;

and

n+1 n n+1 - ( a -j)
y = y + v Ot . \Hm '>
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The velocities u and v are calculated by interpolating from the

known values on the finite difference mesh, x and y are the Cartesian

coordinates that locate the particle on the Eulerian mesh.

The purpose of the marker particles is to locate the fluid within the

computational region, both to guide program logic and to allow visualiza

tion of the computer-generated solution using plots or motion pictures

of the marker location. The method is quite flexible with careful program

ming. Complex flows such as a drop of liquid splashing onto a pool or a

wave breaking on a beach have been simulated using this technique [18].

However, the technique requires substantial storage for the particle

locations. Also, the program logic for creating, moving, or deleting

particles is complicated to modify and time-consuming to execute on a

computer.

For the problems to be studied using ORSMAC, the liquid free surface

has a relatively simple configuration which is of peripheral interest.

Therefore, a technique used by Hirt in SOLA-SURF [15] has been installed

in ORSMAC. In that technique, a limited number of marker particles (one

for each column of cells) is used to identify the surface. The finite

difference form of the Lagrangian derivative is used to move each particle

with the surface,

Dh a a\—— = v (4.8)
Dt s

Then, since h is a function of x and t,

Dh = 3h 3h
Dt 3t Us 3x
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Thus the surface moves according to

3h 3h
-7T- = V - U "r—
dt s s dx

(4.9)

to find the new surface elevation at the cell center. Hirt points out

that the numerical parameter 6y/6x (the cell aspect ratio) must be greater

than the surface slope.

In the FORTRAN listing of ORSMAC (Appendix B), the classic marker

particle code is indicated by CC in columns 1 and 2 of each card so that

it can be restored if desired.

Steps in One Cycle of the ORSMAC Algorithm

The time span of interest for a particular simulation is divided into

a number of small increments, or time steps. At the start of a particular

time step (or "cycle" of the algorithm), the flow solution is known. The

solution consists of velocities u and v , the pressure p and the tempera

ture T for each cell which contains fluid. The location of the free

surface is known.

Each cell is labeled according to type. The types are:

1.

2.

"boundary," the border or edge cells surrounding the mesh,

"full," a cell containing fluid and whose neighbors are not

"empty,"

"surface," a cell containing fluid and having at least one

"empty" neighbor,

"empty," a cell which contains no fluid but could contain

fluid,

"obstacle," a cell within the mesh from which fluid is excluded.
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The values of u , v , p , T and the free surface location satisfy the

finite difference equations for eqs. (2.17 - .19) and (2.27) as well as

the proper numerical boundary conditions at time n. To advance these

solutions to time n+1, several distinct steps are executed. Those steps

were highlighted in the previous section and are discussed in greater

detail in the following section. Figure 3 is a flow chart of the steps

covered in one cycle. In the following discussion, the notation -?-
ox

3-F
is used for "finite difference analog of -^- ." Definitions for the

dx

finite difference expressions are presented in the following chapter.

Move Free Surface (SURHIT)

The free surface is moved using eq. (4.9). The surface velocities

u and v are calculated by interpolation. Cell type flags are reset as

the surface moves up or down in each column of cells. Violations of the

Courant condition (moves of more than one cell per time step) are counted

and printed and cause a recalculation of the allowable time step.

Set Free Surface Velocity Conditions (SURVEL)

The finite difference form of eq. (3.17),

<5u , 6v67+6^=0 , (4.10)

is used to set velocities just outside the fluid surface.

Set Pressure at Surface^ Initialize 0 (NOSTRS)

The pressure for free-surface flows is estimated using the hydro

static head

Kx,y) = | Pgydy (4.11)

ys
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( START )

MOVE FREE SURFACE AND CHANGE

CELL FLAGS AS REQUIRED (SURHIT)

APPLY BOUNDARY CONDITIONS AT FREE SURFACE

ESTIMATE PRESSURE AT TIME n + 1 {$)

(NOSTRS , SURVEL)

APPLY TANGENTIAL BOUNDARY CONDITIONS

ON MESH EDGES (TANGEN , TREK)

OUTPUT CONTROL (DUMPIT . PRNPLT)

CALCULATE TURBULENT EDDY

VISCOSITY ve (PSINU)

TIME STEP CONTROL (STABLE)

CALCULATE Tn+1 FROM ENERGY EQN

(THERML)

CALCULATE u AND v , ESTIMATED

VALUES un+1 AND vn+1 (VELADV)

CALCULATE C , DILATATION BASED ON H AND v-,

SOLVE POISSON EQUATION FOR V (POISON) AND

CORRECT tl AND V TO un+1 AND vn+1

Figure 3

Flow Chart for One Time Step

of the ORSMAC Algorithm
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where y is the vertical location of the free surface. The estimate
s

9(x,y) is generated for all full cells. At the right-hand boundary

(see Figure 1), y is replaced by y , the specified depth of the receiv

ing reservoir. The pressure at the surface, 9 , has been set to zero

(tangential stress is zero), as recommended by Nichols and Hirt [9].

Apply Tangential Boundary Conditions on Mesh Edges (TANGEN)

The tangential boundary conditions determine the details of flow near

solid boundaries. If "no-slip" (usually the physically correct condition)

is specified, boundary layers will form in the numerical description and a

(relatively) large number of cells must be used to avoid inaccuracies. If

boundary layers are expected to be small relative to typical problem

dimensions (problem Reynolds' number is large), the boundary layers may be

eliminated by specifying "free slip" boundary conditions. Although some

care must be taken that essential features of the flow are not lost by

this device, considerable savings in node density (and thus problem cost)

are possible. Details are described in [3] (p. 14).

Apply Tangential Boundary Conditions on Faces of Obstacles (TREK)

The tangential condition on obstacle faces is set using the flag for

"bottom" conditions (BCD).

Output to Printer, Graphical Devices and to Bisk Storage for Later
Restart (DUMPIT, PRINPLT, RESTAR)

At increments of problem time specified by the user, lists of the

field variables and/or printer plots of stream line contours and isotherms

are produced. Under program control, the current solution is saved on

disk and the run terminated if insufficient computer time remains for

another complete computational cycle.
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Calculate Turbulent Eddy Viscosity (PSINU)

The eddy viscosity is calculated at the upper right corner of each

cell (Figure 2) using a model which can be provided by the user. If a

laminar problem is to be run, the eddy viscosity should be set to zero

for each cycle, since the eddy viscosity values and the dilatation D share

storage locations.

Calculate Time Step, Donor Cell Parameter (STABLE)

The time step 6t and donor cell parameter a are calculated for each

of the first ten cycles of a new problem and then during each tenth cycle.

The criteria used are eqs. (4.5 - .13). If the free surface is moved

more than one cell in any cycle, the time step and donor cell parameter

are recalculated immediately.

n+1
Calculate T from Energy Equation (TEERML)

The fluid temperatures in "full" and "surface" cells are advanced

using the finite difference analog of eq. (2.27). Temperature changes are

propagated through a mesh much slower than momentum changes, but the

computing effort is much lower. Thus advancing the temperature field

several time steps before changing the velocity fields should be efficient.

This section of the code can, at the option of the user, be repeated

several times before advancing to the next section. This tactic has not

been successful in practice, however, and is not recommended.
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Calculate Tilde Velocities (u and v), Explicit Estimates for

un+1 and vn+1 (VELADV)

After the boundary conditions are established and the pressure at

time n+1 has been estimated, the velocities at time n+1 are estimated

using the finite difference approximations for eq. (2.17 - .18). After

SMAC was developed, Hirt recognized that the finite difference approxima

tions used for the convective terms were unstable for some conditions [14].

Stable difference approximations taken from SOLA [15] have been used in

ORSMAC. The finite difference approximations for the viscous terms have

been expanded to include the Reynolds stresses.

Update Velocities on Outflow Boundary

The "continuitive" boundary condition is applied to u on the right-

hand boundary. The value at the next-to-last cell is imposed on (or

continued to) the last cell.

Calculate Dilatation, D, and Solve a Generalized Poisson Equation for
n+1

the Pressure Deviation if) (POISON)

The equation for the time-advanced pressure deviation (4.5) is solved

using alternating-direction relaxation-by-lines as described in Chapter V.

Correct u and v to u and v

Using the components of the vector equation (4.4), the velocities for

full and surface cells are updated to their final values at time level

n+1.

At this point, the numerical description of the flow field has been

advanced through one small time increment, or cycle. Solution of any

appropriate fluids problem involves only numerous repetitions of that cycle.



55

In the following sections, particular areas of the ORSMAC algorithm

are discussed in greater detail.

Initial and Boundary Conditions

Since the governing physical equations, their finite difference analogs

and the algorithm for their solution are common to any problem to be solved

using the ORSMAC code, a unique problem is specified through the initial

conditions and boundary conditions for the problem. In this section, the

available options are discussed. Input details are outlined in Appendix A.

The initial conditions include a complete field of velocities and

temperatures at some particular time frame. In general they may be the

results of previous calculations, a solution to a related analytic problem

or the user's best guess at the gross structure he expects in the answer

for his problem. In ZUNI, a previously generated solution could be recalled

from bulk (tape or disk) storage. A similar capability is available in

ORSMAC. Use of analytic solutions as initial conditions requires a special

routine to replace a portion of the present input section. The present

input section is an extension of that provided in the original ZUNI. Fluid

is distributed through the mesh in a manner determined by the user.

Velocities and temperature are specified for the fluid in each of several

parts of the mesh. Details are given in Appendix A.

The ORSMAC algorithm is intended for analysis of details of flows

having relatively short time scales, such as the flow in the vicinity

of diffusers and intakes. Such flows should reach a stationary solution

within a few minutes at worst, compared to a tidal period of about 12

hours. Thus the tidal flow should be assumed constant for the ORSMAC

calculation, and the ORSMAC results should be regarded as reasonable for
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several hours of tidal flow. The initial conditions for such a calcula

tion would ideally be chosen as near the expected answer as possible. In

particular, the initial temperature distribution will nearly determine

the computer time required to attain a stationary solution.

The ORSMAC code is right-handed, that is, fluid is presumed to flow

across the mesh from left to right. Thus the boundary conditions on the

left and right are treated differently, both during input and within the

algorithm. On the left (inflow) boundary, the velocity and temperature

of the inlet water are specified. Vertical flow at that boundary can be

specified as "no-slip" or "free-slip" (recommended option). If the fluid

flow into the mesh from the left is specified as zero, no heat flow across

the boundary is also assumed.

At the right boundary, the outlet velocity may be specified

(including the zero value, no outflow). However, the recommended procedure

is to specify a "continuitive outflow," which allows the fluid to exit the

mesh with a minimum numerical disruption of the flow within the mesh.

In either case, vertical (tangent to the boundary) flow can be specified

as "free slip" (recommended) or "no slip." Temperature on the right

boundary is treated using the "continuitive outflow" specification.

Finally, to allow connection of the limited-size mesh with a large body

of undisturbed fluid to the right, an "asymptotic depth" at the right side

of the mesh can be specified. This is the depth of undisturbed fluid near

the mesh. Ideally, if the jets and intake-discharge systems being simu

lated were turned off, the fluid in the problem would adjust its depth

to reach the asymptotic level. One test case presented in Chapter VI
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illustrates that the continuitive outflow condition allows some inflow

from the undisturbed region at the right if the physical conditions require

it. However, ORSMAC does not allow the specification of the temperature

of the fluid entering the mesh from the right.

The boundary at the top of the mesh prohibits mass or energy transfer

from the mesh. The tangential velocity can be specified as free slip

(recommended) or no slip. Since such a physical barrier normally will not

exist in the problems being analyzed, the user should specify his problem

mesh so that the upper boundary is at least one cell above the highest

expected elevation of the surface.

Along the bottom boundary, both inflow and outflow sections may be

specified. The fluid temperature may be specified for inflow sections.

Temperature in outflow is continuitive, while no heat flow is allowed

across noflow boundaries. Tangential velocities at the outflow and noflow

sections may be free slip (recommended) or no slip. For an inflow section,

both normal and tangential components of the velocity may be specified,

allowing an angled discharge to be simulated.

Boundary conditions at the free surface are described earlier in

this chapter. The ability to model wind shear, evaporation and radiation

at the liquid surface has not been included in the current ORSMAC. Study

of these conditions will require changes in the ORSMAC program.

The initial and boundary conditions (whether recommended to the modeler

or required by the code) largely determine the features of the solution

obtained from any hydrodynamics code. This is the nature of solutions for

partial differential equations. A catalog of the limitations, advantages

and disadvantages of each possible option (or of options not included in

ORSMAC) is beyond the scope of this report. In any case, the choice of
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the relevant boundary conditions should be made by a competent computa

tional hydrodynamicist.

Stability Criteria

A successful simulation of a fluid flow of interest using ORSMAC

(or any other algorithm) depends on the selection of the time step 6t

and the donor cell parameter a so as to maintain numerical stability.

Hirt [14] has shown that improper values for these parameters cause

computed solutions to approximate nonphysical systems of equations.

Hirt's heuristic analysis yields limiting values for 6t and a. His con

clusions have been included, in a refined form, in the SOLA series of

codes released by the Los Alamos Scientific Laboratory (ref. [15], [16]).

A slightly simplified version of the stability criteria used in [15], [16]

has been coded into ORSMAC.

First, limiting values for the time step are determined for diffusion

and for convection in the radial and axial directions.

6t =MIN rf^r} * (4.12)
ex iu i

6tcy =MIN {^j} (4.13)

5t = MIN { — ^ 2} (4.14)
0.5 a{M +M} +i.5(v +V)6% +6y

ox oy e r I r. 2
J ox • oy

"MIN" indicates the minimum value over the entire mesh. Equations

(4.12 - .3) give the minimum time for fluid to convect across one cell.

Equation (4.14) is proportional to the minimum time required for fluid

to diffuse across one cell.

*

See Appendix D.
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According to the Courant condition for stability,

6tc <MIN{6tcx, 6tCT}

For ORSMAC, a fraction of this limit is used,

6tc = 0.4 xMIN{6tcx, 6tcy} . (4.15)

The diffusive limit, eq. (4.14), contains the artificial viscosity effect

due to the donor cell parameter a.

The provisional time step used in ORSMAC is

St = 0.9 x MIN{6t , fit } . (4.16)
P C v

If an increase in time step is indicated (St > St), growth is controlled

by

St = St + 0.2 x (Stp - St) . (4.17)

If a decrease in time step is indicated (St <St), the reduced value is

used immediately,

St = Stp . (4.18)

The donor cell parameter a is determined from

a = MIN10.95, 1.5 • MAX(6t/5tcx, St/St^)} . (4.19)

If the value of a is set at 0.95, the time step is reduced:

6t = St x a/MAX(6t/6tcx, <St/6t ) . (4.20)
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In ORSMAC, the time step is calculated every ten cycles, or after

any cycle in which one or more marker particles are moved more than

one cell at the surface. The stability calculation is isolated in a small

subroutine, allowing easy modification by the user if desired.

Summary

In this chapter, the ORSMAC algorithm has been described. Boundary

and initial conditions have been discussed and stability considerations

are summarized. A brief list of the changes beyond the ZUNI implementation

of the SMAC algorithm is provided.
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V. DIFFERENCE EQUATIONS

The finite difference expressions used in the original SMAC are

given in reference [3]. Since ORSMAC includes an additional conservation

law (energy), provision for scalar turbulence models, and a modernization

of the differencing used for convective transport terms, a summary of

the finite difference equations is presented in this chapter.

Convective Terms

Terms in the partial differential equations which have the form

h (Cu) and h (?v)
are usually known as "convective terms," with the property t, convected

by the velocity components u or v.* The specific finite difference treat

ment of these terms determines the numerical stability and the accuracy

of the solution obtained. Since the SMAC technique was published

(ref. [3]), several advances in stability theory [14] and in accuracy

of treatment for the convective terms [15] have been published. This

knowledge has been used in developing ORSMAC. In Figure 4, the basic

mass conservation cell and its associated momentum conservation cells

are sketched. The location of each variable is indicated on the figure.

The indexing system is that used in SMAC. Variables at the mass cell

center are indexed (i, j). The centers of the momentum cells are

located half-way to the centers of the neighboring mass cells; that is,

at (i + 1/2, j) and (i, j + 1/2).

Some fluid dynamicists prefer "advective" to "convective."
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For the x-momentum equation, the finite difference form of the x-

direction convection term is

2 2
x, 2. (u) .... . - (u) . .
S(u j _ i+l,J iil
6x 5x

(5.1)

The remaining convection term in that equation is

iuv _(uv>j+l/2,j+l/2 "(uv)i+l/2,j-l/2 (5 2)
Sy Sy

For the y-momentum equation, the convective terms are

and

Suv _ (vu)i+l/2,j+l/2 (vu)i-l/2,j+l/2 (5i3)
6x 5x

2 2
x, 2X (v). .., - (v)
MZ_1= iJ±l ill . (5.4)

5x Sy

In the energy equation, the terms are

and

5(Tu) _(Tu)i+l/2,j (Tu)i-l/2,j (5.5)
fix Sx

«Tv) (I">i.i+l/2 -(T">i.i-l/2 . (5.6)
Sy Sy
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The expressions in parentheses in each equation (5.1 - .6) are

evaluated using the interpolated donor cell technique [15], a refinement

of the "Second Upwind Differencing Method" described by Roache [5].

Each term is composed of a convecting quantity (u or v) and a convected

quantity (u, v or T). The application of the donor cell technique involves

calculating (1) an average value of the convected quantity and (2) an

average value of the convecting velocity. For eq. (5.1), the convecting

velocity to the right is

UR= 2 (ui+3/2,j +Ui+l/2,j) (5'7)

and

(u)i+l,j "{UR +\ aW (Ui+l/2,j "Ui+3/2,j)} <5-8>

The variable a is a weight determined from stability criteria. If a = 1,

the transported quantity is drawn entirely from the "upwind" or "donor"

cell. If a = 0, the transported quantity is the average of the value

2
in the donor cell and the receiving cell. The term u. . is calculated

from an obvious modification to eqs. (5.7 - .8). For eq. (5.2),

VT=I (vi,j+l/2 +vl+lfj+l/2) (5'9)

and

(uv)i+l/2,j+l/2 =\ {(ui+l/2,j +Ui+l/2,j+lN

+alVTl(ui+l/2,j "Ui+l/2,j+l)} • (5-10)
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For the y-momentum equation, eq. (5.3) is differenced as

UR= 2 (ui+l/2,j +Ui+l/2,j+l) (5.11)

and

(vu)i+l/2,j+l/2 =\ {(vi,j+l/2 +Vi+l,j+l/2)"R

+a'\l(vi,j+l/2 "Vi+l,j+l/2)} * (5.12)

In eq. (5.10), the x-momentum per unit mass (u) is the convected quantity

and v is the convecting velocity. In eq. (5.12), the roles are reversed.

For eq. (5.4),

VT =I(vi,j+l/2 +Vi,j+3/2} (5'13)

and

(v)i,j+l "{VT +\ alVTl(vi,j+l/2 "Vi,j+3/2)} • (5'14)

For the energy equation, convective terms are

and

(Tu) .j.1 it • =k <(T-_i.i •+ T- -)u-.li it •1+1/2,j 2 i+l,J 1,3 1+1/2,3

+alUi+l/2,jl <Ti,j -Ti+l,j)} • (5'15)

(Tv). -,1/9=|{(T. . + T. ..Jv. .
1,3+1/2 2 1,3 1,3+1 1,3+1/2

+ a|v; | (T. . - T. )} . (5.16)
1 1,3+1/2' 1,3 1,3+1
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In eqs. (5.15 - .16), the convecting velocities are positioned at the

cell edges so that no interpolation is required.

Momentum Equations

The finite difference equations for the explicit part of

eqs. (2.17 - .18) are detailed in this section. Since the improvements

in convective terms are given above, these equations are quite similar

to those given in ref. [3]. Thus the major differences are the variable

viscosity coefficient and variable density. In these equations, 0 repre

sents the explicit estimate for the pressure, eq. (4.11), and the eddy

viscosity V is represented by the symbol C.

For the x-momentum equation,

2
_ n r. r(Su S(uv)

u-a.i in • u-_i_i m • ~ St[-j— + —t gi+l/2,3 i+l/2,3 6x Sy x

6.., . - 9. .+ _^+l^ 1^

Pi+l/2,j 6X
n n

u. ., ,„ .., - u.+ 5tr(c | v) i+1/2,3+1 i+l/2,j
+ SyUCi+l/2,j+l/2 + V; 6y

"(Ci+l/2,j-l/2 +V)^+1/2'J 6y" "" '̂J-1
+ (C - v)Vi+l>J-H/2 ' Vi,3-H/2

^Li+l/2,j+l/2 V; 6x

- (c - v)Vi+l,j-l/2 " ^,3-1/2,
^i+1/2,j-1/2 V) 6x J
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+ 26xC(Ci+l/2,j+1/2 + Ci+3/2,j+1/2 + Ci+3/2,j-l/2

n n

+c "i+3/2,1 " Ui+l/2,j
+ Ci+l/2,j-l/2; 5x

(Ci+l/2,j+1/2 + Ci-l/2,j+1/2 + Ci-l/2,j-1/2 + Ci+l/2,j-l/2}

n _ n

Ui+l/2,j Ui-l/2,j ^ (5>1?)
ox

For the y-momentum equation,

5 = vn - 6tr5(vu) + — - g + i>J+1 tJ-1Vi,j+1/2 Vi,j+1/2 6tL 6x +3y 8y + p± Sy J

n n
u.11/0 -u.+ Atrrr "1+1/2,J+l "i+l/2,3

+ 6xU 1+1/2, j+1/2 V; Sy

- (C - v)Ui-l/2,,i " Vl/2,3--!
CCi-l/2,j+1/2 V; Sy

+(c +y)Vl+1».i+1/2 " %J+1/2+ tLi+l/2,j+1/2 + V; Sx

- (C + v)Vi,.1+1/2 - vi-l,j+1/2
CCi-l/2,j+1/2 + V; Sx J
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+ 25y[(Ci+l/2,j+1/2 + Ci-l/2,j+1/2 + Ci-l/2,j+3/2 + Ci+l/2,j+3/2}

n n

. Vi,j+3/2 Vi,j+1/2
Sy

(Ci+l/2,j+1/2 + Ci-l/2,j+1/2 + Ci-l/2,j-l/2 + Ci+l/2,j-l/2)

n _ n

Vi>J+l/2 liiiziZii (5.18)
Sy J

In eqs. (5.17 - .18), the pressure is located on the proper edge of the

momentum cell, allowing the difference equations to be written without

interpolating the pressure.

Energy Equation

Successful solution of the energy equation (2.27) requires a more

complicated treatment for surface cells than that used for the momentum

equation. That treatment is described here.

A combined laminar and turbulent thermal diffusivity is defined,

i = (k + K )JJ_. /0 4/(pC„). . (5.19)«i+l/2,j = ^ + Vi+l/2,^PVi,j

The difference form of eq. (2.27) is

Tn+1 = Tn

St r r™ti n ,„ ,n . qi

J-> J
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+(Tn . vn _., - (Tv)n ._,_,_ +q±>J+1/2(Tn .+1 -Tn .)}A. .+1/.
1,3 1,3+1/2 'i,3+1/2 Sy i,j+l i,3 i,3+1/2

- (Tn . un ... . - (Tu)n ... . +^2J_ n n }a_
1,3 1-1/2,3 1-1/2,3 Sx 1,3 x-l,j 1-1/2,3

- (Tn . vn . 1/9 - (Tv)n . 1/9 +qi>r1/2(Tn .~Tn . 1)}A. . UA
1,3 1,3-1/2 1,3-1/2 Sy 1,3 1,3-1 1,3-1/2

(5.20)

Eqs. (5.15 - .16) are used for the convective fluxes.

Calculation of the face areas A and the volume V for each cell

depends on the cell type (full or surface) and the cell type of each

neighbor (full, surface, empty, obstacle or boundary). For a full cell,

vertical faces have area

Ai±l/2,j "^ ' <5-21>

horizontal faces have area

Ai,j±l/2 =6x • <5'22>

and the volume is

V. . = Sx * Sy . (5.23)
1,3

Faces between surface cells and full cells are assigned an area of Sy

if vertical and Sx if horizontal. A face between two surface cells is

1 1assigned an area of -ySy if vertical and -rSx if horizontal. Faces between

surface cells and empty cells are assigned zero area. Faces between

surface or full cells and obstacle or no-flow boundary cells are assigned

zero area. Faces that form parts of inflow or outfflow boundaries are
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assigned areas according to the cell type of the neighbor; Sx or Sy if

the neighbor is a full cell, ^5x or -rt5y if the neighbor is a surface

cell.

For surface cells, the volume is calculated from the surface

configuration. The configuration again is inferred by examination of

the nearest neighbors. Four possible configurations are sketched in

Figure 5. The configurations vary in the number of cells which are

empty (E). Configuration (a) shows a full cell. For (b), one neighbor

is empty. For (c) two are empty. Configuration (d) shows three empty

neighbors; using marker particles, four empty neighbors would also be

possible. The fluid volume in a surface cell is calculated from

V. . = f • Sx • Sy , (5.24)
i,J

where f is determined from Table 1.

Table 1. Volume Fraction for Surface

Cells in ORSMAC

Number of

Empty (E) Neighbors 1 >_ 2

f 1/2 1/8

An obvious refinement would be to calculate surface areas and

volumes of surface cells using the actual surfaces as located by the

marker particles (eq. 4.9).
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Possible Free Surface Configurations
in a Surface Cell
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Poisson Equation

The finite difference form of the Poisson equation (4.5) is

i( i »i+i,.i-Vi i Vi-w
dxPi+l/2,j 5x Pi-l/2,j 6x J

6* pi,j+l/2 ^ pi,j-l/2 6y

=~ . Ui+l/2,j " Ui-l/2,j + Vi,j+l/2 -Vi„j-l/2 m
i,3 Sx Sy

In SMAC, the analogous equation was solved iteratively by overrelaxation.

In ORSMAC, relaxation by lines alternating the line direction has reduced

the computer time needed to solve eq. (5.25) by about 50%. Both the

computer time per iteration (machine-dependent) and the number of itera

tions to converge (independent of the computer) have been reduced.

First, the equations (5.25) are arranged in a matrix, one equation for

each cell,

-*•

A £ = D

where A is a five-banded matrix (only the bands which contain some non-zero

elements are stored). Empty and surface cells use the specification

if) = 0 . (5.27)

Boundary conditions on inflow, outflow, and noflow boundaries are entered

by modifying the equations of cells along the appropriate boundaries.

The equation for an obstacle cell is

^OB = ° ' (5-28>
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and the equations of the neighboring cells are modified to prevent flow

into or out of the obstacle. The perturbation if) is set to 0 at the surface,

which involves interpolating (or extrapolating) to set an appropriate

value at the cell center. The guidelines of Nichols and Hirt [9] have

been used, except that interpolation is always in the vertical direction.

If Sy is the distance from the surface to the bottom edge of the surface

cell, the interpolation formula is

(r£ - Sy )if) +(^ +Sy )if) =0 . (5.29)
I s c-1 / s c

"c-1" is the center of the cell just below the surface cell; "c" is the

center of the surface cell.

In the "particle" version of ORSMAC, the surface is located by the highest

particle in a column of cells. The recommended technique is to use the

surface location from eq. (4.9).

The construction of the matrix equation (5.26) has two advantages.

First, a great deal of testing on boundary conditions is done during

the setup and is not repeated during the relaxation process. Second,

since they are incorporated into the matrix A, the boundary condtions are

applied implicitly. Elimination of boundary condition testing reduces the

time required for one iteration through the equations. The implicit treat

ment of the boundary conditions reduces the number of iterations required

to solve eqs. (5.26) to a specified accuracy.

The algorithm used to solve the Poisson equation for each cycle

(time step) is summarized as follows:

1. Set up coefficient matrix A with one equation for each full,

surface, empty or obstacle cell.
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2. Modify the equations for obstacle cells and their neighbors and

for cells next to boundaries to incorporate the correct condition

on if) at the boundary (see Chapter III).

3. For each row of cells, solve the equations

A. , . ty. , . + A. .if) . + A. .. . if) .
i-l,3 1-1,3 1,3 1,3 i+l,3 1+1,3

= D. .- (A. .. if)1* ..+ A. ._,, if)k ._,,) (5.30)
1,3 1,3-1 1,3-1 i,J+l 1,3+1

and

i\K+1 =(3 + 1)$, .-3/ , (5.31)
i,J i,J i,J

The parameter 3 is the relaxation factor,

0 < 3 < 1

and k is the iteration counter.

4. Alternate the implicit direction, solving the following equations

for each cell in a column, one column at a time.

A. . . if). . , + A. . ifj. . + A. .,. $. ...
i,3-l ri,3"l i,J i,3 i,3+l ri,3+l

k+1 k+1= D. . - (A. . . ifjK^ . + A.., . Kit •> (5.32)
1,3 1-1,3 1-1,3 1+1,3 i+1,3

and

ijjk+2 = (3 +1)J. . - 3^ . (5.33)

In eqs. (5.30, .32), the if) are coupled so that the equation set

is linear and the coefficient matrix is tridiagonal. Such equa

tions are solved efficiently using Gaussian elimination [17].
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5. Sweep the boundaries, updating values for ifj in the image or

fictitious cells outside of the mesh.

6. Repeat steps 3-5 until the convergence criterion is satisfied.

A solution if) is accepted when

ii,k+11 i,k ii,ii,k+11 , i,k |I ^ z-ct/n
IIif; I - 1^1 |/1 1^ I + 1^1 I < e (5.34)

for each cell. The convergence parameter

-4
(e ^ 10 is a typical value)

is specified by the user (Appendix A).

The extra storage required for the matrix A is minimized by shar

ing locations used elsewhere in the ORSMAC code.

Surface Stress

The free-surface boundary conditions are detailed in Chapter IV. The

finite difference algorithm used to apply those conditions is fully

explained in ref. [3]. Since the algorithm and the conditions have not

been changed, the details will not be repeated here. Two additions are

the option to specify the surface pressure as zero (eq. 4.11) and the

option to specify depth of fluid at the right edge of the computing mesh.

This condition is applied through equation (4.11). If a depth is speci

fied, the surface pressure 0 is applied to the particular cell on the

right boundary which corresponds to the desired depth.

In this chapter, the finite difference equations for the momentum

and energy equations are given. The surface conditions are detailed in

ref. [3]. An improved algorithm for the finite difference form of the

convection terms (developed by Hirt et al. [15]) is described.
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VI. SUMMARY OF TEST CASES

A number of test cases have been run to establish the utility of the

ORSMAC code for problems involving entrainment and recirculation in the

vicinity of the submerged jets. In this chapter, the results from the

test cases are analyzed and some tentative conclusions are discussed.

Complete input (card images) is presented for one case.

Other test problems have been run which are not reported in this

chapter. In particular, two problems run by Daly [6] have been repeated.

Daly used MAC to simulate the interaction of two immiscible fluids of

different densities. In ORSMAC, only a single fluid was used but regions

of different temperature (and thus different density) were set up. In

the "Fractured Diaphragm" problem, regions of hot (light) fluid and cold

(heavy) fluid are separated by a vertical diaphragm. The problem starts

as the diaphragm is suddenly removed. The cold (heavy) fluid shifts down

ward, displacing the hot (light) fluid upward until the interface is

horizontal. If the middle isotherm is interpreted as the interface location,

the results from ORSMAC are in agreement with those given by Daly. The

second problem is the simulation of the Taylor Instability, in which a

heavy fluid is superposed over a lighter fluid in a gravity field. The

surface is disturbed and the perturbation grows with time, with the heavy

fluid penetrating and eventually displacing the lighter fluid below. In

ORSMAC, a cold fluid was placed above a hot fluid and the surface was

disturbed. Again interpreting the middle isotherm as the interface

between light and heavy (hot and cold) fluids, the results are quite in

agreement with Daly's results. A movie is available [18], comparing Daly's

computer-generated flow with a physical experiment. These two test
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problems were especially helpful in verifying the formulation for the

energy equation (2.27).

The solutions are presented as contours of constant value of the

stream function as produced on the line printer. The stream function

is defined by

i - -' <6-»

TT" u • (6.2)
dy

These relations satisfy the continuity equation (2.19) exactly. Values

of the stream function X are defined at cell corners. The value is set

to zero at the lower left corner of the mesh and (6.1 - .2) are inte

grated to give X for all full cells:

Ai+3/2,j+l/2 = Xi+l/2,j+l/2 " Vi+l,j+l/2 *6x (6-la)

Xi+l/2,j+3/2 " Xi+l/2,j+l/2 + ui+l/2,j+l *6y ' (6-2a)

Stream function values at the liquid surface are printed as S; no con

tour values are printed for empty cells. For negative values of X, the

contour value is overprinted with '/'. Solutions for temperatures are

presented on printer plots as isotherms.

The results presented in this report are for steady-state flows.

One difficulty in analyzing the results from these ORSMAC calculations

is the determination of "convergence." Formally, steady-state
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, - du 9v J 9T
problems are converged when the time derivatives -r—, -r~ and -r— are zero

dt dt dt

for each cell. Jet flow introduces the possibility of vortex shedding,

a transient phenomenon. It is recommended that results be accepted

when the "major structure" of the flow (submerged stream line patterns,

for example) is established. Such criteria are subjective and require

careful judgment by the analyst in each case. As an aid in identifying

"converged" solutions, the net rate of change in the fluid volume within

the mesh is calculated and printed periodically. The volume change rate

(storage rate) is

V = - n • v dA . (6.3)

The integral is over the bottom and both edges of the mesh and over the

free surface of the liquid.

The major input parameters for the test cases are given in Table 2,

which uses nomenclature defined on Figure 25, Appendix A. For ORSMAC,

the physical properties of the fluid have not been varied. Except

for the value of the kinematic viscosity, approximate properties of fresh

water have been used. Numerical parameters (Sx, Sy, etc.) which define

the finite difference mesh and particle density were also fixed. The

numbers are shown in Table 3. The value for the kinematic viscosity

2
(0.5 ft /sec.) is much larger than the value for water, but generally

much smaller than "turbulent viscosities."



Table 2. Input Parameters for Sample Cases

Figures L2 LB1 LB2 IBAR JBAR
UL VB UB

DNOR FLOW

6 0 0 5 50 12 0 4.0 0 — L

7 0 0 5 10 12 0 4.0 0 — L

9, 12 12 23 28 50 12 2.0 5.0 2.887 7.99 L

10, 13 12 23 28 50 12 2.0 5.0 0 7.99 L

11, 14 12 23 28 50 12 2.0 5.0 -2.887 7.99 L

15 12 23 28 50 12,48* 2.0 5.0 -2.887 7.99 L

16 -24 12 20 25 50 12 0.2 5.0 0.0 9.1 T

L = Laminar

T = Turbulent

*Finely resolved vertical mesh spacing.
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Table 3. Parameters Used for Sample Jet Discharge Problems

Problem Type

C - specific heat, Btu/lb -°F
v m

3
p - liquid density, lb /ft
o m

(-jts) - slope for density function,
o 3

lb /ft -°F
m

T -
o

k -

v -

TL"

TB"
Prm -

Sx -

Sy -

gr "

8z "

Mesh

base temperature for density, °F

thermal conductivity, Btu/sec-ft-cF

2
kinematic viscosity, ft /sec

mainstream temperature, °F

hot water inflow temperature, °F

turbulent Prandtl number

relaxation factor

horizontal mesh spacing, ft

vertical mesh spacing, ft

gravity in horizontal direction, ft/sec

2
gravity in vertical direction, ft/sec

boundaries are free slip.

*Finely resolved vertical mesh spacing.

Laminar

1.0

62.4

-0.07756

60

Turbulent

1.0

62.4

-0.07756

60

,-5 -5
9.39x10 9.39x10

0.5 0.7

60 60

65 65

1.0 0.9

0.75 0.75

1.0 1.0

1.0 1.0, 0.25*

0.0 0.0

-32.174 -32.174
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Solutions for the classical problem of a jet discharging into a semi-

infinite medium are presented in Schlichting [1]. These solutions dictate

substantial flows normal to the jet centerline due to entrainment. The

normal flows eventually turn and mix with the jet flow. These classical

solutions have sometimes been used for analysis of vertical discharge of

hot water into shallow receiving bodies. In this case, the inflow normal

to the jet centerline is cool water drawn to the jet along the bottom of

the receiving body. According to the simple model, the cool water mixes

with the hot jet, causing dilution of the hot water. Since this simple

jet model depends on an induced flow along the bottom toward the jet,

the ORSMAC code can be used to check the model only if ORSMAC is capable

of calculating such a flow when it is physically justified.

To test ORSMAC, two simple problems were run in which a flow was

introduced across a portion of the bottom of the mesh and allowed to

flow out the right-hand (continuitive) boundary. The mesh was initially

filled with fluid and no gravity forces were imposed. Thus the mesh

remained full of fluid, avoiding the complexity of free-surface

calculations.

For the first problem, the calculated "steady-state" stream lines

are shown on Figure 6. The fluid enters the mesh, is turned by the lid

at the top of the mesh and flows across the right-hand boundary. A large

recirculation region is trapped under the turning flow, as indicated by

the closed stream line in that region. No inflow is expected, or

calculated, at the right-hand boundary.
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For the second problem, the right edge of the mesh was moved to the

center of the recirculation region and other parameters were not changed.

The stream lines for that problem are shown in Figure 7. The left half

of the recirculation region shown in Figure 6 is reproduced in Figure 7.

In this problem, an induced flow from the boundary to the jet is expected,

and ORSMAC has produced it. Figure 8 is a comparison of the horizontal

velocities calculated at a plane through the center of the recirculation

region. The agreement is clearly excellent, indicating that the

boundary condition treatment at the right of the mesh is adequate. However,

the present ORSMAC code does not allow assignment of a temperature to fluid

entrained from the right. Thus temperatures calculated for problems with

entrainment of fluid from the right may not be realistic.

The next three examples (Figures 9-15) treat a hot laminar bottom

discharge into a crossflowing (left-to-right) stream. The problems differ

in the discharge angle of the jet, which varies from 30° downstream from

vertical (Figures 9,12) to 30° upstream from vertical (Figures 11,15).

Numerically, each of these examples is well converged. The local density

is given by

P-Po +(f>Q (T "V • (6-4)

where T is the local temperature.

The stream lines are shown in Figures 9-11. As the jet direction

changes from downstream to upstream, the surface distortion increases until,

in the last problem, a large standing wave forms above the upstream-

directed jet. This wave forms as the crossflow is forced up and over

the jet. For all three problems, the water actually collects against the
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TRUNCATED LAMINAR PLENUM TURNING PROBLEM ON MODERN CODE
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Stream Lines -

Wide Submerged Jet Impinging on Lid
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• LONG TURNING CHAMBER, FIG. 6

O SHORT TURNING CHAMBER, FIG. 7

VELOCITIES CALCULATED AT A VERTICAL

PLAN 11 FT. FROM CENTER OF JET

0 1 2

HORIZONTAL VELOCITY, FT/SEC.

Figure 8

Comparison of Horizontal Velocities
Within Recirculation Region

DWG. NO. K/G-78-2380

(U)
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HOT LAMINAR DOWNSTREAM JET - TO GET BERNOULLI ANALYSIS OF SURFACE
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Stream Lines -

Laminar Jet with Crossflow, Jet Inclined 30c
From Vertical in Downstream Direction
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HEIGHT 1 I 1 I 1 I I I I
1.20000*01 -0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000

1.0800D*01 -0

9.60000*00 -0

3333333333333333333333333333333333333333333333333333333SSSSI

8.4000D*00 -3 - - 33333333333333333333333333333222222222222222222222222SSSS •
333332222222222222222222222222222

3332222 I I I

222 I I I
2

7.20000*00 -2 -1- -I- -I-

6.0000D*00 -2

3.6000D*00

2.HOOOD*00

1 1 I

I

-I-

I I 222222222111
2 222222222222222222222211111111 1
222222222111111111111111111111 I
1111111II 1 I I

, , 1 ,.

I 1 I I
1 1 I I

I I

i i
! 1 1 nno-

i i i moo
i i i iniiinoo

liniiiiiiii iiiiiiiinniiiniioooooooi
oooooooooooooooooooooooooooooooo I
o 1 j 1 1- -

o I I I I
0 I I I I

i

1 22222SSSSS

I I I 222222SSSSSSSSSSSSSS322222222222222222
I I 2222222222222 2222222222222222 1 2
1 122211111111111112222222222222222222222222222222222

-1 22211 1 1! 11 11 111111111111111111 11 1111111 11-
1 22211 1111111111111 I I I 1
1 22111 111000000000000011111111 11111 lllllll 1111111 || N
1 2221 I 11100 I 00000000000000000000000000000000
1222211 11100 I I I I 0

•2222111 110 1 1 1 1 0-
110 I I

10 000000000000000000 I I 0
in oooiiiimiiuimmoooooooooooooooooooooooo

noi ooii [ i imiiiiiiiiiiiuiimiii
io-i- -ooi- mmiiimm 1 i-

OSSSSSSSSSSSSSSSSSO

n

no

no
no

1 001 III222222222222222imiIIIIIIIIIIII I
I 01 11221 I 22222222222222222221II IlIII
1 00 112 22222222222 1 1 222222222
I 0III2 22223222222332222222 1 I 2
100-12 2222 123322222222222222221 2-
101II 222 1 I 22222222223332222222222
00 12222 222222222 I 1 22222222222
OIII 22 222VVVVUVVVV222 I I 2
0 1222 33VV VVVVV22222 I I 2

00-I-2332V-1 1- VVVVVVV2222222- -I 2-
OIII 2 2V
011222 2 I
Oil 2332 I

0 I 1 1 I Oil 2 2V VVV
,2000D*00 -0 - - - -I- - - - -I- - - - -1- - - - -1- - - - Oil 2 2 - -VBBB

0 1 I 1 1 Oil 2 2 V B 1 I 1 w
0 1 I I 1 Oil 2 2 14 B I I I *
0 I I 1 I Oil 2 2 VBBB I I 1 V

0 -00OO0OO0O0OO00OOOOO0OO0OO0OO0O00O0OOOO0OO0OO0OO0OT!2222WVWVVVV*>*VVWUVVUVVUVlfVWtfVlWWUVWWVUl<*UUWItWU
I I I 1 I I I I 1 REACH

0.0 1.0000*01 2.000D+01 3.0000*01 4.000D*01 5.000D*01
5.000D*00 1.500D+01 2.500D+01 3.500D+01 4.500D+01

I WVVVVVVVV2222222222222
I VVVVVWVVVWVW*

I

MAXIMUM VALUE IS 0.

STREAMLINES - CYCLE

AT LOCATION

1265 TIME IS 2

0 0

0014D+01

0.0 0.0

Figure 10

Stream Lines -

Laminar Vertical Jet with Crossflow
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HOT LAMINAR DOWNSTREAM JET - TO GET BERNOULLI ANALYSIS OF SURFACE
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left boundary of the computing mesh, indicating that the jet would change

flow further upstream if that region was included in the mesh. A recircu

lation region is not formed under the downstream-directed jet, but a small

region forms behind the vertical jet and a larger eddy is formed behind

the upstream jet.

Using a continuitive, or outflow, boundary condition in the region

where the fluid is collected against the upstream boundary is no better

than the no-flow condition actually used. Either method distorts the

inflow somewhat. Ideally, the upstream boundary should be moved (by adding

columns of cells) until the upstream depth falls to an "undisturbed" value.

In this report, budgetary limitations dictated a limited computing region

with some compromise in the realism of the results near the upstream

boundary.

The isotherms are shown in Figures 12 - 14. For these problems, the

crossflow temperature is 60°F and the jet temperature is 65°F. Isotherms

are plotted at 0.5° increments. The cell of undiluted (unmixed) hot water

just downstream of the downstream-directed jet indicates the lack of an

eddy at that location. In the vertical and upstream-directed jets, this

region becomes progressively smaller as the eddy promotes mixing with cooler

water above the cell. The blockage of the crossflow by the jet shows as

higher surface temperature (more complete penetration) as the jet moves to

vertical to upstream. A more realistic, turbulent, jet model would enhance

mixing as compared to these laminar problems.

The calculated free-surface shape can be checked for consistency using

the steady-state Bernoulli equation,

jv- v+ gy(yR -y) =C . (6.5)
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The assumptions to derive this equation from the Navier-Stokes equations

(2.17-.18) are:

1. the flow is steady (the free surface is thus a streamline),

2. viscous and turbulent effects are negligible,

3. the pressure is constant at the free surface,

4. the body force is expressible in terms of a potential function F.

Thus,

g = j g = - VF
y

where j is the unit vector in the y direction, so that

f = gv(yR - y) • (6.6)
y K-

The zero for the potential F has been chosen as the depth of "undisturbed"

flow far downstream from the discharge (see Figure 1). Equation (6.5)

says that the sum of the kinetic and potential energy at the free surface

is a constant, the Bernoulli number [27].

Plots of the kinetic and potential energy and the Bernoulli number

at the free surface are shown on Figure 15. The dashed curves are for

calculations done with a coarse mesh (cells one foot square, same as

Figures 11 and 14). The general shapes agree with intuition; the cross-

flow slows behind the jet, forming a standing wave and accumulating

sufficient potential energy to counteract the high kinetic energy of the

jet. The potential energy is converted to kinetic energy downstream of

the standing wave. The Bernoulli number is clearly not constant. Further,

the curves show discontinuities at various locations. These discontinui

ties and the inconstancy of the Bernoulli number result from the coarse
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computing mesh used for this calculation. The discontinuities in the

kinetic energy are at locations where the free surface crosses cell

boundaries, passing into a higher or lower row of cells. The calculated

Bernoulli number could be made constant (to the value at the right of the

mesh) by lowering the surface 0.47 feet or less. Thus the surface height

has been everywhere located within a tolerance of one-half of a cell height,

better than the resolution one can expect from a finite difference scheme.

Three conclusions are possible from the analysis of the free surface.

First, the shape is in harmony with intuition. Second, while details of the

shape are not exact, they are accurate within the resolution of the finite

difference mesh used. Third, accurate calculation of the free surface

shape would require a finer mesh. It is of interest to note that the

frictional and turbulent effects neglected in this analysis (assumption

3 above) are about 7% of the Bernoulli number just above the jet but

elsewhere much smaller.

The solid curves on Figure 15 resulted from calculating the upstream

laminar jet using a refined mesh in the depth dimension. The computational

cells used to generate the solid curves were 0.25x1.00 feet. The

Bernoulli number and its components have changed as a result of the finer

mesh used. The extreme value of kinetic energy just downstream of the

jet has been reduced; thus the Bernoulli number in this case is much

nearer a constant value. The maximum deviation in the surface Bernoulli

number from this problem is 0.32 feet (1.25 cell heights).

The difference between the two calculations lies in the resolution

of the fluid velocity at the surface above the jet. The surface height

calculated for the two problems differs less than 0.1 feet.
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Surface temperatures calculated downstream from the jet are lower

for the fine mesh (0.14° above ambient) than for the coarse mesh (1.0°F

above ambient). Isotherms for the fine mesh (not shown) spread less than

those for the coarse mesh (Figure 14) as the thermal plume is swept

downstream. Very likely the smaller cell size introduces less artificial

numerical diffusion. As suggested above, a reasonable model for turbulent

mixing should swamp these differences in numerical diffusion. Finally,

in both problems, the thermal plume still lies below cooler water as it

leaves the mesh at the downstream (right) boundary. Since the plume is

buoyant, a downstream extension of the mesh would be required to determine

the temperature distribution at the surface.

The penalty paid for the finely resolved problem was about 50 minutes

of CPU time on the IBM/360-195 system (5 times the time required for the

coarse mesh problem). This penalty could be drastically reduced by use

of a variable-mesh ORSMAC. Similarly, extensions of the mesh upstream

and downstream, as suggested above, could be accomplished economically with

a variable mesh.

The final demonstration is a vertical, hot, turbulent jet discharg

ing into a cool crossflowing stream. This problem demonstrates the

last added feature in ORSMAC, the ability to use a simple eddy-viscosity

model for turbulence.

For this simulation, a scalar turbulence model was used to calculate

eddy viscosities. The vorticity is defined by

n ^u 8v ni -i \9. = -z 15- . (6.7)
dy dx

A mixing length is given by

I = 0.01 • d + 0.4 • y (6.8)
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and the eddy viscosity is

V = I1 Ifil . (6.9)
e ' '

The variable d is the depth of the receiving region and y is the distance

from the bottom of the region to the cell vertex at which the eddy

viscosity is calculated (see Figure 4). This model is apparently typical

of those in use. For this particular problem, it was necessary to use a

constant viscosity (v = 0.7, V =0.0) for several hundred cycles until

transients generated by the arbitrary initial flow field had been damped.

The input data deck for this problem is shown in Figure 16. A

FORTRAN (level Q)* compiler listing and normal output for the first 68

cycles of the calculation are enclosed on microfiche as Appendix B.

The final solution is also shown in Appendix B.

This problem is well converged; that is, the solution is a steady-

-9
state solution. The volume change rate (eq. 6.3) is less than 3x10

cubic feet per second and monotonically decreasing. Visual inspection of

stream line and isotherm plots over several hundred cycles shows little

or no change.

Stream function contours for the converged solution are shown on

Figure 17. The small recirculation region just downstream of the dis

charge is expected from the laminar results. The stream lines at the

right-hand boundary are horizontal, indicating that flow has recovered

from the vertical disturbance. The stream lines are closer together at

the surface than at the bottom, indicating higher velocities near the

surface. A counterclockwise recirculation region upstream of the jet

A program product of International Business Machines; ORSMAC can
also be compiled successfully on the level H compiler.
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Figure 16

Card Input for Hot Turbulent Jet with Crossflow
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is indicated by the closed stream line in that region. By changing the

scale factor in the contour plot routine, the structure of the recircula

tion region is revealed on Figure 18. All of the crossflow is diverted

under the region and then accelerated very rapidly to the surface by the

jet. The flow at the surface above the region is actually upstream.

The horizontal velocity profile at two different vertical planes is

shown on Figure 19. A profile calculated at a plane one foot from the

upstream (computational) boundary (o) shows a nearly constant velocity;

this profile is a slight perturbation of the profile (0.2 feet/second)

imposed by the boundary conditions. The fluid is slowed slightly over

most of the curve but is accelerated towards the bottom of the reservoir.

A profile through a plane 15 feet from the upstream boundary (•) roughly

bisects the recirculation region. The curve shows the velocity along

the reservoir bottom to be more than four times the inlet velocity to the

left.

Contours of the vorticity (eq. 6.8) are shown on Figure 20. Areas of

high vorticity are noted just downstream and upstream of the jet. These

are areas where high shear rates would be expected.

Contours of eddy viscosity (eq. 6.9) are shown on Figure 21. The

structure (three local maxima and at least two ridges) reflects the compli

cated interaction between the vorticity and the mixing length

(eqs. 6.7 - .8). The maximum value (V * 3.04) is more than four times

the value used for laminar viscosity (Table 3, V = 0.7) and about

200,000 times a reasonable value for the viscosity of fresh water.

Isotherms (at 0.5°F intervals) are shown on Figure 22. The mass

flow rate of the hot water is much higher than the crossflow rate
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(13.9:1) so that the mix temperature is very nearly the hot water tempera

ture. The upstream travel of the hot water due to the recirculation region

in front of the jet can be seen; most of the dilution actually takes place

due to the recirculation.

Finally, contours of the pressure correction ty (eq. 4.1) are shown

in Figure 23. In the vertical flow near the jet, the correction is nega

tive; the actual pressure at discharge is about 8% less than hydrostatic.

Figure 24 shows the kinetic and potential energy and the Bernoulli

number for the free surface obtained as a part of the present solution.

The kinetic energy is a maximum just downstream of the jet, consistent

with the stream line picture (Figure 16) showing high velocities at the

surface in that region. The kinetic energy decays (and the potential

energy increases) downstream from that point as the flow spreads. The

potential energy (surface elevation) is nearly constant upstream of the

jet, rises over the jet, falls downstream from the jet and then recovers

to the fixed value at the right boundary.

The Bernoulli number is clearly not constant for this solution.

Since the Bernoulli number is indeterminate to an additive constant, the

change in free surface elevation needed to make the Bernoulli number a

constant is a useful measure of error. The maximum adjustment needed in

the free surface would be to lower it 0.199 feet just above the jet.

Since the computational cells for this calculation were one foot square,

the surface location has been everywhere determined to less than 20% of a

cell height. In finite difference calculations, resolution of flows to

less than one mesh spacing is questionable. Clearly, if the surface

shape is an important parameter in a problem, a finer mesh is required

to resolve the surface accurately. In a recent paper, however,
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HOT TURBULENT JET WITH LOW CROSSFLOW - VERTICAL DISCHARGE
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Almquist [28] states that free surface effects are of "minor importance"

for wave heights typical of rivers and reservoirs. For the present solu

tion, the viscous and turbulence effects ignored at the free surface

were estimated from the solution. At worst, these dissipative terms were

2
0.6 (ft/sec) above the jet and generally 1-2 orders of magnitude less

elsewhere on the surface.

For this problem, a simulation time of 125.0 seconds was used; 3464

time steps were executed. The computing time on the IBM/360-195 processor

(excluding compilation, linking, etc.) was 32.5 minutes.

In this chapter, computational results for several interesting

vertical jet problems have been discussed. The capability of the outflow

boundary condition used in ORSMAC to mimic a limited inflow, if appropriate,

has been established. Simulation of a bottom jet discharging at various

angles into a crossflowing stream illustrates the displacement of the

crossflow and the free surface by the jet. Most of the problems show a

characteristic recirculation region formed under the jet as it bends from

vertical to horizontal. The surface shapes for two sample problems have

been analyzed for consistency with the steady-state Bernoulli equation.

The solutions are compatible with the Bernoulli equation within the reso

lution of the finite difference mesh. If surface shapes are important, a

resolution finer than one foot per cell height should be considered. The

effect of the up- and downstream computational boundaries on the calculated

results is discussed. Use of a variable mesh version of ORSMAC is

suggested.
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Detailed results for a turbulent hot jet discharging into a cross-

flow are given. Contour plots of the stream function, vorticity, eddy

viscosity, temperature and pressure correction are shown. These reveal

interesting structure including a large counterclockwise closed cell up

stream from the jet. This cell actually "pumps" hot water upstream against

the current and induces most of the mixing between hot and cold streams.

Images of input cards are presented for this sample problem.
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VII. CONCLUSIONS AND RECOMMENDATIONS

At various points in the previous chapters, conclusions have been

drawn and areas for improvement or extension of the algorithm have been

identified. Those various items are collected and tabulated in this

chapter.

Conclusions

1. The Simplified Marker and Cell algorithm for calculating transient

flows of a laminar, incompressible fluid in the presence of a free

surface has been extended in the following ways:

a. the use of a "constant depth" or "specified pressure" boundary

condition has been demonstrated;

b. a simple scalar (mixing length) turbulence model has been

integrated into the code;

c. modern finite difference estimates for convective transport that

stabilize the momentum and energy equations have been used;

d. a special form of the energy equation needed in the presence

of a free surface can be solved efficiently within the ORSMAC

format;

e. automatic calculation of the permissible time step is not only

feasible but necessary.

f. The SMAC concept can be readily extended to describe fluid flows

involving small changes in density. The more general equations

are easily solved using a generalization of the current algorithm.
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Many of these extensions were developed by others for other purposes.

References to previous work are included in the chapters above.

To the best of the authors' knowledge, this report describes the

first integration of these various features into one program for use

on jet discharge problems.

2. A vertical or nearly vertical jet discharging into a shallow reservoir

does not induce a flow to the jet along the bottom of the reservoir.

Rather, a recirculation region not appreciably larger than the jet is

formed just under the jet. Thus, in a hot discharge, entrainment,

mixing and cooling of the hot fluid will not be correctly predicted

by classical jet theory.

3. Results of the sample calculation (and others) indicate that a large

recirculation region will sometimes form upstream and a major portion

of the mixing may occur within that region.

Recommendations

1. Methods for obtaining more rapid solutions for the generalized Poisson

equation should be investigated.

2. A high-order explicit algorithm for the momentum and energy equations

[31] should be tested. This would offset to some degree the loss in

accuracy due to coarse or nonuniform meshes (see 3., below) at very

little cost in computer time or complexity.
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3. The ORSMAC algorithm should be modified to incorporate a variable step-

size mesh. Simulation of the near-field interaction of a discharge

from a multiport diffuser into a river (such as the Tennessee Valley

Authority's Browns Ferry Nuclear Plants) would require several hours

of computer time using the present ORSMAC code. This is because the

(uniform) mesh spacing is determined by details of the diffuser and

the number of spacings set by the extent of the boundaries. Comput

ing time could easily be cut by factors of 2 or 3 using a variable

mesh with small spacing near the diffuser and larger spacing up and

down stream.

4. A numerical simulation of an actual hot water discharge should be

done as a verification of ORSMAC, including physics, numerical algorithm

and turbulence model. The present report is intended to demonstrate

that an appropriate physical modeling has been included and that the

algorithm is effective. The turbulence model used in this work is

straightforward to implement and caused no numerical difficulties.

5. A study of the upstream eddy formation should be made with two

objectives.

a. Determine conditions under which an eddy is formed.

b. Determine if the eddy aids or hinders compliance with thermal

standards for the effluent.
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APPENDIX A

DATA SETUP

Input Data Deck

The number of input data cards varies as to the problem being set up.

There are a certain number of cards, however, that must always appear,

arranged in the following way:

Card No. 1 (Format: 215, 3F8.3, 15, 2F8.3, 215)

IBAR = I, the number of inside cells in the r or x direction.

JBAR = J, the number of inside cells in the z or y direction.

DR = 6r (or Sx), the cell size in the r (or x) direction.

DZ = 6z (or 6y), the cell size in the z (or y) direction.

DT = 6t, the time step.

IPHM = Unused variable, set IPHM = IBAR.

PC = 0.0 for cylindrical geometry, = 1.0 for plane geometry.

ALP = a, the overrelaxation parameter in the ^ equation. Set

to 0 if there is to be no overrelaxation.

LOPTEM = Number of energy equation subcycles for each cycle of the

algorithm. If blank, LOPTEM = 1.

KLIK = Flag for surface pressure, = 0 uses eq. (3.15), = 1 uses

6=0.
s

Card No. 2 (Format: 10A8)

This card is used for problem identification on prints and plots.

If desired, the card may be entirely blank, but it must always be

included.
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Card No. 3 (Format: 4F3.1, F8.3)

BCD Boundary condition for rigid wall (or wall section) on bottom,

BCR right, top, and left mesh boundaries, respectively. "1.0"

BCT is freeslip, "-1.0" is noslip.

BCL

EPS = e, the convergence criterion for \\) calculation. Usually

-4
2 x 10 .

Card No. 4 (Format: 10F8.3)

Liquid Properties

SPHT = Specific heat of fluid.

CAY = Thermal conductivity of fluid.

PRT = Prandtl number for turbulence model (= 1.0 for laminar studies)

NU = V, the constant kinematic viscosity coefficient.

GR = Gravity in the r or x direction (+ or -).

GZ = Gravity in the z or y direction (+ or -).

DRHRT = dp/dT, slope of density-temperature function for fluid.

RHOZ = Reference density for fluid.

TZER = Reference temperature for fluid.

GC = Gravitational conversion factor.

Card No. 5 (Format: 4F8.3)

T t , the starting time, usually zero.

TWPLT = Intervals of problem time between printer plots.

TWPRT = Intervals of problem time between flow field prints.

TWFIN = Problem finish time.
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Card No. 6 (Format: 1015, 2F8.3)

This card and Card 6A are called the "type" cards. If the problem

is to be run with no obstacle or inflow or outflow, simply make the

first number, TYPE, a zero and leave the remainder of the cards blank.

To provide an obstacle or inflow or outflow (or all three), make

TYPE = 1 and supply the remaining information:

TYPE = 0 = no inflow, outflow, or obstacle.

1 = one or more of the three options.

LI through
L7 = Dimensions shown in Figure 25. These are given in integer numbers

of cells to emphasize that all points must coincide with cell

boundaries.

LI = Lower dimension for an opening on the left boundary for an

inflow.

L2 = Upper dimension for an opening on the left boundary for an

inflow.

L3 = Lower dimension for an opening on the right boundary for an

outflow.

L4 = Upper dimension for an opening on the right boundary for an

outflow.

L5 = Horizontal location of the lower left corner of a rectangular

obstacle setting on the lower boundary.

L6 = Horizontal location of the lower right corner of the obstacle.

L7 = Height of the obstacle.
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Card No. 6 (Contd.)

NXB Number of particles per cell to be created at the inflow

NYB boundary, in the r (or x) and z (or y) directions.

UL = Prescribed inflow velocity.

UR = Prescribed outflow velocity. Outflow becomes continuative

if UR = 0.0.

Card No. 6A (Format: 415, 2F8.3, 15, 4F8.3)

LB1 = Dimensions are shown in Figure 25. These are given in integer

through
LB4 number of cells.

VB = Inflow normal velocity on the bottom surface.

VB2 = Outflow normal velocity on the bottom surface.

IRFLAG = If = 1, a body of fluid exists to the right of the mesh.-

Thetas are modified accordingly.

DNOR = Fluid depth to the right of the mesh.

TL = Temperature of inflow stream on the left.

TB = Temperature of inflow stream on the bottom.

UB = Tangential velocity for bottom inlet flow.

The above seven cards pertain to all ORSMAC setups, and are always

included in the order stated. Following them are one or more part

cards to create fluid initially in the system, one card for each part.

A part is rectangular, as illustrated in Figure 26 along with the named

dimensions. The four dimensions (XC, YC, XD, and YD) are input in

problem units (real numbers) because the parts are not constrained to

follow cell boundaries, in contrast to the obstacle. For a rectangle,

XC and YC specify the coordinate of the lower left corner, while XD and

YD specify the coordinate of the upper right corner.
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MESH BOUNDARY

•WG, NO. G-76-1468

(U)

A "PART" CARD IS USED TO DEFINE FLUID VELOCITIES AND

FLUID TEMPERATURE IN A "PART" OF THE MESH

Figure 26

Schematic Definition of Quantities

Defined Using A Part Card
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The options for calculations in a cylindrical coordinate system

(ref. [3]) have been retained in ORSMAC; however, they have not been

extensively tested.

A part card contains the following information:
Format: 215, 7F8.3

NX Number of particles/cell to be created for this part in the

NY r (or x) and z (or y) directions.

XC

YC Part dimensions in problem units. See Figure 26.

XD

YD

U Initial velocity components of the part. These velocities and
o

V temperature will be applied to those cells the part initially
o

occupies.

T Initial temperature component of the part,
o

Part cards are processed one at a time, and the number of parts is un

limited. After the last part card, a dummy part card must appear that

has NX = 0; the remainder of the card is unused. Any portion of the

mesh not included in a "part card" specification is presumed to be

empty (no fluid in that portion of the mesh).
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APPENDIX B

FORTRAN Listing
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APPENDIX C

SUBROUTINE DESCRIPTIONS

MAIN

The ORSMAC code has been structured to allow redimensioning of the

larger arrays without recompiling all of the subroutines or changing

several dimension statements. If a mesh of IBAR by JBAR real cells is

required, then

200 _> III _> IBAR + 3

(C-1)

200 _> JJJ > JBAR + 3

and the selected values are entered into MAIN. The vector X(NNN) is the

storage location for the large arrays and is sized in a DIMENSION

statement.

NNN >_ (III + 1)(JJJ + 1) • 11 . (C-2)

If either III or JJJ are greater than 200, several vectors within the

routine REALMN must be redimensioned.

REALMN (REAL MaiN)

This subroutine contains the major logic structure of the algorithm,

controlling input, output and flow through the major sections as shown

on Figure 2. The subroutine has evolved from the ZUNI code as described

in ref. [3]. This routine is somewhat shorter than the ZUNI code, since

discrete logic blocks have been converted to subroutines whenever that

was convenient. Further reorganization of this subroutine would con

tribute to the readability and flexibility of the code.
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PSINU

In this subroutine, the eddy viscosity is calculated at each cell

corner and stored in the array D. Since that array is used for the

volume dilatation in other portions of the algorithm, the eddy viscosity

must be updated each time step.

UNCONS, TWLIN, PRTCON, LINEPO. PRTPLT

This group of subroutines produces a contour plot of a selected

two-dimensional array on logical (output) unit KOUT. The routine UNCONS

scales the variable to be plotted and determines the free surface loca

tion. The routine TWOLIN does the bilinear interpolation used to trans

fer the scaled variable onto the 50x100 grid produced by the printer.

The routine PRTCON produces scales and labels. It then builds and prints

each line of the plot. The routine LINEPO is used to centralize the logic

detail needed to select the proper symbol for each grid location. The

routines are extensions of programs written by R. K. Gryder.* The routine

PRTPLT controls production of printer plots.

VELADV (VELocity ADVance)

This subroutine applies the explicit accelerations for the two

components of the momentum conservation law, eqs. (5.17 - .18).

POISON

The Poisson equation (5.25) which determines the potential correc

tion for the pressure is set up and solved in this subroutine.

*

Presently with the International Atomic Energy Agency, Vienna,
Austria.
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DUMPIT

This routine provides a listing of the current values for velocity,

temperature, pressure, dilatation and cell type. A crude map of cell

type flags is also printed. The current values for the surface height

and Bernoulli function in each column of cells are printed. The net fill

ing rate (eq. 6.3) for the mesh is calculated and printed.

STABLE

The stability criteria (eqs. 4.12 - .20) are applied in this routine

to determine the applicable values of St and a.

SURVEL (SURface VELocities)

The logic required to implement eq. (3.14) with

T=0, B=^ , n= 0,1,2...
w *c

is included in this routine. This routine adjusts face velocities of

surface cells.

TANGEN (TANGENtial)

In this routine, the tangential boundary condition at the mesh

edge (free slip or noslip) and on faces of empty cells just outside of

free surfaces are applied. (See Figure 3 and discussion in Chapter IV.)

NOSTRS (NOrmal STRess)

In this routine, the normal stress at the surface is applied and

the explicit estimate for the pressure is calculated using eq. (4.11).

(See Figure 3 and discussion in Chapter IV.)
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THERML

Calculates the advanced time temperature T using eq. (5.20)

(See Figure 3 and discussion in Chapter V.)

SURHIT (SURface HelghT)

This routine determines an array of values of water depth to be

used in the turbulence model, the Poisson equation surface boundary con

dition and the explicit pressure estimate (NOSTRS). Cells are reflagged

in this routine.

RESTAR

This routine reads or writes sufficient information about the cur

rent problem to allow a restart of the problem at a later time. Input

is read from logical unit 13 (disk or tape) and written to logical unit 14.
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APPENDIX D

AN HEURISTIC EXTENSION TO THE CLASSIC

COURANT STABILITY LIMIT

The Burger's equation is often used as a model equation to determine

the stability properties of finite difference schemes:

|H +c|H =v̂ . (D-D
dt dx » 2

dx

From this, the classical limits for explicit difference schemes are

recovered. The diffusion limit is

6t < -?-=• (D-2)
26x

and Courant (or convective) limit is

5t < TTT • (D-3)

These results have of course been obtained many times using a variety

of analytic techniques. Thus the same ideas give the complex criteria

used in ORSMAC, eqs. (4.12 - 4.20).

In ORSMAC, the variable eddy viscosity gives a simple model equation

slightly different from (D-l):

2

3u + ilL- = i_ (V —) . (D-4)
3t dx 3x v ox

This is analogous to eq. (D-l) if

c=2u -P • (D-5)
dx
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In ORSMAC, the conditions (4.12 - .20) were applied with no difficulty

using c = u if the viscosity was constant. Whenever a turbulent problem

(variable viscosity) was attempted, stability problems were encountered.

For turbulent problems, ORSMAC now uses effective velocities in

eqs. (4.12 - .13) given by

3v

u .. = u --^ (D-6)
eff act 3x

and

3v

v , = v - -jj-^ . (D-7)
eff act oy

The improvement in the computational results using eqs. (D-6) and

(D-7) is marked.
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